Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions

Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yie...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 14; p. 1165582
Main Authors Chen, Shan, Dang, Dongdong, Liu, Yubo, Ji, Shuwen, Zheng, Hongjian, Zhao, Chenghao, Dong, Xiaomei, Li, Cong, Guan, Yuan, Zhang, Ao, Ruan, Yanye
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 08.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance. We utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions. GWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism ( , , ); (2) programmed cell death ( ); (3) transcriptional regulation ( , , , , , and ); (4) autophagy ( ); and (5) cell growth and development ( ). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.
AbstractList Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance. We utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions. GWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism ( , , ); (2) programmed cell death ( ); (3) transcriptional regulation ( , , , , , and ); (4) autophagy ( ); and (5) cell growth and development ( ). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.
Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance.IntroductionDrought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance.We utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions.MethodsWe utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions.GWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism (Zm00001d012176, Zm00001d012101, Zm00001d009488); (2) programmed cell death (Zm00001d053952); (3) transcriptional regulation (Zm00001d037771, Zm00001d053859, Zm00001d031861, Zm00001d038930, Zm00001d049400, Zm00001d045128 and Zm00001d043036); (4) autophagy (Zm00001d028417); and (5) cell growth and development (Zm00001d017495). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.ResultsGWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism (Zm00001d012176, Zm00001d012101, Zm00001d009488); (2) programmed cell death (Zm00001d053952); (3) transcriptional regulation (Zm00001d037771, Zm00001d053859, Zm00001d031861, Zm00001d038930, Zm00001d049400, Zm00001d045128 and Zm00001d043036); (4) autophagy (Zm00001d028417); and (5) cell growth and development (Zm00001d017495). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.
IntroductionDrought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance.MethodsWe utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions.ResultsGWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism (Zm00001d012176, Zm00001d012101, Zm00001d009488); (2) programmed cell death (Zm00001d053952); (3) transcriptional regulation (Zm00001d037771, Zm00001d053859, Zm00001d031861, Zm00001d038930, Zm00001d049400, Zm00001d045128 and Zm00001d043036); (4) autophagy (Zm00001d028417); and (5) cell growth and development (Zm00001d017495). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.
Author Dong, Xiaomei
Liu, Yubo
Zhang, Ao
Zhao, Chenghao
Ji, Shuwen
Li, Cong
Dang, Dongdong
Ruan, Yanye
Chen, Shan
Guan, Yuan
Zheng, Hongjian
AuthorAffiliation 3 International Maize and Wheat Improvement Center (CIMMYT) , Texcoco , Mexico
2 CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences , Shanghai , China
4 Dandong Academy of Agricultural Sciences , Fengcheng, Liaoning , China
1 Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang, Liaoning , China
AuthorAffiliation_xml – name: 3 International Maize and Wheat Improvement Center (CIMMYT) , Texcoco , Mexico
– name: 4 Dandong Academy of Agricultural Sciences , Fengcheng, Liaoning , China
– name: 2 CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences , Shanghai , China
– name: 1 Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang, Liaoning , China
Author_xml – sequence: 1
  givenname: Shan
  surname: Chen
  fullname: Chen, Shan
– sequence: 2
  givenname: Dongdong
  surname: Dang
  fullname: Dang, Dongdong
– sequence: 3
  givenname: Yubo
  surname: Liu
  fullname: Liu, Yubo
– sequence: 4
  givenname: Shuwen
  surname: Ji
  fullname: Ji, Shuwen
– sequence: 5
  givenname: Hongjian
  surname: Zheng
  fullname: Zheng, Hongjian
– sequence: 6
  givenname: Chenghao
  surname: Zhao
  fullname: Zhao, Chenghao
– sequence: 7
  givenname: Xiaomei
  surname: Dong
  fullname: Dong, Xiaomei
– sequence: 8
  givenname: Cong
  surname: Li
  fullname: Li, Cong
– sequence: 9
  givenname: Yuan
  surname: Guan
  fullname: Guan, Yuan
– sequence: 10
  givenname: Ao
  surname: Zhang
  fullname: Zhang, Ao
– sequence: 11
  givenname: Yanye
  surname: Ruan
  fullname: Ruan, Yanye
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37223800$$D View this record in MEDLINE/PubMed
BookMark eNp1UstuFDEQtFAQCSEfwAX5yGUWP2Y8MyeEIgiRInEBiZvlbbd3Hc3ai-0hCp_C1-J9BCVI-GLL7qpyd9VLchJiQEJec7aQchjfue2UF4IJueBcdd0gnpEzrlTbtEp8P3l0PiUXOd-yujrGxrF_QU5lL4QcGDsjv68wxA02d94iNTlH8Kb4GGgus72n24QZQ8nUh-xX6_2hRFrWSFcYsHigJsHaF4QyJ6TRUZviXCtpiRMmEwArhG6M_4U0I9rJh1Wmc7CYqPM4WXpnCqbGovPgC4UYrN_9IL8iz52ZMl4c93Py7dPHr5efm5svV9eXH24aaJUqjVpKCSOTRo0DH-xScWe7vhOd4cI5PrSOja4zXcfZsmUOJQCC4IjSCYfdIM_J9YHXRnOrt8lvTLrX0Xi9v4hppU2qnU6oAR1ADz0fwLRLNIZzA2xoJVinZO8q1_sD13ZebtBCnV0y0xPSpy_Br_Uq_tSciZ05Y2V4e2RI8ceMueiNz4DTZALGOWtRm-xbNVTjz8mbx2J_VR7crQX9oQBSzDmh03XCe3urtp-qqN5FSe-ipHdR0scoVST_B_lA_n_MH_ai0uk
CitedBy_id crossref_primary_10_3390_life14040453
crossref_primary_10_1007_s42535_024_00901_8
crossref_primary_10_3390_ijms25031918
crossref_primary_10_3389_fsufs_2024_1391989
crossref_primary_10_1007_s00425_024_04517_9
Cites_doi 10.1093/jxb/erq308
10.3389/fpls.2016.00946
10.1038/s41467-021-22812-x
10.1093/plcell/koab083
10.1371/journal.pone.0019379
10.1074/jbc.M110.178020
10.1007/s00438-014-0867-8
10.1104/pp.126.1.222
10.1186/s12863-016-0392-3
10.1016/j.biotechadv.2013.09.006
10.1111/jipb.13019
10.1371/journal.pgen.1003790
10.1007/s00122-016-2794-z
10.4025/actasciagron.v42i1.43479
10.1186/s12870-017-1000-z
10.1104/pp.111.189738
10.4161/psb.3.3.5536
10.1105/tpc.16.00364
10.1016/j.plaphy.2014.06.006
10.1007/s11103-018-0704-2
10.1007/s10681-022-03103-y
10.1016/j.scienta.2020.109666
10.1007/s00425-018-03087-x
10.1021/pr400591n
10.1038/s41598-020-73321-8
10.3389/fpls.2021.692205
10.3389/fpls.2020.00534
10.3389/fpls.2022.847234
10.1186/1471-2164-15-1182
10.1155/2014/834630
10.1111/j.1365-313X.2010.04124.x
10.1007/s11033-020-05451-1
10.1093/pcp/pch118
10.1038/ng.3636
10.1111/j.1365-313X.2007.03034.x
10.1080/15548627.2019.1639300
10.1038/ng1702
10.1007/s00299-020-02640-x
10.1038/44842
10.1534/genetics.107.074377
10.1186/s12870-018-1441-z
10.1016/j.pbi.2015.05.014
10.3835/plantgenome2016.10.0099
10.1007/s11032-020-01194-w
10.1007/s00425-004-1369-4
10.1371/journal.pone.0117737
10.1371/journal.pgen.0010060
10.1007/s11032-019-1013-4
10.1038/ncomms9326
10.3390/ijms22115662
10.3390/ijms21207755
10.1371/journal.pone.0161322
10.1046/j.1365-313x.2000.00709.x
10.1016/j.plantsci.2015.03.017
10.1038/35030000
10.1007/s10265-018-01081-8
10.1038/srep30446
10.1038/cdd.2011.59
10.1007/978-1-61779-870-2_5
10.2478/s11756-009-0198-0
10.3390/plants8120592
10.1093/bioinformatics/btm308
10.1111/pbi.12540
10.1093/gigascience/giy154
10.1104/pp.112.199547
10.1111/tpj.15481
10.1126/science.1251423
10.15698/mic2015.02.190
10.1016/j.tplants.2010.06.005
10.1016/j.plantsci.2019.110380
10.1111/j.1365-3040.2009.01933.x
10.1111/tpj.13768
10.1016/j.cj.2020.08.008
10.1007/s10535-017-0756-1
10.1146/annurev.arplant.57.032905.105444
10.1038/s41477-021-00919-9
10.1093/jxb/ery071
ContentType Journal Article
Copyright Copyright © 2023 Chen, Dang, Liu, Ji, Zheng, Zhao, Dong, Li, Guan, Zhang and Ruan.
Copyright © 2023 Chen, Dang, Liu, Ji, Zheng, Zhao, Dong, Li, Guan, Zhang and Ruan 2023 Chen, Dang, Liu, Ji, Zheng, Zhao, Dong, Li, Guan, Zhang and Ruan
Copyright_xml – notice: Copyright © 2023 Chen, Dang, Liu, Ji, Zheng, Zhao, Dong, Li, Guan, Zhang and Ruan.
– notice: Copyright © 2023 Chen, Dang, Liu, Ji, Zheng, Zhao, Dong, Li, Guan, Zhang and Ruan 2023 Chen, Dang, Liu, Ji, Zheng, Zhao, Dong, Li, Guan, Zhang and Ruan
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2023.1165582
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_cefcc7c718ca4beaa11ac0843cdf637f
PMC10200999
37223800
10_3389_fpls_2023_1165582
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c466t-6b33c903a69818db61fd57525a12ff184f09f5a5510b40fe3ccec21ee3f2fe583
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:31:03 EDT 2025
Thu Aug 21 18:36:46 EDT 2025
Fri Jul 11 00:00:56 EDT 2025
Thu Jan 02 22:39:32 EST 2025
Tue Jul 01 03:41:26 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords seedling stage
SNPs
field drought tolerance
genome-wide association study
maize (Zea mays L.)
Language English
License Copyright © 2023 Chen, Dang, Liu, Ji, Zheng, Zhao, Dong, Li, Guan, Zhang and Ruan.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-6b33c903a69818db61fd57525a12ff184f09f5a5510b40fe3ccec21ee3f2fe583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Jiwang Zhang, Shandong Agricultural University, China
Reviewed by: Hengyou Zhang, Northeast Institute of Geography and Agroecology (CAS), China; Reetika Mahajan, University of Toledo, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2023.1165582
PMID 37223800
PQID 2818746802
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_cefcc7c718ca4beaa11ac0843cdf637f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10200999
proquest_miscellaneous_2818746802
pubmed_primary_37223800
crossref_citationtrail_10_3389_fpls_2023_1165582
crossref_primary_10_3389_fpls_2023_1165582
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-08
PublicationDateYYYYMMDD 2023-05-08
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Mao (B43) 2015; 6
Ren (B53) 2021; 12
Cao (B6) 2017; 17
Chong (B10) 2020; 21
Tian (B60) 2014; 2014
Fan (B19) 2016; 7
Wang (B63) 2019; 39
Gahlaut (B22) 2016; 129
Forestan (B21) 2016; 6
Thirunavukkarasu (B59) 2014; 15
Lai (B34) 2020; 16
Setter (B55) 2010; 62
Zhang (B73) 2018; 18
Elshire (B18) 2011; 6
Qin (B50) 2004; 45
Misra (B45) 2018; 96
Dinka (B15) 2007; 176
Valero-Galván (B61) 2013; 12
Liu (B40) 2021; 33
Liu (B37) 2021; 9
Liu (B39) 2013; 9
Huang (B28) 2019; 8
Zhang (B72) 2022; 218
Wang (B64) 2016; 48
Cosgrove (B12) 2015; 25
Tezara (B58) 1999; 401
Zhang (B75) 2014; 289
Liu (B41) 2022; 13
Lin (B36) 2021; 12
Zhu (B77) 2021; 275
Chen (B7) 2018; 62
Hirayama (B26) 2010; 61
Ishikawa (B29) 2011; 18
Nagano (B46) 2019; 132
Zhang (B74) 2021; 7
Liebminger (B35) 2011; 286
Yamaguchi-Shinozaki (B69) 2006; 57
Guo (B23) 2020; 11
Nagano (B47) 2012; 159
Marques (B44) 2019; 42
Aranzana (B1) 2005; 1
Yu (B70) 2021; 63
Zhou (B76) 2015; 236
Kilian (B31) 2012; 888
Jiao (B30) 2020; 47
Cosgrove (B11) 2000; 407
Ruberti (B54) 2018; 93
Çakır (B4) 2015; 2
Ohta (B48) 2000; 22
Dubos (B17) 2010; 15
Danquah (B14) 2014; 32
Guo (B24) 2020; 292
Cao (B5) 2017; 10
Baret (B2) 2018; 69
dos Santos (B16) 2016; 17
Tang (B57) 2022; 109
Wu (B66) 2005; 220
Farfan (B20) 2015; 10
Qin (B49) 2007; 50
Yu (B71) 2006; 38
Bradbury (B3) 2007; 23
Kottapalli (B32) 2009; 32
Cheng (B8) 2011; 158
Wu (B68) 2016; 28
Kumar (B33) 2019; 8
Wang (B62) 2009; 64
Lobell (B42) 2014; 344
Shi (B56) 2014; 82
Cho (B9) 2019; 249
Wu (B67) 2001; 126
Cruz de Carvalho (B13) 2008; 3
Rashid (B52) 2022; 41
Ramiro (B51) 2016; 14
Liu (B38) 2021; 41
Guo (B25) 2016; 11
Hrmova (B27) 2021; 22
Wang (B65) 2020; 10
References_xml – volume: 62
  start-page: 701
  year: 2010
  ident: B55
  article-title: Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq308
– volume: 7
  year: 2016
  ident: B19
  article-title: Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare l.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00946
– volume: 12
  start-page: 1
  year: 2021
  ident: B36
  article-title: Initiation and amplification of SnRK2 activation in abscisic acid signaling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22812-x
– volume: 33
  start-page: 2058
  year: 2021
  ident: B40
  article-title: Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab083
– volume: 6
  start-page: e19379
  year: 2011
  ident: B18
  article-title: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species
  publication-title: PloS One
  doi: 10.1371/journal.pone.0019379
– volume: 286
  start-page: 10793
  year: 2011
  ident: B35
  article-title: Beta-n-acetylhexosaminidases HEXO1 and HEXO3 are responsible for the formation of paucimannosidic n-glycans in arabidopsis thaliana
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.178020
– volume: 289
  start-page: 1061
  year: 2014
  ident: B75
  article-title: Genome-wide identification and characterization of maize expansin genes expressed in endosperm
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-014-0867-8
– volume: 126
  start-page: 222
  year: 2001
  ident: B67
  article-title: Analysis and expression of the alpha-expansin and beta-expansin gene families in maize
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.1.222
– volume: 17
  year: 2016
  ident: B16
  article-title: Genomic selection to resistance to stenocarpella maydis in maize lines using DArTseq markers
  publication-title: BMC Genet.
  doi: 10.1186/s12863-016-0392-3
– volume: 32
  start-page: 40
  year: 2014
  ident: B14
  article-title: The role of ABA and MAPK signaling pathways in plant abiotic stress responses
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.09.006
– volume: 63
  start-page: 484
  year: 2021
  ident: B70
  article-title: RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in arabidopsis
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13019
– volume: 9
  year: 2013
  ident: B39
  article-title: Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of zea mays l
  publication-title: PloS Genet.
  doi: 10.1371/journal.pgen.1003790
– volume: 129
  start-page: 2019
  year: 2016
  ident: B22
  article-title: Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum l.)
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-016-2794-z
– volume: 42
  year: 2019
  ident: B44
  article-title: Physiological analysis and gene expression analysis of ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A in maize lines
  publication-title: Acta Scientiarum Agron.
  doi: 10.4025/actasciagron.v42i1.43479
– volume: 17
  start-page: 53
  year: 2017
  ident: B6
  article-title: Physiological and proteomic analyses of the drought stress response in amygdalus Mira (Koehne) yü et Lu roots
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-017-1000-z
– volume: 158
  start-page: 363
  year: 2011
  ident: B8
  article-title: Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.189738
– volume: 3
  start-page: 156
  year: 2008
  ident: B13
  article-title: Drought stress and reactive oxygen species: Production, scavenging and signaling
  publication-title: Plant Signal Behav.
  doi: 10.4161/psb.3.3.5536
– volume: 28
  start-page: 2178
  year: 2016
  ident: B68
  article-title: Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00364
– volume: 82
  start-page: 218
  year: 2014
  ident: B56
  article-title: Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). pers.) varieties contrasting in drought stress resistance
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.06.006
– volume: 96
  start-page: 393
  year: 2018
  ident: B45
  article-title: Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in arabidopsis thaliana
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-018-0704-2
– volume: 218
  start-page: 154
  year: 2022
  ident: B72
  article-title: Genomic prediction of drought tolerance during seedling stage in maize using low-cost molecular markers
  publication-title: Euphytica
  doi: 10.1007/s10681-022-03103-y
– volume: 275
  start-page: 109666
  year: 2021
  ident: B77
  article-title: Transcriptome-based identification of AP2/ERF family genes and their cold-regulated expression during the dormancy phase transition of Chinese cherry flower buds
  publication-title: Scientia Hortic.
  doi: 10.1016/j.scienta.2020.109666
– volume: 249
  start-page: 1251
  year: 2019
  ident: B9
  article-title: LBD13 positively regulates lateral root formation in arabidopsis
  publication-title: Planta
  doi: 10.1007/s00425-018-03087-x
– volume: 12
  start-page: 5110
  year: 2013
  ident: B61
  article-title: Physiological and proteomic analyses of drought stress response in Holm oak provenances
  publication-title: J. Proteome Res.
  doi: 10.1021/pr400591n
– volume: 10
  start-page: 16308
  year: 2020
  ident: B65
  article-title: Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73321-8
– volume: 12
  year: 2021
  ident: B53
  article-title: Genetic dissection of quantitative resistance to common rust (Puccinia sorghi) in tropical maize (Zea mays l.) by combined genome-wide association study, linkage mapping, and genomic prediction
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.692205
– volume: 11
  year: 2020
  ident: B23
  article-title: Genomic prediction of kernel zinc concentration in multiple maize populations using genotyping-by-Sequencing and repeat amplification sequencing markers
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00534
– volume: 13
  year: 2022
  ident: B41
  article-title: A genome-wide association study dissects the genetic architecture of the metaxylem vessel number in maize brace roots
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.847234
– volume: 15
  year: 2014
  ident: B59
  article-title: Functional mechanisms of drought tolerance in subtropical maize (Zea mays l.) identified using genome-wide association mapping
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-1182
– volume: 2014
  year: 2014
  ident: B60
  article-title: Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays l.)
  publication-title: ScientificWorldJournal
  doi: 10.1155/2014/834630
– volume: 61
  start-page: 1041
  year: 2010
  ident: B26
  article-title: Research on plant abiotic stress responses in the post-genome era: past, present and future
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04124.x
– volume: 47
  start-page: 3585
  year: 2020
  ident: B30
  article-title: Phosphatase AtDBP1 negatively regulates drought and salt tolerance through altering leaf surface permeability in arabidopsis
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-020-05451-1
– volume: 45
  start-page: 1042
  year: 2004
  ident: B50
  article-title: Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in zea mays l
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pch118
– volume: 48
  start-page: 1233
  year: 2016
  ident: B64
  article-title: Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3636
– volume: 50
  start-page: 54
  year: 2007
  ident: B49
  article-title: Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in zea mays l
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03034.x
– volume: 16
  start-page: 575
  year: 2020
  ident: B34
  article-title: Subnanometer resolution cryo-EM structure of arabidopsis thaliana ATG9
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1639300
– volume: 38
  start-page: 203
  year: 2006
  ident: B71
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness
  publication-title: Nat. Genet.
  doi: 10.1038/ng1702
– volume: 41
  start-page: 549
  year: 2022
  ident: B52
  article-title: Drought-tolerant bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-020-02640-x
– volume: 401
  start-page: 914
  year: 1999
  ident: B58
  article-title: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP
  publication-title: Nature
  doi: 10.1038/44842
– volume: 176
  start-page: 2035
  year: 2007
  ident: B15
  article-title: Predicting the size of the progeny mapping population required to positionally clone a gene
  publication-title: Genetics
  doi: 10.1534/genetics.107.074377
– volume: 18
  start-page: 235
  year: 2018
  ident: B73
  article-title: Genome-wide analysis of the basic helix-Loop-Helix (bHLH) transcription factor family in maize
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1441-z
– volume: 25
  start-page: 162
  year: 2015
  ident: B12
  article-title: Plant expansins: diversity and interactions with plant cell walls
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.05.014
– volume: 10
  start-page: plantgenome2016.2010.0099
  year: 2017
  ident: B5
  article-title: Genome-wide analysis of tar spot complex resistance in maize using genotyping-by-Sequencing SNPs and whole-genome prediction
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2016.10.0099
– volume: 41
  start-page: 8
  year: 2021
  ident: B38
  article-title: Genetic dissection of maize drought tolerance for trait improvement
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-020-01194-w
– volume: 220
  start-page: 593
  year: 2005
  ident: B66
  article-title: Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential
  publication-title: Planta
  doi: 10.1007/s00425-004-1369-4
– volume: 10
  year: 2015
  ident: B20
  article-title: Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics
  publication-title: PloS One
  doi: 10.1371/journal.pone.0117737
– volume: 1
  start-page: e60
  year: 2005
  ident: B1
  article-title: Genome-wide association mapping in arabidopsis identifies previously known flowering time and pathogen resistance genes
  publication-title: PloS Genet.
  doi: 10.1371/journal.pgen.0010060
– volume: 39
  start-page: 113
  year: 2019
  ident: B63
  article-title: Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-019-1013-4
– volume: 6
  start-page: 8326
  year: 2015
  ident: B43
  article-title: A transposable element in a NAC gene is associated with drought tolerance in maize seedlings
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9326
– volume: 22
  start-page: 1
  year: 2021
  ident: B27
  article-title: Plant transcription factors involved in drought and associated stresses
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22115662
– volume: 21
  start-page: 2
  year: 2020
  ident: B10
  article-title: Mediator complex: A pivotal regulator of ABA signaling pathway and abiotic stress response in plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21207755
– volume: 11
  year: 2016
  ident: B25
  article-title: Genome-wide analysis of APETALA2/Ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare l.)
  publication-title: PloS One
  doi: 10.1371/journal.pone.0161322
– volume: 22
  start-page: 29
  year: 2000
  ident: B48
  article-title: Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00709.x
– volume: 236
  start-page: 44
  year: 2015
  ident: B76
  article-title: Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in malus
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2015.03.017
– volume: 407
  start-page: 321
  year: 2000
  ident: B11
  article-title: Loosening of plant cell walls by expansins
  publication-title: Nature
  doi: 10.1038/35030000
– volume: 132
  start-page: 131
  year: 2019
  ident: B46
  article-title: Arabidopsis bax inhibitor-1 interacts with enzymes related to very-long-chain fatty acid synthesis
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-018-01081-8
– volume: 6
  year: 2016
  ident: B21
  article-title: Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis
  publication-title: Sci. Rep.
  doi: 10.1038/srep30446
– volume: 18
  start-page: 1271
  year: 2011
  ident: B29
  article-title: Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.59
– volume: 888
  start-page: 67
  year: 2012
  ident: B31
  article-title: Diversity arrays technology: a generic genome profiling technology on open platforms
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-870-2_5
– volume: 64
  start-page: 1108
  year: 2009
  ident: B62
  article-title: Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic arabidopsis plants
  publication-title: Biologia
  doi: 10.2478/s11756-009-0198-0
– volume: 8
  year: 2019
  ident: B33
  article-title: Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development
  publication-title: Plants (Basel)
  doi: 10.3390/plants8120592
– volume: 23
  start-page: 2633
  year: 2007
  ident: B3
  article-title: TASSEL: software for association mapping of complex traits in diverse samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm308
– volume: 14
  start-page: 1826
  year: 2016
  ident: B51
  article-title: Expression of arabidopsis bax inhibitor-1 in transgenic sugarcane confers drought tolerance
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12540
– volume: 8
  start-page: 1
  year: 2019
  ident: B28
  article-title: BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions
  publication-title: Gigascience
  doi: 10.1093/gigascience/giy154
– volume: 159
  start-page: 1138
  year: 2012
  ident: B47
  article-title: Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.199547
– volume: 109
  start-page: 390
  year: 2022
  ident: B57
  article-title: Autophagy during drought: function, regulation, and potential application
  publication-title: Plant J.
  doi: 10.1111/tpj.15481
– volume: 344
  start-page: 516
  year: 2014
  ident: B42
  article-title: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest
  publication-title: Science
  doi: 10.1126/science.1251423
– volume: 2
  start-page: 43
  year: 2015
  ident: B4
  article-title: Arabidopsis bax inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in saccharomyces cerevisiae
  publication-title: Microb. Cell
  doi: 10.15698/mic2015.02.190
– volume: 15
  start-page: 573
  year: 2010
  ident: B17
  article-title: MYB transcription factors in arabidopsis
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.06.005
– volume: 292
  year: 2020
  ident: B24
  article-title: Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110380
– volume: 32
  start-page: 380
  year: 2009
  ident: B32
  article-title: Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.01933.x
– volume: 93
  start-page: 155
  year: 2018
  ident: B54
  article-title: Recovery from temporary endoplasmic reticulum stress in plants relies on the tissue-specific and largely independent roles of bZIP28 and bZIP60, as well as an antagonizing function of BAX-inhibitor 1 upon the pro-adaptive signaling mediated by bZIP28
  publication-title: Plant J.
  doi: 10.1111/tpj.13768
– volume: 9
  start-page: 325
  year: 2021
  ident: B37
  article-title: Genome-wide association study and genomic prediction of fusarium ear rot resistance in tropical maize germplasm
  publication-title: Crop J.
  doi: 10.1016/j.cj.2020.08.008
– volume: 62
  start-page: 222
  year: 2018
  ident: B7
  article-title: Identification of MYB transcription factor genes and their expression during abiotic stresses in maize
  publication-title: Biol. Plantarum
  doi: 10.1007/s10535-017-0756-1
– volume: 57
  start-page: 781
  year: 2006
  ident: B69
  article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105444
– volume: 7
  start-page: 633
  year: 2021
  ident: B74
  article-title: Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-00919-9
– volume: 69
  start-page: 2705
  year: 2018
  ident: B2
  article-title: Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery071
SSID ssj0000500997
Score 2.398381
Snippet Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is...
IntroductionDrought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1165582
SubjectTerms field drought tolerance
genome-wide association study
maize (Zea mays L.)
Plant Science
seedling stage
SNPs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXRHlugcpInJBCHTt2nCOtWioOnKjUW-THWKy0TVa7qSr4KfzazjjpsosQXLhFji1bnrHnG3nmG8be-RhSE2VEt8TqonJGF95CXXhtZR1tA43PAbJfzMVl9flKX22V-qKYsJEeeNy44wAphDrgFRpc5cG5snRB2EqFmIyqE92-aPO2nKmR1ZugTz0-Y6IX1hyn5YLYuaX6QIQz2sodQ5T5-v8EMn-PldwyPueP2aMJNfKP42oP2APonrD9kx6R3fen7Ocn6PprKG7nEbj7td88c8fy5ZhhtObzbk2uOH0MPUfkx1F7KImRbz8n8D7xmIv3DHzoF0CVNwCH8Gs3_wF8jeaOUtjXnNLPVjyHwPFbhKyrIgLxUQwcfew4hoI9Y5fnZ19PL4qp5kIRKmOGwnilQiOUMw2a8uhNmSIiOqldKVNCdzCJJmmHOEv4SiRQIUCQJYBKMoG26jnb6_oOXjIeRTDReLSSWlSVdK5RCF7ApFKK6LSdMXEvgDZMhORUF2PRomNCMmtJZi3JrJ1kNmPvN0OWIxvH3zqfkFQ3HYlIOzegerWTerX_Uq8Ze3uvEy0ePHpNcR30NziVpXKGxgqc6MWoI5upVI2oC6H4jNkd7dlZy-6fbv4tk3sj4Muo_fB_rP4Ve0g7kgM07Wu2N6xu4A2CqMEf5fNyB0COIio
  priority: 102
  providerName: Directory of Open Access Journals
Title Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions
URI https://www.ncbi.nlm.nih.gov/pubmed/37223800
https://www.proquest.com/docview/2818746802
https://pubmed.ncbi.nlm.nih.gov/PMC10200999
https://doaj.org/article/cefcc7c718ca4beaa11ac0843cdf637f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbGQGgviN-UH5OReELKSOzEcR4QYohtQoInKvUtcuwzq9QlJck0xp_CX8udk5YWFV6qqHXiNHfWfRfffR9jrypnfeGEw7REZ1FqVBZVGvKoyrTInS6gqEKB7Bd1Nk0_zbLZHlvJW40PsNuZ2pGe1LRdHP34fv0OF_xbyjgx3r7xywURbwt5RFwyOMkNdhMDU06CBp9HtD9QfRMeCnIrSqVRqsRs2OfcfZUDdlvmGD01db9tBK3A7b8LkP5dV7kRqE7usjsjwuTvB5e4x_agvs9uHTeIAq8fsF-nUDcXEF3NHXDzxzY88Mzy5dCN1PF53VHaTgd9wxElcvQ0anjkm1sPvPHcBaGfnvfNAkilA_AUfmHmP4F3GBqp3b3j1KrW8lAux68Q3raRA-Ku6Dnm424oG3vIpicfv344i0Z9hsimSvWRqqS0RSyNKjDsu0ol3iH6E5lJhPeYOvq48JlBTBZXaexBWgtWJADSCw-Zlo_Yft3U8IRxF1vlVIURNYvTVBhTSAQ6oHwiYmcyPWHxygClHcnLSUNjUWISQ-YryXwlma8czTdhr9enLAfmjv8NPiarrgcS6Xb4omm_leMaLi14a3OL0dyatAJjksTYWKfSOq9k7ifs5conSlyktPNiamgucSpN0odKxzjR48FH1lOtfGzC9Jb3bN3L9i_1_DwQgSM4DAj_6T8v-owd0N8MFZr6Odvv20t4gSiqrw7D2wf8PJ0lh2Gd_AZasR7C
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+association+study+presents+insights+into+the+genetic+architecture+of+drought+tolerance+in+maize+seedlings+under+field+water-deficit+conditions&rft.jtitle=Frontiers+in+plant+science&rft.au=Chen%2C+Shan&rft.au=Dang%2C+Dongdong&rft.au=Liu%2C+Yubo&rft.au=Ji%2C+Shuwen&rft.date=2023-05-08&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=14&rft.spage=1165582&rft_id=info:doi/10.3389%2Ffpls.2023.1165582&rft_id=info%3Apmid%2F37223800&rft.externalDocID=37223800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon