Optomechanically-induced transparency in parity-time-symmetric microresonators
Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time ( PT )-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying...
Saved in:
Published in | Scientific reports Vol. 5; no. 1; p. 9663 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.06.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (
PT
)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a
PT
-symmetric phase to a broken-
PT
-symmetric phase. This
PT
-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. |
---|---|
AbstractList | Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time ( PT )-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT -symmetric phase to a broken- PT -symmetric phase. This PT -phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency, i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices.Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency, i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. |
ArticleNumber | 9663 |
Author | Özdemir, Şahin K. Zhang, Jing Geng, Z. Nori, Franco Lü, Xin-You Peng, Bo Jing, H. Yang, Lan |
Author_xml | – sequence: 1 givenname: H. surname: Jing fullname: Jing, H. organization: The Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, CEMS, RIKEN, Department of Physics, Henan Normal University – sequence: 2 givenname: Şahin K. surname: Özdemir fullname: Özdemir, Şahin K. organization: Electrical and Systems Engineering, Washington University – sequence: 3 givenname: Z. surname: Geng fullname: Geng, Z. organization: Department of Physics, Henan Normal University – sequence: 4 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Department of Automation, Tsinghua University – sequence: 5 givenname: Xin-You surname: Lü fullname: Lü, Xin-You organization: CEMS, RIKEN, School of physics, Huazhong University of Science and Technology – sequence: 6 givenname: Bo surname: Peng fullname: Peng, Bo organization: Electrical and Systems Engineering, Washington University – sequence: 7 givenname: Lan surname: Yang fullname: Yang, Lan organization: Electrical and Systems Engineering, Washington University – sequence: 8 givenname: Franco surname: Nori fullname: Nori, Franco organization: Electrical and Systems Engineering, Washington University, Physics Department, The University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26169253$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9LHTEUxUOxVGtd-AXkgZu2MJo_M5lkI4i0tSC6seuQZO5oZCYZk4ww376Rp_LU0mxySX73cO49n9GWDx4Q2if4iGAmjlOECUvO2Qe0Q3HdVJRRurVRb6O9lO5wOQ2VNZGf0DblhEvasB10eTXlMIK91d5ZPQxL5Xw3W-hWOWqfJh3B22Xl_KqULi9VdiNUaRlHyNHZ1ehsDBFS8DqHmL6gj70eEuw93bvoz88f12fn1cXVr99npxeVrTnPFZeCCy2x7ImwRBvZspoY0du2PPXAWiN1Z3poDTE9472tMRWmMUxIZjsDbBedrHWn2YzQWfDF7qCm6EYdFxW0U69_vLtVN-FB1Q3GUogi8PVJIIb7GVJWo0sWhkF7CHNSZT-cC1IWVdDDN-hdmKMv4yna1g2RjeDyfxQRUtZtU9QKdbDp-8XwcyAFOF4DZa2pRNsr67LOLjyO4QZFsHpMXb2kXjq-vel4Fv0X-33NpsL4G4gbJt_BfwGM071m |
CitedBy_id | crossref_primary_10_1016_j_physleta_2021_127304 crossref_primary_10_1038_srep27102 crossref_primary_10_1364_OE_27_002949 crossref_primary_10_1103_PhysRevA_101_043820 crossref_primary_10_1088_2040_8986_ac2e15 crossref_primary_10_1103_PhysRevA_99_033843 crossref_primary_10_1103_PhysRevB_100_054105 crossref_primary_10_1088_1555_6611_aada3f crossref_primary_10_1103_PhysRevA_104_033504 crossref_primary_10_1088_1367_2630_18_8_083034 crossref_primary_10_1038_srep35090 crossref_primary_10_1103_PhysRevA_100_023807 crossref_primary_10_1088_2040_8986_ad2b03 crossref_primary_10_1002_qute_202300350 crossref_primary_10_1103_PhysRevA_92_053837 crossref_primary_10_1103_PhysRevB_102_235151 crossref_primary_10_1140_epjd_e2020_10342_x crossref_primary_10_1364_OE_387712 crossref_primary_10_1080_00018732_2021_1876991 crossref_primary_10_3389_fphy_2019_00127 crossref_primary_10_1016_j_spmi_2017_11_006 crossref_primary_10_1134_S002136402107002X crossref_primary_10_1088_1674_1056_abab7e crossref_primary_10_1103_PhysRevA_108_033517 crossref_primary_10_1007_s11467_021_1097_2 crossref_primary_10_1103_PhysRevA_101_013625 crossref_primary_10_1021_acsomega_0c05673 crossref_primary_10_1103_PhysRevA_94_013816 crossref_primary_10_1080_09500340_2023_2221746 crossref_primary_10_1364_PRJ_450166 crossref_primary_10_1103_PhysRevA_93_063814 crossref_primary_10_1103_PhysRevLett_122_076801 crossref_primary_10_7498_aps_71_20221323 crossref_primary_10_1007_s11128_022_03475_z crossref_primary_10_1364_OE_26_028834 crossref_primary_10_1063_5_0248964 crossref_primary_10_1038_s41467_023_37275_5 crossref_primary_10_1088_1402_4896_ad1562 crossref_primary_10_1002_lpor_201800154 crossref_primary_10_1038_s41534_022_00617_0 crossref_primary_10_1088_1361_6455_abd645 crossref_primary_10_1364_OE_381760 crossref_primary_10_1103_PhysRevA_102_033715 crossref_primary_10_1103_PhysRevApplied_8_044020 crossref_primary_10_1016_j_physe_2021_114759 crossref_primary_10_1109_TQE_2021_3056667 crossref_primary_10_1140_epjp_s13360_023_04437_9 crossref_primary_10_1103_PhysRevA_109_023520 crossref_primary_10_1103_PhysRevA_97_033812 crossref_primary_10_1103_PhysRevA_99_023823 crossref_primary_10_1038_s41598_025_87630_3 crossref_primary_10_1109_JPHOT_2017_2761899 crossref_primary_10_1364_AO_58_002463 crossref_primary_10_1103_PhysRevA_96_013802 crossref_primary_10_1209_0295_5075_122_24001 crossref_primary_10_1515_nanoph_2016_0168 crossref_primary_10_35848_1882_0786_abce99 crossref_primary_10_1140_epjp_s13360_024_05954_x crossref_primary_10_1364_OE_25_024281 crossref_primary_10_1038_s41598_017_06198_9 crossref_primary_10_1364_OE_519821 crossref_primary_10_1088_1674_1056_ab6836 crossref_primary_10_1103_PhysRevResearch_3_013015 crossref_primary_10_1103_PhysRevA_110_013515 crossref_primary_10_1088_1674_1056_25_5_054204 crossref_primary_10_1038_nphys4323 crossref_primary_10_1088_1361_6455_ab406e crossref_primary_10_1002_lpor_202100708 crossref_primary_10_1038_s41598_018_30068_7 crossref_primary_10_1007_s11082_020_02390_w crossref_primary_10_1016_j_cjph_2022_06_011 crossref_primary_10_1103_PhysRevA_94_023837 crossref_primary_10_1088_1367_2630_aa8fdd crossref_primary_10_1088_1674_1056_25_6_064202 crossref_primary_10_1109_JPHOT_2022_3151506 crossref_primary_10_1103_PhysRevA_100_053820 crossref_primary_10_1007_s11128_023_04021_1 crossref_primary_10_1109_JSEN_2017_2686423 crossref_primary_10_1364_OL_42_003630 crossref_primary_10_1088_1361_6455_ab8e54 crossref_primary_10_1109_JQE_2016_2563779 crossref_primary_10_1142_S0217979225501218 crossref_primary_10_1103_PhysRevA_106_023508 crossref_primary_10_1103_PhysRevA_92_043830 crossref_primary_10_1364_OE_27_025515 crossref_primary_10_3390_e22020177 crossref_primary_10_1088_1361_6455_aaa58d crossref_primary_10_1088_0256_307X_35_4_044205 crossref_primary_10_1140_epjd_s10053_022_00433_3 crossref_primary_10_1103_PhysRevApplied_14_014074 crossref_primary_10_1364_JOSAB_478320 crossref_primary_10_35848_1882_0786_ac3804 crossref_primary_10_1038_srep31095 crossref_primary_10_1007_s11433_016_0346_4 crossref_primary_10_1088_1361_6455_abb013 crossref_primary_10_1103_PhysRevA_101_013814 crossref_primary_10_1088_1674_1056_ad84cf crossref_primary_10_1364_OE_473652 crossref_primary_10_1088_1674_1056_ac0cda crossref_primary_10_3390_e22020160 crossref_primary_10_1016_j_optmat_2020_110515 crossref_primary_10_1364_OE_431211 crossref_primary_10_3390_cryst11060698 crossref_primary_10_1088_2040_8986_aa9532 crossref_primary_10_1103_PhysRevApplied_11_024007 crossref_primary_10_1103_PhysRevResearch_2_023173 crossref_primary_10_1109_JLT_2019_2899486 crossref_primary_10_1109_JLT_2021_3049501 crossref_primary_10_1002_andp_202000349 crossref_primary_10_1038_srep35583 crossref_primary_10_1364_OE_25_032931 crossref_primary_10_1364_JOSAB_383220 crossref_primary_10_1103_PhysRevApplied_10_014006 crossref_primary_10_1007_s10483_019_2405_9 crossref_primary_10_1364_AO_425139 crossref_primary_10_1126_science_abj1028 crossref_primary_10_1021_acs_jpcc_0c04800 crossref_primary_10_1088_0256_307X_40_10_104201 crossref_primary_10_1088_1751_8121_ab5cf7 crossref_primary_10_1103_RevModPhys_96_045002 crossref_primary_10_1016_j_physe_2019_113780 crossref_primary_10_1103_PhysRevA_101_023842 crossref_primary_10_1021_acsphotonics_1c01241 crossref_primary_10_1103_PhysRevA_105_062214 crossref_primary_10_1007_s10773_024_05599_7 crossref_primary_10_1103_PhysRevA_96_032103 crossref_primary_10_1002_qua_27144 crossref_primary_10_1016_j_heliyon_2019_e01532 crossref_primary_10_1109_ACCESS_2020_2968385 crossref_primary_10_1364_PRJ_423506 crossref_primary_10_1364_OE_494310 crossref_primary_10_1002_adma_201903639 crossref_primary_10_1007_s10773_025_05892_z crossref_primary_10_1016_j_chaos_2022_112978 crossref_primary_10_1007_s11433_018_9341_3 crossref_primary_10_1016_j_physrep_2023_10_007 crossref_primary_10_1103_PhysRevA_99_043803 crossref_primary_10_1038_s41598_022_08250_9 crossref_primary_10_1364_OE_510160 crossref_primary_10_1103_PhysRevA_107_033507 crossref_primary_10_1364_OE_25_017249 crossref_primary_10_1103_PhysRevA_97_053846 crossref_primary_10_1002_adpr_202000009 crossref_primary_10_1186_s11671_019_2893_2 crossref_primary_10_1364_OE_26_020248 crossref_primary_10_1088_1361_648X_ab62bd crossref_primary_10_1016_j_optcom_2022_128534 crossref_primary_10_1103_PhysRevA_103_063708 crossref_primary_10_1103_PhysRevA_99_043818 crossref_primary_10_1103_PhysRevA_95_013843 crossref_primary_10_1103_PhysRevA_97_013843 crossref_primary_10_1103_PhysRevA_100_043831 crossref_primary_10_1088_0256_307X_37_10_100301 crossref_primary_10_1364_OE_27_013694 crossref_primary_10_1016_j_fmre_2022_12_017 crossref_primary_10_1103_PhysRevA_104_013721 crossref_primary_10_1088_1361_648X_ab11b3 crossref_primary_10_1088_0256_307X_35_5_050301 crossref_primary_10_1088_1572_9494_ac5588 crossref_primary_10_1126_science_abl6571 crossref_primary_10_1103_PhysRevA_101_063836 crossref_primary_10_3390_photonics11040289 crossref_primary_10_1016_j_ijleo_2019_163058 crossref_primary_10_1063_1_5027122 crossref_primary_10_1103_PhysRevApplied_15_024056 crossref_primary_10_3390_ma11122353 crossref_primary_10_1080_09500340_2018_1514083 crossref_primary_10_3390_s23115191 crossref_primary_10_1016_j_physleta_2015_12_003 crossref_primary_10_1103_PhysRevA_109_033723 crossref_primary_10_1088_1361_6455_ad013a crossref_primary_10_1103_PhysRevA_96_023812 crossref_primary_10_1063_5_0190053 crossref_primary_10_1002_lpor_202100430 crossref_primary_10_1103_PhysRevLett_117_224302 crossref_primary_10_1364_JOSAB_445390 crossref_primary_10_1109_JQE_2018_2881999 crossref_primary_10_1103_PhysRevA_100_062118 crossref_primary_10_1016_j_physleta_2025_130462 crossref_primary_10_1103_PhysRevResearch_2_013362 crossref_primary_10_1016_j_ijleo_2024_171837 crossref_primary_10_1103_PhysRevA_107_013110 crossref_primary_10_1103_PhysRevA_100_043835 crossref_primary_10_1038_s41598_018_21137_y crossref_primary_10_1002_lpor_202200079 crossref_primary_10_1103_PhysRevA_98_063840 crossref_primary_10_1364_OE_546225 crossref_primary_10_3390_photonics10040407 crossref_primary_10_1103_PhysRevA_96_023826 crossref_primary_10_1103_PhysRevA_98_033832 crossref_primary_10_1103_PhysRevA_93_023844 crossref_primary_10_1515_nanoph_2020_0434 crossref_primary_10_1103_PhysRevA_104_053518 crossref_primary_10_1002_qute_202400232 crossref_primary_10_1002_qute_202400350 crossref_primary_10_1103_PhysRevA_100_013813 crossref_primary_10_1103_PhysRevA_99_032121 crossref_primary_10_1038_s41598_019_51559_1 crossref_primary_10_1002_adom_201900694 crossref_primary_10_1364_OE_27_030473 crossref_primary_10_1364_OE_532731 crossref_primary_10_1088_1555_6611_abd55c crossref_primary_10_1038_s41598_018_32506_y crossref_primary_10_1007_s11082_023_05631_w crossref_primary_10_1364_OE_497867 crossref_primary_10_1088_0256_307X_39_12_124202 crossref_primary_10_1209_0295_5075_130_14001 crossref_primary_10_1002_adpr_202000016 crossref_primary_10_1088_1674_1056_25_11_114203 crossref_primary_10_1103_PhysRevA_109_033701 crossref_primary_10_1007_s11128_018_2139_8 crossref_primary_10_1109_JPHOT_2022_3204366 crossref_primary_10_1103_PhysRevA_104_012205 crossref_primary_10_1007_s11128_019_2380_9 crossref_primary_10_1364_OE_23_018534 crossref_primary_10_1007_s11128_023_04177_w crossref_primary_10_1038_srep22920 crossref_primary_10_1364_OE_26_025199 crossref_primary_10_3390_app7070656 crossref_primary_10_1088_1402_4896_ac2fc3 crossref_primary_10_1140_epjp_s13360_022_03364_5 crossref_primary_10_1088_1361_6455_ab76e5 crossref_primary_10_1088_1674_1056_27_2_024204 crossref_primary_10_1088_1367_2630_aa8496 crossref_primary_10_1364_OE_479906 crossref_primary_10_1364_PRJ_5_000367 crossref_primary_10_1140_epjqt_s40507_021_00096_w crossref_primary_10_1364_OL_44_000630 crossref_primary_10_1103_PhysRevA_95_023827 crossref_primary_10_1209_0295_5075_120_24001 crossref_primary_10_1364_OE_26_015255 crossref_primary_10_1002_lpor_201500243 crossref_primary_10_1038_srep39781 crossref_primary_10_1016_j_ijleo_2022_169035 crossref_primary_10_1088_1402_4896_ab6e4f crossref_primary_10_1103_PhysRevA_97_053812 crossref_primary_10_1038_srep20976 crossref_primary_10_1103_PhysRevApplied_13_054078 crossref_primary_10_1103_PhysRevA_100_023838 crossref_primary_10_1038_s41563_019_0304_9 crossref_primary_10_1364_OE_27_027649 crossref_primary_10_1364_JOSAB_36_001355 crossref_primary_10_1103_PhysRevA_92_023855 crossref_primary_10_1103_PhysRevA_93_023814 crossref_primary_10_1063_1_5049456 crossref_primary_10_1063_5_0168808 crossref_primary_10_1103_PhysRevA_103_043521 crossref_primary_10_1109_JSEN_2023_3337836 crossref_primary_10_1142_S0217732321500656 crossref_primary_10_1016_j_scib_2018_07_020 crossref_primary_10_1364_OE_25_031688 crossref_primary_10_1016_j_physleta_2020_126836 crossref_primary_10_1016_j_physrep_2024_05_003 crossref_primary_10_1364_OE_27_029297 crossref_primary_10_1016_j_physrep_2017_02_003 crossref_primary_10_1007_s11467_023_1279_1 crossref_primary_10_1016_j_optcom_2022_128076 crossref_primary_10_1103_PhysRevA_98_023821 crossref_primary_10_1103_PhysRevA_95_063825 crossref_primary_10_1007_s11128_019_2454_8 crossref_primary_10_1093_nsr_nwv048 crossref_primary_10_1103_PhysRevA_96_062133 crossref_primary_10_1088_1402_4896_ab1308 crossref_primary_10_1007_s11771_022_5160_0 crossref_primary_10_1109_JLT_2022_3193061 crossref_primary_10_1016_j_optlastec_2024_110733 crossref_primary_10_1142_S0217979224502291 crossref_primary_10_1016_j_cjph_2021_08_029 crossref_primary_10_1103_PhysRevApplied_19_064050 crossref_primary_10_1016_j_aop_2018_11_010 crossref_primary_10_1007_s11128_018_2069_5 crossref_primary_10_1016_j_physe_2017_02_014 crossref_primary_10_1103_PhysRevResearch_2_033022 crossref_primary_10_1016_j_physd_2020_132481 crossref_primary_10_1093_ptep_ptaa094 crossref_primary_10_1109_JSEN_2018_2868873 crossref_primary_10_1088_1572_9494_ab7ecf crossref_primary_10_1364_OME_6_003075 |
Cites_doi | 10.1038/ncomms5034 10.1364/OL.37.003435 10.1364/OE.20.020790 10.1103/PhysRevLett.111.133601 10.1038/nature10261 10.1038/nature08967 10.1103/RevModPhys.85.623 10.1103/PhysRevLett.109.063601 10.1038/nature10461 10.1103/PhysRevA.90.053841 10.1103/PhysRevLett.111.053603 10.1038/ncomms6082 10.1126/science.1228370 10.1103/RevModPhys.86.1391 10.1209/0295-5075/94/38002 10.1038/nature11298 10.1364/OE.22.004886 10.1103/PhysRevLett.80.5243 10.1038/35018520 10.1103/PhysRevLett.107.163604 10.1103/PhysRevLett.107.133601 10.1038/nphys2927 10.1126/science.1258004 10.1103/PhysRevA.88.062111 10.1103/PhysRevLett.104.083901 10.1364/OE.21.012165 10.1103/PhysRevA.90.013824 10.1038/nphys1515 10.1038/nature09933 10.1103/PhysRevA.87.013839 10.1038/nphys2527 10.1103/PhysRevLett.109.013603 10.1364/OPTICA.1.000425 10.1103/PhysRevA.88.013813 10.1103/PhysRevA.85.031802 10.1103/PhysRevA.81.041803 10.1063/PT.3.1640 10.1038/ncomms2201 10.1103/PhysRevLett.111.053602 10.1126/science.1195596 10.1017/CBO9780511813993 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Jun 2015 The Author(s) 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Jun 2015 – notice: The Author(s) 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/srep09663 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC4500988 26169253 10_1038_srep09663 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c466t-69868a909f18c1ab97341b8fc709ffe37b9adbfe7b1bf36fc4028b5b3893cdbe3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:42:55 EDT 2025 Sun Aug 24 04:05:23 EDT 2025 Wed Aug 13 07:38:03 EDT 2025 Wed Aug 13 04:34:51 EDT 2025 Thu Jan 02 22:40:37 EST 2025 Tue Jul 01 03:14:55 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Fri Feb 21 02:39:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-69868a909f18c1ab97341b8fc709ffe37b9adbfe7b1bf36fc4028b5b3893cdbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep09663 |
PMID | 26169253 |
PQID | 1899475812 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500988 proquest_miscellaneous_1696681261 proquest_journals_2745195869 proquest_journals_1899475812 pubmed_primary_26169253 crossref_citationtrail_10_1038_srep09663 crossref_primary_10_1038_srep09663 springer_journals_10_1038_srep09663 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-12 |
PublicationDateYYYYMMDD | 2015-06-12 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Agarwal, Qu (CR31) 2012; 85 Dong, Fiore, Kuzyk, Wang (CR19) 2012; 338 Aspelmeyer, Meystre, Schwab (CR4) 2012; 65 Kronwald, Marquardt (CR41) 2013; 111 Dong, Zhang, Fiore, Wang (CR15) 2014; 1 Peng (CR28) 2014; 10 Hill, Safavi-Naeini, Chan, Painter (CR20) 2012; 3 Yan (CR24) 2014; 22 Agarwal, Huang (CR8) 2010; 81 Xiang, Ashhab, You, Nori (CR12) 2013; 85 Regensburger (CR29) 2012; 488 Wang, Kuzmich, Dogariu (CR38) 2000; 406 Teufel (CR2) 2011; 475 Bender, Boettcher (CR26) 1998; 80 Peng (CR36) 2014; 346 Weis (CR7) 2010; 330 Chan (CR3) 2011; 478 Safavi-Naeini (CR6) 2011; 472 Oishi, Tomita (CR34) 2013; 88 Ojanen, Borkje (CR39) 2014; 90 Aspelmeyer, Kippenberg, Marquardt (CR5) 2014; 86 Jiang, Chen, Zhu (CR14) 2011; 94 Stannigel (CR17) 2012; 109 Jiang, Liu, Cui, Li (CR25) 2013; 21 Lemonde, Didier, Clerk (CR42) 2013; 111 Zhou (CR13) 2013; 9 Peng, Özdemir, Zhu, Yang (CR35) 2012; 37 O'Connell (CR1) 2010; 464 Fiore, Yang, Kuzyk, Barbour, Tian, Wang (CR21) 2011; 107 Grudinin, Lee, Painter, Vahala (CR16) 2010; 104 Ludwig, Safavi-Naeini, Painter, Marquardt (CR22) 2012; 109 CR9 Fan, Zhu (CR23) 2012; 20 Anisimov, Dowling, Sanders (CR11) 2011; 107 Rüter (CR30) 2010; 6 Komar (CR18) 2013; 87 Monifi, Özdemir, Yang (CR32) 2013; 103 Guo, Li, Nie, Li (CR40) 2014; 90 Borkje, Nunnenkamp, Teufel, Girvin (CR43) 2013; 111 Peng, Özdemir, Chen, Nori, Yang (CR10) 2014; 5 Jing, Özdemir, Lü, Zhang, Yang, Nori (CR33) 2014; 113 Bender, Gianfreda, Özdemir, Peng, Yang (CR27) 2013; 88 Brandstetter (CR37) 2014; 5 K Stannigel (BFsrep09663_CR17) 2012; 109 C Dong (BFsrep09663_CR15) 2014; 1 M-A Lemonde (BFsrep09663_CR42) 2013; 111 T Ojanen (BFsrep09663_CR39) 2014; 90 M Aspelmeyer (BFsrep09663_CR5) 2014; 86 C Dong (BFsrep09663_CR19) 2012; 338 M Ludwig (BFsrep09663_CR22) 2012; 109 C Jiang (BFsrep09663_CR14) 2011; 94 T Oishi (BFsrep09663_CR34) 2013; 88 S Weis (BFsrep09663_CR7) 2010; 330 Y Guo (BFsrep09663_CR40) 2014; 90 CE Rüter (BFsrep09663_CR30) 2010; 6 GS Agarwal (BFsrep09663_CR31) 2012; 85 CM Bender (BFsrep09663_CR26) 1998; 80 AH Safavi-Naeini (BFsrep09663_CR6) 2011; 472 K Borkje (BFsrep09663_CR43) 2013; 111 BFsrep09663_CR9 M Aspelmeyer (BFsrep09663_CR4) 2012; 65 C Jiang (BFsrep09663_CR25) 2013; 21 LJ Wang (BFsrep09663_CR38) 2000; 406 P Komar (BFsrep09663_CR18) 2013; 87 IS Grudinin (BFsrep09663_CR16) 2010; 104 Z-L Xiang (BFsrep09663_CR12) 2013; 85 B Peng (BFsrep09663_CR36) 2014; 346 PM Anisimov (BFsrep09663_CR11) 2011; 107 A Kronwald (BFsrep09663_CR41) 2013; 111 B Peng (BFsrep09663_CR10) 2014; 5 JD Teufel (BFsrep09663_CR2) 2011; 475 J Chan (BFsrep09663_CR3) 2011; 478 GS Agarwal (BFsrep09663_CR8) 2010; 81 V Fiore (BFsrep09663_CR21) 2011; 107 H Jing (BFsrep09663_CR33) 2014; 113 M Brandstetter (BFsrep09663_CR37) 2014; 5 J Fan (BFsrep09663_CR23) 2012; 20 CM Bender (BFsrep09663_CR27) 2013; 88 A Regensburger (BFsrep09663_CR29) 2012; 488 X Zhou (BFsrep09663_CR13) 2013; 9 F Monifi (BFsrep09663_CR32) 2013; 103 B Peng (BFsrep09663_CR28) 2014; 10 AD O'Connell (BFsrep09663_CR1) 2010; 464 XB Yan (BFsrep09663_CR24) 2014; 22 JT Hill (BFsrep09663_CR20) 2012; 3 B Peng (BFsrep09663_CR35) 2012; 37 20237473 - Nature. 2010 Apr 1;464(7289):697-703 25324384 - Science. 2014 Oct 17;346(6207):328-32 21071628 - Science. 2010 Dec 10;330(6010):1520-3 24925314 - Nat Commun. 2014 Jun 13;5:4034 10917523 - Nature. 2000 Jul 20;406(6793):277-9 23160956 - Science. 2012 Dec 21;338(6114):1609-13 23381282 - Opt Lett. 2012 Aug 15;37(16):3435-7 23037128 - Opt Express. 2012 Aug 27;20(18):20790-9 24116779 - Phys Rev Lett. 2013 Sep 27;111(13):133601 21979049 - Nature. 2011 Oct 05;478(7367):89-92 23952399 - Phys Rev Lett. 2013 Aug 2;111(5):053603 22874962 - Nature. 2012 Aug 9;488(7410):167-71 20366930 - Phys Rev Lett. 2010 Feb 26;104(8):083901 21734657 - Nature. 2011 Jul 06;475(7356):359-63 23952398 - Phys Rev Lett. 2013 Aug 2;111(5):053602 23149741 - Nat Commun. 2012;3:1196 25126921 - Phys Rev Lett. 2014 Aug 1;113(5):053604 23006265 - Phys Rev Lett. 2012 Aug 10;109(6):063601 22026851 - Phys Rev Lett. 2011 Sep 23;107(13):133601 23031105 - Phys Rev Lett. 2012 Jul 6;109(1):013603 25342088 - Nat Commun. 2014 Oct 24;5:5082 22107383 - Phys Rev Lett. 2011 Oct 14;107(16):163604 24663828 - Opt Express. 2014 Mar 10;22(5):4886-95 21412237 - Nature. 2011 Apr 7;472(7341):69-73 23736437 - Opt Express. 2013 May 20;21(10):12165-73 |
References_xml | – volume: 5 start-page: 4034 year: 2014 ident: CR37 article-title: Reversing the pump-dependence of a laser at an exceptional point publication-title: Nature Comm. doi: 10.1038/ncomms5034 – volume: 37 start-page: 3435 year: 2012 ident: CR35 article-title: Photonic molecules formed by coupled hybrid resonators publication-title: Opt. Lett. doi: 10.1364/OL.37.003435 – volume: 20 start-page: 20790 year: 2012 ident: CR23 article-title: Enhanced optomechanical interaction in coupled microresonators publication-title: Opt. Express doi: 10.1364/OE.20.020790 – volume: 111 start-page: 133601 year: 2013 ident: CR41 article-title: Optomechanically-induced transparency in the nonlinear quantum regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.133601 – volume: 475 start-page: 359 year: 2011 ident: CR2 article-title: Sideband cooling of micromechanical motion to the quantum ground state publication-title: Nature. doi: 10.1038/nature10261 – volume: 464 start-page: 697 year: 2010 ident: CR1 article-title: Quantum ground state and single-phonon control of a mechanical resonator publication-title: Nature doi: 10.1038/nature08967 – volume: 85 start-page: 623 year: 2013 ident: CR12 article-title: Rev publication-title: Mod. Phys. doi: 10.1103/RevModPhys.85.623 – volume: 109 start-page: 063601 year: 2012 ident: CR22 article-title: Enhanced quantum nonlinearities in a two-mode optomechanical system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.063601 – volume: 478 start-page: 89 year: 2011 ident: CR3 article-title: Laser cooling of a nanomechanical oscillator into its quantum ground state publication-title: Nature. doi: 10.1038/nature10461 – volume: 103 start-page: 181103 year: 2013 ident: CR32 article-title: Tunable add-drop filter using an active whispering gallery mode microcavity publication-title: Appl. Phys. – volume: 90 start-page: 053841 year: 2014 ident: CR40 article-title: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.053841 – volume: 111 start-page: 133603 year: 2013 ident: CR43 article-title: Signatures of nonlinear cavity optomechanics in the weak coupling regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.053603 – volume: 5 start-page: 5082 year: 2014 ident: CR10 article-title: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities publication-title: Nature Comm. doi: 10.1038/ncomms6082 – volume: 338 start-page: 1609 year: 2012 ident: CR19 article-title: Optomechanical dark mode publication-title: Science doi: 10.1126/science.1228370 – volume: 86 start-page: 1391 year: 2014 ident: CR5 article-title: Cavity optomechanics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.1391 – volume: 94 start-page: 38002 year: 2011 ident: CR14 article-title: Tunable pulse delay and advancement in a coupled nanomechanical resonator-superconducting microwave cavity system publication-title: EPL doi: 10.1209/0295-5075/94/38002 – volume: 488 start-page: 167 year: 2012 ident: CR29 article-title: Parity-time synthetic photonic lattices publication-title: Nature doi: 10.1038/nature11298 – volume: 22 start-page: 4886 year: 2014 ident: CR24 article-title: Coherent perfect absorption, transmission and synthesis in a double-cavity optomechanical system publication-title: Opt. Express doi: 10.1364/OE.22.004886 – volume: 80 start-page: 5243 year: 1998 ident: CR26 article-title: Real spectra in non-Hermitian Hamiltonians having symmetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5243 – volume: 406 start-page: 277 year: 2000 ident: CR38 article-title: Gain-assisted superluminal light propagation publication-title: Nature doi: 10.1038/35018520 – volume: 107 start-page: 163604 year: 2011 ident: CR11 article-title: Objectively discerning Autler-Townes splitting from electromagnetically induced transparency publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.163604 – volume: 107 start-page: 133601 year: 2011 ident: CR21 article-title: Storing optical information as a mechanical excitation in a silica optomechanical resonator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.133601 – volume: 10 start-page: 394 year: 2014 ident: CR28 article-title: Parity-time-symmetric whispering-gallery microcavities publication-title: Nature Phys. doi: 10.1038/nphys2927 – volume: 346 start-page: 328 year: 2014 ident: CR36 article-title: Loss-induced suppression and revival of lasing publication-title: Science doi: 10.1126/science.1258004 – volume: 88 start-page: 062111 year: 2013 ident: CR27 article-title: Twofold transition in -symmetric coupled oscillators publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.062111 – volume: 104 start-page: 083901 year: 2010 ident: CR16 article-title: Phonon laser action in a tunable two-level system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.083901 – volume: 21 start-page: 12165 year: 2013 ident: CR25 article-title: Electromagnetically induced transparency and slow light in two-mode optomechanics publication-title: Opt. Express doi: 10.1364/OE.21.012165 – volume: 90 start-page: 013824 year: 2014 ident: CR39 article-title: Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.013824 – volume: 6 start-page: 192 year: 2010 ident: CR30 article-title: Observation of parity-time symmetry in optics publication-title: Nature Phys. doi: 10.1038/nphys1515 – volume: 472 start-page: 69 year: 2011 ident: CR6 article-title: Electromagnetically induced transparency and slow light with optomechanics publication-title: Nature doi: 10.1038/nature09933 – volume: 87 start-page: 013839 year: 2013 ident: CR18 article-title: Single-photon nonlinearities in two-mode optomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.013839 – volume: 9 start-page: 179 year: 2013 ident: CR13 article-title: Slowing, advancing and switching of microwave signals using circuit nanoelec-tromechanics publication-title: Nature Phys. doi: 10.1038/nphys2527 – volume: 109 start-page: 013603 year: 2012 ident: CR17 article-title: Optomechanical quantum information processing with photons and phonons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.013603 – volume: 1 start-page: 425 year: 2014 ident: CR15 article-title: Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes publication-title: Optica doi: 10.1364/OPTICA.1.000425 – volume: 88 start-page: 013813 year: 2013 ident: CR34 article-title: Inverted coupled-resonator-induced transparency publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.013813 – ident: CR9 – volume: 85 start-page: 031802(R) year: 2012 ident: CR31 article-title: Spontaneous generation of photons in transmission of quantum fields in - symmetric optical systems publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.031802 – volume: 81 start-page: 041803(R) year: 2010 ident: CR8 article-title: Electromagnetically induced transparency in mechanical effects of light publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.041803 – volume: 65 start-page: 29 year: 2012 ident: CR4 article-title: Quantum optomechanics publication-title: Physics Today doi: 10.1063/PT.3.1640 – volume: 3 start-page: 1196 year: 2012 ident: CR20 article-title: Coherent optical wavelength conversion via cavity optomechanics publication-title: Nature Commun. doi: 10.1038/ncomms2201 – volume: 113 start-page: 053604 year: 2014 ident: CR33 article-title: -symmetric phonon laser publication-title: PT – volume: 111 start-page: 133602 year: 2013 ident: CR42 article-title: Nonlinear interaction effects in a strongly driven optomechanical cavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.053602 – volume: 330 start-page: 1520 year: 2010 ident: CR7 article-title: Optomechanically induced transparency publication-title: Science doi: 10.1126/science.1195596 – volume: 88 start-page: 062111 year: 2013 ident: BFsrep09663_CR27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.062111 – volume: 103 start-page: 181103 year: 2013 ident: BFsrep09663_CR32 publication-title: Appl. Phys. – volume: 488 start-page: 167 year: 2012 ident: BFsrep09663_CR29 publication-title: Nature doi: 10.1038/nature11298 – volume: 86 start-page: 1391 year: 2014 ident: BFsrep09663_CR5 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.1391 – volume: 1 start-page: 425 year: 2014 ident: BFsrep09663_CR15 publication-title: Optica doi: 10.1364/OPTICA.1.000425 – volume: 107 start-page: 133601 year: 2011 ident: BFsrep09663_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.133601 – volume: 111 start-page: 133603 year: 2013 ident: BFsrep09663_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.053603 – volume: 80 start-page: 5243 year: 1998 ident: BFsrep09663_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5243 – volume: 87 start-page: 013839 year: 2013 ident: BFsrep09663_CR18 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.013839 – volume: 85 start-page: 623 year: 2013 ident: BFsrep09663_CR12 publication-title: Mod. Phys. doi: 10.1103/RevModPhys.85.623 – volume: 10 start-page: 394 year: 2014 ident: BFsrep09663_CR28 publication-title: Nature Phys. doi: 10.1038/nphys2927 – volume: 88 start-page: 013813 year: 2013 ident: BFsrep09663_CR34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.013813 – volume: 81 start-page: 041803(R) year: 2010 ident: BFsrep09663_CR8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.041803 – volume: 346 start-page: 328 year: 2014 ident: BFsrep09663_CR36 publication-title: Science doi: 10.1126/science.1258004 – volume: 90 start-page: 053841 year: 2014 ident: BFsrep09663_CR40 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.053841 – volume: 464 start-page: 697 year: 2010 ident: BFsrep09663_CR1 publication-title: Nature doi: 10.1038/nature08967 – volume: 107 start-page: 163604 year: 2011 ident: BFsrep09663_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.163604 – volume: 406 start-page: 277 year: 2000 ident: BFsrep09663_CR38 publication-title: Nature doi: 10.1038/35018520 – volume: 65 start-page: 29 year: 2012 ident: BFsrep09663_CR4 publication-title: Physics Today doi: 10.1063/PT.3.1640 – volume: 111 start-page: 133602 year: 2013 ident: BFsrep09663_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.053602 – volume: 113 start-page: 053604 year: 2014 ident: BFsrep09663_CR33 publication-title: PT – volume: 85 start-page: 031802(R) year: 2012 ident: BFsrep09663_CR31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.031802 – volume: 37 start-page: 3435 year: 2012 ident: BFsrep09663_CR35 publication-title: Opt. Lett. doi: 10.1364/OL.37.003435 – volume: 90 start-page: 013824 year: 2014 ident: BFsrep09663_CR39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.013824 – volume: 6 start-page: 192 year: 2010 ident: BFsrep09663_CR30 publication-title: Nature Phys. doi: 10.1038/nphys1515 – volume: 21 start-page: 12165 year: 2013 ident: BFsrep09663_CR25 publication-title: Opt. Express doi: 10.1364/OE.21.012165 – volume: 109 start-page: 063601 year: 2012 ident: BFsrep09663_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.063601 – volume: 330 start-page: 1520 year: 2010 ident: BFsrep09663_CR7 publication-title: Science doi: 10.1126/science.1195596 – volume: 475 start-page: 359 year: 2011 ident: BFsrep09663_CR2 publication-title: Nature. doi: 10.1038/nature10261 – volume: 94 start-page: 38002 year: 2011 ident: BFsrep09663_CR14 publication-title: EPL doi: 10.1209/0295-5075/94/38002 – volume: 5 start-page: 5082 year: 2014 ident: BFsrep09663_CR10 publication-title: Nature Comm. doi: 10.1038/ncomms6082 – volume: 109 start-page: 013603 year: 2012 ident: BFsrep09663_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.013603 – volume: 5 start-page: 4034 year: 2014 ident: BFsrep09663_CR37 publication-title: Nature Comm. doi: 10.1038/ncomms5034 – volume: 478 start-page: 89 year: 2011 ident: BFsrep09663_CR3 publication-title: Nature. doi: 10.1038/nature10461 – volume: 3 start-page: 1196 year: 2012 ident: BFsrep09663_CR20 publication-title: Nature Commun. doi: 10.1038/ncomms2201 – volume: 338 start-page: 1609 year: 2012 ident: BFsrep09663_CR19 publication-title: Science doi: 10.1126/science.1228370 – volume: 472 start-page: 69 year: 2011 ident: BFsrep09663_CR6 publication-title: Nature doi: 10.1038/nature09933 – ident: BFsrep09663_CR9 doi: 10.1017/CBO9780511813993 – volume: 111 start-page: 133601 year: 2013 ident: BFsrep09663_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.133601 – volume: 9 start-page: 179 year: 2013 ident: BFsrep09663_CR13 publication-title: Nature Phys. doi: 10.1038/nphys2527 – volume: 22 start-page: 4886 year: 2014 ident: BFsrep09663_CR24 publication-title: Opt. Express doi: 10.1364/OE.22.004886 – volume: 104 start-page: 083901 year: 2010 ident: BFsrep09663_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.083901 – volume: 20 start-page: 20790 year: 2012 ident: BFsrep09663_CR23 publication-title: Opt. Express doi: 10.1364/OE.20.020790 – reference: 23952399 - Phys Rev Lett. 2013 Aug 2;111(5):053603 – reference: 21071628 - Science. 2010 Dec 10;330(6010):1520-3 – reference: 24116779 - Phys Rev Lett. 2013 Sep 27;111(13):133601 – reference: 21734657 - Nature. 2011 Jul 06;475(7356):359-63 – reference: 23952398 - Phys Rev Lett. 2013 Aug 2;111(5):053602 – reference: 21412237 - Nature. 2011 Apr 7;472(7341):69-73 – reference: 25126921 - Phys Rev Lett. 2014 Aug 1;113(5):053604 – reference: 25342088 - Nat Commun. 2014 Oct 24;5:5082 – reference: 23160956 - Science. 2012 Dec 21;338(6114):1609-13 – reference: 24663828 - Opt Express. 2014 Mar 10;22(5):4886-95 – reference: 23381282 - Opt Lett. 2012 Aug 15;37(16):3435-7 – reference: 20237473 - Nature. 2010 Apr 1;464(7289):697-703 – reference: 25324384 - Science. 2014 Oct 17;346(6207):328-32 – reference: 23149741 - Nat Commun. 2012;3:1196 – reference: 22107383 - Phys Rev Lett. 2011 Oct 14;107(16):163604 – reference: 23736437 - Opt Express. 2013 May 20;21(10):12165-73 – reference: 20366930 - Phys Rev Lett. 2010 Feb 26;104(8):083901 – reference: 22874962 - Nature. 2012 Aug 9;488(7410):167-71 – reference: 23037128 - Opt Express. 2012 Aug 27;20(18):20790-9 – reference: 24925314 - Nat Commun. 2014 Jun 13;5:4034 – reference: 22026851 - Phys Rev Lett. 2011 Sep 23;107(13):133601 – reference: 23031105 - Phys Rev Lett. 2012 Jul 6;109(1):013603 – reference: 23006265 - Phys Rev Lett. 2012 Aug 10;109(6):063601 – reference: 21979049 - Nature. 2011 Oct 05;478(7367):89-92 – reference: 10917523 - Nature. 2000 Jul 20;406(6793):277-9 |
SSID | ssj0000529419 |
Score | 2.5890322 |
Snippet | Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9663 |
SubjectTerms | 639/624 639/766/400/482 Disease transmission Humanities and Social Sciences Loss ratio multidisciplinary Phase transitions Photons Science Transparency |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RUKVeEC1tCVCUlh56sdisHX-cUFWBUKXSS5H2FtmOrSKxycKGQ_49M9kkZQH1aluO4_HHG4_9HsBXBMVB5i6wiQwCHZQQmdZCMOWdmoZJFLmlB86_LuXFlfg5y2f9gduyv1Y5rIndQl3Wns7ITzJ0DASC22x6urhlpBpF0dVeQuMVbBF1GY1qNVPjGQtFsURmBkIhrk9w21kgaJd8fRt6hi2fX5F8Eifttp_zHdjucWP6fWXot7ARqnfweqUk2e7C5e9FU88DPeOlXr9pGfraaLUybTr2cnry5dv0ukpJdbBpGWnKs2U7n5Oilk_ndC8PPW86S6_vlu_h6vzsz48L1kslMC-kbJg0WmprJiZm2mfWGYW7k9PRK0yKgStnbOliUC5zkcvo0W3ULncEV3zpAv8Am1VdhT1I3cQgRpkSkkRvRnPLBbelLG0WPS5vNoFvQ88VvucRJzmLm6KLZ3NdjJ2cwJex6GJFnvFSocOh-4t-_iyLf9Z-MRtd6Y4lR5oEPo_ZODEo2mGrUN9jFRJrxwpklsDHlTHHRmCiNNMcv63WzDwWINLt9Zzq-m9Hvi1yomDVCRwPA-JRq5_-2_7__-0A3iD-ylknhXQIm83dffiEGKdxR91AfgBE7gCb priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VUKVeEPRFeFRp4dCLxWbtOPZxVRWhlUoPgMQtsh1bILHZ1W445N8zkxcscOAaTxxn_PrGM_4G4ARBsZep9WwkvUADxQemlBAsczYb-1EQqaELzv8u5Pm1mN6kNx1Z9KoLq2wpLZtluo8OO8X9YoFoW_IN2CKGdhzSW5PJ9HI6HKiQy0okumcP4urpnfU95xWQfB0P-cIp2uw1Zzuw3YHEeNI2axc--PIzfGzTRtZf4OL_oprPPN3ZJRXf1wwNa-yiIq4aqnK63-Xq-K6MKcVgVTNKIM9W9WxG6bNcPKMgPDSz6eB8vlx9heuzv1d_zlmXF4E5IWXFpFZSGT3SIVEuMVZnuBVZFVyGj4LnmdWmsMFnNrGBy-DQRlQ2tYRNXGE9_wab5bz0exDbkUZAMibYiKaL4oYLbgpZmCQ4XMtMBL97zeWuIw2n3BX3eeO85ioflBzBr0F00TJlvCV02Ks_7ybLKk_Q5hNotyTjN4vRbm4ocaSO4OdQjLOAXBum9PMHrEJi7ViBTCL43nbm0Ah8KPU4xW9na908CBDD9npJeXfbMG2LlPhWVQTH_YB41uqX_7b_LqkD-ISYK2VN-qND2KyWD_4IcU1lf3Qj-hFm1PzX priority: 102 providerName: Springer Nature |
Title | Optomechanically-induced transparency in parity-time-symmetric microresonators |
URI | https://link.springer.com/article/10.1038/srep09663 https://www.ncbi.nlm.nih.gov/pubmed/26169253 https://www.proquest.com/docview/1899475812 https://www.proquest.com/docview/2745195869 https://www.proquest.com/docview/1696681261 https://pubmed.ncbi.nlm.nih.gov/PMC4500988 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swGP3ohcFexu5z1wXv8rAXbbEt6_IwRhZaSqDZ2BbIm5FkiRUSJ0tcqP_9PvlG0-ZhTwFJVuxPsr9zLOscgA8Iii1LtSVDZikSFOuIEJQSbjSP7dDRVPkNzpdTdjGjk3k6P4DOY7MN4HYvtfN-UrPN4tPN3-or3vBfmi3j4jPmkjUicZYcwjEmJO6NDC5blN9IfMeSRrLTFbp9xG42ugcx738peWe5tM5C54_hUQsfw1Ez3k_gwBZP4UFjKFk9g-n3dblaWr-b1wd_URGk3Dh4eVjWIuZ-55epwqsi9OaDZUW8tTzZVsulN9Yy4dJ_nocE3L9SX222z2F2fvZ7fEFaxwRiKGMlYVIwoeRQukiYSGnJMUlp4QzHImcTrqXKtbNcR9olzBlkj0Kn2qMWk2ubvICjYlXYVxDqoUSoEntAiaRGJCqhicpZriJn8CmnAvjYRS4zrZy4d7VYZPWydiKyPsgBvOubrhsNjX2NTrvwZ90syCJkgxQZTRTvrUZGXYvlMBnA274a7w-_6KEKu7rGLhj2jh2wKICXzWD2J4GFTMYp_jffGea-gdfe3q0prv7UGtw09UqsIoD33YS4ddZ3r-3kv1q9hoeIxlJSGyOdwlG5ubZvEPGUegCHfM4HcDwaTX5N8Pfb2fTHTywds_GgfoswqGf8P7opCwg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgfCSuFjNw_HjgBACqi1tl0sr7S3YjiMqdZOlmwrlT_EbmUk2gW0rbr3aluOMx575PPZ8AG_QKfYis55FwnMEKL5kSnHOpLMy8VHJM0MPnA-mYnLEv86y2Qb8Ht7C0LXKYU_sNuqidnRGvh0jMODo3MbJh8VPRqxRFF0dKDR6tdjz7S-EbMv3u59xft8myc6Xw08TtmIVYI4L0TChlVBGR7qMlYuN1RI3cqtKJ7Go9Km02hS29NLGtkxF6RBhKZtZsuyusD7Ffq_BdTS8EYE9OZPjmQ5FzXishwRGqdpGM7dAkCDSdbN3wZe9eCXzXFy2M3c7d-D2yk8NP_aKdRc2fHUPbvTMle19mH5bNPXc07NhmuWTliG2Ry0pwqbLlk5PzFwbHlchsRw2LSMOe7Zs53Ni8HLhnO4BItKns_v6dPkAjq5EiA9hs6or_xhCG2n0iRLyXBE9qdSkPDWFKExcOtxOTQDvBsnlbpW3nOgzTvIufp6qfBRyAK_Gpos-WcdljbYG8eer9brM_2rXpdUI3busPEIH8HKsxoVI0RVT-foMuxDYO3Yg4gAe9ZM5DgILhU4y_LZcm-axASX5Xq-pjn90yb55RilfVQCvB4X4Z9Tn_-3J___tBdycHB7s5_u7072ncAt9v4x1NExbsNmcnvln6F819nmn1CF8v-pV9AcN_j76 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG9SCoSXxMXaTeI49gEhoF21FJYKUam3EDu2WqmbLN1UKH-NX8dMXrBtxa1X23Kc8Xg8n8eeD-AVOsVWxNqyibAcAYp1TErOWWJ0EtqJ43FGD5y_zMTOAf90GB-uwe_-LQxdq-xtYmOo89LQGfk4QGDA0bkNwrHrrkXsb03fLX4yYpCiSGtPp9GqyJ6tfyF8W77d3cK5fh2G0-3vH3dYxzDADBeiYkJJITM1US6QJsi0StCoa-lMgkXORolWWa6dTXSgXSScQbQldaxplze5thH2ew3WE0JFI1j_sD3b_zac8FAMjQeqT2cUyTFueguEDCJa3QQveLYXL2iei9I2m9_0NtzqvFb_fatmd2DNFnfhestjWd-D2ddFVc4tPSKmOT-pGSJ91Jncr5rc6fTgzNT-ceET52FVM2K0Z8t6Pic-L-PP6VYg4n46yS9Pl_fh4ErE-ABGRVnYR-DriUIPKSQ_FrGUjLKIR1ku8ixwBo1r5sGbXnKp6bKYE5nGSdpE0yOZDkL24MXQdNGm7ris0WYv_rRbvcv0r65dWo1AvsnRI5QHz4dqXJYUa8kKW55hFwJ7xw5E4MHDdjKHQWChUGGM305WpnloQCm_V2uK46Mm9TePKQGs9OBlrxD_jPr8v238_9-ewQ1cQenn3dneY7iJjmDMGk6mTRhVp2f2CTpblX7aabUPP656If0B4PJElQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optomechanically-induced+transparency+in+parity-time-symmetric+microresonators&rft.jtitle=Scientific+reports&rft.au=Jing%2C+H.&rft.au=%C3%96zdemir%2C+%C5%9Eahin+K.&rft.au=Geng%2C+Z.&rft.au=Zhang%2C+Jing&rft.date=2015-06-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fsrep09663&rft.externalDocID=10_1038_srep09663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |