Optomechanically-induced transparency in parity-time-symmetric microresonators

Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time ( PT )-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 5; no. 1; p. 9663
Main Authors Jing, H., Özdemir, Şahin K., Geng, Z., Zhang, Jing, Lü, Xin-You, Peng, Bo, Yang, Lan, Nori, Franco
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.06.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time ( PT )-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT -symmetric phase to a broken- PT -symmetric phase. This PT -phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices.
AbstractList Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices.
Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time ( PT )-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT -symmetric phase to a broken- PT -symmetric phase. This PT -phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices.
Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency, i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices.Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency, i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices.
ArticleNumber 9663
Author Özdemir, Şahin K.
Zhang, Jing
Geng, Z.
Nori, Franco
Lü, Xin-You
Peng, Bo
Jing, H.
Yang, Lan
Author_xml – sequence: 1
  givenname: H.
  surname: Jing
  fullname: Jing, H.
  organization: The Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, CEMS, RIKEN, Department of Physics, Henan Normal University
– sequence: 2
  givenname: Şahin K.
  surname: Özdemir
  fullname: Özdemir, Şahin K.
  organization: Electrical and Systems Engineering, Washington University
– sequence: 3
  givenname: Z.
  surname: Geng
  fullname: Geng, Z.
  organization: Department of Physics, Henan Normal University
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Department of Automation, Tsinghua University
– sequence: 5
  givenname: Xin-You
  surname:
  fullname: Lü, Xin-You
  organization: CEMS, RIKEN, School of physics, Huazhong University of Science and Technology
– sequence: 6
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
  organization: Electrical and Systems Engineering, Washington University
– sequence: 7
  givenname: Lan
  surname: Yang
  fullname: Yang, Lan
  organization: Electrical and Systems Engineering, Washington University
– sequence: 8
  givenname: Franco
  surname: Nori
  fullname: Nori, Franco
  organization: Electrical and Systems Engineering, Washington University, Physics Department, The University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26169253$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LHTEUxUOxVGtd-AXkgZu2MJo_M5lkI4i0tSC6seuQZO5oZCYZk4ww376Rp_LU0mxySX73cO49n9GWDx4Q2if4iGAmjlOECUvO2Qe0Q3HdVJRRurVRb6O9lO5wOQ2VNZGf0DblhEvasB10eTXlMIK91d5ZPQxL5Xw3W-hWOWqfJh3B22Xl_KqULi9VdiNUaRlHyNHZ1ehsDBFS8DqHmL6gj70eEuw93bvoz88f12fn1cXVr99npxeVrTnPFZeCCy2x7ImwRBvZspoY0du2PPXAWiN1Z3poDTE9472tMRWmMUxIZjsDbBedrHWn2YzQWfDF7qCm6EYdFxW0U69_vLtVN-FB1Q3GUogi8PVJIIb7GVJWo0sWhkF7CHNSZT-cC1IWVdDDN-hdmKMv4yna1g2RjeDyfxQRUtZtU9QKdbDp-8XwcyAFOF4DZa2pRNsr67LOLjyO4QZFsHpMXb2kXjq-vel4Fv0X-33NpsL4G4gbJt_BfwGM071m
CitedBy_id crossref_primary_10_1016_j_physleta_2021_127304
crossref_primary_10_1038_srep27102
crossref_primary_10_1364_OE_27_002949
crossref_primary_10_1103_PhysRevA_101_043820
crossref_primary_10_1088_2040_8986_ac2e15
crossref_primary_10_1103_PhysRevA_99_033843
crossref_primary_10_1103_PhysRevB_100_054105
crossref_primary_10_1088_1555_6611_aada3f
crossref_primary_10_1103_PhysRevA_104_033504
crossref_primary_10_1088_1367_2630_18_8_083034
crossref_primary_10_1038_srep35090
crossref_primary_10_1103_PhysRevA_100_023807
crossref_primary_10_1088_2040_8986_ad2b03
crossref_primary_10_1002_qute_202300350
crossref_primary_10_1103_PhysRevA_92_053837
crossref_primary_10_1103_PhysRevB_102_235151
crossref_primary_10_1140_epjd_e2020_10342_x
crossref_primary_10_1364_OE_387712
crossref_primary_10_1080_00018732_2021_1876991
crossref_primary_10_3389_fphy_2019_00127
crossref_primary_10_1016_j_spmi_2017_11_006
crossref_primary_10_1134_S002136402107002X
crossref_primary_10_1088_1674_1056_abab7e
crossref_primary_10_1103_PhysRevA_108_033517
crossref_primary_10_1007_s11467_021_1097_2
crossref_primary_10_1103_PhysRevA_101_013625
crossref_primary_10_1021_acsomega_0c05673
crossref_primary_10_1103_PhysRevA_94_013816
crossref_primary_10_1080_09500340_2023_2221746
crossref_primary_10_1364_PRJ_450166
crossref_primary_10_1103_PhysRevA_93_063814
crossref_primary_10_1103_PhysRevLett_122_076801
crossref_primary_10_7498_aps_71_20221323
crossref_primary_10_1007_s11128_022_03475_z
crossref_primary_10_1364_OE_26_028834
crossref_primary_10_1063_5_0248964
crossref_primary_10_1038_s41467_023_37275_5
crossref_primary_10_1088_1402_4896_ad1562
crossref_primary_10_1002_lpor_201800154
crossref_primary_10_1038_s41534_022_00617_0
crossref_primary_10_1088_1361_6455_abd645
crossref_primary_10_1364_OE_381760
crossref_primary_10_1103_PhysRevA_102_033715
crossref_primary_10_1103_PhysRevApplied_8_044020
crossref_primary_10_1016_j_physe_2021_114759
crossref_primary_10_1109_TQE_2021_3056667
crossref_primary_10_1140_epjp_s13360_023_04437_9
crossref_primary_10_1103_PhysRevA_109_023520
crossref_primary_10_1103_PhysRevA_97_033812
crossref_primary_10_1103_PhysRevA_99_023823
crossref_primary_10_1038_s41598_025_87630_3
crossref_primary_10_1109_JPHOT_2017_2761899
crossref_primary_10_1364_AO_58_002463
crossref_primary_10_1103_PhysRevA_96_013802
crossref_primary_10_1209_0295_5075_122_24001
crossref_primary_10_1515_nanoph_2016_0168
crossref_primary_10_35848_1882_0786_abce99
crossref_primary_10_1140_epjp_s13360_024_05954_x
crossref_primary_10_1364_OE_25_024281
crossref_primary_10_1038_s41598_017_06198_9
crossref_primary_10_1364_OE_519821
crossref_primary_10_1088_1674_1056_ab6836
crossref_primary_10_1103_PhysRevResearch_3_013015
crossref_primary_10_1103_PhysRevA_110_013515
crossref_primary_10_1088_1674_1056_25_5_054204
crossref_primary_10_1038_nphys4323
crossref_primary_10_1088_1361_6455_ab406e
crossref_primary_10_1002_lpor_202100708
crossref_primary_10_1038_s41598_018_30068_7
crossref_primary_10_1007_s11082_020_02390_w
crossref_primary_10_1016_j_cjph_2022_06_011
crossref_primary_10_1103_PhysRevA_94_023837
crossref_primary_10_1088_1367_2630_aa8fdd
crossref_primary_10_1088_1674_1056_25_6_064202
crossref_primary_10_1109_JPHOT_2022_3151506
crossref_primary_10_1103_PhysRevA_100_053820
crossref_primary_10_1007_s11128_023_04021_1
crossref_primary_10_1109_JSEN_2017_2686423
crossref_primary_10_1364_OL_42_003630
crossref_primary_10_1088_1361_6455_ab8e54
crossref_primary_10_1109_JQE_2016_2563779
crossref_primary_10_1142_S0217979225501218
crossref_primary_10_1103_PhysRevA_106_023508
crossref_primary_10_1103_PhysRevA_92_043830
crossref_primary_10_1364_OE_27_025515
crossref_primary_10_3390_e22020177
crossref_primary_10_1088_1361_6455_aaa58d
crossref_primary_10_1088_0256_307X_35_4_044205
crossref_primary_10_1140_epjd_s10053_022_00433_3
crossref_primary_10_1103_PhysRevApplied_14_014074
crossref_primary_10_1364_JOSAB_478320
crossref_primary_10_35848_1882_0786_ac3804
crossref_primary_10_1038_srep31095
crossref_primary_10_1007_s11433_016_0346_4
crossref_primary_10_1088_1361_6455_abb013
crossref_primary_10_1103_PhysRevA_101_013814
crossref_primary_10_1088_1674_1056_ad84cf
crossref_primary_10_1364_OE_473652
crossref_primary_10_1088_1674_1056_ac0cda
crossref_primary_10_3390_e22020160
crossref_primary_10_1016_j_optmat_2020_110515
crossref_primary_10_1364_OE_431211
crossref_primary_10_3390_cryst11060698
crossref_primary_10_1088_2040_8986_aa9532
crossref_primary_10_1103_PhysRevApplied_11_024007
crossref_primary_10_1103_PhysRevResearch_2_023173
crossref_primary_10_1109_JLT_2019_2899486
crossref_primary_10_1109_JLT_2021_3049501
crossref_primary_10_1002_andp_202000349
crossref_primary_10_1038_srep35583
crossref_primary_10_1364_OE_25_032931
crossref_primary_10_1364_JOSAB_383220
crossref_primary_10_1103_PhysRevApplied_10_014006
crossref_primary_10_1007_s10483_019_2405_9
crossref_primary_10_1364_AO_425139
crossref_primary_10_1126_science_abj1028
crossref_primary_10_1021_acs_jpcc_0c04800
crossref_primary_10_1088_0256_307X_40_10_104201
crossref_primary_10_1088_1751_8121_ab5cf7
crossref_primary_10_1103_RevModPhys_96_045002
crossref_primary_10_1016_j_physe_2019_113780
crossref_primary_10_1103_PhysRevA_101_023842
crossref_primary_10_1021_acsphotonics_1c01241
crossref_primary_10_1103_PhysRevA_105_062214
crossref_primary_10_1007_s10773_024_05599_7
crossref_primary_10_1103_PhysRevA_96_032103
crossref_primary_10_1002_qua_27144
crossref_primary_10_1016_j_heliyon_2019_e01532
crossref_primary_10_1109_ACCESS_2020_2968385
crossref_primary_10_1364_PRJ_423506
crossref_primary_10_1364_OE_494310
crossref_primary_10_1002_adma_201903639
crossref_primary_10_1007_s10773_025_05892_z
crossref_primary_10_1016_j_chaos_2022_112978
crossref_primary_10_1007_s11433_018_9341_3
crossref_primary_10_1016_j_physrep_2023_10_007
crossref_primary_10_1103_PhysRevA_99_043803
crossref_primary_10_1038_s41598_022_08250_9
crossref_primary_10_1364_OE_510160
crossref_primary_10_1103_PhysRevA_107_033507
crossref_primary_10_1364_OE_25_017249
crossref_primary_10_1103_PhysRevA_97_053846
crossref_primary_10_1002_adpr_202000009
crossref_primary_10_1186_s11671_019_2893_2
crossref_primary_10_1364_OE_26_020248
crossref_primary_10_1088_1361_648X_ab62bd
crossref_primary_10_1016_j_optcom_2022_128534
crossref_primary_10_1103_PhysRevA_103_063708
crossref_primary_10_1103_PhysRevA_99_043818
crossref_primary_10_1103_PhysRevA_95_013843
crossref_primary_10_1103_PhysRevA_97_013843
crossref_primary_10_1103_PhysRevA_100_043831
crossref_primary_10_1088_0256_307X_37_10_100301
crossref_primary_10_1364_OE_27_013694
crossref_primary_10_1016_j_fmre_2022_12_017
crossref_primary_10_1103_PhysRevA_104_013721
crossref_primary_10_1088_1361_648X_ab11b3
crossref_primary_10_1088_0256_307X_35_5_050301
crossref_primary_10_1088_1572_9494_ac5588
crossref_primary_10_1126_science_abl6571
crossref_primary_10_1103_PhysRevA_101_063836
crossref_primary_10_3390_photonics11040289
crossref_primary_10_1016_j_ijleo_2019_163058
crossref_primary_10_1063_1_5027122
crossref_primary_10_1103_PhysRevApplied_15_024056
crossref_primary_10_3390_ma11122353
crossref_primary_10_1080_09500340_2018_1514083
crossref_primary_10_3390_s23115191
crossref_primary_10_1016_j_physleta_2015_12_003
crossref_primary_10_1103_PhysRevA_109_033723
crossref_primary_10_1088_1361_6455_ad013a
crossref_primary_10_1103_PhysRevA_96_023812
crossref_primary_10_1063_5_0190053
crossref_primary_10_1002_lpor_202100430
crossref_primary_10_1103_PhysRevLett_117_224302
crossref_primary_10_1364_JOSAB_445390
crossref_primary_10_1109_JQE_2018_2881999
crossref_primary_10_1103_PhysRevA_100_062118
crossref_primary_10_1016_j_physleta_2025_130462
crossref_primary_10_1103_PhysRevResearch_2_013362
crossref_primary_10_1016_j_ijleo_2024_171837
crossref_primary_10_1103_PhysRevA_107_013110
crossref_primary_10_1103_PhysRevA_100_043835
crossref_primary_10_1038_s41598_018_21137_y
crossref_primary_10_1002_lpor_202200079
crossref_primary_10_1103_PhysRevA_98_063840
crossref_primary_10_1364_OE_546225
crossref_primary_10_3390_photonics10040407
crossref_primary_10_1103_PhysRevA_96_023826
crossref_primary_10_1103_PhysRevA_98_033832
crossref_primary_10_1103_PhysRevA_93_023844
crossref_primary_10_1515_nanoph_2020_0434
crossref_primary_10_1103_PhysRevA_104_053518
crossref_primary_10_1002_qute_202400232
crossref_primary_10_1002_qute_202400350
crossref_primary_10_1103_PhysRevA_100_013813
crossref_primary_10_1103_PhysRevA_99_032121
crossref_primary_10_1038_s41598_019_51559_1
crossref_primary_10_1002_adom_201900694
crossref_primary_10_1364_OE_27_030473
crossref_primary_10_1364_OE_532731
crossref_primary_10_1088_1555_6611_abd55c
crossref_primary_10_1038_s41598_018_32506_y
crossref_primary_10_1007_s11082_023_05631_w
crossref_primary_10_1364_OE_497867
crossref_primary_10_1088_0256_307X_39_12_124202
crossref_primary_10_1209_0295_5075_130_14001
crossref_primary_10_1002_adpr_202000016
crossref_primary_10_1088_1674_1056_25_11_114203
crossref_primary_10_1103_PhysRevA_109_033701
crossref_primary_10_1007_s11128_018_2139_8
crossref_primary_10_1109_JPHOT_2022_3204366
crossref_primary_10_1103_PhysRevA_104_012205
crossref_primary_10_1007_s11128_019_2380_9
crossref_primary_10_1364_OE_23_018534
crossref_primary_10_1007_s11128_023_04177_w
crossref_primary_10_1038_srep22920
crossref_primary_10_1364_OE_26_025199
crossref_primary_10_3390_app7070656
crossref_primary_10_1088_1402_4896_ac2fc3
crossref_primary_10_1140_epjp_s13360_022_03364_5
crossref_primary_10_1088_1361_6455_ab76e5
crossref_primary_10_1088_1674_1056_27_2_024204
crossref_primary_10_1088_1367_2630_aa8496
crossref_primary_10_1364_OE_479906
crossref_primary_10_1364_PRJ_5_000367
crossref_primary_10_1140_epjqt_s40507_021_00096_w
crossref_primary_10_1364_OL_44_000630
crossref_primary_10_1103_PhysRevA_95_023827
crossref_primary_10_1209_0295_5075_120_24001
crossref_primary_10_1364_OE_26_015255
crossref_primary_10_1002_lpor_201500243
crossref_primary_10_1038_srep39781
crossref_primary_10_1016_j_ijleo_2022_169035
crossref_primary_10_1088_1402_4896_ab6e4f
crossref_primary_10_1103_PhysRevA_97_053812
crossref_primary_10_1038_srep20976
crossref_primary_10_1103_PhysRevApplied_13_054078
crossref_primary_10_1103_PhysRevA_100_023838
crossref_primary_10_1038_s41563_019_0304_9
crossref_primary_10_1364_OE_27_027649
crossref_primary_10_1364_JOSAB_36_001355
crossref_primary_10_1103_PhysRevA_92_023855
crossref_primary_10_1103_PhysRevA_93_023814
crossref_primary_10_1063_1_5049456
crossref_primary_10_1063_5_0168808
crossref_primary_10_1103_PhysRevA_103_043521
crossref_primary_10_1109_JSEN_2023_3337836
crossref_primary_10_1142_S0217732321500656
crossref_primary_10_1016_j_scib_2018_07_020
crossref_primary_10_1364_OE_25_031688
crossref_primary_10_1016_j_physleta_2020_126836
crossref_primary_10_1016_j_physrep_2024_05_003
crossref_primary_10_1364_OE_27_029297
crossref_primary_10_1016_j_physrep_2017_02_003
crossref_primary_10_1007_s11467_023_1279_1
crossref_primary_10_1016_j_optcom_2022_128076
crossref_primary_10_1103_PhysRevA_98_023821
crossref_primary_10_1103_PhysRevA_95_063825
crossref_primary_10_1007_s11128_019_2454_8
crossref_primary_10_1093_nsr_nwv048
crossref_primary_10_1103_PhysRevA_96_062133
crossref_primary_10_1088_1402_4896_ab1308
crossref_primary_10_1007_s11771_022_5160_0
crossref_primary_10_1109_JLT_2022_3193061
crossref_primary_10_1016_j_optlastec_2024_110733
crossref_primary_10_1142_S0217979224502291
crossref_primary_10_1016_j_cjph_2021_08_029
crossref_primary_10_1103_PhysRevApplied_19_064050
crossref_primary_10_1016_j_aop_2018_11_010
crossref_primary_10_1007_s11128_018_2069_5
crossref_primary_10_1016_j_physe_2017_02_014
crossref_primary_10_1103_PhysRevResearch_2_033022
crossref_primary_10_1016_j_physd_2020_132481
crossref_primary_10_1093_ptep_ptaa094
crossref_primary_10_1109_JSEN_2018_2868873
crossref_primary_10_1088_1572_9494_ab7ecf
crossref_primary_10_1364_OME_6_003075
Cites_doi 10.1038/ncomms5034
10.1364/OL.37.003435
10.1364/OE.20.020790
10.1103/PhysRevLett.111.133601
10.1038/nature10261
10.1038/nature08967
10.1103/RevModPhys.85.623
10.1103/PhysRevLett.109.063601
10.1038/nature10461
10.1103/PhysRevA.90.053841
10.1103/PhysRevLett.111.053603
10.1038/ncomms6082
10.1126/science.1228370
10.1103/RevModPhys.86.1391
10.1209/0295-5075/94/38002
10.1038/nature11298
10.1364/OE.22.004886
10.1103/PhysRevLett.80.5243
10.1038/35018520
10.1103/PhysRevLett.107.163604
10.1103/PhysRevLett.107.133601
10.1038/nphys2927
10.1126/science.1258004
10.1103/PhysRevA.88.062111
10.1103/PhysRevLett.104.083901
10.1364/OE.21.012165
10.1103/PhysRevA.90.013824
10.1038/nphys1515
10.1038/nature09933
10.1103/PhysRevA.87.013839
10.1038/nphys2527
10.1103/PhysRevLett.109.013603
10.1364/OPTICA.1.000425
10.1103/PhysRevA.88.013813
10.1103/PhysRevA.85.031802
10.1103/PhysRevA.81.041803
10.1063/PT.3.1640
10.1038/ncomms2201
10.1103/PhysRevLett.111.053602
10.1126/science.1195596
10.1017/CBO9780511813993
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Jun 2015
The Author(s) 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Jun 2015
– notice: The Author(s) 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/srep09663
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed
CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC4500988
26169253
10_1038_srep09663
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c466t-69868a909f18c1ab97341b8fc709ffe37b9adbfe7b1bf36fc4028b5b3893cdbe3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:42:55 EDT 2025
Sun Aug 24 04:05:23 EDT 2025
Wed Aug 13 07:38:03 EDT 2025
Wed Aug 13 04:34:51 EDT 2025
Thu Jan 02 22:40:37 EST 2025
Tue Jul 01 03:14:55 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Fri Feb 21 02:39:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-69868a909f18c1ab97341b8fc709ffe37b9adbfe7b1bf36fc4028b5b3893cdbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep09663
PMID 26169253
PQID 1899475812
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500988
proquest_miscellaneous_1696681261
proquest_journals_2745195869
proquest_journals_1899475812
pubmed_primary_26169253
crossref_citationtrail_10_1038_srep09663
crossref_primary_10_1038_srep09663
springer_journals_10_1038_srep09663
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-12
PublicationDateYYYYMMDD 2015-06-12
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Agarwal, Qu (CR31) 2012; 85
Dong, Fiore, Kuzyk, Wang (CR19) 2012; 338
Aspelmeyer, Meystre, Schwab (CR4) 2012; 65
Kronwald, Marquardt (CR41) 2013; 111
Dong, Zhang, Fiore, Wang (CR15) 2014; 1
Peng (CR28) 2014; 10
Hill, Safavi-Naeini, Chan, Painter (CR20) 2012; 3
Yan (CR24) 2014; 22
Agarwal, Huang (CR8) 2010; 81
Xiang, Ashhab, You, Nori (CR12) 2013; 85
Regensburger (CR29) 2012; 488
Wang, Kuzmich, Dogariu (CR38) 2000; 406
Teufel (CR2) 2011; 475
Bender, Boettcher (CR26) 1998; 80
Peng (CR36) 2014; 346
Weis (CR7) 2010; 330
Chan (CR3) 2011; 478
Safavi-Naeini (CR6) 2011; 472
Oishi, Tomita (CR34) 2013; 88
Ojanen, Borkje (CR39) 2014; 90
Aspelmeyer, Kippenberg, Marquardt (CR5) 2014; 86
Jiang, Chen, Zhu (CR14) 2011; 94
Stannigel (CR17) 2012; 109
Jiang, Liu, Cui, Li (CR25) 2013; 21
Lemonde, Didier, Clerk (CR42) 2013; 111
Zhou (CR13) 2013; 9
Peng, Özdemir, Zhu, Yang (CR35) 2012; 37
O'Connell (CR1) 2010; 464
Fiore, Yang, Kuzyk, Barbour, Tian, Wang (CR21) 2011; 107
Grudinin, Lee, Painter, Vahala (CR16) 2010; 104
Ludwig, Safavi-Naeini, Painter, Marquardt (CR22) 2012; 109
CR9
Fan, Zhu (CR23) 2012; 20
Anisimov, Dowling, Sanders (CR11) 2011; 107
Rüter (CR30) 2010; 6
Komar (CR18) 2013; 87
Monifi, Özdemir, Yang (CR32) 2013; 103
Guo, Li, Nie, Li (CR40) 2014; 90
Borkje, Nunnenkamp, Teufel, Girvin (CR43) 2013; 111
Peng, Özdemir, Chen, Nori, Yang (CR10) 2014; 5
Jing, Özdemir, Lü, Zhang, Yang, Nori (CR33) 2014; 113
Bender, Gianfreda, Özdemir, Peng, Yang (CR27) 2013; 88
Brandstetter (CR37) 2014; 5
K Stannigel (BFsrep09663_CR17) 2012; 109
C Dong (BFsrep09663_CR15) 2014; 1
M-A Lemonde (BFsrep09663_CR42) 2013; 111
T Ojanen (BFsrep09663_CR39) 2014; 90
M Aspelmeyer (BFsrep09663_CR5) 2014; 86
C Dong (BFsrep09663_CR19) 2012; 338
M Ludwig (BFsrep09663_CR22) 2012; 109
C Jiang (BFsrep09663_CR14) 2011; 94
T Oishi (BFsrep09663_CR34) 2013; 88
S Weis (BFsrep09663_CR7) 2010; 330
Y Guo (BFsrep09663_CR40) 2014; 90
CE Rüter (BFsrep09663_CR30) 2010; 6
GS Agarwal (BFsrep09663_CR31) 2012; 85
CM Bender (BFsrep09663_CR26) 1998; 80
AH Safavi-Naeini (BFsrep09663_CR6) 2011; 472
K Borkje (BFsrep09663_CR43) 2013; 111
BFsrep09663_CR9
M Aspelmeyer (BFsrep09663_CR4) 2012; 65
C Jiang (BFsrep09663_CR25) 2013; 21
LJ Wang (BFsrep09663_CR38) 2000; 406
P Komar (BFsrep09663_CR18) 2013; 87
IS Grudinin (BFsrep09663_CR16) 2010; 104
Z-L Xiang (BFsrep09663_CR12) 2013; 85
B Peng (BFsrep09663_CR36) 2014; 346
PM Anisimov (BFsrep09663_CR11) 2011; 107
A Kronwald (BFsrep09663_CR41) 2013; 111
B Peng (BFsrep09663_CR10) 2014; 5
JD Teufel (BFsrep09663_CR2) 2011; 475
J Chan (BFsrep09663_CR3) 2011; 478
GS Agarwal (BFsrep09663_CR8) 2010; 81
V Fiore (BFsrep09663_CR21) 2011; 107
H Jing (BFsrep09663_CR33) 2014; 113
M Brandstetter (BFsrep09663_CR37) 2014; 5
J Fan (BFsrep09663_CR23) 2012; 20
CM Bender (BFsrep09663_CR27) 2013; 88
A Regensburger (BFsrep09663_CR29) 2012; 488
X Zhou (BFsrep09663_CR13) 2013; 9
F Monifi (BFsrep09663_CR32) 2013; 103
B Peng (BFsrep09663_CR28) 2014; 10
AD O'Connell (BFsrep09663_CR1) 2010; 464
XB Yan (BFsrep09663_CR24) 2014; 22
JT Hill (BFsrep09663_CR20) 2012; 3
B Peng (BFsrep09663_CR35) 2012; 37
20237473 - Nature. 2010 Apr 1;464(7289):697-703
25324384 - Science. 2014 Oct 17;346(6207):328-32
21071628 - Science. 2010 Dec 10;330(6010):1520-3
24925314 - Nat Commun. 2014 Jun 13;5:4034
10917523 - Nature. 2000 Jul 20;406(6793):277-9
23160956 - Science. 2012 Dec 21;338(6114):1609-13
23381282 - Opt Lett. 2012 Aug 15;37(16):3435-7
23037128 - Opt Express. 2012 Aug 27;20(18):20790-9
24116779 - Phys Rev Lett. 2013 Sep 27;111(13):133601
21979049 - Nature. 2011 Oct 05;478(7367):89-92
23952399 - Phys Rev Lett. 2013 Aug 2;111(5):053603
22874962 - Nature. 2012 Aug 9;488(7410):167-71
20366930 - Phys Rev Lett. 2010 Feb 26;104(8):083901
21734657 - Nature. 2011 Jul 06;475(7356):359-63
23952398 - Phys Rev Lett. 2013 Aug 2;111(5):053602
23149741 - Nat Commun. 2012;3:1196
25126921 - Phys Rev Lett. 2014 Aug 1;113(5):053604
23006265 - Phys Rev Lett. 2012 Aug 10;109(6):063601
22026851 - Phys Rev Lett. 2011 Sep 23;107(13):133601
23031105 - Phys Rev Lett. 2012 Jul 6;109(1):013603
25342088 - Nat Commun. 2014 Oct 24;5:5082
22107383 - Phys Rev Lett. 2011 Oct 14;107(16):163604
24663828 - Opt Express. 2014 Mar 10;22(5):4886-95
21412237 - Nature. 2011 Apr 7;472(7341):69-73
23736437 - Opt Express. 2013 May 20;21(10):12165-73
References_xml – volume: 5
  start-page: 4034
  year: 2014
  ident: CR37
  article-title: Reversing the pump-dependence of a laser at an exceptional point
  publication-title: Nature Comm.
  doi: 10.1038/ncomms5034
– volume: 37
  start-page: 3435
  year: 2012
  ident: CR35
  article-title: Photonic molecules formed by coupled hybrid resonators
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.003435
– volume: 20
  start-page: 20790
  year: 2012
  ident: CR23
  article-title: Enhanced optomechanical interaction in coupled microresonators
  publication-title: Opt. Express
  doi: 10.1364/OE.20.020790
– volume: 111
  start-page: 133601
  year: 2013
  ident: CR41
  article-title: Optomechanically-induced transparency in the nonlinear quantum regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.133601
– volume: 475
  start-page: 359
  year: 2011
  ident: CR2
  article-title: Sideband cooling of micromechanical motion to the quantum ground state
  publication-title: Nature.
  doi: 10.1038/nature10261
– volume: 464
  start-page: 697
  year: 2010
  ident: CR1
  article-title: Quantum ground state and single-phonon control of a mechanical resonator
  publication-title: Nature
  doi: 10.1038/nature08967
– volume: 85
  start-page: 623
  year: 2013
  ident: CR12
  article-title: Rev
  publication-title: Mod. Phys.
  doi: 10.1103/RevModPhys.85.623
– volume: 109
  start-page: 063601
  year: 2012
  ident: CR22
  article-title: Enhanced quantum nonlinearities in a two-mode optomechanical system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.063601
– volume: 478
  start-page: 89
  year: 2011
  ident: CR3
  article-title: Laser cooling of a nanomechanical oscillator into its quantum ground state
  publication-title: Nature.
  doi: 10.1038/nature10461
– volume: 103
  start-page: 181103
  year: 2013
  ident: CR32
  article-title: Tunable add-drop filter using an active whispering gallery mode microcavity
  publication-title: Appl. Phys.
– volume: 90
  start-page: 053841
  year: 2014
  ident: CR40
  article-title: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.053841
– volume: 111
  start-page: 133603
  year: 2013
  ident: CR43
  article-title: Signatures of nonlinear cavity optomechanics in the weak coupling regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.053603
– volume: 5
  start-page: 5082
  year: 2014
  ident: CR10
  article-title: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities
  publication-title: Nature Comm.
  doi: 10.1038/ncomms6082
– volume: 338
  start-page: 1609
  year: 2012
  ident: CR19
  article-title: Optomechanical dark mode
  publication-title: Science
  doi: 10.1126/science.1228370
– volume: 86
  start-page: 1391
  year: 2014
  ident: CR5
  article-title: Cavity optomechanics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1391
– volume: 94
  start-page: 38002
  year: 2011
  ident: CR14
  article-title: Tunable pulse delay and advancement in a coupled nanomechanical resonator-superconducting microwave cavity system
  publication-title: EPL
  doi: 10.1209/0295-5075/94/38002
– volume: 488
  start-page: 167
  year: 2012
  ident: CR29
  article-title: Parity-time synthetic photonic lattices
  publication-title: Nature
  doi: 10.1038/nature11298
– volume: 22
  start-page: 4886
  year: 2014
  ident: CR24
  article-title: Coherent perfect absorption, transmission and synthesis in a double-cavity optomechanical system
  publication-title: Opt. Express
  doi: 10.1364/OE.22.004886
– volume: 80
  start-page: 5243
  year: 1998
  ident: CR26
  article-title: Real spectra in non-Hermitian Hamiltonians having symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5243
– volume: 406
  start-page: 277
  year: 2000
  ident: CR38
  article-title: Gain-assisted superluminal light propagation
  publication-title: Nature
  doi: 10.1038/35018520
– volume: 107
  start-page: 163604
  year: 2011
  ident: CR11
  article-title: Objectively discerning Autler-Townes splitting from electromagnetically induced transparency
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.163604
– volume: 107
  start-page: 133601
  year: 2011
  ident: CR21
  article-title: Storing optical information as a mechanical excitation in a silica optomechanical resonator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.133601
– volume: 10
  start-page: 394
  year: 2014
  ident: CR28
  article-title: Parity-time-symmetric whispering-gallery microcavities
  publication-title: Nature Phys.
  doi: 10.1038/nphys2927
– volume: 346
  start-page: 328
  year: 2014
  ident: CR36
  article-title: Loss-induced suppression and revival of lasing
  publication-title: Science
  doi: 10.1126/science.1258004
– volume: 88
  start-page: 062111
  year: 2013
  ident: CR27
  article-title: Twofold transition in -symmetric coupled oscillators
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.062111
– volume: 104
  start-page: 083901
  year: 2010
  ident: CR16
  article-title: Phonon laser action in a tunable two-level system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.083901
– volume: 21
  start-page: 12165
  year: 2013
  ident: CR25
  article-title: Electromagnetically induced transparency and slow light in two-mode optomechanics
  publication-title: Opt. Express
  doi: 10.1364/OE.21.012165
– volume: 90
  start-page: 013824
  year: 2014
  ident: CR39
  article-title: Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.013824
– volume: 6
  start-page: 192
  year: 2010
  ident: CR30
  article-title: Observation of parity-time symmetry in optics
  publication-title: Nature Phys.
  doi: 10.1038/nphys1515
– volume: 472
  start-page: 69
  year: 2011
  ident: CR6
  article-title: Electromagnetically induced transparency and slow light with optomechanics
  publication-title: Nature
  doi: 10.1038/nature09933
– volume: 87
  start-page: 013839
  year: 2013
  ident: CR18
  article-title: Single-photon nonlinearities in two-mode optomechanics
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.013839
– volume: 9
  start-page: 179
  year: 2013
  ident: CR13
  article-title: Slowing, advancing and switching of microwave signals using circuit nanoelec-tromechanics
  publication-title: Nature Phys.
  doi: 10.1038/nphys2527
– volume: 109
  start-page: 013603
  year: 2012
  ident: CR17
  article-title: Optomechanical quantum information processing with photons and phonons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.013603
– volume: 1
  start-page: 425
  year: 2014
  ident: CR15
  article-title: Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000425
– volume: 88
  start-page: 013813
  year: 2013
  ident: CR34
  article-title: Inverted coupled-resonator-induced transparency
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.013813
– ident: CR9
– volume: 85
  start-page: 031802(R)
  year: 2012
  ident: CR31
  article-title: Spontaneous generation of photons in transmission of quantum fields in - symmetric optical systems
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.031802
– volume: 81
  start-page: 041803(R)
  year: 2010
  ident: CR8
  article-title: Electromagnetically induced transparency in mechanical effects of light
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.041803
– volume: 65
  start-page: 29
  year: 2012
  ident: CR4
  article-title: Quantum optomechanics
  publication-title: Physics Today
  doi: 10.1063/PT.3.1640
– volume: 3
  start-page: 1196
  year: 2012
  ident: CR20
  article-title: Coherent optical wavelength conversion via cavity optomechanics
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2201
– volume: 113
  start-page: 053604
  year: 2014
  ident: CR33
  article-title: -symmetric phonon laser
  publication-title: PT
– volume: 111
  start-page: 133602
  year: 2013
  ident: CR42
  article-title: Nonlinear interaction effects in a strongly driven optomechanical cavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.053602
– volume: 330
  start-page: 1520
  year: 2010
  ident: CR7
  article-title: Optomechanically induced transparency
  publication-title: Science
  doi: 10.1126/science.1195596
– volume: 88
  start-page: 062111
  year: 2013
  ident: BFsrep09663_CR27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.062111
– volume: 103
  start-page: 181103
  year: 2013
  ident: BFsrep09663_CR32
  publication-title: Appl. Phys.
– volume: 488
  start-page: 167
  year: 2012
  ident: BFsrep09663_CR29
  publication-title: Nature
  doi: 10.1038/nature11298
– volume: 86
  start-page: 1391
  year: 2014
  ident: BFsrep09663_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1391
– volume: 1
  start-page: 425
  year: 2014
  ident: BFsrep09663_CR15
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000425
– volume: 107
  start-page: 133601
  year: 2011
  ident: BFsrep09663_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.133601
– volume: 111
  start-page: 133603
  year: 2013
  ident: BFsrep09663_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.053603
– volume: 80
  start-page: 5243
  year: 1998
  ident: BFsrep09663_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5243
– volume: 87
  start-page: 013839
  year: 2013
  ident: BFsrep09663_CR18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.013839
– volume: 85
  start-page: 623
  year: 2013
  ident: BFsrep09663_CR12
  publication-title: Mod. Phys.
  doi: 10.1103/RevModPhys.85.623
– volume: 10
  start-page: 394
  year: 2014
  ident: BFsrep09663_CR28
  publication-title: Nature Phys.
  doi: 10.1038/nphys2927
– volume: 88
  start-page: 013813
  year: 2013
  ident: BFsrep09663_CR34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.013813
– volume: 81
  start-page: 041803(R)
  year: 2010
  ident: BFsrep09663_CR8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.041803
– volume: 346
  start-page: 328
  year: 2014
  ident: BFsrep09663_CR36
  publication-title: Science
  doi: 10.1126/science.1258004
– volume: 90
  start-page: 053841
  year: 2014
  ident: BFsrep09663_CR40
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.053841
– volume: 464
  start-page: 697
  year: 2010
  ident: BFsrep09663_CR1
  publication-title: Nature
  doi: 10.1038/nature08967
– volume: 107
  start-page: 163604
  year: 2011
  ident: BFsrep09663_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.163604
– volume: 406
  start-page: 277
  year: 2000
  ident: BFsrep09663_CR38
  publication-title: Nature
  doi: 10.1038/35018520
– volume: 65
  start-page: 29
  year: 2012
  ident: BFsrep09663_CR4
  publication-title: Physics Today
  doi: 10.1063/PT.3.1640
– volume: 111
  start-page: 133602
  year: 2013
  ident: BFsrep09663_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.053602
– volume: 113
  start-page: 053604
  year: 2014
  ident: BFsrep09663_CR33
  publication-title: PT
– volume: 85
  start-page: 031802(R)
  year: 2012
  ident: BFsrep09663_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.031802
– volume: 37
  start-page: 3435
  year: 2012
  ident: BFsrep09663_CR35
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.003435
– volume: 90
  start-page: 013824
  year: 2014
  ident: BFsrep09663_CR39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.013824
– volume: 6
  start-page: 192
  year: 2010
  ident: BFsrep09663_CR30
  publication-title: Nature Phys.
  doi: 10.1038/nphys1515
– volume: 21
  start-page: 12165
  year: 2013
  ident: BFsrep09663_CR25
  publication-title: Opt. Express
  doi: 10.1364/OE.21.012165
– volume: 109
  start-page: 063601
  year: 2012
  ident: BFsrep09663_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.063601
– volume: 330
  start-page: 1520
  year: 2010
  ident: BFsrep09663_CR7
  publication-title: Science
  doi: 10.1126/science.1195596
– volume: 475
  start-page: 359
  year: 2011
  ident: BFsrep09663_CR2
  publication-title: Nature.
  doi: 10.1038/nature10261
– volume: 94
  start-page: 38002
  year: 2011
  ident: BFsrep09663_CR14
  publication-title: EPL
  doi: 10.1209/0295-5075/94/38002
– volume: 5
  start-page: 5082
  year: 2014
  ident: BFsrep09663_CR10
  publication-title: Nature Comm.
  doi: 10.1038/ncomms6082
– volume: 109
  start-page: 013603
  year: 2012
  ident: BFsrep09663_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.013603
– volume: 5
  start-page: 4034
  year: 2014
  ident: BFsrep09663_CR37
  publication-title: Nature Comm.
  doi: 10.1038/ncomms5034
– volume: 478
  start-page: 89
  year: 2011
  ident: BFsrep09663_CR3
  publication-title: Nature.
  doi: 10.1038/nature10461
– volume: 3
  start-page: 1196
  year: 2012
  ident: BFsrep09663_CR20
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2201
– volume: 338
  start-page: 1609
  year: 2012
  ident: BFsrep09663_CR19
  publication-title: Science
  doi: 10.1126/science.1228370
– volume: 472
  start-page: 69
  year: 2011
  ident: BFsrep09663_CR6
  publication-title: Nature
  doi: 10.1038/nature09933
– ident: BFsrep09663_CR9
  doi: 10.1017/CBO9780511813993
– volume: 111
  start-page: 133601
  year: 2013
  ident: BFsrep09663_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.133601
– volume: 9
  start-page: 179
  year: 2013
  ident: BFsrep09663_CR13
  publication-title: Nature Phys.
  doi: 10.1038/nphys2527
– volume: 22
  start-page: 4886
  year: 2014
  ident: BFsrep09663_CR24
  publication-title: Opt. Express
  doi: 10.1364/OE.22.004886
– volume: 104
  start-page: 083901
  year: 2010
  ident: BFsrep09663_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.083901
– volume: 20
  start-page: 20790
  year: 2012
  ident: BFsrep09663_CR23
  publication-title: Opt. Express
  doi: 10.1364/OE.20.020790
– reference: 23952399 - Phys Rev Lett. 2013 Aug 2;111(5):053603
– reference: 21071628 - Science. 2010 Dec 10;330(6010):1520-3
– reference: 24116779 - Phys Rev Lett. 2013 Sep 27;111(13):133601
– reference: 21734657 - Nature. 2011 Jul 06;475(7356):359-63
– reference: 23952398 - Phys Rev Lett. 2013 Aug 2;111(5):053602
– reference: 21412237 - Nature. 2011 Apr 7;472(7341):69-73
– reference: 25126921 - Phys Rev Lett. 2014 Aug 1;113(5):053604
– reference: 25342088 - Nat Commun. 2014 Oct 24;5:5082
– reference: 23160956 - Science. 2012 Dec 21;338(6114):1609-13
– reference: 24663828 - Opt Express. 2014 Mar 10;22(5):4886-95
– reference: 23381282 - Opt Lett. 2012 Aug 15;37(16):3435-7
– reference: 20237473 - Nature. 2010 Apr 1;464(7289):697-703
– reference: 25324384 - Science. 2014 Oct 17;346(6207):328-32
– reference: 23149741 - Nat Commun. 2012;3:1196
– reference: 22107383 - Phys Rev Lett. 2011 Oct 14;107(16):163604
– reference: 23736437 - Opt Express. 2013 May 20;21(10):12165-73
– reference: 20366930 - Phys Rev Lett. 2010 Feb 26;104(8):083901
– reference: 22874962 - Nature. 2012 Aug 9;488(7410):167-71
– reference: 23037128 - Opt Express. 2012 Aug 27;20(18):20790-9
– reference: 24925314 - Nat Commun. 2014 Jun 13;5:4034
– reference: 22026851 - Phys Rev Lett. 2011 Sep 23;107(13):133601
– reference: 23031105 - Phys Rev Lett. 2012 Jul 6;109(1):013603
– reference: 23006265 - Phys Rev Lett. 2012 Aug 10;109(6):063601
– reference: 21979049 - Nature. 2011 Oct 05;478(7367):89-92
– reference: 10917523 - Nature. 2000 Jul 20;406(6793):277-9
SSID ssj0000529419
Score 2.5890322
Snippet Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9663
SubjectTerms 639/624
639/766/400/482
Disease transmission
Humanities and Social Sciences
Loss ratio
multidisciplinary
Phase transitions
Photons
Science
Transparency
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RUKVeEC1tCVCUlh56sdisHX-cUFWBUKXSS5H2FtmOrSKxycKGQ_49M9kkZQH1aluO4_HHG4_9HsBXBMVB5i6wiQwCHZQQmdZCMOWdmoZJFLmlB86_LuXFlfg5y2f9gduyv1Y5rIndQl3Wns7ITzJ0DASC22x6urhlpBpF0dVeQuMVbBF1GY1qNVPjGQtFsURmBkIhrk9w21kgaJd8fRt6hi2fX5F8Eifttp_zHdjucWP6fWXot7ARqnfweqUk2e7C5e9FU88DPeOlXr9pGfraaLUybTr2cnry5dv0ukpJdbBpGWnKs2U7n5Oilk_ndC8PPW86S6_vlu_h6vzsz48L1kslMC-kbJg0WmprJiZm2mfWGYW7k9PRK0yKgStnbOliUC5zkcvo0W3ULncEV3zpAv8Am1VdhT1I3cQgRpkSkkRvRnPLBbelLG0WPS5vNoFvQ88VvucRJzmLm6KLZ3NdjJ2cwJex6GJFnvFSocOh-4t-_iyLf9Z-MRtd6Y4lR5oEPo_ZODEo2mGrUN9jFRJrxwpklsDHlTHHRmCiNNMcv63WzDwWINLt9Zzq-m9Hvi1yomDVCRwPA-JRq5_-2_7__-0A3iD-ylknhXQIm83dffiEGKdxR91AfgBE7gCb
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VUKVeEPRFeFRp4dCLxWbtOPZxVRWhlUoPgMQtsh1bILHZ1W445N8zkxcscOAaTxxn_PrGM_4G4ARBsZep9WwkvUADxQemlBAsczYb-1EQqaELzv8u5Pm1mN6kNx1Z9KoLq2wpLZtluo8OO8X9YoFoW_IN2CKGdhzSW5PJ9HI6HKiQy0okumcP4urpnfU95xWQfB0P-cIp2uw1Zzuw3YHEeNI2axc--PIzfGzTRtZf4OL_oprPPN3ZJRXf1wwNa-yiIq4aqnK63-Xq-K6MKcVgVTNKIM9W9WxG6bNcPKMgPDSz6eB8vlx9heuzv1d_zlmXF4E5IWXFpFZSGT3SIVEuMVZnuBVZFVyGj4LnmdWmsMFnNrGBy-DQRlQ2tYRNXGE9_wab5bz0exDbkUZAMibYiKaL4oYLbgpZmCQ4XMtMBL97zeWuIw2n3BX3eeO85ioflBzBr0F00TJlvCV02Ks_7ybLKk_Q5hNotyTjN4vRbm4ocaSO4OdQjLOAXBum9PMHrEJi7ViBTCL43nbm0Ah8KPU4xW9na908CBDD9npJeXfbMG2LlPhWVQTH_YB41uqX_7b_LqkD-ISYK2VN-qND2KyWD_4IcU1lf3Qj-hFm1PzX
  priority: 102
  providerName: Springer Nature
Title Optomechanically-induced transparency in parity-time-symmetric microresonators
URI https://link.springer.com/article/10.1038/srep09663
https://www.ncbi.nlm.nih.gov/pubmed/26169253
https://www.proquest.com/docview/1899475812
https://www.proquest.com/docview/2745195869
https://www.proquest.com/docview/1696681261
https://pubmed.ncbi.nlm.nih.gov/PMC4500988
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swGP3ohcFexu5z1wXv8rAXbbEt6_IwRhZaSqDZ2BbIm5FkiRUSJ0tcqP_9PvlG0-ZhTwFJVuxPsr9zLOscgA8Iii1LtSVDZikSFOuIEJQSbjSP7dDRVPkNzpdTdjGjk3k6P4DOY7MN4HYvtfN-UrPN4tPN3-or3vBfmi3j4jPmkjUicZYcwjEmJO6NDC5blN9IfMeSRrLTFbp9xG42ugcx738peWe5tM5C54_hUQsfw1Ez3k_gwBZP4UFjKFk9g-n3dblaWr-b1wd_URGk3Dh4eVjWIuZ-55epwqsi9OaDZUW8tTzZVsulN9Yy4dJ_nocE3L9SX222z2F2fvZ7fEFaxwRiKGMlYVIwoeRQukiYSGnJMUlp4QzHImcTrqXKtbNcR9olzBlkj0Kn2qMWk2ubvICjYlXYVxDqoUSoEntAiaRGJCqhicpZriJn8CmnAvjYRS4zrZy4d7VYZPWydiKyPsgBvOubrhsNjX2NTrvwZ90syCJkgxQZTRTvrUZGXYvlMBnA274a7w-_6KEKu7rGLhj2jh2wKICXzWD2J4GFTMYp_jffGea-gdfe3q0prv7UGtw09UqsIoD33YS4ddZ3r-3kv1q9hoeIxlJSGyOdwlG5ubZvEPGUegCHfM4HcDwaTX5N8Pfb2fTHTywds_GgfoswqGf8P7opCwg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgfCSuFjNw_HjgBACqi1tl0sr7S3YjiMqdZOlmwrlT_EbmUk2gW0rbr3aluOMx575PPZ8AG_QKfYis55FwnMEKL5kSnHOpLMy8VHJM0MPnA-mYnLEv86y2Qb8Ht7C0LXKYU_sNuqidnRGvh0jMODo3MbJh8VPRqxRFF0dKDR6tdjz7S-EbMv3u59xft8myc6Xw08TtmIVYI4L0TChlVBGR7qMlYuN1RI3cqtKJ7Go9Km02hS29NLGtkxF6RBhKZtZsuyusD7Ffq_BdTS8EYE9OZPjmQ5FzXishwRGqdpGM7dAkCDSdbN3wZe9eCXzXFy2M3c7d-D2yk8NP_aKdRc2fHUPbvTMle19mH5bNPXc07NhmuWTliG2Ry0pwqbLlk5PzFwbHlchsRw2LSMOe7Zs53Ni8HLhnO4BItKns_v6dPkAjq5EiA9hs6or_xhCG2n0iRLyXBE9qdSkPDWFKExcOtxOTQDvBsnlbpW3nOgzTvIufp6qfBRyAK_Gpos-WcdljbYG8eer9brM_2rXpdUI3busPEIH8HKsxoVI0RVT-foMuxDYO3Yg4gAe9ZM5DgILhU4y_LZcm-axASX5Xq-pjn90yb55RilfVQCvB4X4Z9Tn_-3J___tBdycHB7s5_u7072ncAt9v4x1NExbsNmcnvln6F819nmn1CF8v-pV9AcN_j76
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG9SCoSXxMXaTeI49gEhoF21FJYKUam3EDu2WqmbLN1UKH-NX8dMXrBtxa1X23Kc8Xg8n8eeD-AVOsVWxNqyibAcAYp1TErOWWJ0EtqJ43FGD5y_zMTOAf90GB-uwe_-LQxdq-xtYmOo89LQGfk4QGDA0bkNwrHrrkXsb03fLX4yYpCiSGtPp9GqyJ6tfyF8W77d3cK5fh2G0-3vH3dYxzDADBeiYkJJITM1US6QJsi0StCoa-lMgkXORolWWa6dTXSgXSScQbQldaxplze5thH2ew3WE0JFI1j_sD3b_zac8FAMjQeqT2cUyTFueguEDCJa3QQveLYXL2iei9I2m9_0NtzqvFb_fatmd2DNFnfhestjWd-D2ddFVc4tPSKmOT-pGSJ91Jncr5rc6fTgzNT-ceET52FVM2K0Z8t6Pic-L-PP6VYg4n46yS9Pl_fh4ErE-ABGRVnYR-DriUIPKSQ_FrGUjLKIR1ku8ixwBo1r5sGbXnKp6bKYE5nGSdpE0yOZDkL24MXQdNGm7ris0WYv_rRbvcv0r65dWo1AvsnRI5QHz4dqXJYUa8kKW55hFwJ7xw5E4MHDdjKHQWChUGGM305WpnloQCm_V2uK46Mm9TePKQGs9OBlrxD_jPr8v238_9-ewQ1cQenn3dneY7iJjmDMGk6mTRhVp2f2CTpblX7aabUPP656If0B4PJElQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optomechanically-induced+transparency+in+parity-time-symmetric+microresonators&rft.jtitle=Scientific+reports&rft.au=Jing%2C+H.&rft.au=%C3%96zdemir%2C+%C5%9Eahin+K.&rft.au=Geng%2C+Z.&rft.au=Zhang%2C+Jing&rft.date=2015-06-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fsrep09663&rft.externalDocID=10_1038_srep09663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon