Characterizing interactions between cardiac shape and deformation by non-linear manifold learning
•Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related descriptors.•We demonstrate the benets of the joint analysis against the individual analysis of each descriptor.•Comparison of fusion and alignment str...
Saved in:
Published in | Medical image analysis Vol. 75; p. 102278 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2022
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2021.102278 |
Cover
Abstract | •Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related descriptors.•We demonstrate the benets of the joint analysis against the individual analysis of each descriptor.•Comparison of fusion and alignment strategies (1 latent space vs. 2 latent spaces).
[Display omitted]
In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation).
We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population. |
---|---|
AbstractList | In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population. In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population.In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population. •Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related descriptors.•We demonstrate the benets of the joint analysis against the individual analysis of each descriptor.•Comparison of fusion and alignment strategies (1 latent space vs. 2 latent spaces). [Display omitted] In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population. |
ArticleNumber | 102278 |
Author | Clarysse, Patrick Di Folco, Maxime Duchateau, Nicolas Moceri, Pamela |
Author_xml | – sequence: 1 givenname: Maxime surname: Di Folco fullname: Di Folco, Maxime email: difolco@creatis.insa-lyon.fr organization: Univ Lyon, UCBL, Inserm, INSA Lyon, CNRS, CREATIS, UMR5220, U1294,Villeurbanne 69621, France – sequence: 2 givenname: Pamela surname: Moceri fullname: Moceri, Pamela organization: Centre Hospitalier Universitaire de Nice, Service de Cardiologie, Nice, France – sequence: 3 givenname: Patrick surname: Clarysse fullname: Clarysse, Patrick organization: Univ Lyon, UCBL, Inserm, INSA Lyon, CNRS, CREATIS, UMR5220, U1294,Villeurbanne 69621, France – sequence: 4 givenname: Nicolas surname: Duchateau fullname: Duchateau, Nicolas organization: Univ Lyon, UCBL, Inserm, INSA Lyon, CNRS, CREATIS, UMR5220, U1294,Villeurbanne 69621, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34731772$$D View this record in MEDLINE/PubMed https://hal.science/hal-03407714$$DView record in HAL |
BookMark | eNp9kU1r3DAQhkVJaT7aX1Aogl6ag7f6smUfeghLmxQWesldjKVRV4stbyVvSvrrq42THHIICDQzPO-MNO85OYlTREI-crbijDdfd6sRXYCVYIKXihC6fUPOuGx41SohT55jXp-S85x3jDGtFHtHTqXSkmstzgist5DAzpjCvxB_0xBLWPIwxUx7nP8iRmohlUGW5i3skUJ01KGf0ghHjPb3tLysGkJESHSEGPw0ODqULJaW78lbD0PGD4_3Bbn98f12fVNtfl3_XF9tKquaZq5q5MChVdI1svGee6ek9rXorGTOsV712CsvvG9r7MA56ESrlegUYyDrVl6Qy6XtFgazT2GEdG8mCObmamOONSYV05qrO17YLwu7T9OfA-bZjCFbHAaIOB2yEXUnyxGyLujnF-huOqRYPmJEI1kttKqbQn16pA59MeV5_tOeC9AtgE1Tzgm9sWF-WN-cIAyGM3P01OzMg6fm6KlZPC1a-UL71P511bdFhWXndwGTyTZgtAVMaGfjpvCq_j_WN7qD |
CitedBy_id | crossref_primary_10_4103_digm_digm_1_22 crossref_primary_10_1109_JBHI_2024_3389871 crossref_primary_10_1016_j_media_2023_102975 crossref_primary_10_1186_s13018_023_04410_3 crossref_primary_10_1109_TMI_2024_3512175 crossref_primary_10_3389_fcvm_2022_983868 |
Cites_doi | 10.1093/eurheartj/ehv510 10.1016/j.inffus.2019.08.005 10.1016/j.media.2020.101750 10.1016/j.media.2012.07.003 10.1109/TKDE.2018.2872063 10.1145/1273496.1273557 10.1016/j.media.2017.06.002 10.1038/nmeth.2810 10.3389/fcvm.2020.00102 10.1016/j.acha.2013.03.001 10.1093/ehjci/jex163 10.1016/j.jacc.2018.12.076 10.1016/j.patcog.2015.08.024 10.1016/j.media.2016.06.005 10.1016/j.acha.2006.04.006 10.1016/j.media.2016.06.007 10.1016/j.ijcard.2012.10.009 10.1159/000335649 10.1109/TPAMI.2010.183 10.1109/TPAMI.2007.250598 10.1126/science.290.5500.2319 10.1007/BF02291478 10.1007/s10237-017-0960-0 10.1186/s12968-014-0056-2 10.1073/pnas.0500334102 10.1109/TPAMI.2019.2891600 10.3389/fcvm.2019.00190 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier B.V. Copyright Elsevier BV Jan 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier B.V. – notice: Copyright Elsevier BV Jan 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES |
DOI | 10.1016/j.media.2021.102278 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1361-8423 |
ExternalDocumentID | oai_HAL_hal_03407714v1 34731772 10_1016_j_media_2021_102278 S1361841521003236 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c466t-5e1a1a843d636ff1fd437f529c30dd0b4beb4f2ff85e9adda9287429400a3583 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Tue Aug 05 06:54:32 EDT 2025 Fri Sep 05 13:37:46 EDT 2025 Sat Jul 26 03:24:25 EDT 2025 Wed Feb 19 02:26:21 EST 2025 Tue Jul 01 02:49:31 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Fri Feb 23 02:39:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dimensionality reduction Manifold learning Cardiac imaging Myocardial strain Information fusion myocardial strain dimensionality reduction information fusion manifold learning |
Language | English |
License | Copyright © 2021. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-5e1a1a843d636ff1fd437f529c30dd0b4beb4f2ff85e9adda9287429400a3583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5495-7655 0000-0001-6160-8050 0000-0001-8803-2004 |
OpenAccessLink | https://hal.science/hal-03407714 |
PMID | 34731772 |
PQID | 2630527456 |
PQPubID | 2045428 |
ParticipantIDs | hal_primary_oai_HAL_hal_03407714v1 proquest_miscellaneous_2593593235 proquest_journals_2630527456 pubmed_primary_34731772 crossref_citationtrail_10_1016_j_media_2021_102278 crossref_primary_10_1016_j_media_2021_102278 elsevier_sciencedirect_doi_10_1016_j_media_2021_102278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Bengio, Paiement, Vincent, Delalleau, Le Roux, Ouimet (bib0004) 2004 Li, Yang, Zhang (bib0026) 2018; 31 Lawrence, Moore (bib0024) 2007 Lindenbaum, Yeredor, Salhov, Averbuch (bib0028) 2020; 55 Moceri, Duchateau, Gillon, Jaunay, Baudouy, Squara (bib0031) 2020 Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0022) 2016 Puyol-Antón, Sinclair, Gerber, Amzulescu, Langet, De Craene (bib0033) 2017; 40 Coifman, Lafon (bib0010) 2006; 21 Duchateau, King, De Craene (bib0016) 2020; 6 Guigui, Jia, Sermesant, Pennec (bib0019) 2019; 11712 Baumgartner, Gomez, Koch, Housden, Kolbitsch, McClelland (bib0002) 2015; 24 Yan, Xu, Zhang, Zhang, Yang, Lin (bib0039) 2007; 29 Sanz, Sánchez-Quintana, Bossone, Bogaard, Naeije (bib0035) 2019; 73 Wang, Mezlini, Demir, Fiume, Tu (bib0038) 2014; 11 Duchateau, De Craene, Sitges, Caselles (bib0015) 2013; 8085 Gilbert, Mauger, Young, Suinesiaputra (bib0017) 2020; 7 Guigui, Moceri, Sermesant (bib0020) 2021 Ham, Lee, Saul (bib0021) 2005; 120 Medrano-Gracia, Cowan, Ambale-Venkatesh, Bluemke, Eng (bib0029) 2014; 16 Cikes, Solomon (bib0007) 2016 Coifman, Hirn (bib0009) 2014; 36 Baumgartner, Kolbitsch, McClelland, Rueckert, King (bib0003) 2017; 35 Dragulescu, Grosse-Wortmann, Redington, Friedberg, Mertens (bib0013) 2013; 168 Coifman, Lafon, Lee, Maggioni, Nadler, Warner (bib0011) 2005; 102 Lin, Liu, Fuh (bib0027) 2011; 33 Sanchez-Martinez, Duchateau, Erdei, Fraser, Bijnens, Piella (bib0034) 2017; 35 Lee, Elgammal, Torki (bib0025) 2016; 50 Moceri, Duchateau, Baudouy, Schouver, Leroy, Squara (bib0030) 2018; 19 Gower (bib0018) 1975; 40 . Molléro, Pennec, Delingette, Garny, Ayache, Sermesant (bib0032) 2018; 17 Tenenbaum, Silva, Langford (bib0036) 2000; 290 Valencia-Aguirre, Álvarez Meza, Daza-Santacoloma, Acosta-Medina, Castellanos-Domínguez (bib0037) 2011; 7042 Di Folco, Clarysse, Moceri, Duchateau (bib0012) 2020; Proc. STACOM-MICCAI’19, LNCS Duchateau, De Craene, Piella (bib0014) 2012; 16 Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint Aubry, Schlickewei, Cremers (bib0001) 2013 Bijnens, Cikes, Butakoff, Sitges, Crispi (bib0006) 2012; 32 Clough, Balfour, Cruz, Marsden, Prieto, Reader (bib0008) 2019; 42 Benkarim, Piella, Rekik, Hahner, Eixarch, Shen (bib0005) 2020; 64 Bengio (10.1016/j.media.2021.102278_bib0004) 2004 Guigui (10.1016/j.media.2021.102278_bib0019) 2019; 11712 Ham (10.1016/j.media.2021.102278_bib0021) 2005; 120 Baumgartner (10.1016/j.media.2021.102278_bib0002) 2015; 24 Coifman (10.1016/j.media.2021.102278_bib0009) 2014; 36 Puyol-Antón (10.1016/j.media.2021.102278_bib0033) 2017; 40 Sanchez-Martinez (10.1016/j.media.2021.102278_bib0034) 2017; 35 Coifman (10.1016/j.media.2021.102278_bib0010) 2006; 21 Duchateau (10.1016/j.media.2021.102278_bib0016) 2020; 6 Gower (10.1016/j.media.2021.102278_bib0018) 1975; 40 Moceri (10.1016/j.media.2021.102278_bib0030) 2018; 19 Di Folco (10.1016/j.media.2021.102278_bib0012) 2020; Proc. STACOM-MICCAI’19, LNCS Lawrence (10.1016/j.media.2021.102278_bib0024) 2007 Yan (10.1016/j.media.2021.102278_bib0039) 2007; 29 Benkarim (10.1016/j.media.2021.102278_bib0005) 2020; 64 Cikes (10.1016/j.media.2021.102278_bib0007) 2016 Bijnens (10.1016/j.media.2021.102278_bib0006) 2012; 32 Li (10.1016/j.media.2021.102278_bib0026) 2018; 31 Medrano-Gracia (10.1016/j.media.2021.102278_bib0029) 2014; 16 Duchateau (10.1016/j.media.2021.102278_bib0015) 2013; 8085 Gilbert (10.1016/j.media.2021.102278_bib0017) 2020; 7 Lin (10.1016/j.media.2021.102278_bib0027) 2011; 33 Moceri (10.1016/j.media.2021.102278_sbref0031) 2020 Coifman (10.1016/j.media.2021.102278_bib0011) 2005; 102 Tenenbaum (10.1016/j.media.2021.102278_bib0036) 2000; 290 Molléro (10.1016/j.media.2021.102278_bib0032) 2018; 17 Baumgartner (10.1016/j.media.2021.102278_bib0003) 2017; 35 Aubry (10.1016/j.media.2021.102278_bib0001) 2013 Clough (10.1016/j.media.2021.102278_bib0008) 2019; 42 Lindenbaum (10.1016/j.media.2021.102278_bib0028) 2020; 55 Dragulescu (10.1016/j.media.2021.102278_bib0013) 2013; 168 Lee (10.1016/j.media.2021.102278_bib0025) 2016; 50 Higgins (10.1016/j.media.2021.102278_bib0022) 2016 10.1016/j.media.2021.102278_bib0023 Sanz (10.1016/j.media.2021.102278_bib0035) 2019; 73 Duchateau (10.1016/j.media.2021.102278_bib0014) 2012; 16 Guigui (10.1016/j.media.2021.102278_bib0020) 2021 Wang (10.1016/j.media.2021.102278_bib0038) 2014; 11 Valencia-Aguirre (10.1016/j.media.2021.102278_bib0037) 2011; 7042 35366508 - Med Image Anal. 2022 Mar 30;78:102425 |
References_xml | – volume: 35 start-page: 83 year: 2017 end-page: 100 ident: bib0003 article-title: Autoadaptive motion modelling for MR-based respiratory motion estimation publication-title: Med Image Anal – volume: 36 start-page: 79 year: 2014 end-page: 107 ident: bib0009 article-title: Diffusion maps for changing data publication-title: Applied Comput Harm Anal – volume: 7042 start-page: 206 year: 2011 end-page: 213 ident: bib0037 article-title: Multiple manifold learning by nonlinear dimensionality reduction publication-title: Proc. CIARP, LNCS – volume: 11 start-page: 333 year: 2014 end-page: 337 ident: bib0038 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods – volume: 102 start-page: 7426 year: 2005 end-page: 7431 ident: bib0011 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc Natl Acad Sci – start-page: 177 year: 2004 end-page: 184 ident: bib0004 article-title: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering publication-title: Proc. NIPS – volume: 8085 start-page: 578 year: 2013 end-page: 586 ident: bib0015 article-title: Adaptation of multiscale function extension to inexact matching: application to the mapping of individuals to a learnt manifold publication-title: Proc. SEE-GSI, LNCS – volume: 19 start-page: 450 year: 2018 end-page: 458 ident: bib0030 article-title: Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension publication-title: Eur Heart J Cardiovasc Imaging – volume: 73 start-page: 1463 year: 2019 end-page: 1482 ident: bib0035 article-title: Anatomy, function, and dysfunction of the right ventricle publication-title: J Am Coll Cardiol – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: bib0036 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – reference: Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint – volume: 11712 start-page: 759 year: 2019 end-page: 768 ident: bib0019 article-title: Symmetric algorithmic components for shape analysis with diffeomorphisms publication-title: Proc. GSI, LNCS – volume: 6 start-page: 190 year: 2020 ident: bib0016 article-title: Machine learning approaches for myocardial motion and deformation analysis publication-title: Front Cardiovasc Med – volume: 33 start-page: 1147 year: 2011 end-page: 11460 ident: bib0027 article-title: Multiple kernel learning for dimensionality reduction publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2020 ident: bib0031 article-title: Three-dimensional right ventricular shape and strain in congenital heart disease patients with right ventricular chronic volume loading publication-title: Eur Heart J Cardiovasc Imaging – volume: 24 start-page: 363 year: 2015 end-page: 374 ident: bib0002 article-title: Self-Aligning manifolds for matching disparate medical image datasets publication-title: Proc. IPMI, LNCS – volume: Proc. STACOM-MICCAI’19, LNCS start-page: 119 year: 2020 end-page: 127 ident: bib0012 article-title: Learning interactions between cardiac shape and deformation: application to pulmonary hypertension – volume: 168 start-page: 803 year: 2013 end-page: 810 ident: bib0013 article-title: Differential effect of right ventricular dilatation on myocardial deformation in patients with atrial septal defects and patients after tetralogy of fallot repair publication-title: Int J Cardiol – volume: 50 start-page: 74 year: 2016 end-page: 87 ident: bib0025 article-title: Learning representations from multiple manifolds publication-title: Pattern Recognit – volume: 40 start-page: 33 year: 1975 end-page: 51 ident: bib0018 article-title: Generalized procrustes analysis publication-title: Psychometrika – volume: 29 start-page: 40 year: 2007 end-page: 51 ident: bib0039 article-title: Graph embedding and extensions: a general framework for dimensionality reduction publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2016 ident: bib0022 article-title: Beta-vae: learning basic visual concepts with a constrained variational framework publication-title: OpenReview – start-page: 1626 year: 2013 end-page: 1633 ident: bib0001 article-title: The wave kernel signature: a quantum mechanical approach to shape analysis publication-title: 2011 IEEE ICCV Workshops – volume: 21 start-page: 5 year: 2006 end-page: 30 ident: bib0010 article-title: Diffusion maps publication-title: Applied Comput Harm Anal – volume: 16 start-page: 56 year: 2014 ident: bib0029 article-title: Left ventricular shape variation in asymptomatic populations: the multi-Ethnic study of atherosclerosis publication-title: Journal of Cardiovascular Magnetic Resonance – volume: 31 start-page: 1863 year: 2018 end-page: 1883 ident: bib0026 article-title: A survey of multi-view representation learning publication-title: IEEE Trans Knowl Data Eng – volume: 55 start-page: 127 year: 2020 end-page: 149 ident: bib0028 article-title: Multi-view diffusion maps publication-title: Inform Fusion – reference: . – volume: 7 start-page: 102 year: 2020 ident: bib0017 article-title: Artificial intelligence in cardiac imaging with statistical atlases of cardiac anatomy publication-title: Front Cardiovasc Med – start-page: 1642 year: 2016 end-page: 1650 ident: bib0007 article-title: Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure publication-title: Eur Heart J – start-page: 481 year: 2007 end-page: 488 ident: bib0024 article-title: Hierarchical gaussian process latent variable models publication-title: Proc. ICML – volume: 35 start-page: 70 year: 2017 end-page: 82 ident: bib0034 article-title: Characterization of myocardial motion patterns by unsupervised multiple kernel learning publication-title: Med Image Anal – volume: 120 start-page: 120 year: 2005 end-page: 127 ident: bib0021 article-title: Semisupervised alignment of manifolds publication-title: Proc. AISTATS – start-page: 1394 year: 2021 end-page: 1397 ident: bib0020 article-title: Cardiac motion modeling with parallel transport and shape splines publication-title: Proc. ISBI – volume: 64 start-page: 101750 year: 2020 ident: bib0005 article-title: A novel approach to multiple anatomical shape analysis: application to fetal ventriculomegaly publication-title: Med Image Anal – volume: 17 start-page: 285 year: 2018 end-page: 300 ident: bib0032 article-title: Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models publication-title: Biomech Model Mechanobiol – volume: 32 start-page: 5 year: 2012 end-page: 16 ident: bib0006 article-title: Myocardial motion and deformation: what does it tell us and how does it relate to function? publication-title: Fetal Diagn Ther – volume: 40 start-page: 96 year: 2017 end-page: 110 ident: bib0033 article-title: A multimodal spatiotemporal cardiac motion atlas from MR and ultrasound data publication-title: Med Image Anal – volume: 42 start-page: 988 year: 2019 end-page: 997 ident: bib0008 article-title: Weighted manifold alignment using wave kernel signatures for aligning medical image datasets publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 16 start-page: 1532 year: 2012 end-page: 1549 ident: bib0014 article-title: Constrained manifold learning for the characterization of pathological deviations from normality publication-title: Med Image Anal – start-page: 1642 year: 2016 ident: 10.1016/j.media.2021.102278_bib0007 article-title: Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure publication-title: Eur Heart J doi: 10.1093/eurheartj/ehv510 – start-page: 1626 year: 2013 ident: 10.1016/j.media.2021.102278_bib0001 article-title: The wave kernel signature: a quantum mechanical approach to shape analysis publication-title: 2011 IEEE ICCV Workshops – volume: 7042 start-page: 206 year: 2011 ident: 10.1016/j.media.2021.102278_bib0037 article-title: Multiple manifold learning by nonlinear dimensionality reduction publication-title: Proc. CIARP, LNCS – year: 2016 ident: 10.1016/j.media.2021.102278_bib0022 article-title: Beta-vae: learning basic visual concepts with a constrained variational framework publication-title: OpenReview – volume: 55 start-page: 127 year: 2020 ident: 10.1016/j.media.2021.102278_bib0028 article-title: Multi-view diffusion maps publication-title: Inform Fusion doi: 10.1016/j.inffus.2019.08.005 – volume: 64 start-page: 101750 year: 2020 ident: 10.1016/j.media.2021.102278_bib0005 article-title: A novel approach to multiple anatomical shape analysis: application to fetal ventriculomegaly publication-title: Med Image Anal doi: 10.1016/j.media.2020.101750 – volume: 16 start-page: 1532 year: 2012 ident: 10.1016/j.media.2021.102278_bib0014 article-title: Constrained manifold learning for the characterization of pathological deviations from normality publication-title: Med Image Anal doi: 10.1016/j.media.2012.07.003 – volume: 31 start-page: 1863 year: 2018 ident: 10.1016/j.media.2021.102278_bib0026 article-title: A survey of multi-view representation learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2872063 – start-page: 481 year: 2007 ident: 10.1016/j.media.2021.102278_bib0024 article-title: Hierarchical gaussian process latent variable models publication-title: Proc. ICML doi: 10.1145/1273496.1273557 – volume: 40 start-page: 96 year: 2017 ident: 10.1016/j.media.2021.102278_bib0033 article-title: A multimodal spatiotemporal cardiac motion atlas from MR and ultrasound data publication-title: Med Image Anal doi: 10.1016/j.media.2017.06.002 – volume: 11 start-page: 333 year: 2014 ident: 10.1016/j.media.2021.102278_bib0038 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods doi: 10.1038/nmeth.2810 – volume: 7 start-page: 102 year: 2020 ident: 10.1016/j.media.2021.102278_bib0017 article-title: Artificial intelligence in cardiac imaging with statistical atlases of cardiac anatomy publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2020.00102 – start-page: 177 year: 2004 ident: 10.1016/j.media.2021.102278_bib0004 article-title: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering publication-title: Proc. NIPS – volume: 36 start-page: 79 year: 2014 ident: 10.1016/j.media.2021.102278_bib0009 article-title: Diffusion maps for changing data publication-title: Applied Comput Harm Anal doi: 10.1016/j.acha.2013.03.001 – volume: 19 start-page: 450 year: 2018 ident: 10.1016/j.media.2021.102278_bib0030 article-title: Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jex163 – ident: 10.1016/j.media.2021.102278_bib0023 – volume: 73 start-page: 1463 year: 2019 ident: 10.1016/j.media.2021.102278_bib0035 article-title: Anatomy, function, and dysfunction of the right ventricle publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.12.076 – volume: 50 start-page: 74 year: 2016 ident: 10.1016/j.media.2021.102278_bib0025 article-title: Learning representations from multiple manifolds publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.08.024 – year: 2020 ident: 10.1016/j.media.2021.102278_sbref0031 article-title: Three-dimensional right ventricular shape and strain in congenital heart disease patients with right ventricular chronic volume loading publication-title: Eur Heart J Cardiovasc Imaging – volume: 24 start-page: 363 year: 2015 ident: 10.1016/j.media.2021.102278_bib0002 article-title: Self-Aligning manifolds for matching disparate medical image datasets publication-title: Proc. IPMI, LNCS – volume: 120 start-page: 120 year: 2005 ident: 10.1016/j.media.2021.102278_bib0021 article-title: Semisupervised alignment of manifolds publication-title: Proc. AISTATS – volume: 35 start-page: 83 year: 2017 ident: 10.1016/j.media.2021.102278_bib0003 article-title: Autoadaptive motion modelling for MR-based respiratory motion estimation publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.005 – volume: 21 start-page: 5 year: 2006 ident: 10.1016/j.media.2021.102278_bib0010 article-title: Diffusion maps publication-title: Applied Comput Harm Anal doi: 10.1016/j.acha.2006.04.006 – volume: Proc. STACOM-MICCAI’19, LNCS start-page: 119 year: 2020 ident: 10.1016/j.media.2021.102278_bib0012 article-title: Learning interactions between cardiac shape and deformation: application to pulmonary hypertension – volume: 35 start-page: 70 year: 2017 ident: 10.1016/j.media.2021.102278_bib0034 article-title: Characterization of myocardial motion patterns by unsupervised multiple kernel learning publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.007 – volume: 8085 start-page: 578 year: 2013 ident: 10.1016/j.media.2021.102278_bib0015 article-title: Adaptation of multiscale function extension to inexact matching: application to the mapping of individuals to a learnt manifold publication-title: Proc. SEE-GSI, LNCS – start-page: 1394 year: 2021 ident: 10.1016/j.media.2021.102278_bib0020 article-title: Cardiac motion modeling with parallel transport and shape splines publication-title: Proc. ISBI – volume: 168 start-page: 803 year: 2013 ident: 10.1016/j.media.2021.102278_bib0013 article-title: Differential effect of right ventricular dilatation on myocardial deformation in patients with atrial septal defects and patients after tetralogy of fallot repair publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2012.10.009 – volume: 32 start-page: 5 year: 2012 ident: 10.1016/j.media.2021.102278_bib0006 article-title: Myocardial motion and deformation: what does it tell us and how does it relate to function? publication-title: Fetal Diagn Ther doi: 10.1159/000335649 – volume: 33 start-page: 1147 year: 2011 ident: 10.1016/j.media.2021.102278_bib0027 article-title: Multiple kernel learning for dimensionality reduction publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.183 – volume: 29 start-page: 40 year: 2007 ident: 10.1016/j.media.2021.102278_bib0039 article-title: Graph embedding and extensions: a general framework for dimensionality reduction publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.250598 – volume: 290 start-page: 2319 year: 2000 ident: 10.1016/j.media.2021.102278_bib0036 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 40 start-page: 33 year: 1975 ident: 10.1016/j.media.2021.102278_bib0018 article-title: Generalized procrustes analysis publication-title: Psychometrika doi: 10.1007/BF02291478 – volume: 17 start-page: 285 year: 2018 ident: 10.1016/j.media.2021.102278_bib0032 article-title: Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-017-0960-0 – volume: 16 start-page: 56 issue: 1 year: 2014 ident: 10.1016/j.media.2021.102278_bib0029 article-title: Left ventricular shape variation in asymptomatic populations: the multi-Ethnic study of atherosclerosis publication-title: Journal of Cardiovascular Magnetic Resonance doi: 10.1186/s12968-014-0056-2 – volume: 102 start-page: 7426 year: 2005 ident: 10.1016/j.media.2021.102278_bib0011 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0500334102 – volume: 11712 start-page: 759 year: 2019 ident: 10.1016/j.media.2021.102278_bib0019 article-title: Symmetric algorithmic components for shape analysis with diffeomorphisms publication-title: Proc. GSI, LNCS – volume: 42 start-page: 988 year: 2019 ident: 10.1016/j.media.2021.102278_bib0008 article-title: Weighted manifold alignment using wave kernel signatures for aligning medical image datasets publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2891600 – volume: 6 start-page: 190 year: 2020 ident: 10.1016/j.media.2021.102278_bib0016 article-title: Machine learning approaches for myocardial motion and deformation analysis publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2019.00190 – reference: 35366508 - Med Image Anal. 2022 Mar 30;78:102425 |
SSID | ssj0007440 |
Score | 2.4212546 |
Snippet | •Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related... In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102278 |
SubjectTerms | Algorithms Alignment Cardiac function Cardiac imaging Computer applications Computer Science Datasets Deformation Dimensionality reduction Disease Echocardiography Embedding Heart Heart - diagnostic imaging Humans Information fusion Machine learning Manifold learning Manifolds (mathematics) Medical Imaging Myocardial strain Scalars Ventricle |
Title | Characterizing interactions between cardiac shape and deformation by non-linear manifold learning |
URI | https://dx.doi.org/10.1016/j.media.2021.102278 https://www.ncbi.nlm.nih.gov/pubmed/34731772 https://www.proquest.com/docview/2630527456 https://www.proquest.com/docview/2593593235 https://hal.science/hal-03407714 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txKCA4LyCpTKII6EjZ9JjsuKskDphYJ6s2zHbouq3dXuFgkO_HbGiROBBD1wiuSHbHnG84hnvgF4QUvq0YxG5hU-5MJJm5uyUejzFAa1LStdh_Z5rOafxftTeboDsz4XJoZVJtnfyfRWWqeWSTrNyeriYvKJ8lisJOof5EzG1Qh2Ga-VHMPu9N2H-fEgkCMGXpd-RfM4oQcfasO82gQN9BMZjSgGLJZb-7uCGp3HSMl_maGtOjq8A7eTHUmm3Vbvwo5f7MGt39AF9-DGx_Rufg_MbMBl_oF9JIJErLuUhg1JoVrEtcziyObcrDwxi4Y0fshtJPY7WSwXebRKzZpE1IywvGxIqjpxdh9ODt-czOZ5Kq6QO6HUNpeeGmoqwRvFVQg0NIKXQbLa8aJpCiustyKwECrpaxSCpo7I-CzWUTdcVvwBjHFV_whIYb20dVXY0gRRCmNDcNQ6a9B4t7WrMmD9gWqXgMdj_YtL3UeYfdUtFXSkgu6okMHLYdKqw924frjqKaX_YB-NmuH6ic-RrsMSEWx7Pj3Ssa3g6OyWVHyjGez3ZNfpim80Uygq0aeXKoNnQzdezvjiYhZ-eYVjZEx8RuaUGTzs2GVYiosSbbeSPf7frT-BmyzmYrT_g_ZhvF1f-adoIW3tAYxe_aQH6R7g9-3roy_TX0UID4A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61ReJxQFBegQIGcSRs_E6O1YpqgW0vLFJvlp3YtKjKrna3SHDgt-NJnAAS9MDVD9nyjOdhz3wD8Ipq6qMZHZlX-JCLWrrc6kZFn6ewUdsyXfdonydq9km8P5WnOzAdcmEwrDLJ_l6md9I6tUzSaU5W5-eTj5RjsRLUP5EzGVe7cE1IrjGu782PX3EeiIDXJ1_RHIcP0ENdkFeXnhG9REYRw4BhsbW_q6fdM4yT_JcR2imjoztwO1mR5LDf6F3Y8e0-3PoNW3Afrh-nX_N7YKcjKvP32EcQImLdJzRsSArUInXHKjXZnNmVJ7ZtSOPHzEbivpF22eZok9o1QcyMsLxoSKo58fk-LI7eLqazPJVWyGuh1DaXnlpqS8EbxVUINDSC6yBZVfOiaQonnHcisBBK6asoAm2FuPgMq6hbLkv-APbiqv4RkMJ56aqycNoGoYV1IdTU1c5G091VdZkBGw7U1Al2HKtfXJghvuyL6ahgkAqmp0IGr8dJqx514-rhaqCU-YN5TNQLV098Gek6LoFQ27PDucG2gkdXV1PxlWZwMJDdpAu-MUxFQRk9eqkyeDF2x6uJ_y229cvLOEZi2nNkTZnBw55dxqW40NFy0-zx_279OdyYLY7nZv7u5MMTuMkwK6N7GTqAve360j-NttLWPevuwk8Z_Q68 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+interactions+between+cardiac+shape+and+deformation+by+non-linear+manifold+learning&rft.jtitle=Medical+image+analysis&rft.au=Di+Folco%2C+Maxime&rft.au=Pamela%2C+Moceri&rft.au=Clarysse%2C+Patrick&rft.au=Duchateau%2C+Nicolas&rft.date=2022-01-01&rft.pub=Elsevier&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016%2Fj.media.2021.102278&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03407714v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |