Characterizing interactions between cardiac shape and deformation by non-linear manifold learning

•Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related descriptors.•We demonstrate the benets of the joint analysis against the individual analysis of each descriptor.•Comparison of fusion and alignment str...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 75; p. 102278
Main Authors Di Folco, Maxime, Moceri, Pamela, Clarysse, Patrick, Duchateau, Nicolas
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2021.102278

Cover

Abstract •Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related descriptors.•We demonstrate the benets of the joint analysis against the individual analysis of each descriptor.•Comparison of fusion and alignment strategies (1 latent space vs. 2 latent spaces). [Display omitted] In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population.
AbstractList In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population.
In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population.In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population.
•Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related descriptors.•We demonstrate the benets of the joint analysis against the individual analysis of each descriptor.•Comparison of fusion and alignment strategies (1 latent space vs. 2 latent spaces). [Display omitted] In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population.
ArticleNumber 102278
Author Clarysse, Patrick
Di Folco, Maxime
Duchateau, Nicolas
Moceri, Pamela
Author_xml – sequence: 1
  givenname: Maxime
  surname: Di Folco
  fullname: Di Folco, Maxime
  email: difolco@creatis.insa-lyon.fr
  organization: Univ Lyon, UCBL, Inserm, INSA Lyon, CNRS, CREATIS, UMR5220, U1294,Villeurbanne 69621, France
– sequence: 2
  givenname: Pamela
  surname: Moceri
  fullname: Moceri, Pamela
  organization: Centre Hospitalier Universitaire de Nice, Service de Cardiologie, Nice, France
– sequence: 3
  givenname: Patrick
  surname: Clarysse
  fullname: Clarysse, Patrick
  organization: Univ Lyon, UCBL, Inserm, INSA Lyon, CNRS, CREATIS, UMR5220, U1294,Villeurbanne 69621, France
– sequence: 4
  givenname: Nicolas
  surname: Duchateau
  fullname: Duchateau, Nicolas
  organization: Univ Lyon, UCBL, Inserm, INSA Lyon, CNRS, CREATIS, UMR5220, U1294,Villeurbanne 69621, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34731772$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03407714$$DView record in HAL
BookMark eNp9kU1r3DAQhkVJaT7aX1Aogl6ag7f6smUfeghLmxQWesldjKVRV4stbyVvSvrrq42THHIICDQzPO-MNO85OYlTREI-crbijDdfd6sRXYCVYIKXihC6fUPOuGx41SohT55jXp-S85x3jDGtFHtHTqXSkmstzgist5DAzpjCvxB_0xBLWPIwxUx7nP8iRmohlUGW5i3skUJ01KGf0ghHjPb3tLysGkJESHSEGPw0ODqULJaW78lbD0PGD4_3Bbn98f12fVNtfl3_XF9tKquaZq5q5MChVdI1svGee6ek9rXorGTOsV712CsvvG9r7MA56ESrlegUYyDrVl6Qy6XtFgazT2GEdG8mCObmamOONSYV05qrO17YLwu7T9OfA-bZjCFbHAaIOB2yEXUnyxGyLujnF-huOqRYPmJEI1kttKqbQn16pA59MeV5_tOeC9AtgE1Tzgm9sWF-WN-cIAyGM3P01OzMg6fm6KlZPC1a-UL71P511bdFhWXndwGTyTZgtAVMaGfjpvCq_j_WN7qD
CitedBy_id crossref_primary_10_4103_digm_digm_1_22
crossref_primary_10_1109_JBHI_2024_3389871
crossref_primary_10_1016_j_media_2023_102975
crossref_primary_10_1186_s13018_023_04410_3
crossref_primary_10_1109_TMI_2024_3512175
crossref_primary_10_3389_fcvm_2022_983868
Cites_doi 10.1093/eurheartj/ehv510
10.1016/j.inffus.2019.08.005
10.1016/j.media.2020.101750
10.1016/j.media.2012.07.003
10.1109/TKDE.2018.2872063
10.1145/1273496.1273557
10.1016/j.media.2017.06.002
10.1038/nmeth.2810
10.3389/fcvm.2020.00102
10.1016/j.acha.2013.03.001
10.1093/ehjci/jex163
10.1016/j.jacc.2018.12.076
10.1016/j.patcog.2015.08.024
10.1016/j.media.2016.06.005
10.1016/j.acha.2006.04.006
10.1016/j.media.2016.06.007
10.1016/j.ijcard.2012.10.009
10.1159/000335649
10.1109/TPAMI.2010.183
10.1109/TPAMI.2007.250598
10.1126/science.290.5500.2319
10.1007/BF02291478
10.1007/s10237-017-0960-0
10.1186/s12968-014-0056-2
10.1073/pnas.0500334102
10.1109/TPAMI.2019.2891600
10.3389/fcvm.2019.00190
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright Elsevier BV Jan 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1016/j.media.2021.102278
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
ExternalDocumentID oai_HAL_hal_03407714v1
34731772
10_1016_j_media_2021_102278
S1361841521003236
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c466t-5e1a1a843d636ff1fd437f529c30dd0b4beb4f2ff85e9adda9287429400a3583
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Tue Aug 05 06:54:32 EDT 2025
Fri Sep 05 13:37:46 EDT 2025
Sat Jul 26 03:24:25 EDT 2025
Wed Feb 19 02:26:21 EST 2025
Tue Jul 01 02:49:31 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Fri Feb 23 02:39:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Manifold learning
Cardiac imaging
Myocardial strain
Information fusion
myocardial strain
dimensionality reduction
information fusion
manifold learning
Language English
License Copyright © 2021. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-5e1a1a843d636ff1fd437f529c30dd0b4beb4f2ff85e9adda9287429400a3583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5495-7655
0000-0001-6160-8050
0000-0001-8803-2004
OpenAccessLink https://hal.science/hal-03407714
PMID 34731772
PQID 2630527456
PQPubID 2045428
ParticipantIDs hal_primary_oai_HAL_hal_03407714v1
proquest_miscellaneous_2593593235
proquest_journals_2630527456
pubmed_primary_34731772
crossref_citationtrail_10_1016_j_media_2021_102278
crossref_primary_10_1016_j_media_2021_102278
elsevier_sciencedirect_doi_10_1016_j_media_2021_102278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Bengio, Paiement, Vincent, Delalleau, Le Roux, Ouimet (bib0004) 2004
Li, Yang, Zhang (bib0026) 2018; 31
Lawrence, Moore (bib0024) 2007
Lindenbaum, Yeredor, Salhov, Averbuch (bib0028) 2020; 55
Moceri, Duchateau, Gillon, Jaunay, Baudouy, Squara (bib0031) 2020
Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0022) 2016
Puyol-Antón, Sinclair, Gerber, Amzulescu, Langet, De Craene (bib0033) 2017; 40
Coifman, Lafon (bib0010) 2006; 21
Duchateau, King, De Craene (bib0016) 2020; 6
Guigui, Jia, Sermesant, Pennec (bib0019) 2019; 11712
Baumgartner, Gomez, Koch, Housden, Kolbitsch, McClelland (bib0002) 2015; 24
Yan, Xu, Zhang, Zhang, Yang, Lin (bib0039) 2007; 29
Sanz, Sánchez-Quintana, Bossone, Bogaard, Naeije (bib0035) 2019; 73
Wang, Mezlini, Demir, Fiume, Tu (bib0038) 2014; 11
Duchateau, De Craene, Sitges, Caselles (bib0015) 2013; 8085
Gilbert, Mauger, Young, Suinesiaputra (bib0017) 2020; 7
Guigui, Moceri, Sermesant (bib0020) 2021
Ham, Lee, Saul (bib0021) 2005; 120
Medrano-Gracia, Cowan, Ambale-Venkatesh, Bluemke, Eng (bib0029) 2014; 16
Cikes, Solomon (bib0007) 2016
Coifman, Hirn (bib0009) 2014; 36
Baumgartner, Kolbitsch, McClelland, Rueckert, King (bib0003) 2017; 35
Dragulescu, Grosse-Wortmann, Redington, Friedberg, Mertens (bib0013) 2013; 168
Coifman, Lafon, Lee, Maggioni, Nadler, Warner (bib0011) 2005; 102
Lin, Liu, Fuh (bib0027) 2011; 33
Sanchez-Martinez, Duchateau, Erdei, Fraser, Bijnens, Piella (bib0034) 2017; 35
Lee, Elgammal, Torki (bib0025) 2016; 50
Moceri, Duchateau, Baudouy, Schouver, Leroy, Squara (bib0030) 2018; 19
Gower (bib0018) 1975; 40
.
Molléro, Pennec, Delingette, Garny, Ayache, Sermesant (bib0032) 2018; 17
Tenenbaum, Silva, Langford (bib0036) 2000; 290
Valencia-Aguirre, Álvarez Meza, Daza-Santacoloma, Acosta-Medina, Castellanos-Domínguez (bib0037) 2011; 7042
Di Folco, Clarysse, Moceri, Duchateau (bib0012) 2020; Proc. STACOM-MICCAI’19, LNCS
Duchateau, De Craene, Piella (bib0014) 2012; 16
Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint
Aubry, Schlickewei, Cremers (bib0001) 2013
Bijnens, Cikes, Butakoff, Sitges, Crispi (bib0006) 2012; 32
Clough, Balfour, Cruz, Marsden, Prieto, Reader (bib0008) 2019; 42
Benkarim, Piella, Rekik, Hahner, Eixarch, Shen (bib0005) 2020; 64
Bengio (10.1016/j.media.2021.102278_bib0004) 2004
Guigui (10.1016/j.media.2021.102278_bib0019) 2019; 11712
Ham (10.1016/j.media.2021.102278_bib0021) 2005; 120
Baumgartner (10.1016/j.media.2021.102278_bib0002) 2015; 24
Coifman (10.1016/j.media.2021.102278_bib0009) 2014; 36
Puyol-Antón (10.1016/j.media.2021.102278_bib0033) 2017; 40
Sanchez-Martinez (10.1016/j.media.2021.102278_bib0034) 2017; 35
Coifman (10.1016/j.media.2021.102278_bib0010) 2006; 21
Duchateau (10.1016/j.media.2021.102278_bib0016) 2020; 6
Gower (10.1016/j.media.2021.102278_bib0018) 1975; 40
Moceri (10.1016/j.media.2021.102278_bib0030) 2018; 19
Di Folco (10.1016/j.media.2021.102278_bib0012) 2020; Proc. STACOM-MICCAI’19, LNCS
Lawrence (10.1016/j.media.2021.102278_bib0024) 2007
Yan (10.1016/j.media.2021.102278_bib0039) 2007; 29
Benkarim (10.1016/j.media.2021.102278_bib0005) 2020; 64
Cikes (10.1016/j.media.2021.102278_bib0007) 2016
Bijnens (10.1016/j.media.2021.102278_bib0006) 2012; 32
Li (10.1016/j.media.2021.102278_bib0026) 2018; 31
Medrano-Gracia (10.1016/j.media.2021.102278_bib0029) 2014; 16
Duchateau (10.1016/j.media.2021.102278_bib0015) 2013; 8085
Gilbert (10.1016/j.media.2021.102278_bib0017) 2020; 7
Lin (10.1016/j.media.2021.102278_bib0027) 2011; 33
Moceri (10.1016/j.media.2021.102278_sbref0031) 2020
Coifman (10.1016/j.media.2021.102278_bib0011) 2005; 102
Tenenbaum (10.1016/j.media.2021.102278_bib0036) 2000; 290
Molléro (10.1016/j.media.2021.102278_bib0032) 2018; 17
Baumgartner (10.1016/j.media.2021.102278_bib0003) 2017; 35
Aubry (10.1016/j.media.2021.102278_bib0001) 2013
Clough (10.1016/j.media.2021.102278_bib0008) 2019; 42
Lindenbaum (10.1016/j.media.2021.102278_bib0028) 2020; 55
Dragulescu (10.1016/j.media.2021.102278_bib0013) 2013; 168
Lee (10.1016/j.media.2021.102278_bib0025) 2016; 50
Higgins (10.1016/j.media.2021.102278_bib0022) 2016
10.1016/j.media.2021.102278_bib0023
Sanz (10.1016/j.media.2021.102278_bib0035) 2019; 73
Duchateau (10.1016/j.media.2021.102278_bib0014) 2012; 16
Guigui (10.1016/j.media.2021.102278_bib0020) 2021
Wang (10.1016/j.media.2021.102278_bib0038) 2014; 11
Valencia-Aguirre (10.1016/j.media.2021.102278_bib0037) 2011; 7042
35366508 - Med Image Anal. 2022 Mar 30;78:102425
References_xml – volume: 35
  start-page: 83
  year: 2017
  end-page: 100
  ident: bib0003
  article-title: Autoadaptive motion modelling for MR-based respiratory motion estimation
  publication-title: Med Image Anal
– volume: 36
  start-page: 79
  year: 2014
  end-page: 107
  ident: bib0009
  article-title: Diffusion maps for changing data
  publication-title: Applied Comput Harm Anal
– volume: 7042
  start-page: 206
  year: 2011
  end-page: 213
  ident: bib0037
  article-title: Multiple manifold learning by nonlinear dimensionality reduction
  publication-title: Proc. CIARP, LNCS
– volume: 11
  start-page: 333
  year: 2014
  end-page: 337
  ident: bib0038
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
– volume: 102
  start-page: 7426
  year: 2005
  end-page: 7431
  ident: bib0011
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc Natl Acad Sci
– start-page: 177
  year: 2004
  end-page: 184
  ident: bib0004
  article-title: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering
  publication-title: Proc. NIPS
– volume: 8085
  start-page: 578
  year: 2013
  end-page: 586
  ident: bib0015
  article-title: Adaptation of multiscale function extension to inexact matching: application to the mapping of individuals to a learnt manifold
  publication-title: Proc. SEE-GSI, LNCS
– volume: 19
  start-page: 450
  year: 2018
  end-page: 458
  ident: bib0030
  article-title: Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 73
  start-page: 1463
  year: 2019
  end-page: 1482
  ident: bib0035
  article-title: Anatomy, function, and dysfunction of the right ventricle
  publication-title: J Am Coll Cardiol
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bib0036
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– reference: Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint
– volume: 11712
  start-page: 759
  year: 2019
  end-page: 768
  ident: bib0019
  article-title: Symmetric algorithmic components for shape analysis with diffeomorphisms
  publication-title: Proc. GSI, LNCS
– volume: 6
  start-page: 190
  year: 2020
  ident: bib0016
  article-title: Machine learning approaches for myocardial motion and deformation analysis
  publication-title: Front Cardiovasc Med
– volume: 33
  start-page: 1147
  year: 2011
  end-page: 11460
  ident: bib0027
  article-title: Multiple kernel learning for dimensionality reduction
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2020
  ident: bib0031
  article-title: Three-dimensional right ventricular shape and strain in congenital heart disease patients with right ventricular chronic volume loading
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 24
  start-page: 363
  year: 2015
  end-page: 374
  ident: bib0002
  article-title: Self-Aligning manifolds for matching disparate medical image datasets
  publication-title: Proc. IPMI, LNCS
– volume: Proc. STACOM-MICCAI’19, LNCS
  start-page: 119
  year: 2020
  end-page: 127
  ident: bib0012
  article-title: Learning interactions between cardiac shape and deformation: application to pulmonary hypertension
– volume: 168
  start-page: 803
  year: 2013
  end-page: 810
  ident: bib0013
  article-title: Differential effect of right ventricular dilatation on myocardial deformation in patients with atrial septal defects and patients after tetralogy of fallot repair
  publication-title: Int J Cardiol
– volume: 50
  start-page: 74
  year: 2016
  end-page: 87
  ident: bib0025
  article-title: Learning representations from multiple manifolds
  publication-title: Pattern Recognit
– volume: 40
  start-page: 33
  year: 1975
  end-page: 51
  ident: bib0018
  article-title: Generalized procrustes analysis
  publication-title: Psychometrika
– volume: 29
  start-page: 40
  year: 2007
  end-page: 51
  ident: bib0039
  article-title: Graph embedding and extensions: a general framework for dimensionality reduction
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2016
  ident: bib0022
  article-title: Beta-vae: learning basic visual concepts with a constrained variational framework
  publication-title: OpenReview
– start-page: 1626
  year: 2013
  end-page: 1633
  ident: bib0001
  article-title: The wave kernel signature: a quantum mechanical approach to shape analysis
  publication-title: 2011 IEEE ICCV Workshops
– volume: 21
  start-page: 5
  year: 2006
  end-page: 30
  ident: bib0010
  article-title: Diffusion maps
  publication-title: Applied Comput Harm Anal
– volume: 16
  start-page: 56
  year: 2014
  ident: bib0029
  article-title: Left ventricular shape variation in asymptomatic populations: the multi-Ethnic study of atherosclerosis
  publication-title: Journal of Cardiovascular Magnetic Resonance
– volume: 31
  start-page: 1863
  year: 2018
  end-page: 1883
  ident: bib0026
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans Knowl Data Eng
– volume: 55
  start-page: 127
  year: 2020
  end-page: 149
  ident: bib0028
  article-title: Multi-view diffusion maps
  publication-title: Inform Fusion
– reference: .
– volume: 7
  start-page: 102
  year: 2020
  ident: bib0017
  article-title: Artificial intelligence in cardiac imaging with statistical atlases of cardiac anatomy
  publication-title: Front Cardiovasc Med
– start-page: 1642
  year: 2016
  end-page: 1650
  ident: bib0007
  article-title: Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure
  publication-title: Eur Heart J
– start-page: 481
  year: 2007
  end-page: 488
  ident: bib0024
  article-title: Hierarchical gaussian process latent variable models
  publication-title: Proc. ICML
– volume: 35
  start-page: 70
  year: 2017
  end-page: 82
  ident: bib0034
  article-title: Characterization of myocardial motion patterns by unsupervised multiple kernel learning
  publication-title: Med Image Anal
– volume: 120
  start-page: 120
  year: 2005
  end-page: 127
  ident: bib0021
  article-title: Semisupervised alignment of manifolds
  publication-title: Proc. AISTATS
– start-page: 1394
  year: 2021
  end-page: 1397
  ident: bib0020
  article-title: Cardiac motion modeling with parallel transport and shape splines
  publication-title: Proc. ISBI
– volume: 64
  start-page: 101750
  year: 2020
  ident: bib0005
  article-title: A novel approach to multiple anatomical shape analysis: application to fetal ventriculomegaly
  publication-title: Med Image Anal
– volume: 17
  start-page: 285
  year: 2018
  end-page: 300
  ident: bib0032
  article-title: Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models
  publication-title: Biomech Model Mechanobiol
– volume: 32
  start-page: 5
  year: 2012
  end-page: 16
  ident: bib0006
  article-title: Myocardial motion and deformation: what does it tell us and how does it relate to function?
  publication-title: Fetal Diagn Ther
– volume: 40
  start-page: 96
  year: 2017
  end-page: 110
  ident: bib0033
  article-title: A multimodal spatiotemporal cardiac motion atlas from MR and ultrasound data
  publication-title: Med Image Anal
– volume: 42
  start-page: 988
  year: 2019
  end-page: 997
  ident: bib0008
  article-title: Weighted manifold alignment using wave kernel signatures for aligning medical image datasets
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 16
  start-page: 1532
  year: 2012
  end-page: 1549
  ident: bib0014
  article-title: Constrained manifold learning for the characterization of pathological deviations from normality
  publication-title: Med Image Anal
– start-page: 1642
  year: 2016
  ident: 10.1016/j.media.2021.102278_bib0007
  article-title: Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehv510
– start-page: 1626
  year: 2013
  ident: 10.1016/j.media.2021.102278_bib0001
  article-title: The wave kernel signature: a quantum mechanical approach to shape analysis
  publication-title: 2011 IEEE ICCV Workshops
– volume: 7042
  start-page: 206
  year: 2011
  ident: 10.1016/j.media.2021.102278_bib0037
  article-title: Multiple manifold learning by nonlinear dimensionality reduction
  publication-title: Proc. CIARP, LNCS
– year: 2016
  ident: 10.1016/j.media.2021.102278_bib0022
  article-title: Beta-vae: learning basic visual concepts with a constrained variational framework
  publication-title: OpenReview
– volume: 55
  start-page: 127
  year: 2020
  ident: 10.1016/j.media.2021.102278_bib0028
  article-title: Multi-view diffusion maps
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2019.08.005
– volume: 64
  start-page: 101750
  year: 2020
  ident: 10.1016/j.media.2021.102278_bib0005
  article-title: A novel approach to multiple anatomical shape analysis: application to fetal ventriculomegaly
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101750
– volume: 16
  start-page: 1532
  year: 2012
  ident: 10.1016/j.media.2021.102278_bib0014
  article-title: Constrained manifold learning for the characterization of pathological deviations from normality
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2012.07.003
– volume: 31
  start-page: 1863
  year: 2018
  ident: 10.1016/j.media.2021.102278_bib0026
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2872063
– start-page: 481
  year: 2007
  ident: 10.1016/j.media.2021.102278_bib0024
  article-title: Hierarchical gaussian process latent variable models
  publication-title: Proc. ICML
  doi: 10.1145/1273496.1273557
– volume: 40
  start-page: 96
  year: 2017
  ident: 10.1016/j.media.2021.102278_bib0033
  article-title: A multimodal spatiotemporal cardiac motion atlas from MR and ultrasound data
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.06.002
– volume: 11
  start-page: 333
  year: 2014
  ident: 10.1016/j.media.2021.102278_bib0038
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 7
  start-page: 102
  year: 2020
  ident: 10.1016/j.media.2021.102278_bib0017
  article-title: Artificial intelligence in cardiac imaging with statistical atlases of cardiac anatomy
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2020.00102
– start-page: 177
  year: 2004
  ident: 10.1016/j.media.2021.102278_bib0004
  article-title: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering
  publication-title: Proc. NIPS
– volume: 36
  start-page: 79
  year: 2014
  ident: 10.1016/j.media.2021.102278_bib0009
  article-title: Diffusion maps for changing data
  publication-title: Applied Comput Harm Anal
  doi: 10.1016/j.acha.2013.03.001
– volume: 19
  start-page: 450
  year: 2018
  ident: 10.1016/j.media.2021.102278_bib0030
  article-title: Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jex163
– ident: 10.1016/j.media.2021.102278_bib0023
– volume: 73
  start-page: 1463
  year: 2019
  ident: 10.1016/j.media.2021.102278_bib0035
  article-title: Anatomy, function, and dysfunction of the right ventricle
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.12.076
– volume: 50
  start-page: 74
  year: 2016
  ident: 10.1016/j.media.2021.102278_bib0025
  article-title: Learning representations from multiple manifolds
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.08.024
– year: 2020
  ident: 10.1016/j.media.2021.102278_sbref0031
  article-title: Three-dimensional right ventricular shape and strain in congenital heart disease patients with right ventricular chronic volume loading
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 24
  start-page: 363
  year: 2015
  ident: 10.1016/j.media.2021.102278_bib0002
  article-title: Self-Aligning manifolds for matching disparate medical image datasets
  publication-title: Proc. IPMI, LNCS
– volume: 120
  start-page: 120
  year: 2005
  ident: 10.1016/j.media.2021.102278_bib0021
  article-title: Semisupervised alignment of manifolds
  publication-title: Proc. AISTATS
– volume: 35
  start-page: 83
  year: 2017
  ident: 10.1016/j.media.2021.102278_bib0003
  article-title: Autoadaptive motion modelling for MR-based respiratory motion estimation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.005
– volume: 21
  start-page: 5
  year: 2006
  ident: 10.1016/j.media.2021.102278_bib0010
  article-title: Diffusion maps
  publication-title: Applied Comput Harm Anal
  doi: 10.1016/j.acha.2006.04.006
– volume: Proc. STACOM-MICCAI’19, LNCS
  start-page: 119
  year: 2020
  ident: 10.1016/j.media.2021.102278_bib0012
  article-title: Learning interactions between cardiac shape and deformation: application to pulmonary hypertension
– volume: 35
  start-page: 70
  year: 2017
  ident: 10.1016/j.media.2021.102278_bib0034
  article-title: Characterization of myocardial motion patterns by unsupervised multiple kernel learning
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.007
– volume: 8085
  start-page: 578
  year: 2013
  ident: 10.1016/j.media.2021.102278_bib0015
  article-title: Adaptation of multiscale function extension to inexact matching: application to the mapping of individuals to a learnt manifold
  publication-title: Proc. SEE-GSI, LNCS
– start-page: 1394
  year: 2021
  ident: 10.1016/j.media.2021.102278_bib0020
  article-title: Cardiac motion modeling with parallel transport and shape splines
  publication-title: Proc. ISBI
– volume: 168
  start-page: 803
  year: 2013
  ident: 10.1016/j.media.2021.102278_bib0013
  article-title: Differential effect of right ventricular dilatation on myocardial deformation in patients with atrial septal defects and patients after tetralogy of fallot repair
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2012.10.009
– volume: 32
  start-page: 5
  year: 2012
  ident: 10.1016/j.media.2021.102278_bib0006
  article-title: Myocardial motion and deformation: what does it tell us and how does it relate to function?
  publication-title: Fetal Diagn Ther
  doi: 10.1159/000335649
– volume: 33
  start-page: 1147
  year: 2011
  ident: 10.1016/j.media.2021.102278_bib0027
  article-title: Multiple kernel learning for dimensionality reduction
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.183
– volume: 29
  start-page: 40
  year: 2007
  ident: 10.1016/j.media.2021.102278_bib0039
  article-title: Graph embedding and extensions: a general framework for dimensionality reduction
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.250598
– volume: 290
  start-page: 2319
  year: 2000
  ident: 10.1016/j.media.2021.102278_bib0036
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 40
  start-page: 33
  year: 1975
  ident: 10.1016/j.media.2021.102278_bib0018
  article-title: Generalized procrustes analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02291478
– volume: 17
  start-page: 285
  year: 2018
  ident: 10.1016/j.media.2021.102278_bib0032
  article-title: Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-017-0960-0
– volume: 16
  start-page: 56
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2021.102278_bib0029
  article-title: Left ventricular shape variation in asymptomatic populations: the multi-Ethnic study of atherosclerosis
  publication-title: Journal of Cardiovascular Magnetic Resonance
  doi: 10.1186/s12968-014-0056-2
– volume: 102
  start-page: 7426
  year: 2005
  ident: 10.1016/j.media.2021.102278_bib0011
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0500334102
– volume: 11712
  start-page: 759
  year: 2019
  ident: 10.1016/j.media.2021.102278_bib0019
  article-title: Symmetric algorithmic components for shape analysis with diffeomorphisms
  publication-title: Proc. GSI, LNCS
– volume: 42
  start-page: 988
  year: 2019
  ident: 10.1016/j.media.2021.102278_bib0008
  article-title: Weighted manifold alignment using wave kernel signatures for aligning medical image datasets
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2891600
– volume: 6
  start-page: 190
  year: 2020
  ident: 10.1016/j.media.2021.102278_bib0016
  article-title: Machine learning approaches for myocardial motion and deformation analysis
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2019.00190
– reference: 35366508 - Med Image Anal. 2022 Mar 30;78:102425
SSID ssj0007440
Score 2.4212546
Snippet •Characterization of the interactions between myocardial shape and deformation.•We propose a manifold alignment strategy to handle partially related...
In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102278
SubjectTerms Algorithms
Alignment
Cardiac function
Cardiac imaging
Computer applications
Computer Science
Datasets
Deformation
Dimensionality reduction
Disease
Echocardiography
Embedding
Heart
Heart - diagnostic imaging
Humans
Information fusion
Machine learning
Manifold learning
Manifolds (mathematics)
Medical Imaging
Myocardial strain
Scalars
Ventricle
Title Characterizing interactions between cardiac shape and deformation by non-linear manifold learning
URI https://dx.doi.org/10.1016/j.media.2021.102278
https://www.ncbi.nlm.nih.gov/pubmed/34731772
https://www.proquest.com/docview/2630527456
https://www.proquest.com/docview/2593593235
https://hal.science/hal-03407714
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txKCA4LyCpTKII6EjZ9JjsuKskDphYJ6s2zHbouq3dXuFgkO_HbGiROBBD1wiuSHbHnG84hnvgF4QUvq0YxG5hU-5MJJm5uyUejzFAa1LStdh_Z5rOafxftTeboDsz4XJoZVJtnfyfRWWqeWSTrNyeriYvKJ8lisJOof5EzG1Qh2Ga-VHMPu9N2H-fEgkCMGXpd-RfM4oQcfasO82gQN9BMZjSgGLJZb-7uCGp3HSMl_maGtOjq8A7eTHUmm3Vbvwo5f7MGt39AF9-DGx_Rufg_MbMBl_oF9JIJErLuUhg1JoVrEtcziyObcrDwxi4Y0fshtJPY7WSwXebRKzZpE1IywvGxIqjpxdh9ODt-czOZ5Kq6QO6HUNpeeGmoqwRvFVQg0NIKXQbLa8aJpCiustyKwECrpaxSCpo7I-CzWUTdcVvwBjHFV_whIYb20dVXY0gRRCmNDcNQ6a9B4t7WrMmD9gWqXgMdj_YtL3UeYfdUtFXSkgu6okMHLYdKqw924frjqKaX_YB-NmuH6ic-RrsMSEWx7Pj3Ssa3g6OyWVHyjGez3ZNfpim80Uygq0aeXKoNnQzdezvjiYhZ-eYVjZEx8RuaUGTzs2GVYiosSbbeSPf7frT-BmyzmYrT_g_ZhvF1f-adoIW3tAYxe_aQH6R7g9-3roy_TX0UID4A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61ReJxQFBegQIGcSRs_E6O1YpqgW0vLFJvlp3YtKjKrna3SHDgt-NJnAAS9MDVD9nyjOdhz3wD8Ipq6qMZHZlX-JCLWrrc6kZFn6ewUdsyXfdonydq9km8P5WnOzAdcmEwrDLJ_l6md9I6tUzSaU5W5-eTj5RjsRLUP5EzGVe7cE1IrjGu782PX3EeiIDXJ1_RHIcP0ENdkFeXnhG9REYRw4BhsbW_q6fdM4yT_JcR2imjoztwO1mR5LDf6F3Y8e0-3PoNW3Afrh-nX_N7YKcjKvP32EcQImLdJzRsSArUInXHKjXZnNmVJ7ZtSOPHzEbivpF22eZok9o1QcyMsLxoSKo58fk-LI7eLqazPJVWyGuh1DaXnlpqS8EbxVUINDSC6yBZVfOiaQonnHcisBBK6asoAm2FuPgMq6hbLkv-APbiqv4RkMJ56aqycNoGoYV1IdTU1c5G091VdZkBGw7U1Al2HKtfXJghvuyL6ahgkAqmp0IGr8dJqx514-rhaqCU-YN5TNQLV098Gek6LoFQ27PDucG2gkdXV1PxlWZwMJDdpAu-MUxFQRk9eqkyeDF2x6uJ_y229cvLOEZi2nNkTZnBw55dxqW40NFy0-zx_279OdyYLY7nZv7u5MMTuMkwK6N7GTqAve360j-NttLWPevuwk8Z_Q68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+interactions+between+cardiac+shape+and+deformation+by+non-linear+manifold+learning&rft.jtitle=Medical+image+analysis&rft.au=Di+Folco%2C+Maxime&rft.au=Pamela%2C+Moceri&rft.au=Clarysse%2C+Patrick&rft.au=Duchateau%2C+Nicolas&rft.date=2022-01-01&rft.pub=Elsevier&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016%2Fj.media.2021.102278&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03407714v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon