Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold
Abstract There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC functi...
Saved in:
Published in | Biomaterials Vol. 32; no. 21; pp. 4816 - 4829 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyurethane constructs. The expression of smooth muscle α-actin, calponin and smooth muscle myosin heavy chain and the absence of Ki-67+ cells in both static and CMS cultures, throughout the 4 weeks, suggest that hCASMCs retained their contractile character on these biomaterials. The study highlights the importance of implementing physiologically-relevant biomechanical stimuli in the development of synthetic elastomeric tissue engineering scaffolds. |
---|---|
AbstractList | Abstract There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyurethane constructs. The expression of smooth muscle α-actin, calponin and smooth muscle myosin heavy chain and the absence of Ki-67+ cells in both static and CMS cultures, throughout the 4 weeks, suggest that hCASMCs retained their contractile character on these biomaterials. The study highlights the importance of implementing physiologically-relevant biomechanical stimuli in the development of synthetic elastomeric tissue engineering scaffolds. There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyurethane constructs. The expression of smooth muscle alpha -actin, calponin and smooth muscle myosin heavy chain and the absence of Ki-67+aacells in both static and CMS cultures, throughout the 4 weeks, suggest that hCASMCs retained their contractile character on these biomaterials. The study highlights the importance of implementing physiologically-relevant biomechanical stimuli in the development of synthetic elastomeric tissue engineering scaffolds. There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyurethane constructs. The expression of smooth muscle α-actin, calponin and smooth muscle myosin heavy chain and the absence of Ki-67+ cells in both static and CMS cultures, throughout the 4 weeks, suggest that hCASMCs retained their contractile character on these biomaterials. The study highlights the importance of implementing physiologically-relevant biomechanical stimuli in the development of synthetic elastomeric tissue engineering scaffolds. There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyurethane constructs. The expression of smooth muscle α-actin, calponin and smooth muscle myosin heavy chain and the absence of Ki-67+ cells in both static and CMS cultures, throughout the 4 weeks, suggest that hCASMCs retained their contractile character on these biomaterials. The study highlights the importance of implementing physiologically-relevant biomechanical stimuli in the development of synthetic elastomeric tissue engineering scaffolds. |
Author | Simmons, Craig A Sharifpoor, Soroor Labow, Rosalind S Paul Santerre, J |
Author_xml | – sequence: 1 fullname: Sharifpoor, Soroor – sequence: 2 fullname: Simmons, Craig A – sequence: 3 fullname: Labow, Rosalind S – sequence: 4 fullname: Paul Santerre, J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21463894$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2LFDEQhoOsuLOrf0GCF089Vj76Ix4EWV0VFjyo55BOqp2M3cmYdC-M_8H_bNpZRbwoFIQkT72VqjcX5CzEgIQ8YbBlwJpn-23v42RmTN6MecuBsS2IEvIe2bCu7apaQX1GNsAkr1TD-Dm5yHkPZQ-SPyDnnMlGdEpuyPfrJdjZx2BGancmGbvKfjPrEY0D3S2TCdTGVIh0pCaV6yPNU4zzjk5LtiNSi-OY6RIcJmqPdvSWTljEgrdFNc_J-EBLGOrwczLO9CXpEMfjknAuGNJszTDE0T0k94fSEj66Wy_Jp-vXH6_eVjfv37y7enlTWdk0c1VLhVK11goz1BbBKdm4jjmrOOsRmla5mkkjnGAGegeu78C1ruaNFHyolbgkT0-6hxS_LphnPfm8tlEeE5esu04Aa0XB_0k2reAMoC7k8xNpU8w54aAPyU9laJqBXn3Te_2nb3r1TYMosZZ5fFdm6Sd0v1N_GVWAVycAy1huPSadrcdg0fmEdtYu-v-r8-IvmWLXT5--4BHzPi4prDlMZ65Bf1h_0PqBWGmRKwDxA3qHymA |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2020_07_009 crossref_primary_10_1016_j_biomaterials_2014_09_001 crossref_primary_10_1007_s13239_014_0204_8 crossref_primary_10_1002_term_2270 crossref_primary_10_3390_polym14224825 crossref_primary_10_1039_C7TB02162C crossref_primary_10_1021_acsbiomaterials_9b00295 crossref_primary_10_1038_s41598_022_08425_4 crossref_primary_10_1080_17434440_2017_1324293 crossref_primary_10_3390_ijms21103444 crossref_primary_10_1021_acsami_7b07444 crossref_primary_10_1089_ten_teb_2012_0295 crossref_primary_10_3390_molecules27010040 crossref_primary_10_1016_j_ijengsci_2019_103201 crossref_primary_10_1016_j_medengphy_2021_06_005 crossref_primary_10_1016_j_devcel_2020_12_017 crossref_primary_10_1021_acsami_1c17868 crossref_primary_10_1007_s10237_019_01226_1 crossref_primary_10_1186_s13036_022_00286_9 crossref_primary_10_1016_j_actbio_2019_12_006 crossref_primary_10_1089_ten_tea_2014_0548 crossref_primary_10_1002_jbm_a_34881 crossref_primary_10_1007_s10439_014_1206_2 crossref_primary_10_1111_aor_12108 crossref_primary_10_1089_ten_teb_2015_0100 crossref_primary_10_1002_app_39758 crossref_primary_10_1515_ntrev_2019_0005 crossref_primary_10_1080_00914037_2016_1163562 crossref_primary_10_1039_C6BM00618C crossref_primary_10_1152_ajpcell_00366_2014 crossref_primary_10_2174_1574888X14666190111105504 crossref_primary_10_1002_bit_25979 crossref_primary_10_1016_j_msec_2017_06_021 crossref_primary_10_1159_000448169 crossref_primary_10_1016_j_actbio_2015_05_038 crossref_primary_10_1115_1_4026899 crossref_primary_10_1016_j_actbio_2011_09_018 crossref_primary_10_1371_journal_pone_0117404 crossref_primary_10_1002_cnm_2630 crossref_primary_10_1002_jbm_a_35360 crossref_primary_10_1016_j_actbio_2020_04_042 crossref_primary_10_1016_j_msec_2017_04_061 crossref_primary_10_1002_adbi_201900249 crossref_primary_10_1016_j_actbio_2013_02_010 crossref_primary_10_1002_adfm_201910811 crossref_primary_10_1007_s10856_013_4931_4 crossref_primary_10_1016_j_actbio_2021_11_012 crossref_primary_10_1007_s10856_013_5048_5 crossref_primary_10_3389_fbioe_2018_00041 crossref_primary_10_1089_ten_teb_2023_0006 crossref_primary_10_1177_0885328219898385 crossref_primary_10_1039_D3SM01236K |
Cites_doi | 10.1006/exmp.2000.2321 10.1089/ten.tec.2008.0221 10.1161/hh1801.097165 10.1161/01.HYP.0000054213.37471.84 10.1152/japplphysiol.00818.2001 10.1002/jcb.22465 10.1016/j.biomaterials.2004.04.036 10.1073/pnas.87.12.4600 10.1114/1.1558031 10.1016/j.biomaterials.2009.02.002 10.1146/annurev.biochem.68.1.687 10.1161/01.ATV.19.7.1589 10.1093/cvr/cvn036 10.1089/1076327041348536 10.1152/ajpheart.2001.280.3.H1354 10.1007/s10856-007-0171-9 10.1016/S0021-9258(18)69315-9 10.1006/excr.1999.4595 10.1002/jcp.10333 10.1016/j.biomaterials.2004.11.035 10.1016/j.biomaterials.2005.06.020 10.1007/s004240000246 10.1016/S0021-9258(17)42610-X 10.4049/jimmunol.133.4.1710 10.1016/S0945-053X(00)00080-9 10.1007/s10439-005-3310-9 10.1002/jbm.a.10504 10.1007/BF03085963 10.1161/01.ATV.0000022407.91111.E4 10.1016/j.actbio.2010.06.018 10.1016/S1369-7021(04)00233-0 10.1089/ten.2005.11.1 10.1161/01.RES.81.6.940 10.1291/hypres.20.217 10.1074/jbc.M703602200 10.1210/en.2009-1248 10.1152/japplphysiol.01114.2004 10.1111/j.1525-1594.2006.00212.x 10.1016/j.biomaterials.2007.10.025 10.1152/ajpcell.00201.2003 10.1089/ten.tea.2008.0092 10.1016/S0006-291X(03)00087-1 10.1016/S0021-9258(18)99891-1 10.1161/01.RES.79.5.1046 10.1002/jbm.a.31816 10.1016/j.biomaterials.2009.09.086 10.1002/jcp.10230 10.1161/01.RES.81.5.797 10.1006/excr.1993.1016 10.1053/ejvs.2002.1654 10.1021/bm9004194 10.1074/jbc.M403370200 10.1016/0140-6736(92)93287-W 10.1016/S0021-9150(99)00393-7 10.1161/01.CIR.88.3.832 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2011 Elsevier Ltd Copyright © 2011 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Elsevier Ltd – notice: 2011 Elsevier Ltd – notice: Copyright © 2011 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 |
DOI | 10.1016/j.biomaterials.2011.03.034 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 4829 |
ExternalDocumentID | 10_1016_j_biomaterials_2011_03_034 21463894 S0142961211002900 1_s2_0_S0142961211002900 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: 337246-2007/CPG83459 – fundername: Canadian Institutes of Health Research grantid: TGF-53877 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFJKZ AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAIAV ABYKQ AJBFU DOVZS EFLBG CGR CUY CVF ECM EIF NPM AAYXX ACRPL ADNMO CITATION 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c466t-549e497cc3af5ce0d946d81dc921be0679d514a3d31a0bd0db80d7d526432f593 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 |
IngestDate | Fri Oct 25 07:27:28 EDT 2024 Fri Oct 25 05:33:05 EDT 2024 Fri Dec 06 04:49:24 EST 2024 Sat Nov 02 12:29:10 EDT 2024 Fri Feb 23 02:23:07 EST 2024 Tue Oct 15 22:54:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Smooth muscle cell Cell proliferation Arterial tissue engineering Scaffold Soft tissue biomechanics Polyurethane |
Language | English |
License | Copyright © 2011 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-549e497cc3af5ce0d946d81dc921be0679d514a3d31a0bd0db80d7d526432f593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21463894 |
PQID | 867321005 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_883017364 proquest_miscellaneous_867321005 crossref_primary_10_1016_j_biomaterials_2011_03_034 pubmed_primary_21463894 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_03_034 elsevier_clinicalkeyesjournals_1_s2_0_S0142961211002900 |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Michiels (bib4) 2003; 196 Riboldi, Sampaolesi, Neuenschwander, Cossu, Mantero (bib12) 2005; 26 Chew, Mi, Hoke, Leong (bib26) 2008; 29 Han, Deng, Guo, Yan, Liang, Kang (bib57) 2008; 78 Yazdani, Watts, Machingal, Jarajapu, Van Dyke, Christ (bib39) 2009; 15 Sharifpoor, Labow, Santerre (bib15) 2009; 10 Cipolletta, Monaco, Maione, Vitiello, Campiglia, Pastore (bib43) 2010; 151 Frid, Aldashev, Dempsey, Stenmark (bib22) 1997; 81 Haeberle (bib42) 1994; 269 Qin, Ishiwata, Wang, Kudo, Yokoyama, Naito (bib49) 2000; 69 Gordon, Reidy, Benditt, Schwartz (bib55) 1990; 87 Hishikawa, Oemar, Yang, Luscher (bib33) 1997; 81 Spofford, Chilian (bib6) 2001; 280 Wang, Cen, Yin, Liu, Liu, Cao (bib27) 2010; 31 Standley, Obards, Martina (bib35) 1999; 276 Qi, Qu, Yan, Zhao, Jiang, Shen (bib37) 2010; 109 Sindermann, Fan, Weigel, Troyer, Muller, Schmidt (bib54) 2000; 150 Cha, Park, Noh, Suh (bib38) 2006; 30 Li, Fan, Chow, Van Den Diepstraten, van Der Veer, Sims (bib24) 2001; 89 Ratcliffe (bib1) 2000; 19 Rensen, Doevendans, van Eys (bib21) 2007; 15 Li, Muragaki, Ueno, Ooshima (bib34) 1997; 20 Wilson, Clegg, Leavesley, Pearcy (bib32) 2005; 11 Stankus, Guan, Fujimoto, Wagner (bib14) 2006; 27 Williams, Wick (bib40) 2004; 10 Reusch, Wagdy, Reusch, Wilson, Ives (bib52) 1996; 79 Sharifpoor, Simmons, Labow, Santerre (bib19) 2010; 6 Klouda, Vaz, Mol, Baaijens, Bouten (bib29) 2008; 19 Owens, Thompson (bib46) 1986; 261 Stegemann, Hong, Nerem (bib48) 2005; 98 Ma (bib18) 2004; 7 Yang, Noll, Luscher (bib30) 1993; 88 Yamamoto, Yamamoto, Noumura (bib50) 1993; 204 Richard, Deniset, Kneesh, Blackwood, Pierce (bib9) 2007; 282 Lee, Wu, Dunn (bib17) 2008; 87 Thevenot, Nair, Dey, Yang, Tang (bib20) 2008; 14 Zacour, Teoh, Halayko, Ward (bib56) 2002; 92 Hipper, Isenberg (bib5) 2000; 440 Hao, Ropraz, Verin, Camenzind, Geinoz, Pepper (bib23) 2002; 22 Li, Chen, Mills, Sumpio (bib36) 2003; 195 Jeong, Kwon, Lim, Cho, Jung, Sung (bib11) 2005; 26 Riha, Lin, Lumsden, Yao, Chen (bib7) 2005; 33 Kim, Nikolovski, Bonadio, Smiley, Mooney (bib16) 1999; 251 Labrosse (bib3) 2007 Tock, Van Putten, Stenmark, Nemenoff (bib8) 2003; 301 Albinsson, Nordstrom, Hellstrand (bib51) 2004; 279 Predel, Yang, von Segesser, Turina, Buhler, Luscher (bib31) 1992; 340 Stegemann, Nerem (bib10) 2003; 31 Martin, Rzucidlo, Merenick, Fingar, Brown, Wagner (bib45) 2004; 286 Schauwienold, Plum, Helbing, Voigt, Bobbert, Hoffmann (bib44) 2003; 41 Geeves, Holmes (bib41) 1999; 68 Fatigati, Murphy (bib47) 1984; 259 Gittenberger-de Groot, DeRuiter, Bergwerff, Poelmann (bib25) 1999; 19 McDevitt, Woodhouse, Hauschka, Murry, Stayton (bib13) 2003; 66 Teebken, Haverich (bib2) 2002; 23 Gerdes, Lemke, Baisch, Wacker, Schwab, Stein (bib53) 1984; 133 Zhang, Wang, Keshav, Johanas, Leisk, Kaplan (bib28) 2009; 30 Schauwienold (10.1016/j.biomaterials.2011.03.034_bib44) 2003; 41 Tock (10.1016/j.biomaterials.2011.03.034_bib8) 2003; 301 Owens (10.1016/j.biomaterials.2011.03.034_bib46) 1986; 261 Hipper (10.1016/j.biomaterials.2011.03.034_bib5) 2000; 440 Reusch (10.1016/j.biomaterials.2011.03.034_bib52) 1996; 79 Riboldi (10.1016/j.biomaterials.2011.03.034_bib12) 2005; 26 Yang (10.1016/j.biomaterials.2011.03.034_bib30) 1993; 88 Rensen (10.1016/j.biomaterials.2011.03.034_bib21) 2007; 15 Yamamoto (10.1016/j.biomaterials.2011.03.034_bib50) 1993; 204 Wang (10.1016/j.biomaterials.2011.03.034_bib27) 2010; 31 Cipolletta (10.1016/j.biomaterials.2011.03.034_bib43) 2010; 151 Qi (10.1016/j.biomaterials.2011.03.034_bib37) 2010; 109 Geeves (10.1016/j.biomaterials.2011.03.034_bib41) 1999; 68 Gordon (10.1016/j.biomaterials.2011.03.034_bib55) 1990; 87 Klouda (10.1016/j.biomaterials.2011.03.034_bib29) 2008; 19 Hao (10.1016/j.biomaterials.2011.03.034_bib23) 2002; 22 Predel (10.1016/j.biomaterials.2011.03.034_bib31) 1992; 340 Fatigati (10.1016/j.biomaterials.2011.03.034_bib47) 1984; 259 Zhang (10.1016/j.biomaterials.2011.03.034_bib28) 2009; 30 Cha (10.1016/j.biomaterials.2011.03.034_bib38) 2006; 30 Gerdes (10.1016/j.biomaterials.2011.03.034_bib53) 1984; 133 Frid (10.1016/j.biomaterials.2011.03.034_bib22) 1997; 81 Gittenberger-de Groot (10.1016/j.biomaterials.2011.03.034_bib25) 1999; 19 Lee (10.1016/j.biomaterials.2011.03.034_bib17) 2008; 87 Han (10.1016/j.biomaterials.2011.03.034_bib57) 2008; 78 McDevitt (10.1016/j.biomaterials.2011.03.034_bib13) 2003; 66 Li (10.1016/j.biomaterials.2011.03.034_bib34) 1997; 20 Stegemann (10.1016/j.biomaterials.2011.03.034_bib48) 2005; 98 Stegemann (10.1016/j.biomaterials.2011.03.034_bib10) 2003; 31 Li (10.1016/j.biomaterials.2011.03.034_bib36) 2003; 195 Richard (10.1016/j.biomaterials.2011.03.034_bib9) 2007; 282 Williams (10.1016/j.biomaterials.2011.03.034_bib40) 2004; 10 Zacour (10.1016/j.biomaterials.2011.03.034_bib56) 2002; 92 Hishikawa (10.1016/j.biomaterials.2011.03.034_bib33) 1997; 81 Martin (10.1016/j.biomaterials.2011.03.034_bib45) 2004; 286 Yazdani (10.1016/j.biomaterials.2011.03.034_bib39) 2009; 15 Thevenot (10.1016/j.biomaterials.2011.03.034_bib20) 2008; 14 Stankus (10.1016/j.biomaterials.2011.03.034_bib14) 2006; 27 Sharifpoor (10.1016/j.biomaterials.2011.03.034_bib15) 2009; 10 Li (10.1016/j.biomaterials.2011.03.034_bib24) 2001; 89 Kim (10.1016/j.biomaterials.2011.03.034_bib16) 1999; 251 Jeong (10.1016/j.biomaterials.2011.03.034_bib11) 2005; 26 Qin (10.1016/j.biomaterials.2011.03.034_bib49) 2000; 69 Albinsson (10.1016/j.biomaterials.2011.03.034_bib51) 2004; 279 Sharifpoor (10.1016/j.biomaterials.2011.03.034_bib19) 2010; 6 Teebken (10.1016/j.biomaterials.2011.03.034_bib2) 2002; 23 Chew (10.1016/j.biomaterials.2011.03.034_bib26) 2008; 29 Ratcliffe (10.1016/j.biomaterials.2011.03.034_bib1) 2000; 19 Labrosse (10.1016/j.biomaterials.2011.03.034_bib3) 2007 Standley (10.1016/j.biomaterials.2011.03.034_bib35) 1999; 276 Wilson (10.1016/j.biomaterials.2011.03.034_bib32) 2005; 11 Sindermann (10.1016/j.biomaterials.2011.03.034_bib54) 2000; 150 Michiels (10.1016/j.biomaterials.2011.03.034_bib4) 2003; 196 Ma (10.1016/j.biomaterials.2011.03.034_bib18) 2004; 7 Spofford (10.1016/j.biomaterials.2011.03.034_bib6) 2001; 280 Riha (10.1016/j.biomaterials.2011.03.034_bib7) 2005; 33 Haeberle (10.1016/j.biomaterials.2011.03.034_bib42) 1994; 269 |
References_xml | – volume: 7 start-page: 30 year: 2004 end-page: 40 ident: bib18 article-title: Scaffolds for tissue fabrication publication-title: Mater Today contributor: fullname: Ma – volume: 340 start-page: 878 year: 1992 end-page: 879 ident: bib31 article-title: Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle publication-title: Lancet contributor: fullname: Luscher – volume: 6 start-page: 4218 year: 2010 end-page: 4228 ident: bib19 article-title: A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity publication-title: Acta Biomater contributor: fullname: Santerre – volume: 19 start-page: 1589 year: 1999 end-page: 1594 ident: bib25 article-title: Smooth muscle cell origin and its relation to heterogeneity in development and disease publication-title: Arterioscler Thromb Vasc Biol contributor: fullname: Poelmann – volume: 87 start-page: 4600 year: 1990 end-page: 4604 ident: bib55 article-title: Cell proliferation in human coronary arteries publication-title: Proc Natl Acad Sci U S A contributor: fullname: Schwartz – volume: 279 start-page: 34849 year: 2004 end-page: 34855 ident: bib51 article-title: Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization publication-title: J Biol Chem contributor: fullname: Hellstrand – volume: 27 start-page: 735 year: 2006 end-page: 744 ident: bib14 article-title: Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix publication-title: Biomaterials contributor: fullname: Wagner – volume: 14 start-page: 319 year: 2008 end-page: 331 ident: bib20 article-title: Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds publication-title: Tissue Eng Part C Methods contributor: fullname: Tang – volume: 88 start-page: 832 year: 1993 end-page: 836 ident: bib30 article-title: Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor publication-title: Circulation contributor: fullname: Luscher – volume: 151 start-page: 2747 year: 2010 end-page: 2759 ident: bib43 article-title: Calmodulin-dependent kinase II mediates vascular smooth muscle cell proliferation and is potentiated by extracellular signal regulated kinase publication-title: Endocrinology contributor: fullname: Pastore – volume: 30 start-page: 250 year: 2006 end-page: 258 ident: bib38 article-title: Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain publication-title: Artif Organs contributor: fullname: Suh – volume: 15 start-page: 100 year: 2007 end-page: 108 ident: bib21 article-title: Regulation and characteristics of vascular smooth muscle cell phenotypic diversity publication-title: Neth Heart J contributor: fullname: van Eys – volume: 20 start-page: 217 year: 1997 end-page: 223 ident: bib34 article-title: Stretch-induced proliferation of cultured vascular smooth muscle cells and a possible involvement of local renin-angiotensin system and platelet-derived growth factor (PDGF) publication-title: Hypertens Res contributor: fullname: Ooshima – volume: 92 start-page: 2625 year: 2002 end-page: 2632 ident: bib56 article-title: Mechanisms of aortic smooth muscle hyporeactivity after prolonged hypoxia in rats publication-title: J Appl Physiol contributor: fullname: Ward – volume: 11 start-page: 1 year: 2005 end-page: 18 ident: bib32 article-title: Mediation of biomaterial-cell interactions by adsorbed proteins: a review publication-title: Tissue Eng contributor: fullname: Pearcy – volume: 109 start-page: 906 year: 2010 end-page: 914 ident: bib37 article-title: Cyclic strain modulates migration and proliferation of vascular smooth muscle cells via Rho-GDIalpha, Rac1, and p38 p.thway publication-title: J Cell Biochem contributor: fullname: Shen – volume: 22 start-page: 1093 year: 2002 end-page: 1099 ident: bib23 article-title: Heterogeneity of smooth muscle cell populations cultured from pig coronary artery publication-title: Arterioscler Thromb Vasc Biol contributor: fullname: Pepper – volume: 269 start-page: 12424 year: 1994 end-page: 12431 ident: bib42 article-title: Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay publication-title: J Biol Chem contributor: fullname: Haeberle – volume: 33 start-page: 772 year: 2005 end-page: 779 ident: bib7 article-title: Roles of hemodynamic forces in vascular cell differentiation publication-title: Ann Biomed Eng contributor: fullname: Chen – volume: 280 start-page: H1354 year: 2001 end-page: H1360 ident: bib6 article-title: The elastin-laminin receptor functions as a mechanotransducer in vascular smooth muscle publication-title: Am J Physiol Heart Circ Physiol contributor: fullname: Chilian – volume: 79 start-page: 1046 year: 1996 end-page: 1053 ident: bib52 article-title: Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells publication-title: Circ Res contributor: fullname: Ives – volume: 15 start-page: 827 year: 2009 end-page: 840 ident: bib39 article-title: Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels publication-title: Tissue Eng Part A contributor: fullname: Christ – volume: 440 start-page: 19 year: 2000 end-page: 27 ident: bib5 article-title: Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells publication-title: Pflugers Arch contributor: fullname: Isenberg – volume: 251 start-page: 318 year: 1999 end-page: 328 ident: bib16 article-title: Engineered smooth muscle tissues: regulating cell phenotype with the scaffold publication-title: Exp Cell Res contributor: fullname: Mooney – volume: 31 start-page: 621 year: 2010 end-page: 630 ident: bib27 article-title: A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells publication-title: Biomaterials contributor: fullname: Cao – volume: 19 start-page: 1137 year: 2008 end-page: 1144 ident: bib29 article-title: Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds publication-title: J Mater Sci Mater Med contributor: fullname: Bouten – volume: 78 start-page: 597 year: 2008 end-page: 604 ident: bib57 article-title: CREG promotes a mature smooth muscle cell phenotype and reduces neointimal formation in balloon-injured rat carotid artery publication-title: Cardiovasc Res contributor: fullname: Kang – volume: 26 start-page: 4606 year: 2005 end-page: 4615 ident: bib12 article-title: Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering publication-title: Biomaterials contributor: fullname: Mantero – volume: 31 start-page: 391 year: 2003 end-page: 402 ident: bib10 article-title: Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation publication-title: Ann Biomed Eng contributor: fullname: Nerem – volume: 276 start-page: E697 year: 1999 end-page: E705 ident: bib35 article-title: Cyclic stretch regulates autocrine IGF-I in vascular smooth muscle cells: implications in vascular hyperplasia publication-title: Am J Physiol contributor: fullname: Martina – volume: 81 start-page: 940 year: 1997 end-page: 952 ident: bib22 article-title: Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities publication-title: Circ Res contributor: fullname: Stenmark – volume: 81 start-page: 797 year: 1997 end-page: 803 ident: bib33 article-title: Pulsatile stretch stimulates superoxide production and activates nuclear factor-kappa B in human coronary smooth muscle publication-title: Circ Res contributor: fullname: Luscher – volume: 282 start-page: 23081 year: 2007 end-page: 23088 ident: bib9 article-title: Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation publication-title: J Biol Chem contributor: fullname: Pierce – volume: 26 start-page: 1405 year: 2005 end-page: 1411 ident: bib11 article-title: Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds publication-title: Biomaterials contributor: fullname: Sung – volume: 150 start-page: 331 year: 2000 end-page: 341 ident: bib54 article-title: Differences in the effects of HMG-CoA reductase inhibitors on proliferation and viability of smooth muscle cells in culture publication-title: Atherosclerosis contributor: fullname: Schmidt – volume: 30 start-page: 3213 year: 2009 end-page: 3223 ident: bib28 article-title: Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts publication-title: Biomaterials contributor: fullname: Kaplan – volume: 195 start-page: 202 year: 2003 end-page: 209 ident: bib36 article-title: Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells publication-title: J Cell Physiol contributor: fullname: Sumpio – volume: 98 start-page: 2321 year: 2005 end-page: 2327 ident: bib48 article-title: Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype publication-title: J Appl Physiol contributor: fullname: Nerem – volume: 133 start-page: 1710 year: 1984 end-page: 1715 ident: bib53 article-title: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67 publication-title: J Immunol contributor: fullname: Stein – volume: 23 start-page: 475 year: 2002 end-page: 485 ident: bib2 article-title: Tissue engineering of small diameter vascular grafts publication-title: Eur J Vasc Endovasc Surg contributor: fullname: Haverich – volume: 301 start-page: 1116 year: 2003 end-page: 1121 ident: bib8 article-title: Induction of SM-alpha-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase publication-title: Biochem Biophys Res Commun contributor: fullname: Nemenoff – volume: 69 start-page: 79 year: 2000 end-page: 90 ident: bib49 article-title: Effects of extracellular matrix on phenotype modulation and MAPK transduction of rat aortic smooth muscle cells in vitro publication-title: Exp Mol Pathol contributor: fullname: Naito – volume: 261 start-page: 13373 year: 1986 end-page: 13380 ident: bib46 article-title: Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation publication-title: J Biol Chem contributor: fullname: Thompson – volume: 89 start-page: 517 year: 2001 end-page: 525 ident: bib24 article-title: Innate diversity of adult human arterial smooth muscle cells: cloning of distinct subtypes from the internal thoracic artery publication-title: Circ Res contributor: fullname: Sims – volume: 204 start-page: 121 year: 1993 end-page: 129 ident: bib50 article-title: Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype publication-title: Exp Cell Res contributor: fullname: Noumura – volume: 10 start-page: 930 year: 2004 end-page: 941 ident: bib40 article-title: Perfusion bioreactor for small diameter tissue-engineered arteries publication-title: Tissue Eng contributor: fullname: Wick – volume: 196 start-page: 430 year: 2003 end-page: 443 ident: bib4 article-title: Endothelial cell functions publication-title: J Cell Physiol contributor: fullname: Michiels – volume: 29 start-page: 653 year: 2008 end-page: 661 ident: bib26 article-title: The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation publication-title: Biomaterials contributor: fullname: Leong – volume: 259 start-page: 14383 year: 1984 end-page: 14388 ident: bib47 article-title: Actin and tropomyosin variants in smooth muscles. Dependence on tissue type publication-title: J Biol Chem contributor: fullname: Murphy – volume: 10 start-page: 2729 year: 2009 end-page: 2739 ident: bib15 article-title: Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications publication-title: Biomacromolecules contributor: fullname: Santerre – volume: 41 start-page: 546 year: 2003 end-page: 552 ident: bib44 article-title: ERK1/2-dependent contractile protein expression in vascular smooth muscle cells publication-title: Hypertension contributor: fullname: Hoffmann – volume: 66 start-page: 586 year: 2003 end-page: 595 ident: bib13 article-title: Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair publication-title: J Biomed Mater Res A contributor: fullname: Stayton – volume: 68 start-page: 687 year: 1999 end-page: 728 ident: bib41 article-title: Structural mechanism of muscle contraction publication-title: Annu Rev Biochem contributor: fullname: Holmes – volume: 87 start-page: 1010 year: 2008 end-page: 1016 ident: bib17 article-title: Effect of scaffold architecture and pore size on smooth muscle cell growth publication-title: J Biomed Mater Res A contributor: fullname: Dunn – start-page: 45 year: 2007 end-page: 81 ident: bib3 article-title: Structure and mechanics of the artery publication-title: Vascular mechanics and pathology contributor: fullname: Labrosse – volume: 286 start-page: C507 year: 2004 end-page: C517 ident: bib45 article-title: The mTOR/p70 S6K1 p.thway regulates vascular smooth muscle cell differentiation publication-title: Am J Physiol Cell Physiol contributor: fullname: Wagner – volume: 19 start-page: 353 year: 2000 end-page: 357 ident: bib1 article-title: Tissue engineering of vascular grafts publication-title: Matrix Biol contributor: fullname: Ratcliffe – volume: 276 start-page: E697 year: 1999 ident: 10.1016/j.biomaterials.2011.03.034_bib35 article-title: Cyclic stretch regulates autocrine IGF-I in vascular smooth muscle cells: implications in vascular hyperplasia publication-title: Am J Physiol contributor: fullname: Standley – volume: 69 start-page: 79 year: 2000 ident: 10.1016/j.biomaterials.2011.03.034_bib49 article-title: Effects of extracellular matrix on phenotype modulation and MAPK transduction of rat aortic smooth muscle cells in vitro publication-title: Exp Mol Pathol doi: 10.1006/exmp.2000.2321 contributor: fullname: Qin – volume: 14 start-page: 319 year: 2008 ident: 10.1016/j.biomaterials.2011.03.034_bib20 article-title: Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds publication-title: Tissue Eng Part C Methods doi: 10.1089/ten.tec.2008.0221 contributor: fullname: Thevenot – volume: 89 start-page: 517 year: 2001 ident: 10.1016/j.biomaterials.2011.03.034_bib24 article-title: Innate diversity of adult human arterial smooth muscle cells: cloning of distinct subtypes from the internal thoracic artery publication-title: Circ Res doi: 10.1161/hh1801.097165 contributor: fullname: Li – volume: 41 start-page: 546 year: 2003 ident: 10.1016/j.biomaterials.2011.03.034_bib44 article-title: ERK1/2-dependent contractile protein expression in vascular smooth muscle cells publication-title: Hypertension doi: 10.1161/01.HYP.0000054213.37471.84 contributor: fullname: Schauwienold – volume: 92 start-page: 2625 year: 2002 ident: 10.1016/j.biomaterials.2011.03.034_bib56 article-title: Mechanisms of aortic smooth muscle hyporeactivity after prolonged hypoxia in rats publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00818.2001 contributor: fullname: Zacour – volume: 109 start-page: 906 year: 2010 ident: 10.1016/j.biomaterials.2011.03.034_bib37 article-title: Cyclic strain modulates migration and proliferation of vascular smooth muscle cells via Rho-GDIalpha, Rac1, and p38 p.thway publication-title: J Cell Biochem doi: 10.1002/jcb.22465 contributor: fullname: Qi – volume: 26 start-page: 1405 year: 2005 ident: 10.1016/j.biomaterials.2011.03.034_bib11 article-title: Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.04.036 contributor: fullname: Jeong – volume: 87 start-page: 4600 year: 1990 ident: 10.1016/j.biomaterials.2011.03.034_bib55 article-title: Cell proliferation in human coronary arteries publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.87.12.4600 contributor: fullname: Gordon – volume: 31 start-page: 391 year: 2003 ident: 10.1016/j.biomaterials.2011.03.034_bib10 article-title: Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation publication-title: Ann Biomed Eng doi: 10.1114/1.1558031 contributor: fullname: Stegemann – volume: 30 start-page: 3213 year: 2009 ident: 10.1016/j.biomaterials.2011.03.034_bib28 article-title: Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.002 contributor: fullname: Zhang – volume: 68 start-page: 687 year: 1999 ident: 10.1016/j.biomaterials.2011.03.034_bib41 article-title: Structural mechanism of muscle contraction publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.68.1.687 contributor: fullname: Geeves – volume: 19 start-page: 1589 year: 1999 ident: 10.1016/j.biomaterials.2011.03.034_bib25 article-title: Smooth muscle cell origin and its relation to heterogeneity in development and disease publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.19.7.1589 contributor: fullname: Gittenberger-de Groot – volume: 78 start-page: 597 year: 2008 ident: 10.1016/j.biomaterials.2011.03.034_bib57 article-title: CREG promotes a mature smooth muscle cell phenotype and reduces neointimal formation in balloon-injured rat carotid artery publication-title: Cardiovasc Res doi: 10.1093/cvr/cvn036 contributor: fullname: Han – volume: 10 start-page: 930 year: 2004 ident: 10.1016/j.biomaterials.2011.03.034_bib40 article-title: Perfusion bioreactor for small diameter tissue-engineered arteries publication-title: Tissue Eng doi: 10.1089/1076327041348536 contributor: fullname: Williams – volume: 280 start-page: H1354 year: 2001 ident: 10.1016/j.biomaterials.2011.03.034_bib6 article-title: The elastin-laminin receptor functions as a mechanotransducer in vascular smooth muscle publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.2001.280.3.H1354 contributor: fullname: Spofford – volume: 19 start-page: 1137 year: 2008 ident: 10.1016/j.biomaterials.2011.03.034_bib29 article-title: Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-007-0171-9 contributor: fullname: Klouda – volume: 261 start-page: 13373 year: 1986 ident: 10.1016/j.biomaterials.2011.03.034_bib46 article-title: Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)69315-9 contributor: fullname: Owens – volume: 251 start-page: 318 year: 1999 ident: 10.1016/j.biomaterials.2011.03.034_bib16 article-title: Engineered smooth muscle tissues: regulating cell phenotype with the scaffold publication-title: Exp Cell Res doi: 10.1006/excr.1999.4595 contributor: fullname: Kim – volume: 196 start-page: 430 year: 2003 ident: 10.1016/j.biomaterials.2011.03.034_bib4 article-title: Endothelial cell functions publication-title: J Cell Physiol doi: 10.1002/jcp.10333 contributor: fullname: Michiels – volume: 26 start-page: 4606 year: 2005 ident: 10.1016/j.biomaterials.2011.03.034_bib12 article-title: Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.11.035 contributor: fullname: Riboldi – volume: 27 start-page: 735 year: 2006 ident: 10.1016/j.biomaterials.2011.03.034_bib14 article-title: Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.06.020 contributor: fullname: Stankus – volume: 440 start-page: 19 year: 2000 ident: 10.1016/j.biomaterials.2011.03.034_bib5 article-title: Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells publication-title: Pflugers Arch doi: 10.1007/s004240000246 contributor: fullname: Hipper – volume: 259 start-page: 14383 year: 1984 ident: 10.1016/j.biomaterials.2011.03.034_bib47 article-title: Actin and tropomyosin variants in smooth muscles. Dependence on tissue type publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)42610-X contributor: fullname: Fatigati – volume: 133 start-page: 1710 year: 1984 ident: 10.1016/j.biomaterials.2011.03.034_bib53 article-title: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67 publication-title: J Immunol doi: 10.4049/jimmunol.133.4.1710 contributor: fullname: Gerdes – volume: 19 start-page: 353 year: 2000 ident: 10.1016/j.biomaterials.2011.03.034_bib1 article-title: Tissue engineering of vascular grafts publication-title: Matrix Biol doi: 10.1016/S0945-053X(00)00080-9 contributor: fullname: Ratcliffe – volume: 33 start-page: 772 year: 2005 ident: 10.1016/j.biomaterials.2011.03.034_bib7 article-title: Roles of hemodynamic forces in vascular cell differentiation publication-title: Ann Biomed Eng doi: 10.1007/s10439-005-3310-9 contributor: fullname: Riha – volume: 66 start-page: 586 year: 2003 ident: 10.1016/j.biomaterials.2011.03.034_bib13 article-title: Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.10504 contributor: fullname: McDevitt – volume: 15 start-page: 100 year: 2007 ident: 10.1016/j.biomaterials.2011.03.034_bib21 article-title: Regulation and characteristics of vascular smooth muscle cell phenotypic diversity publication-title: Neth Heart J doi: 10.1007/BF03085963 contributor: fullname: Rensen – volume: 22 start-page: 1093 year: 2002 ident: 10.1016/j.biomaterials.2011.03.034_bib23 article-title: Heterogeneity of smooth muscle cell populations cultured from pig coronary artery publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000022407.91111.E4 contributor: fullname: Hao – volume: 6 start-page: 4218 year: 2010 ident: 10.1016/j.biomaterials.2011.03.034_bib19 article-title: A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.06.018 contributor: fullname: Sharifpoor – volume: 7 start-page: 30 year: 2004 ident: 10.1016/j.biomaterials.2011.03.034_bib18 article-title: Scaffolds for tissue fabrication publication-title: Mater Today doi: 10.1016/S1369-7021(04)00233-0 contributor: fullname: Ma – volume: 11 start-page: 1 year: 2005 ident: 10.1016/j.biomaterials.2011.03.034_bib32 article-title: Mediation of biomaterial-cell interactions by adsorbed proteins: a review publication-title: Tissue Eng doi: 10.1089/ten.2005.11.1 contributor: fullname: Wilson – volume: 81 start-page: 940 year: 1997 ident: 10.1016/j.biomaterials.2011.03.034_bib22 article-title: Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities publication-title: Circ Res doi: 10.1161/01.RES.81.6.940 contributor: fullname: Frid – volume: 20 start-page: 217 year: 1997 ident: 10.1016/j.biomaterials.2011.03.034_bib34 article-title: Stretch-induced proliferation of cultured vascular smooth muscle cells and a possible involvement of local renin-angiotensin system and platelet-derived growth factor (PDGF) publication-title: Hypertens Res doi: 10.1291/hypres.20.217 contributor: fullname: Li – volume: 282 start-page: 23081 year: 2007 ident: 10.1016/j.biomaterials.2011.03.034_bib9 article-title: Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation publication-title: J Biol Chem doi: 10.1074/jbc.M703602200 contributor: fullname: Richard – volume: 151 start-page: 2747 year: 2010 ident: 10.1016/j.biomaterials.2011.03.034_bib43 article-title: Calmodulin-dependent kinase II mediates vascular smooth muscle cell proliferation and is potentiated by extracellular signal regulated kinase publication-title: Endocrinology doi: 10.1210/en.2009-1248 contributor: fullname: Cipolletta – volume: 98 start-page: 2321 year: 2005 ident: 10.1016/j.biomaterials.2011.03.034_bib48 article-title: Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01114.2004 contributor: fullname: Stegemann – volume: 30 start-page: 250 year: 2006 ident: 10.1016/j.biomaterials.2011.03.034_bib38 article-title: Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain publication-title: Artif Organs doi: 10.1111/j.1525-1594.2006.00212.x contributor: fullname: Cha – volume: 29 start-page: 653 year: 2008 ident: 10.1016/j.biomaterials.2011.03.034_bib26 article-title: The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.10.025 contributor: fullname: Chew – volume: 286 start-page: C507 year: 2004 ident: 10.1016/j.biomaterials.2011.03.034_bib45 article-title: The mTOR/p70 S6K1 p.thway regulates vascular smooth muscle cell differentiation publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00201.2003 contributor: fullname: Martin – volume: 15 start-page: 827 year: 2009 ident: 10.1016/j.biomaterials.2011.03.034_bib39 article-title: Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2008.0092 contributor: fullname: Yazdani – volume: 301 start-page: 1116 year: 2003 ident: 10.1016/j.biomaterials.2011.03.034_bib8 article-title: Induction of SM-alpha-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(03)00087-1 contributor: fullname: Tock – volume: 269 start-page: 12424 year: 1994 ident: 10.1016/j.biomaterials.2011.03.034_bib42 article-title: Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)99891-1 contributor: fullname: Haeberle – volume: 79 start-page: 1046 year: 1996 ident: 10.1016/j.biomaterials.2011.03.034_bib52 article-title: Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells publication-title: Circ Res doi: 10.1161/01.RES.79.5.1046 contributor: fullname: Reusch – volume: 87 start-page: 1010 year: 2008 ident: 10.1016/j.biomaterials.2011.03.034_bib17 article-title: Effect of scaffold architecture and pore size on smooth muscle cell growth publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.31816 contributor: fullname: Lee – volume: 31 start-page: 621 year: 2010 ident: 10.1016/j.biomaterials.2011.03.034_bib27 article-title: A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.086 contributor: fullname: Wang – start-page: 45 year: 2007 ident: 10.1016/j.biomaterials.2011.03.034_bib3 article-title: Structure and mechanics of the artery contributor: fullname: Labrosse – volume: 195 start-page: 202 year: 2003 ident: 10.1016/j.biomaterials.2011.03.034_bib36 article-title: Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells publication-title: J Cell Physiol doi: 10.1002/jcp.10230 contributor: fullname: Li – volume: 81 start-page: 797 year: 1997 ident: 10.1016/j.biomaterials.2011.03.034_bib33 article-title: Pulsatile stretch stimulates superoxide production and activates nuclear factor-kappa B in human coronary smooth muscle publication-title: Circ Res doi: 10.1161/01.RES.81.5.797 contributor: fullname: Hishikawa – volume: 204 start-page: 121 year: 1993 ident: 10.1016/j.biomaterials.2011.03.034_bib50 article-title: Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype publication-title: Exp Cell Res doi: 10.1006/excr.1993.1016 contributor: fullname: Yamamoto – volume: 23 start-page: 475 year: 2002 ident: 10.1016/j.biomaterials.2011.03.034_bib2 article-title: Tissue engineering of small diameter vascular grafts publication-title: Eur J Vasc Endovasc Surg doi: 10.1053/ejvs.2002.1654 contributor: fullname: Teebken – volume: 10 start-page: 2729 year: 2009 ident: 10.1016/j.biomaterials.2011.03.034_bib15 article-title: Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications publication-title: Biomacromolecules doi: 10.1021/bm9004194 contributor: fullname: Sharifpoor – volume: 279 start-page: 34849 year: 2004 ident: 10.1016/j.biomaterials.2011.03.034_bib51 article-title: Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization publication-title: J Biol Chem doi: 10.1074/jbc.M403370200 contributor: fullname: Albinsson – volume: 340 start-page: 878 year: 1992 ident: 10.1016/j.biomaterials.2011.03.034_bib31 article-title: Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle publication-title: Lancet doi: 10.1016/0140-6736(92)93287-W contributor: fullname: Predel – volume: 150 start-page: 331 year: 2000 ident: 10.1016/j.biomaterials.2011.03.034_bib54 article-title: Differences in the effects of HMG-CoA reductase inhibitors on proliferation and viability of smooth muscle cells in culture publication-title: Atherosclerosis doi: 10.1016/S0021-9150(99)00393-7 contributor: fullname: Sindermann – volume: 88 start-page: 832 year: 1993 ident: 10.1016/j.biomaterials.2011.03.034_bib30 article-title: Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor publication-title: Circulation doi: 10.1161/01.CIR.88.3.832 contributor: fullname: Yang |
SSID | ssj0014042 |
Score | 2.3257713 |
Snippet | Abstract There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate... There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4816 |
SubjectTerms | Actins - metabolism Advanced Basic Science Arterial tissue engineering Biocompatible Materials - chemistry Biocompatible Materials - metabolism Biomarkers - metabolism Calcium-Binding Proteins - metabolism Calponins Cell Proliferation Cells, Cultured Coronary Vessels - anatomy & histology Dentistry Humans Ki-67 Antigen - metabolism Materials Testing Microfilament Proteins - metabolism Muscle, Smooth, Vascular - cytology Myocytes, Smooth Muscle - cytology Myocytes, Smooth Muscle - physiology Polyurethane Polyurethanes - chemistry Polyurethanes - metabolism Scaffold Smooth muscle cell Soft tissue biomechanics Stress, Mechanical Tensile Strength Tissue Engineering - methods Tissue Scaffolds - chemistry |
Title | Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211002900 https://dx.doi.org/10.1016/j.biomaterials.2011.03.034 https://www.ncbi.nlm.nih.gov/pubmed/21463894 https://search.proquest.com/docview/867321005 https://search.proquest.com/docview/883017364 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqIiE4ICiPpkA1B65LvH7sxoceqooogNoTlXqzvLZXCkqyUZwccuEf8J-Z2UdUhIqQkHxardePscfj2fm-YexDnBQTUxmeOR_KTMlKZ0b4PHMGr0OFU14bAjhf3xSzW_XlTt8dsasBC0Nhlb3u73R6q637J-N-Nsfr-XxMYUnCEAEWsYgaTvd2pTllMfj44xDmQewxogtjFBm9PRCPtjFeBHF3207UPZ2nxKIeOqQeMkLbw2j6nD3rrUi47Dr6gh3F1Ql7eo9b8IQ9vu7_mr9kP6d4eHU-P_AHguYOfwlNDW2ePvDEZeA2e2ijPPeQlg1KEZa7hE0AOfgTEOJsA37vF3MPy0ioYRIypDbTBGBxEIh-IhAiC9bNYr_bRPLOR0je1XWzCK_Y7fTTt6tZ1qdhyLwqim2GN8ioTOm9dLX2kQejioBmrjciryI5ogJaXU4GmTteBR6qCQ9l0GhqSVFrI1-z41WziqcMdCx1lTuveF0Q1Z-rhQh5XZUmD1i3HDE5zLtdd2wbdghD-27vS8uStCyXWNSIlYOI7IAnRQ0YU78dk81tEpbbP5bMiF0cav626iweKP_UMgwrwuK2JFHghDa7ZHFwhI7i-i-vTFC5lrLAr7zpFtNhzJRtHS1Jdfaf_XvLnnQ-cAovfseOt5tdfI9G1LY6b3fJOXt0-fnr7OYX10IgOw |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYhhbY5hDZ9OX3NodettStp1zr0UEKN28Y5JZCb0EpacLG9xrIPvuQf5D9nZh8mpaQUCjotq9VjRqPR7HyfGPsURvlIl5on1vkikaJUic5cmliNx6HcSqc0AZynF_nkSv64VtcH7KzHwlBaZWf7W5veWOvuybCbzeFqNhtSWlKmiQCLWEQ1x3P7I6nQ-0Wl_nyzz_Mg-piszWPMEnq9Zx5tkrwI4243raw7Pk-BRT60Sz3khTa70fgZO-7cSPja9vQ5OwjLE3Z0j1zwhD2edr_NX7DbMe5ebdAP3J6huQVgQl1Bc1EfOCIzsOsdNGmeO4iLGsUIi23EJoAi_BEIcrYGt3PzmYNFINgwSRlic9UEYLHgiX_CEyQLVvV8t10HCs8HiM5WVT33L9nV-Nvl2STp7mFInMzzTYJHyCB14ZywlXKBey1zj36u01laBopEeXS7rPAitbz03Jcj7guv0NcSWaW0eMUOl_UyvGGgQqHK1DrJq5y4_myVZT6tykKnHusWAyb6eTerlm7D9Hlov8x9aRmSluECixywoheR6QGlaAJD7NZjNKmJmeHmD50ZsC_7mr-pncEd5Z9ahl4jDK5LEgVOaL2NBgdH8Ciu_vLKCK1rIXL8yutWmfZjpuvW0ZWUp__Zv4_syeRyem7Ov1_8fMuetgFxyjV-xw436214jx7VpvzQrJg7Yygh2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+characterization+of+human+coronary+artery+smooth+muscle+cells+under+cyclic+mechanical+strain+in+a+degradable+polyurethane+scaffold&rft.jtitle=Biomaterials&rft.au=Sharifpoor%2C+Soroor&rft.au=Simmons%2C+Craig+A&rft.au=Labow%2C+Rosalind+S&rft.au=Paul+Santerre%2C+J&rft.date=2011-07-01&rft.eissn=1878-5905&rft.volume=32&rft.issue=21&rft.spage=4816&rft.epage=4829&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.03.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961211X00157%2Fcov150h.gif |