Visual-Inertial Image-Odometry Network (VIIONet): A Gaussian process regression-based deep architecture proposal for UAV pose estimation

•An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to inertial image to extract the features of inertial data with Inception-v3.•The noise of the IMU data is reduced by the Savitzky–Golay filter.•P...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 194; p. 111030
Main Authors Aslan, Muhammet Fatih, Durdu, Akif, Sabanci, Kadir
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 15.05.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to inertial image to extract the features of inertial data with Inception-v3.•The noise of the IMU data is reduced by the Savitzky–Golay filter.•Probabilistic based Gaussian Process Regression is applied for final pose estimation. This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a different way than previous studies. For an effective fusion, the inertial data between both frames is normalized after denoising with the Savitzky-Golay technique and finally converted from numerical value to image. To strengthen these inertial image features with the change of motion between two frames, frames of Optical Flow (OF) are obtained and OF frames are combined with inertial images. Simultaneously, a parallel thread combines this OF frame with two consecutive raw frames. After features are extracted from inertial and camera data via Inception-v3, these features are fused and actual UAV poses are estimated via Gaussian Process Regression (GPR). Thanks to the smoothing process applied to these estimated values, a more stable pose estimation is provided. This proposed method is applied to the EuRoC dataset and our dataset produced in the Gazebo environment. The pose estimation results reveal that the proposed method has high performance compared to many previous studies.
AbstractList •An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to inertial image to extract the features of inertial data with Inception-v3.•The noise of the IMU data is reduced by the Savitzky–Golay filter.•Probabilistic based Gaussian Process Regression is applied for final pose estimation. This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a different way than previous studies. For an effective fusion, the inertial data between both frames is normalized after denoising with the Savitzky-Golay technique and finally converted from numerical value to image. To strengthen these inertial image features with the change of motion between two frames, frames of Optical Flow (OF) are obtained and OF frames are combined with inertial images. Simultaneously, a parallel thread combines this OF frame with two consecutive raw frames. After features are extracted from inertial and camera data via Inception-v3, these features are fused and actual UAV poses are estimated via Gaussian Process Regression (GPR). Thanks to the smoothing process applied to these estimated values, a more stable pose estimation is provided. This proposed method is applied to the EuRoC dataset and our dataset produced in the Gazebo environment. The pose estimation results reveal that the proposed method has high performance compared to many previous studies.
This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a different way than previous studies. For an effective fusion, the inertial data between both frames is normalized after denoising with the Savitzky-Golay technique and finally converted from numerical value to image. To strengthen these inertial image features with the change of motion between two frames, frames of Optical Flow (OF) are obtained and OF frames are combined with inertial images. Simultaneously, a parallel thread combines this OF frame with two consecutive raw frames. After features are extracted from inertial and camera data via Inception-v3, these features are fused and actual UAV poses are estimated via Gaussian Process Regression (GPR). Thanks to the smoothing process applied to these estimated values, a more stable pose estimation is provided. This proposed method is applied to the EuRoC dataset and our dataset produced in the Gazebo environment. The pose estimation results reveal that the proposed method has high performance compared to many previous studies.
ArticleNumber 111030
Author Aslan, Muhammet Fatih
Durdu, Akif
Sabanci, Kadir
Author_xml – sequence: 1
  givenname: Muhammet Fatih
  surname: Aslan
  fullname: Aslan, Muhammet Fatih
  email: mfatihaslan@kmu.edu.tr
  organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
– sequence: 2
  givenname: Akif
  surname: Durdu
  fullname: Durdu, Akif
  organization: Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
– sequence: 3
  givenname: Kadir
  surname: Sabanci
  fullname: Sabanci, Kadir
  organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
BookMark eNqNkM1O3DAQxy0EEgvlHVxxaQ_Z-iNxEi7VatXSSKh7gRU3y7HH1Msm3toOFW_Qx663ywFx4jQaaf4f8ztDx6MfAaGPlMwpoeLLZj6AilOAAcY0Z4SxOaWUcHKEZrSpeVFSdn-MZoQJXjBW0lN0FuOGECJ4K2bo79rFSW2LboSQnNriblAPUKyMHyCFZ_wT0h8fHvGnddet8vL5Ci_wtZpidGrEu-A1xIgDPIQ8nR-LXkUw2ADssAr6l0ugU663P935mAOsD_huscZ5AwwxuUGlLPyATqzaRrh4mefo7vu32-WP4mZ13S0XN4UuhUhFaY1uwVatFZrTWjSGGlvWpDdVY1lVsZaWPWmN5r2mSlRc1JRbVbOG9bXgFT9HlwffXOj3lPPlxk9hzJGSiaZusoCzfNUernTwMQawchdy0fAsKZF78HIjX4GXe_DyAD5rv77Rapf-_5iCctt3OSwPDpBBPDkIMmoHowbjQsYpjXfvcPkH8ZmrKg
CitedBy_id crossref_primary_10_3390_s22093389
crossref_primary_10_1016_j_measurement_2025_116745
crossref_primary_10_1109_ACCESS_2024_3519874
crossref_primary_10_1016_j_measurement_2023_113654
crossref_primary_10_1016_j_measurement_2023_112487
crossref_primary_10_1016_j_molliq_2023_121319
crossref_primary_10_1016_j_engappai_2022_105712
crossref_primary_10_1177_17298806241279608
crossref_primary_10_3390_app13127248
crossref_primary_10_1007_s00500_023_09088_7
crossref_primary_10_1109_JIOT_2023_3324966
crossref_primary_10_1109_TIM_2023_3265638
crossref_primary_10_1109_JSEN_2023_3302401
crossref_primary_10_1016_j_jestch_2025_101977
crossref_primary_10_1016_j_measurement_2023_113105
crossref_primary_10_3390_electronics12092006
crossref_primary_10_1016_j_measurement_2024_115203
crossref_primary_10_3390_app13105842
crossref_primary_10_1016_j_measurement_2023_113528
crossref_primary_10_1109_JSEN_2022_3216021
crossref_primary_10_1016_j_neunet_2022_09_001
crossref_primary_10_1109_JSEN_2022_3208200
crossref_primary_10_3390_drones9030171
crossref_primary_10_3390_aerospace10110923
crossref_primary_10_1016_j_asoc_2023_110945
crossref_primary_10_3390_s23094510
crossref_primary_10_1109_JSEN_2023_3309907
Cites_doi 10.1007/978-3-319-10605-2_54
10.1109/TIE.2020.3036243
10.3390/mi9120626
10.1109/TRO.2015.2463671
10.1109/ACCESS.2019.2929133
10.1109/IROS40897.2019.8968467
10.1109/TRO.2018.2853729
10.3390/s150922587
10.1109/CVPR42600.2020.00136
10.1109/CVPR.2017.195
10.3390/electronics10030222
10.1109/LRA.2018.2809510
10.1109/IRIS.2015.7451625
10.1109/ACCESS.2021.3049896
10.17671/gazibtd.419205
10.1007/s11044-014-9441-8
10.3390/robotics7030045
10.1109/ICRA40945.2020.9196885
10.1049/iet-com.2018.5260
10.1109/CRV50864.2020.00033
10.1109/LRA.2020.3010456
10.1109/IROS.2013.6696917
10.3390/s20174922
10.15607/RSS.2020.XVI.009
10.1109/ISMAR.2007.4538852
10.1016/j.asoc.2020.106311
10.3390/s21041313
10.1155/2021/2054828
10.1109/MSP.2011.941097
10.1109/LRA.2020.2970940
10.1109/LRA.2021.3058069
10.1177/0278364915620033
10.1177/0278364914554813
10.1109/ICCSPA.2019.8713728
10.3390/rs10071119
10.1109/InertialSensors.2014.7049479
10.1016/j.compgeo.2010.07.012
10.3390/s20164386
10.3390/rs13040772
10.1109/TRO.2019.2899783
10.1109/ICIT52682.2021.9491668
10.1109/ICRA.2014.6906584
10.1109/CEIT.2016.7929097
10.1109/IROS.2015.7353389
10.1038/s41598-020-74394-1
10.1016/j.ijleo.2021.166257
10.1109/CVPR.2015.7298594
10.1109/IROS.2004.1389727
10.1109/CVPR.2016.90
10.1109/ICIP42928.2021.9506523
10.1016/j.bspc.2021.102716
10.1109/LRA.2017.2653359
10.1109/TIM.2020.3024011
10.1109/ACCESS.2019.2961266
10.1109/LRA.2016.2521413
10.5772/56217
10.3390/s20154220
10.1016/j.bspc.2021.103216
10.1109/CVPR.2016.308
10.23919/SOFTCOM.2017.8115533
10.1109/CVPR.2018.00931
10.3390/s21051605
10.1007/s40903-015-0032-7
10.1109/TRO.2016.2597321
10.1177/0278364913491297
10.1016/j.jmp.2018.03.001
10.1148/radiol.2018180958
10.1109/CVPR.2016.350
10.1109/ISMAR.2017.18
10.1609/aaai.v31i1.11215
10.1016/j.ins.2021.05.015
10.1109/LRA.2018.2803211
10.1109/TRO.2017.2705103
10.1021/ac60214a047
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier Science Ltd. May 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. May 15, 2022
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2022.111030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2022_111030
S0263224122002974
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AAYWO
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
WUQ
XPP
EFKBS
ID FETCH-LOGICAL-c466t-4fdc9ef59f6c31768d1df470bd58f2552914b09dc3bc1a6536713fa7282b76353
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 08:44:31 EDT 2025
Tue Jul 01 04:38:11 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Sun Apr 06 06:54:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
EuRoC
Inertial image
Gaussian process regression
Visual inertial odometry
UAV
Denoising
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-4fdc9ef59f6c31768d1df470bd58f2552914b09dc3bc1a6536713fa7282b76353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hdl.handle.net/11492/6237
PQID 2687836732
PQPubID 2047460
ParticipantIDs proquest_journals_2687836732
crossref_primary_10_1016_j_measurement_2022_111030
crossref_citationtrail_10_1016_j_measurement_2022_111030
elsevier_sciencedirect_doi_10_1016_j_measurement_2022_111030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces, in: 2007 6th IEEE and ACM international symposium on mixed and augmented reality, IEEE, 2007, pp. 225–234.
M. Bloesch, S. Omari, M. Hutter, R. Siegwart, Robust visual inertial odometry using a direct EKF-based approach, in: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, 2015, pp. 298–304.
Wang, Ma, Chen, Ren, Lu (b0175) 2020
A. Zrelli, T. Ezzedine, Enhanced architecture for SHM system based on optical sensor and WSN, in: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), IEEE, 2017, pp. 1–6.
Chen, Zhu, Wang, Liu (b0440) 2019; 7
Campos, Elvira, Rodríguez, Montiel, Tardós (b0020) 2021
Weytjens, De Weerdt (b0235) 2020
N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, 2004, pp. 2149-2154.
Schafer (b0290) 2011; 28
Y. Almalioglu, M. Turan, A.E. Sari, M.R.U. Saputra, P.P. de Gusmão, A. Markham, N. Trigoni, Selfvio: Self-supervised deep monocular visual-inertial odometry and depth estimation, arXiv preprint arXiv:1911.09968, (2019).
Ferrera, Eudes, Moras, Sanfourche, Le Besnerais (b0455) 2021; 6
Li, Kaess, Eustice, Johnson-Roberson (b0070) 2018; 3
Jang, Yoo, Son, Kim, Kim (b0490) 2020; 5
Wang, Li, Yu, Gui, Li (b0090) 2020; 20
Xu, Liu, Li (b0085) 2021; 13
Taspinar, Cinar, Koklu (b0155) 2022; 30
Pal, Deswal (b0405) 2010; 37
Kizrak, Bolat (b0350) 2018; 11
Y. Jiao, G. Shi, T.D. Tran, Optical Flow Estimation via Motion Feature Recovery, arXiv preprint arXiv:2101.06333, (2021).
Mur-Artal, Tardós (b0125) 2017; 33
Dong, Zhao, Wu, Chang (b0335) 2020; 93
K.-W. Chiang, H. Hou, X. Niu, N. El-Sheimy, Improving the positioning accuracy of DGPS/MEMS IMU integrated systems utilizing cascade de-noising algorithm, in: Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), 2004, pp. 809–818.
Burri, Nikolic, Gohl, Schneider, Rehder, Omari, Achtelik, Siegwart (b0200) 2016; 35
Zrelli (b0045) 2019; 13
Qu, Yang, Zhang, Xie, Qiang, Chen (b0230) 2021; 21
Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Lituiev, Copeland, Aboian, Mari Aparici (b0355) 2019; 290
R. Clark, S. Wang, H. Wen, A. Markham, N. Trigoni, Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley, C. Stachniss, OverlapNet: Loop closing for LiDAR-based SLAM, arXiv preprint arXiv:2105.11344, (2021).
L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, arXiv preprint arXiv:1906.11435, (2019).
Aslan, Durdu, Yusefi, Sabanci, Sungur, Tutorial (b0005) 2021
Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (b0345) 2018; 10
RYZE, Tello, 2020.
Delmerico, Scaramuzza (b0470) 2018
S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, R. Siegwart, A robust and modular multi-sensor fusion approach applied to mav navigation, in: 2013 IEEE/RSJ international conference on intelligent robots and systems, IEEE, 2013, pp. 3923–3929.
C.K. Williams, C.E. Rasmussen, Gaussian processes for regression, (1996).
L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019, pp. 6906–6913.
C. Chen, B. Wang, C.X. Lu, N. Trigoni, A. Markham, A survey on deep learning for localization and mapping: Towards the age of spatial machine intelligence, arXiv preprint arXiv:2006.12567, (2020).
P. Li, T. Qin, B. Hu, F. Zhu, S. Shen, Monocular visual-inertial state estimation for mobile augmented reality, in: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 2017, pp. 11–21.
Aslan, Sabanci, Durdu (b0270) 2021; 68
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
A. Zrelli, T. Ezzedine, A comparative strategies of node deployment for Structural Health Monitoring, in: 2016 4th International Conference on Control Engineering & Information Technology (CEIT), IEEE, 2016, pp. 1–4.
Yousif, Bab-Hadiashar, Hoseinnezhad (b0330) 2015; 1
Yang, Wei, Jeon, Bencatel, Girard (b0495) 2017
M. Karaim, A. Noureldin, T.B. Karamat, Low-cost IMU Data Denoising using Savitzky-Golay Filters, in: 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA), 2019, pp. 1–5.
D. Sun, X. Yang, M.-Y. Liu, J. Kautz, Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8934–8943.
Richter, Toledano-Ayala (b0385) 2015; 15
Servières, Renaudin, Dupuis, Antigny (b0015) 2021; 2021
Jiang, Yuan, Zhang, Zhang (b0445) 2021; 68
Zrelli (b0065) 2021
Brossard, Bonnabel, Barrau (b0275) 2020; 5
A. Canziani, A. Paszke, E. Culurciello, An analysis of deep neural network models for practical applications, arXiv preprint arXiv:1605.07678, (2016).
Ban, Wang, Chen, Wang, Xiao (b0145) 2021; 70
Krizhevsky, Sutskever, Hinton (b0240) 2012; 25
Mishra, Singh, Chaudhary (b0365) 2021
Koklu, Cinar, Taspinar (b0150) 2022; 71
Kaiser, Martinelli, Fontana, Scaramuzza (b0410) 2017; 2
Williams, Rasmussen (b0295) 2006
B. Huang, J. Zhao, J. Liu, A survey of simultaneous localization and mapping, arXiv preprint arXiv:1909.05214, (2019).
Le Gentil, Vidal-Calleja, Huang (b0300) 2020; 5
Stumberg, Usenko, Cremers (b0430) 2018
Kang, Park (b0485) 2015; 34
Fu, Zhang, Chen, Peng, Yang, Chen (b0040) 2013; 10
Fayyad, Jaradat, Gruyer, Najjaran (b0225) 2020; 20
Cao, Ling, Xiao (b0280) 2020; 20
Mohamed, Haghbayan, Westerlund, Heikkonen, Tenhunen, Plosila (b0035) 2019; 7
Qin, Li, Shen (b0420) 2018; 34
Yuan, Lai, Lyu, Shi, Zhao, Huang (b0095) 2018; 9
C. Li, S.L. Waslander, Towards End-to-end Learning of Visual Inertial Odometry with an EKF, in: 2020 17th Conference on Computer and Robot Vision (CRV), IEEE, 2020, pp. 190–197.
Gomez-Ojeda, Moreno, Zuniga-Noel, Scaramuzza, Gonzalez-Jimenez (b0450) 2019; 35
R. Li, J. Liu, L. Zhang, Y. Hang, LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments, in: 2014 DGON inertial sensors and systems (ISS), IEEE, 2014, pp. 1–15.
Forster, Carlone, Dellaert, Scaramuzza (b0435) 2017; 33
C. Forster, M. Pizzoli, D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, in: 2014 IEEE international conference on robotics and automation (ICRA), IEEE, 2014, pp. 15–22.
J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, in: European conference on computer vision, Springer, 2014, pp. 834–849.
Cinar, Koklu (b0160) 2021; 35
M. Khaddour, S. Shidlovskiy, D. Shashev, M. Mondal, Survey of Denoising Methods for Inertial Sensor Measurements, in: 2021 International Conference on Information Technology (ICIT), IEEE, 2021, pp. 787–790.
Mur-Artal, Montiel, Tardos (b0120) 2015; 31
Mur-Artal, Tardos (b0130) 2017; 2
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
Zhao, Huang, Wei, Hu (b0165) 2021; 10
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.
Jiang, Cheng, Yi, Liu (b0395) 2021; 569
K. Kamarudin, S. Mamduh, A. Yeon, R. Visvanathan, A. Shakaff, A. Zakaria, L. Kamarudin, N. Rahim, Improving performance of 2D SLAM methods by complementing Kinect with laser scanner, in: 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), IEEE, 2015, pp. 278–283.
Geiger, Lenz, Stiller, Urtasun (b0190) 2013; 32
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213–3223.
Costante, Ciarfuglia (b0320) 2018; 3
ROS, 2020.
Khlaifi, Zrelli, Ezzedine (b0060) 2021; 229
Chen, Zhu, Li, You (b0180) 2018; 7
F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.
Yusefi, Durdu, Aslan, Sungur (b0475) 2021; 9
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014).
Leutenegger, Lynen, Bosse, Siegwart, Furgale (b0415) 2015; 34
N. Yang, L.V. Stumberg, R. Wang, D. Cremers, D3vo: Deep depth, deep pose and deep uncertainty for monocular visual odometry, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1281–1292.
Noack, Doerk, Li, Streit, Vaia, Yager, Fukuto (b0390) 2020; 10
Pandey, Pena, Byrne, Moloney (b0220) 2021; 21
Schulz, Speekenbrink, Krause (b0400) 2018; 85
Mourikis, Roumeliotis (b0100) 2007
A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an open-source library for real-time metric-semantic localization and mapping, in: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 1689–1696.
Savitzky, Golay (b0285) 1964; 36
Kizrak (10.1016/j.measurement.2022.111030_b0350) 2018; 11
Schafer (10.1016/j.measurement.2022.111030_b0290) 2011; 28
Qu (10.1016/j.measurement.2022.111030_b0230) 2021; 21
Forster (10.1016/j.measurement.2022.111030_b0435) 2017; 33
10.1016/j.measurement.2022.111030_b0315
Zhao (10.1016/j.measurement.2022.111030_b0165) 2021; 10
10.1016/j.measurement.2022.111030_b0210
Mur-Artal (10.1016/j.measurement.2022.111030_b0125) 2017; 33
10.1016/j.measurement.2022.111030_b0055
Servières (10.1016/j.measurement.2022.111030_b0015) 2021; 2021
10.1016/j.measurement.2022.111030_b0050
Pandey (10.1016/j.measurement.2022.111030_b0220) 2021; 21
10.1016/j.measurement.2022.111030_b0170
Leutenegger (10.1016/j.measurement.2022.111030_b0415) 2015; 34
Ban (10.1016/j.measurement.2022.111030_b0145) 2021; 70
Ferrera (10.1016/j.measurement.2022.111030_b0455) 2021; 6
Mahdianpari (10.1016/j.measurement.2022.111030_b0345) 2018; 10
Li (10.1016/j.measurement.2022.111030_b0070) 2018; 3
Noack (10.1016/j.measurement.2022.111030_b0390) 2020; 10
Mohamed (10.1016/j.measurement.2022.111030_b0035) 2019; 7
Yousif (10.1016/j.measurement.2022.111030_b0330) 2015; 1
10.1016/j.measurement.2022.111030_b0205
10.1016/j.measurement.2022.111030_b0325
10.1016/j.measurement.2022.111030_b0265
Koklu (10.1016/j.measurement.2022.111030_b0150) 2022; 71
10.1016/j.measurement.2022.111030_b0140
10.1016/j.measurement.2022.111030_b0380
10.1016/j.measurement.2022.111030_b0260
Yang (10.1016/j.measurement.2022.111030_b0495) 2017
Brossard (10.1016/j.measurement.2022.111030_b0275) 2020; 5
Yusefi (10.1016/j.measurement.2022.111030_b0475) 2021; 9
Mur-Artal (10.1016/j.measurement.2022.111030_b0120) 2015; 31
10.1016/j.measurement.2022.111030_b0135
Zrelli (10.1016/j.measurement.2022.111030_b0045) 2019; 13
10.1016/j.measurement.2022.111030_b0310
10.1016/j.measurement.2022.111030_b0030
Qin (10.1016/j.measurement.2022.111030_b0420) 2018; 34
Burri (10.1016/j.measurement.2022.111030_b0200) 2016; 35
Richter (10.1016/j.measurement.2022.111030_b0385) 2015; 15
Zrelli (10.1016/j.measurement.2022.111030_b0065) 2021
10.1016/j.measurement.2022.111030_b0425
Delmerico (10.1016/j.measurement.2022.111030_b0470) 2018
10.1016/j.measurement.2022.111030_b0305
10.1016/j.measurement.2022.111030_b0025
Mishra (10.1016/j.measurement.2022.111030_b0365) 2021
10.1016/j.measurement.2022.111030_b0360
Mourikis (10.1016/j.measurement.2022.111030_b0100) 2007
Chen (10.1016/j.measurement.2022.111030_b0180) 2018; 7
10.1016/j.measurement.2022.111030_b0480
10.1016/j.measurement.2022.111030_b0080
Aslan (10.1016/j.measurement.2022.111030_b0270) 2021; 68
Cao (10.1016/j.measurement.2022.111030_b0280) 2020; 20
10.1016/j.measurement.2022.111030_b0115
Chen (10.1016/j.measurement.2022.111030_b0440) 2019; 7
Khlaifi (10.1016/j.measurement.2022.111030_b0060) 2021; 229
10.1016/j.measurement.2022.111030_b0375
10.1016/j.measurement.2022.111030_b0255
10.1016/j.measurement.2022.111030_b0010
10.1016/j.measurement.2022.111030_b0250
10.1016/j.measurement.2022.111030_b0370
Stumberg (10.1016/j.measurement.2022.111030_b0430) 2018
Le Gentil (10.1016/j.measurement.2022.111030_b0300) 2020; 5
Xu (10.1016/j.measurement.2022.111030_b0085) 2021; 13
Fu (10.1016/j.measurement.2022.111030_b0040) 2013; 10
Jiang (10.1016/j.measurement.2022.111030_b0445) 2021; 68
Yuan (10.1016/j.measurement.2022.111030_b0095) 2018; 9
10.1016/j.measurement.2022.111030_b0245
10.1016/j.measurement.2022.111030_b0340
Wang (10.1016/j.measurement.2022.111030_b0175) 2020
10.1016/j.measurement.2022.111030_b0185
Geiger (10.1016/j.measurement.2022.111030_b0190) 2013; 32
10.1016/j.measurement.2022.111030_b0460
Williams (10.1016/j.measurement.2022.111030_b0295) 2006
Pal (10.1016/j.measurement.2022.111030_b0405) 2010; 37
Krizhevsky (10.1016/j.measurement.2022.111030_b0240) 2012; 25
Mur-Artal (10.1016/j.measurement.2022.111030_b0130) 2017; 2
Fayyad (10.1016/j.measurement.2022.111030_b0225) 2020; 20
Schulz (10.1016/j.measurement.2022.111030_b0400) 2018; 85
Jang (10.1016/j.measurement.2022.111030_b0490) 2020; 5
Jiang (10.1016/j.measurement.2022.111030_b0395) 2021; 569
Ding (10.1016/j.measurement.2022.111030_b0355) 2019; 290
10.1016/j.measurement.2022.111030_b0215
Dong (10.1016/j.measurement.2022.111030_b0335) 2020; 93
10.1016/j.measurement.2022.111030_b0110
10.1016/j.measurement.2022.111030_b0195
10.1016/j.measurement.2022.111030_b0075
Kang (10.1016/j.measurement.2022.111030_b0485) 2015; 34
Aslan (10.1016/j.measurement.2022.111030_b0005) 2021
Taspinar (10.1016/j.measurement.2022.111030_b0155) 2022; 30
Gomez-Ojeda (10.1016/j.measurement.2022.111030_b0450) 2019; 35
Wang (10.1016/j.measurement.2022.111030_b0090) 2020; 20
Kaiser (10.1016/j.measurement.2022.111030_b0410) 2017; 2
Savitzky (10.1016/j.measurement.2022.111030_b0285) 1964; 36
Campos (10.1016/j.measurement.2022.111030_b0020) 2021
Cinar (10.1016/j.measurement.2022.111030_b0160) 2021; 35
Weytjens (10.1016/j.measurement.2022.111030_b0235) 2020
10.1016/j.measurement.2022.111030_b0105
10.1016/j.measurement.2022.111030_b0465
Costante (10.1016/j.measurement.2022.111030_b0320) 2018; 3
References_xml – reference: F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.
– volume: 85
  start-page: 1
  year: 2018
  end-page: 16
  ident: b0400
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
– volume: 32
  start-page: 1231
  year: 2013
  end-page: 1237
  ident: b0190
  article-title: Vision meets robotics: The kitti dataset
  publication-title: Int. J. Robot. Res.
– volume: 37
  start-page: 942
  year: 2010
  end-page: 947
  ident: b0405
  article-title: Modelling pile capacity using Gaussian process regression
  publication-title: Comput. Geotech.
– volume: 15
  start-page: 22587
  year: 2015
  end-page: 22615
  ident: b0385
  article-title: Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
  publication-title: Sensors
– volume: 35
  start-page: 229
  year: 2021
  end-page: 243
  ident: b0160
  article-title: Determination of Effective and Specific Physical Features of Rice Varieties by Computer Vision In Exterior Quality Inspection
  publication-title: Selcuk J. Agric. Food Sci.
– start-page: 2582
  year: 2017
  end-page: 2587
  ident: b0495
  article-title: Real-time optimal path planning and wind estimation using Gaussian process regression for precision airdrop
  publication-title: 2017 American Control Conference (ACC)
– volume: 5
  start-page: 4796
  year: 2020
  end-page: 4803
  ident: b0275
  article-title: Denoising imu gyroscopes with deep learning for open-loop attitude estimation
  publication-title: IEEE Robot. Autom. Lett.
– volume: 290
  start-page: 456
  year: 2019
  end-page: 464
  ident: b0355
  article-title: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain
  publication-title: Radiology
– reference: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213–3223.
– volume: 1
  start-page: 289
  year: 2015
  end-page: 311
  ident: b0330
  article-title: An overview to visual odometry and visual SLAM: Applications to mobile robotics
  publication-title: Intell. Ind. Syst.
– start-page: 1
  year: 2021
  end-page: 17
  ident: b0020
  article-title: ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
  publication-title: IEEE Trans. Robot.
– volume: 2021
  year: 2021
  ident: b0015
  article-title: Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking
  publication-title: J. Sens.
– volume: 7
  start-page: 185408
  year: 2019
  end-page: 185421
  ident: b0440
  article-title: A Stereo Visual-Inertial SLAM Approach for Indoor Mobile Robots in Unknown Environments Without Occlusions
  publication-title: IEEE Access
– volume: 10
  start-page: 1119
  year: 2018
  ident: b0345
  article-title: Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery
  publication-title: Remote Sens.
– volume: 21
  start-page: 1313
  year: 2021
  ident: b0220
  article-title: Leveraging deep learning for visual odometry using optical flow
  publication-title: Sensors
– reference: A. Zrelli, T. Ezzedine, A comparative strategies of node deployment for Structural Health Monitoring, in: 2016 4th International Conference on Control Engineering & Information Technology (CEIT), IEEE, 2016, pp. 1–4.
– reference: C. Forster, M. Pizzoli, D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, in: 2014 IEEE international conference on robotics and automation (ICRA), IEEE, 2014, pp. 15–22.
– reference: N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, 2004, pp. 2149-2154.
– volume: 13
  start-page: 772
  year: 2021
  ident: b0085
  article-title: Robust Visual-Inertial Navigation System for Low Precision Sensors under Indoor and Outdoor Environments
  publication-title: Remote Sens.
– start-page: 321
  year: 2020
  end-page: 333
  ident: b0235
  article-title: Process outcome prediction: CNN vs. LSTM (with attention)
  publication-title: International Conference on Business Process Management
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b0285
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Analyt. Chem.
– reference: Y. Jiao, G. Shi, T.D. Tran, Optical Flow Estimation via Motion Feature Recovery, arXiv preprint arXiv:2101.06333, (2021).
– volume: 13
  start-page: 3012
  year: 2019
  end-page: 3019
  ident: b0045
  article-title: Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems
  publication-title: IET Commun.
– volume: 5
  start-page: 5905
  year: 2020
  end-page: 5912
  ident: b0490
  article-title: Multi-Robot Active Sensing and Environmental Model Learning With Distributed Gaussian Process
  publication-title: IEEE Robot. Autom. Lett.
– volume: 28
  start-page: 111
  year: 2011
  end-page: 117
  ident: b0290
  article-title: What is a Savitzky-Golay filter?[lecture notes]
  publication-title: IEEE Signal Process. Mag.
– volume: 5
  start-page: 2108
  year: 2020
  end-page: 2114
  ident: b0300
  article-title: Gaussian process preintegration for inertial-aided state estimation
  publication-title: IEEE Robot. Autom. Lett.
– volume: 11
  start-page: 263
  year: 2018
  end-page: 286
  ident: b0350
  article-title: Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma
  publication-title: Bilişim Teknolojileri Dergisi
– volume: 21
  start-page: 1605
  year: 2021
  ident: b0230
  article-title: An Outline of Multi-Sensor Fusion Methods for Mobile Agents Indoor Navigation
  publication-title: Sensors
– year: 2006
  ident: b0295
  article-title: Gaussian processes for machine learning
– start-page: 2510
  year: 2018
  end-page: 2517
  ident: b0430
  article-title: Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization
  publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA)
– reference: N. Yang, L.V. Stumberg, R. Wang, D. Cremers, D3vo: Deep depth, deep pose and deep uncertainty for monocular visual odometry, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1281–1292.
– volume: 35
  start-page: 1157
  year: 2016
  end-page: 1163
  ident: b0200
  article-title: The EuRoC micro aerial vehicle datasets
  publication-title: Int. J. Robot. Res.
– reference: S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, R. Siegwart, A robust and modular multi-sensor fusion approach applied to mav navigation, in: 2013 IEEE/RSJ international conference on intelligent robots and systems, IEEE, 2013, pp. 3923–3929.
– volume: 68
  start-page: 102716
  year: 2021
  ident: b0270
  article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: numeric to image
  publication-title: Biomed. Signal Process. Control
– reference: P. Li, T. Qin, B. Hu, F. Zhu, S. Shen, Monocular visual-inertial state estimation for mobile augmented reality, in: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 2017, pp. 11–21.
– year: 2020
  ident: b0175
  article-title: Approaches challenges and applications for deep visual odometry toward to complicated and emerging areas
  publication-title: IEEE Trans. Cogn. Developm. Syst.
– reference: R. Clark, S. Wang, H. Wen, A. Markham, N. Trigoni, Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
– volume: 34
  start-page: 1004
  year: 2018
  end-page: 1020
  ident: b0420
  article-title: Vins-mono: A robust and versatile monocular visual-inertial state estimator
  publication-title: IEEE Trans. Robot.
– reference: D. Sun, X. Yang, M.-Y. Liu, J. Kautz, Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8934–8943.
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
– volume: 7
  start-page: 97466
  year: 2019
  end-page: 97486
  ident: b0035
  article-title: A Survey on Odometry for Autonomous Navigation Systems
  publication-title: IEEE Access
– volume: 9
  start-page: 10054
  year: 2021
  end-page: 10069
  ident: b0475
  article-title: LSTM and Filter Based Comparison Analysis for Indoor Global Localization in UAVs
  publication-title: IEEE Access
– reference: C.K. Williams, C.E. Rasmussen, Gaussian processes for regression, (1996).
– reference: ROS, 2020.
– volume: 2
  start-page: 18
  year: 2017
  end-page: 25
  ident: b0410
  article-title: Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation
  publication-title: IEEE Robot. Autom. Lett.
– reference: RYZE, Tello, 2020.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
– reference: A. Canziani, A. Paszke, E. Culurciello, An analysis of deep neural network models for practical applications, arXiv preprint arXiv:1605.07678, (2016).
– start-page: 227
  year: 2021
  end-page: 269
  ident: b0005
  article-title: Mobile Robotics, SLAM, Bayesian Filter, Keyframe Bundle Adjustment and ROS Applications
  publication-title: Robot Operating System (ROS): The Complete Reference (Volume 6)
– volume: 70
  start-page: 1
  year: 2021
  end-page: 19
  ident: b0145
  article-title: Monocular visual odometry based on depth and optical flow using deep learning
  publication-title: IEEE Trans. Instrument. Meas.
– volume: 10
  start-page: 17663
  year: 2020
  ident: b0390
  article-title: Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels
  publication-title: Sci. Rep.
– reference: Y. Almalioglu, M. Turan, A.E. Sari, M.R.U. Saputra, P.P. de Gusmão, A. Markham, N. Trigoni, Selfvio: Self-supervised deep monocular visual-inertial odometry and depth estimation, arXiv preprint arXiv:1911.09968, (2019).
– volume: 34
  start-page: 314
  year: 2015
  end-page: 334
  ident: b0415
  article-title: Keyframe-based visual–inertial odometry using nonlinear optimization
  publication-title: Int. J. Robot. Res.
– reference: M. Karaim, A. Noureldin, T.B. Karamat, Low-cost IMU Data Denoising using Savitzky-Golay Filters, in: 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA), 2019, pp. 1–5.
– start-page: 3565
  year: 2007
  end-page: 3572
  ident: b0100
  article-title: A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation
  publication-title: 2007 Proceedings IEEE International Conference on Robotics and Automation
– reference: M. Khaddour, S. Shidlovskiy, D. Shashev, M. Mondal, Survey of Denoising Methods for Inertial Sensor Measurements, in: 2021 International Conference on Information Technology (ICIT), IEEE, 2021, pp. 787–790.
– volume: 93
  year: 2020
  ident: b0335
  article-title: Inception v3 based cervical cell classification combined with artificially extracted features
  publication-title: Appl. Soft Comput.
– volume: 35
  start-page: 734
  year: 2019
  end-page: 746
  ident: b0450
  article-title: PL-SLAM: A stereo SLAM system through the combination of points and line segments
  publication-title: IEEE Trans. Robot.
– reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.
– volume: 10
  start-page: 222
  year: 2021
  ident: b0165
  article-title: Ego-Motion Estimation Using Recurrent Convolutional Neural Networks through Optical Flow Learning
  publication-title: Electronics
– volume: 9
  start-page: 626
  year: 2018
  ident: b0095
  article-title: A novel fault-tolerant navigation and positioning method with stereo-camera/micro electro mechanical systems inertial measurement unit (MEMS-IMU) in hostile environment
  publication-title: Micromachines
– volume: 2
  start-page: 796
  year: 2017
  end-page: 803
  ident: b0130
  article-title: Visual-inertial monocular SLAM with map reuse
  publication-title: IEEE Robot. Autom. Lett.
– volume: 30
  start-page: 73
  year: 2022
  end-page: 88
  ident: b0155
  article-title: Classification by a stacking model using CNN features for COVID-19 infection diagnosis
  publication-title: J. X-ray Sci. Technol.
– reference: L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019, pp. 6906–6913.
– volume: 20
  start-page: 4386
  year: 2020
  ident: b0090
  article-title: VIMO: A Visual-Inertial-Magnetic Navigation System Based on Non-Linear Optimization
  publication-title: Sensors
– reference: X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley, C. Stachniss, OverlapNet: Loop closing for LiDAR-based SLAM, arXiv preprint arXiv:2105.11344, (2021).
– volume: 33
  start-page: 1
  year: 2017
  end-page: 21
  ident: b0435
  article-title: On-Manifold Preintegration for Real-Time Visual-Inertial Odometry
  publication-title: IEEE Trans. Robot.
– volume: 31
  start-page: 1147
  year: 2015
  end-page: 1163
  ident: b0120
  article-title: ORB-SLAM: a versatile and accurate monocular SLAM system
  publication-title: IEEE Trans. Robot.
– volume: 229
  start-page: 166257
  year: 2021
  ident: b0060
  article-title: Optical fiber sensors in border detection application: Temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio
  publication-title: Optik
– reference: K. Kamarudin, S. Mamduh, A. Yeon, R. Visvanathan, A. Shakaff, A. Zakaria, L. Kamarudin, N. Rahim, Improving performance of 2D SLAM methods by complementing Kinect with laser scanner, in: 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), IEEE, 2015, pp. 278–283.
– reference: B. Huang, J. Zhao, J. Liu, A survey of simultaneous localization and mapping, arXiv preprint arXiv:1909.05214, (2019).
– volume: 71
  start-page: 103216
  year: 2022
  ident: b0150
  article-title: CNN-based bi-directional and directional long-short term memory network for determination of face mask
  publication-title: Biomed. Signal Process. Control
– reference: R. Li, J. Liu, L. Zhang, Y. Hang, LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments, in: 2014 DGON inertial sensors and systems (ISS), IEEE, 2014, pp. 1–15.
– reference: C. Chen, B. Wang, C.X. Lu, N. Trigoni, A. Markham, A survey on deep learning for localization and mapping: Towards the age of spatial machine intelligence, arXiv preprint arXiv:2006.12567, (2020).
– volume: 7
  start-page: 45
  year: 2018
  ident: b0180
  article-title: A review of visual-inertial simultaneous localization and mapping from filtering-based and optimization-based perspectives
  publication-title: Robotics
– reference: J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, in: European conference on computer vision, Springer, 2014, pp. 834–849.
– volume: 10
  start-page: 203
  year: 2013
  ident: b0040
  article-title: Precise localization of mobile robots via odometry and wireless sensor network
  publication-title: Int. J. Adv. Robot. Syst.
– reference: G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces, in: 2007 6th IEEE and ACM international symposium on mixed and augmented reality, IEEE, 2007, pp. 225–234.
– reference: M. Bloesch, S. Omari, M. Hutter, R. Siegwart, Robust visual inertial odometry using a direct EKF-based approach, in: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, 2015, pp. 298–304.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0240
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– reference: L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, arXiv preprint arXiv:1906.11435, (2019).
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014).
– start-page: 2502
  year: 2018
  end-page: 2509
  ident: b0470
  article-title: A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots
  publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA)
– year: 2021
  ident: b0365
  article-title: A hybrid noise removal algorithm for MEMS sensors
  publication-title: Mater. Today: Proc.
– volume: 68
  start-page: 11212
  year: 2021
  end-page: 11222
  ident: b0445
  article-title: DVIO: An Optimization-Based Tightly Coupled Direct Visual-Inertial Odometry
  publication-title: IEEE Trans. Ind. Electron.
– reference: K.-W. Chiang, H. Hou, X. Niu, N. El-Sheimy, Improving the positioning accuracy of DGPS/MEMS IMU integrated systems utilizing cascade de-noising algorithm, in: Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), 2004, pp. 809–818.
– volume: 569
  start-page: 728
  year: 2021
  end-page: 745
  ident: b0395
  article-title: An efficient constrained global optimization algorithm with a clustering-assisted multiobjective infill criterion using Gaussian process regression for expensive problems
  publication-title: Inform. Sci.
– reference: A. Zrelli, T. Ezzedine, Enhanced architecture for SHM system based on optical sensor and WSN, in: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), IEEE, 2017, pp. 1–6.
– volume: 33
  start-page: 1255
  year: 2017
  end-page: 1262
  ident: b0125
  article-title: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras
  publication-title: IEEE Trans. Robot.
– volume: 3
  start-page: 2330
  year: 2018
  end-page: 2337
  ident: b0070
  article-title: Pose-graph SLAM using forward-looking sonar
  publication-title: IEEE Robot. Autom. Lett.
– reference: C. Li, S.L. Waslander, Towards End-to-end Learning of Visual Inertial Odometry with an EKF, in: 2020 17th Conference on Computer and Robot Vision (CRV), IEEE, 2020, pp. 190–197.
– volume: 34
  start-page: 307
  year: 2015
  end-page: 325
  ident: b0485
  article-title: Motion optimization using Gaussian process dynamical models
  publication-title: Multibody Syst. Dyn.
– volume: 6
  start-page: 1399
  year: 2021
  end-page: 1406
  ident: b0455
  article-title: OV
  publication-title: IEEE Robot. Autom. Lett.
– volume: 3
  start-page: 1735
  year: 2018
  end-page: 1742
  ident: b0320
  article-title: LS-VO: Learning Dense Optical Subspace for Robust Visual Odometry Estimation
  publication-title: IEEE Robot. Autom. Lett.
– start-page: 1
  year: 2021
  end-page: 24
  ident: b0065
  article-title: Hardware, Software Platforms, Operating Systems and Routing Protocols for Internet of Things Applications
  publication-title: Wireless Personal Commun.
– reference: A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an open-source library for real-time metric-semantic localization and mapping, in: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 1689–1696.
– volume: 20
  start-page: 4922
  year: 2020
  ident: b0280
  article-title: Study on the influence of image noise on monocular feature-based visual slam based on ffdnet
  publication-title: Sensors
– volume: 20
  start-page: 4220
  year: 2020
  ident: b0225
  article-title: Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review
  publication-title: Sensors
– ident: 10.1016/j.measurement.2022.111030_b0135
  doi: 10.1007/978-3-319-10605-2_54
– volume: 68
  start-page: 11212
  issue: 11
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0445
  article-title: DVIO: An Optimization-Based Tightly Coupled Direct Visual-Inertial Odometry
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3036243
– volume: 9
  start-page: 626
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0095
  article-title: A novel fault-tolerant navigation and positioning method with stereo-camera/micro electro mechanical systems inertial measurement unit (MEMS-IMU) in hostile environment
  publication-title: Micromachines
  doi: 10.3390/mi9120626
– volume: 31
  start-page: 1147
  year: 2015
  ident: 10.1016/j.measurement.2022.111030_b0120
  article-title: ORB-SLAM: a versatile and accurate monocular SLAM system
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2015.2463671
– volume: 7
  start-page: 97466
  year: 2019
  ident: 10.1016/j.measurement.2022.111030_b0035
  article-title: A Survey on Odometry for Autonomous Navigation Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929133
– ident: 10.1016/j.measurement.2022.111030_b0030
  doi: 10.1109/IROS40897.2019.8968467
– volume: 34
  start-page: 1004
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0420
  article-title: Vins-mono: A robust and versatile monocular visual-inertial state estimator
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2018.2853729
– volume: 15
  start-page: 22587
  year: 2015
  ident: 10.1016/j.measurement.2022.111030_b0385
  article-title: Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
  publication-title: Sensors
  doi: 10.3390/s150922587
– start-page: 321
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0235
  article-title: Process outcome prediction: CNN vs. LSTM (with attention)
– ident: 10.1016/j.measurement.2022.111030_b0025
  doi: 10.1109/CVPR42600.2020.00136
– year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0175
  article-title: Approaches challenges and applications for deep visual odometry toward to complicated and emerging areas
  publication-title: IEEE Trans. Cogn. Developm. Syst.
– ident: 10.1016/j.measurement.2022.111030_b0260
  doi: 10.1109/CVPR.2017.195
– ident: 10.1016/j.measurement.2022.111030_b0480
– start-page: 2510
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0430
  article-title: Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization
– volume: 10
  start-page: 222
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0165
  article-title: Ego-Motion Estimation Using Recurrent Convolutional Neural Networks through Optical Flow Learning
  publication-title: Electronics
  doi: 10.3390/electronics10030222
– volume: 3
  start-page: 2330
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0070
  article-title: Pose-graph SLAM using forward-looking sonar
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2809510
– ident: 10.1016/j.measurement.2022.111030_b0080
  doi: 10.1109/IRIS.2015.7451625
– start-page: 2582
  year: 2017
  ident: 10.1016/j.measurement.2022.111030_b0495
  article-title: Real-time optimal path planning and wind estimation using Gaussian process regression for precision airdrop
– volume: 9
  start-page: 10054
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0475
  article-title: LSTM and Filter Based Comparison Analysis for Indoor Global Localization in UAVs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049896
– volume: 11
  start-page: 263
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0350
  article-title: Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma
  publication-title: Bilişim Teknolojileri Dergisi
  doi: 10.17671/gazibtd.419205
– volume: 34
  start-page: 307
  issue: 4
  year: 2015
  ident: 10.1016/j.measurement.2022.111030_b0485
  article-title: Motion optimization using Gaussian process dynamical models
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-014-9441-8
– volume: 7
  start-page: 45
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0180
  article-title: A review of visual-inertial simultaneous localization and mapping from filtering-based and optimization-based perspectives
  publication-title: Robotics
  doi: 10.3390/robotics7030045
– ident: 10.1016/j.measurement.2022.111030_b0170
– ident: 10.1016/j.measurement.2022.111030_b0460
  doi: 10.1109/ICRA40945.2020.9196885
– volume: 13
  start-page: 3012
  issue: 18
  year: 2019
  ident: 10.1016/j.measurement.2022.111030_b0045
  article-title: Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2018.5260
– start-page: 3565
  year: 2007
  ident: 10.1016/j.measurement.2022.111030_b0100
  article-title: A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation
– ident: 10.1016/j.measurement.2022.111030_b0465
  doi: 10.1109/CRV50864.2020.00033
– volume: 5
  start-page: 5905
  issue: 4
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0490
  article-title: Multi-Robot Active Sensing and Environmental Model Learning With Distributed Gaussian Process
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3010456
– ident: 10.1016/j.measurement.2022.111030_b0425
  doi: 10.1109/IROS.2013.6696917
– volume: 20
  start-page: 4922
  issue: 17
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0280
  article-title: Study on the influence of image noise on monocular feature-based visual slam based on ffdnet
  publication-title: Sensors
  doi: 10.3390/s20174922
– ident: 10.1016/j.measurement.2022.111030_b0010
  doi: 10.15607/RSS.2020.XVI.009
– ident: 10.1016/j.measurement.2022.111030_b0110
  doi: 10.1109/ISMAR.2007.4538852
– volume: 93
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0335
  article-title: Inception v3 based cervical cell classification combined with artificially extracted features
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106311
– volume: 21
  start-page: 1313
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0220
  article-title: Leveraging deep learning for visual odometry using optical flow
  publication-title: Sensors
  doi: 10.3390/s21041313
– volume: 2021
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0015
  article-title: Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking
  publication-title: J. Sens.
  doi: 10.1155/2021/2054828
– volume: 28
  start-page: 111
  issue: 4
  year: 2011
  ident: 10.1016/j.measurement.2022.111030_b0290
  article-title: What is a Savitzky-Golay filter?[lecture notes]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2011.941097
– volume: 5
  start-page: 2108
  issue: 2
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0300
  article-title: Gaussian process preintegration for inertial-aided state estimation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2970940
– volume: 6
  start-page: 1399
  issue: 2
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0455
  article-title: OV2SLAM: A Fully Online and Versatile Visual SLAM for Real-Time Applications
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3058069
– volume: 35
  start-page: 1157
  year: 2016
  ident: 10.1016/j.measurement.2022.111030_b0200
  article-title: The EuRoC micro aerial vehicle datasets
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364915620033
– volume: 34
  start-page: 314
  issue: 3
  year: 2015
  ident: 10.1016/j.measurement.2022.111030_b0415
  article-title: Keyframe-based visual–inertial odometry using nonlinear optimization
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914554813
– ident: 10.1016/j.measurement.2022.111030_b0375
  doi: 10.1109/ICCSPA.2019.8713728
– volume: 10
  start-page: 1119
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0345
  article-title: Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10071119
– ident: 10.1016/j.measurement.2022.111030_b0075
  doi: 10.1109/InertialSensors.2014.7049479
– ident: 10.1016/j.measurement.2022.111030_b0360
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.measurement.2022.111030_b0240
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 37
  start-page: 942
  issue: 7-8
  year: 2010
  ident: 10.1016/j.measurement.2022.111030_b0405
  article-title: Modelling pile capacity using Gaussian process regression
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2010.07.012
– volume: 5
  start-page: 4796
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0275
  article-title: Denoising imu gyroscopes with deep learning for open-loop attitude estimation
  publication-title: IEEE Robot. Autom. Lett.
– volume: 20
  start-page: 4386
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0090
  article-title: VIMO: A Visual-Inertial-Magnetic Navigation System Based on Non-Linear Optimization
  publication-title: Sensors
  doi: 10.3390/s20164386
– volume: 13
  start-page: 772
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0085
  article-title: Robust Visual-Inertial Navigation System for Low Precision Sensors under Indoor and Outdoor Environments
  publication-title: Remote Sens.
  doi: 10.3390/rs13040772
– volume: 35
  start-page: 734
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2022.111030_b0450
  article-title: PL-SLAM: A stereo SLAM system through the combination of points and line segments
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2019.2899783
– ident: 10.1016/j.measurement.2022.111030_b0315
– ident: 10.1016/j.measurement.2022.111030_b0370
  doi: 10.1109/ICIT52682.2021.9491668
– ident: 10.1016/j.measurement.2022.111030_b0140
  doi: 10.1109/ICRA.2014.6906584
– ident: 10.1016/j.measurement.2022.111030_b0050
  doi: 10.1109/CEIT.2016.7929097
– ident: 10.1016/j.measurement.2022.111030_b0105
  doi: 10.1109/IROS.2015.7353389
– ident: 10.1016/j.measurement.2022.111030_b0380
– volume: 10
  start-page: 17663
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0390
  article-title: Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74394-1
– ident: 10.1016/j.measurement.2022.111030_b0305
– start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0065
  article-title: Hardware, Software Platforms, Operating Systems and Routing Protocols for Internet of Things Applications
  publication-title: Wireless Personal Commun.
– volume: 229
  start-page: 166257
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0060
  article-title: Optical fiber sensors in border detection application: Temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166257
– ident: 10.1016/j.measurement.2022.111030_b0210
  doi: 10.1109/IROS40897.2019.8968467
– ident: 10.1016/j.measurement.2022.111030_b0250
  doi: 10.1109/CVPR.2015.7298594
– ident: 10.1016/j.measurement.2022.111030_b0310
  doi: 10.1109/IROS.2004.1389727
– ident: 10.1016/j.measurement.2022.111030_b0265
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.measurement.2022.111030_b0325
  doi: 10.1109/ICIP42928.2021.9506523
– volume: 35
  start-page: 229
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0160
  article-title: Determination of Effective and Specific Physical Features of Rice Varieties by Computer Vision In Exterior Quality Inspection
  publication-title: Selcuk J. Agric. Food Sci.
– volume: 68
  start-page: 102716
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0270
  article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: numeric to image
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102716
– volume: 2
  start-page: 796
  issue: 2
  year: 2017
  ident: 10.1016/j.measurement.2022.111030_b0130
  article-title: Visual-inertial monocular SLAM with map reuse
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2653359
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0145
  article-title: Monocular visual odometry based on depth and optical flow using deep learning
  publication-title: IEEE Trans. Instrument. Meas.
  doi: 10.1109/TIM.2020.3024011
– volume: 7
  start-page: 185408
  year: 2019
  ident: 10.1016/j.measurement.2022.111030_b0440
  article-title: A Stereo Visual-Inertial SLAM Approach for Indoor Mobile Robots in Unknown Environments Without Occlusions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961266
– volume: 30
  start-page: 73
  issue: 1
  year: 2022
  ident: 10.1016/j.measurement.2022.111030_b0155
  article-title: Classification by a stacking model using CNN features for COVID-19 infection diagnosis
  publication-title: J. X-ray Sci. Technol.
– year: 2006
  ident: 10.1016/j.measurement.2022.111030_b0295
– volume: 2
  start-page: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.measurement.2022.111030_b0410
  article-title: Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2016.2521413
– volume: 10
  start-page: 203
  issue: 4
  year: 2013
  ident: 10.1016/j.measurement.2022.111030_b0040
  article-title: Precise localization of mobile robots via odometry and wireless sensor network
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/56217
– ident: 10.1016/j.measurement.2022.111030_b0245
– volume: 20
  start-page: 4220
  issue: 15
  year: 2020
  ident: 10.1016/j.measurement.2022.111030_b0225
  article-title: Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review
  publication-title: Sensors
  doi: 10.3390/s20154220
– volume: 71
  start-page: 103216
  year: 2022
  ident: 10.1016/j.measurement.2022.111030_b0150
  article-title: CNN-based bi-directional and directional long-short term memory network for determination of face mask
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103216
– start-page: 227
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0005
  article-title: Mobile Robotics, SLAM, Bayesian Filter, Keyframe Bundle Adjustment and ROS Applications
– ident: 10.1016/j.measurement.2022.111030_b0195
– ident: 10.1016/j.measurement.2022.111030_b0340
– ident: 10.1016/j.measurement.2022.111030_b0255
  doi: 10.1109/CVPR.2016.308
– ident: 10.1016/j.measurement.2022.111030_b0055
  doi: 10.23919/SOFTCOM.2017.8115533
– ident: 10.1016/j.measurement.2022.111030_b0215
  doi: 10.1109/CVPR.2018.00931
– volume: 21
  start-page: 1605
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0230
  article-title: An Outline of Multi-Sensor Fusion Methods for Mobile Agents Indoor Navigation
  publication-title: Sensors
  doi: 10.3390/s21051605
– year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0365
  article-title: A hybrid noise removal algorithm for MEMS sensors
  publication-title: Mater. Today: Proc.
– volume: 1
  start-page: 289
  issue: 4
  year: 2015
  ident: 10.1016/j.measurement.2022.111030_b0330
  article-title: An overview to visual odometry and visual SLAM: Applications to mobile robotics
  publication-title: Intell. Ind. Syst.
  doi: 10.1007/s40903-015-0032-7
– start-page: 2502
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0470
  article-title: A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots
– volume: 33
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.measurement.2022.111030_b0435
  article-title: On-Manifold Preintegration for Real-Time Visual-Inertial Odometry
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2016.2597321
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  ident: 10.1016/j.measurement.2022.111030_b0190
  article-title: Vision meets robotics: The kitti dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0400
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2018.03.001
– volume: 290
  start-page: 456
  year: 2019
  ident: 10.1016/j.measurement.2022.111030_b0355
  article-title: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain
  publication-title: Radiology
  doi: 10.1148/radiol.2018180958
– ident: 10.1016/j.measurement.2022.111030_b0205
  doi: 10.1109/CVPR.2016.350
– ident: 10.1016/j.measurement.2022.111030_b0115
  doi: 10.1109/ISMAR.2017.18
– ident: 10.1016/j.measurement.2022.111030_b0185
  doi: 10.1609/aaai.v31i1.11215
– volume: 569
  start-page: 728
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0395
  article-title: An efficient constrained global optimization algorithm with a clustering-assisted multiobjective infill criterion using Gaussian process regression for expensive problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.05.015
– volume: 3
  start-page: 1735
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2022.111030_b0320
  article-title: LS-VO: Learning Dense Optical Subspace for Robust Visual Odometry Estimation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2803211
– volume: 33
  start-page: 1255
  year: 2017
  ident: 10.1016/j.measurement.2022.111030_b0125
  article-title: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2017.2705103
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.measurement.2022.111030_b0285
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Analyt. Chem.
  doi: 10.1021/ac60214a047
– start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2022.111030_b0020
  article-title: ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
  publication-title: IEEE Trans. Robot.
SSID ssj0006396
Score 2.481314
Snippet •An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to...
This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111030
SubjectTerms Artificial intelligence
Datasets
Deep learning
Denoising
Estimating techniques
EuRoC
Feature extraction
Frames
Gaussian process
Gaussian process regression
Inertial image
Neural networks
Normal distribution
Optical flow (image analysis)
Pose estimation
UAV
Unmanned aerial vehicles
Visual inertial odometry
Title Visual-Inertial Image-Odometry Network (VIIONet): A Gaussian process regression-based deep architecture proposal for UAV pose estimation
URI https://dx.doi.org/10.1016/j.measurement.2022.111030
https://www.proquest.com/docview/2687836732
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFLamIRAc0BggBttkJA5wMG0cx4nRLtXEaEGUA7TazYpjeypa06hJD1w487N5L07WgjhM4ujIL4n8Xr73nvO9Z0JepV7lSjnDuM08EyIpGASxjonUey9U5G2B1cifp3I8Ex8vk8s9ct7XwiCtssP-gOktWndXBt1qDqrFYvB1iK3GwQFx3p7AhD1BhUjRyt_-3NI8wAPLsM8SM5x9j7zccryW2304SBU5RwBpCdH_9lF_oXXrgi4OyMMudqSj8HqPyJ4rD8mDnY6Ch-Ruy-gs6sfk13xRb_JrNimROQ1ikyVAB_tiV0vXrH_QaeB_09fzCcCpa968oyP6Id_UWFVJq1A_QNfuKhBlS4b-zlLrXEV3_z7g1GpVwwMg_KWz0ZzCyFFs3hGqIp-Q2cX7b-dj1h27wAohZcME6Ec5nygvC4guZGYj60U6NDbJPGQgXEXCDJUtYlNEuUxiCYmuz1NI3gy2t4ufkv1yVbpnhIK-Ze4SO1TGityAUUTOZ8ZClJDFxmRHJOsXWhddT3I8GuNa9-Sz73pHRxp1pIOOjgi_Ea1CY47bCJ312tR_WJkGB3Ib8ePeAnT3qdeaywwrYdKYP_-_u78g93GE1IQoOSb7zXrjTiDiacxpa9Kn5M5o8mk8_Q1WQASU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrXgdEBRQCwWMxAEO1m4Sx4kRl1VF2dB2OdBd9WbFsY226majTfbAP-BnM46TdkEcKnHMYxLLM_lmxvlmDPAusSIXwiga6tRSxuKCYhBrKEustUwEVheuGvlsyicz9vUivtiBo74WxtEqO-z3mN6idXdm2M3msFosht9HrtU4OqAwbHdgYndg13WnigewO85OJtNrQEYnzP1SS0SdwD14e0PzWt4sxWG2GIYOQ1pO9L_d1F-A3Xqh48fwqAsfydiP8AnsmHIPHm41FdyDuy2ps6ifwq_5ot7kVzQrHXkaxbIlogf9pldL06x_kqmngJP38wwR1TQfPpIx-ZJvaldYSSpfQkDW5ofnypbUuTxNtDEV2f4B4W6tVjW-ACNgMhvPCR4Z4vp3-MLIZzA7_nx-NKHdzgu0YJw3lKGKhLGxsLzAAIOnOtCWJSOl49RiEhKKgKmR0EWkiiDnccQx17V5gvmbch3uoucwKFel2QeCKue5ifVIKM1yhXYRGJsqjYFCGimVHkDaT7QsurbkbneMK9nzzy7llo6k05H0OjqA8Fq08r05biP0qdem_MPQJPqQ24gf9hYgu6-9liFPXTFMEoUv_u_pb-D-5PzsVJ5m05OX8MBdcUyFID6EQbPemFcYADXqdWfgvwE0LgdF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual-Inertial+Image-Odometry+Network+%28VIIONet%29%3A+A+Gaussian+process+regression-based+deep+architecture+proposal+for+UAV+pose+estimation&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Durdu%2C+Akif&rft.au=Sabanci%2C+Kadir&rft.date=2022-05-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=194&rft_id=info:doi/10.1016%2Fj.measurement.2022.111030&rft.externalDocID=S0263224122002974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon