Visual-Inertial Image-Odometry Network (VIIONet): A Gaussian process regression-based deep architecture proposal for UAV pose estimation
•An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to inertial image to extract the features of inertial data with Inception-v3.•The noise of the IMU data is reduced by the Savitzky–Golay filter.•P...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 194; p. 111030 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
15.05.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to inertial image to extract the features of inertial data with Inception-v3.•The noise of the IMU data is reduced by the Savitzky–Golay filter.•Probabilistic based Gaussian Process Regression is applied for final pose estimation.
This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a different way than previous studies. For an effective fusion, the inertial data between both frames is normalized after denoising with the Savitzky-Golay technique and finally converted from numerical value to image. To strengthen these inertial image features with the change of motion between two frames, frames of Optical Flow (OF) are obtained and OF frames are combined with inertial images. Simultaneously, a parallel thread combines this OF frame with two consecutive raw frames. After features are extracted from inertial and camera data via Inception-v3, these features are fused and actual UAV poses are estimated via Gaussian Process Regression (GPR). Thanks to the smoothing process applied to these estimated values, a more stable pose estimation is provided. This proposed method is applied to the EuRoC dataset and our dataset produced in the Gazebo environment. The pose estimation results reveal that the proposed method has high performance compared to many previous studies. |
---|---|
AbstractList | •An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to inertial image to extract the features of inertial data with Inception-v3.•The noise of the IMU data is reduced by the Savitzky–Golay filter.•Probabilistic based Gaussian Process Regression is applied for final pose estimation.
This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a different way than previous studies. For an effective fusion, the inertial data between both frames is normalized after denoising with the Savitzky-Golay technique and finally converted from numerical value to image. To strengthen these inertial image features with the change of motion between two frames, frames of Optical Flow (OF) are obtained and OF frames are combined with inertial images. Simultaneously, a parallel thread combines this OF frame with two consecutive raw frames. After features are extracted from inertial and camera data via Inception-v3, these features are fused and actual UAV poses are estimated via Gaussian Process Regression (GPR). Thanks to the smoothing process applied to these estimated values, a more stable pose estimation is provided. This proposed method is applied to the EuRoC dataset and our dataset produced in the Gazebo environment. The pose estimation results reveal that the proposed method has high performance compared to many previous studies. This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a different way than previous studies. For an effective fusion, the inertial data between both frames is normalized after denoising with the Savitzky-Golay technique and finally converted from numerical value to image. To strengthen these inertial image features with the change of motion between two frames, frames of Optical Flow (OF) are obtained and OF frames are combined with inertial images. Simultaneously, a parallel thread combines this OF frame with two consecutive raw frames. After features are extracted from inertial and camera data via Inception-v3, these features are fused and actual UAV poses are estimated via Gaussian Process Regression (GPR). Thanks to the smoothing process applied to these estimated values, a more stable pose estimation is provided. This proposed method is applied to the EuRoC dataset and our dataset produced in the Gazebo environment. The pose estimation results reveal that the proposed method has high performance compared to many previous studies. |
ArticleNumber | 111030 |
Author | Aslan, Muhammet Fatih Durdu, Akif Sabanci, Kadir |
Author_xml | – sequence: 1 givenname: Muhammet Fatih surname: Aslan fullname: Aslan, Muhammet Fatih email: mfatihaslan@kmu.edu.tr organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey – sequence: 2 givenname: Akif surname: Durdu fullname: Durdu, Akif organization: Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey – sequence: 3 givenname: Kadir surname: Sabanci fullname: Sabanci, Kadir organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey |
BookMark | eNqNkM1O3DAQxy0EEgvlHVxxaQ_Z-iNxEi7VatXSSKh7gRU3y7HH1Msm3toOFW_Qx663ywFx4jQaaf4f8ztDx6MfAaGPlMwpoeLLZj6AilOAAcY0Z4SxOaWUcHKEZrSpeVFSdn-MZoQJXjBW0lN0FuOGECJ4K2bo79rFSW2LboSQnNriblAPUKyMHyCFZ_wT0h8fHvGnddet8vL5Ci_wtZpidGrEu-A1xIgDPIQ8nR-LXkUw2ADssAr6l0ugU663P935mAOsD_huscZ5AwwxuUGlLPyATqzaRrh4mefo7vu32-WP4mZ13S0XN4UuhUhFaY1uwVatFZrTWjSGGlvWpDdVY1lVsZaWPWmN5r2mSlRc1JRbVbOG9bXgFT9HlwffXOj3lPPlxk9hzJGSiaZusoCzfNUernTwMQawchdy0fAsKZF78HIjX4GXe_DyAD5rv77Rapf-_5iCctt3OSwPDpBBPDkIMmoHowbjQsYpjXfvcPkH8ZmrKg |
CitedBy_id | crossref_primary_10_3390_s22093389 crossref_primary_10_1016_j_measurement_2025_116745 crossref_primary_10_1109_ACCESS_2024_3519874 crossref_primary_10_1016_j_measurement_2023_113654 crossref_primary_10_1016_j_measurement_2023_112487 crossref_primary_10_1016_j_molliq_2023_121319 crossref_primary_10_1016_j_engappai_2022_105712 crossref_primary_10_1177_17298806241279608 crossref_primary_10_3390_app13127248 crossref_primary_10_1007_s00500_023_09088_7 crossref_primary_10_1109_JIOT_2023_3324966 crossref_primary_10_1109_TIM_2023_3265638 crossref_primary_10_1109_JSEN_2023_3302401 crossref_primary_10_1016_j_jestch_2025_101977 crossref_primary_10_1016_j_measurement_2023_113105 crossref_primary_10_3390_electronics12092006 crossref_primary_10_1016_j_measurement_2024_115203 crossref_primary_10_3390_app13105842 crossref_primary_10_1016_j_measurement_2023_113528 crossref_primary_10_1109_JSEN_2022_3216021 crossref_primary_10_1016_j_neunet_2022_09_001 crossref_primary_10_1109_JSEN_2022_3208200 crossref_primary_10_3390_drones9030171 crossref_primary_10_3390_aerospace10110923 crossref_primary_10_1016_j_asoc_2023_110945 crossref_primary_10_3390_s23094510 crossref_primary_10_1109_JSEN_2023_3309907 |
Cites_doi | 10.1007/978-3-319-10605-2_54 10.1109/TIE.2020.3036243 10.3390/mi9120626 10.1109/TRO.2015.2463671 10.1109/ACCESS.2019.2929133 10.1109/IROS40897.2019.8968467 10.1109/TRO.2018.2853729 10.3390/s150922587 10.1109/CVPR42600.2020.00136 10.1109/CVPR.2017.195 10.3390/electronics10030222 10.1109/LRA.2018.2809510 10.1109/IRIS.2015.7451625 10.1109/ACCESS.2021.3049896 10.17671/gazibtd.419205 10.1007/s11044-014-9441-8 10.3390/robotics7030045 10.1109/ICRA40945.2020.9196885 10.1049/iet-com.2018.5260 10.1109/CRV50864.2020.00033 10.1109/LRA.2020.3010456 10.1109/IROS.2013.6696917 10.3390/s20174922 10.15607/RSS.2020.XVI.009 10.1109/ISMAR.2007.4538852 10.1016/j.asoc.2020.106311 10.3390/s21041313 10.1155/2021/2054828 10.1109/MSP.2011.941097 10.1109/LRA.2020.2970940 10.1109/LRA.2021.3058069 10.1177/0278364915620033 10.1177/0278364914554813 10.1109/ICCSPA.2019.8713728 10.3390/rs10071119 10.1109/InertialSensors.2014.7049479 10.1016/j.compgeo.2010.07.012 10.3390/s20164386 10.3390/rs13040772 10.1109/TRO.2019.2899783 10.1109/ICIT52682.2021.9491668 10.1109/ICRA.2014.6906584 10.1109/CEIT.2016.7929097 10.1109/IROS.2015.7353389 10.1038/s41598-020-74394-1 10.1016/j.ijleo.2021.166257 10.1109/CVPR.2015.7298594 10.1109/IROS.2004.1389727 10.1109/CVPR.2016.90 10.1109/ICIP42928.2021.9506523 10.1016/j.bspc.2021.102716 10.1109/LRA.2017.2653359 10.1109/TIM.2020.3024011 10.1109/ACCESS.2019.2961266 10.1109/LRA.2016.2521413 10.5772/56217 10.3390/s20154220 10.1016/j.bspc.2021.103216 10.1109/CVPR.2016.308 10.23919/SOFTCOM.2017.8115533 10.1109/CVPR.2018.00931 10.3390/s21051605 10.1007/s40903-015-0032-7 10.1109/TRO.2016.2597321 10.1177/0278364913491297 10.1016/j.jmp.2018.03.001 10.1148/radiol.2018180958 10.1109/CVPR.2016.350 10.1109/ISMAR.2017.18 10.1609/aaai.v31i1.11215 10.1016/j.ins.2021.05.015 10.1109/LRA.2018.2803211 10.1109/TRO.2017.2705103 10.1021/ac60214a047 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier Science Ltd. May 15, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 15, 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2022.111030 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
ExternalDocumentID | 10_1016_j_measurement_2022_111030 S0263224122002974 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFRF ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSH SSQ SST SSZ T5K ZMT ~G- 29M AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW WUQ XPP EFKBS |
ID | FETCH-LOGICAL-c466t-4fdc9ef59f6c31768d1df470bd58f2552914b09dc3bc1a6536713fa7282b76353 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 08:44:31 EDT 2025 Tue Jul 01 04:38:11 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Sun Apr 06 06:54:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning EuRoC Inertial image Gaussian process regression Visual inertial odometry UAV Denoising |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-4fdc9ef59f6c31768d1df470bd58f2552914b09dc3bc1a6536713fa7282b76353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://hdl.handle.net/11492/6237 |
PQID | 2687836732 |
PQPubID | 2047460 |
ParticipantIDs | proquest_journals_2687836732 crossref_primary_10_1016_j_measurement_2022_111030 crossref_citationtrail_10_1016_j_measurement_2022_111030 elsevier_sciencedirect_doi_10_1016_j_measurement_2022_111030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-15 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces, in: 2007 6th IEEE and ACM international symposium on mixed and augmented reality, IEEE, 2007, pp. 225–234. M. Bloesch, S. Omari, M. Hutter, R. Siegwart, Robust visual inertial odometry using a direct EKF-based approach, in: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, 2015, pp. 298–304. Wang, Ma, Chen, Ren, Lu (b0175) 2020 A. Zrelli, T. Ezzedine, Enhanced architecture for SHM system based on optical sensor and WSN, in: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), IEEE, 2017, pp. 1–6. Chen, Zhu, Wang, Liu (b0440) 2019; 7 Campos, Elvira, Rodríguez, Montiel, Tardós (b0020) 2021 Weytjens, De Weerdt (b0235) 2020 N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, 2004, pp. 2149-2154. Schafer (b0290) 2011; 28 Y. Almalioglu, M. Turan, A.E. Sari, M.R.U. Saputra, P.P. de Gusmão, A. Markham, N. Trigoni, Selfvio: Self-supervised deep monocular visual-inertial odometry and depth estimation, arXiv preprint arXiv:1911.09968, (2019). Ferrera, Eudes, Moras, Sanfourche, Le Besnerais (b0455) 2021; 6 Li, Kaess, Eustice, Johnson-Roberson (b0070) 2018; 3 Jang, Yoo, Son, Kim, Kim (b0490) 2020; 5 Wang, Li, Yu, Gui, Li (b0090) 2020; 20 Xu, Liu, Li (b0085) 2021; 13 Taspinar, Cinar, Koklu (b0155) 2022; 30 Pal, Deswal (b0405) 2010; 37 Kizrak, Bolat (b0350) 2018; 11 Y. Jiao, G. Shi, T.D. Tran, Optical Flow Estimation via Motion Feature Recovery, arXiv preprint arXiv:2101.06333, (2021). Mur-Artal, Tardós (b0125) 2017; 33 Dong, Zhao, Wu, Chang (b0335) 2020; 93 K.-W. Chiang, H. Hou, X. Niu, N. El-Sheimy, Improving the positioning accuracy of DGPS/MEMS IMU integrated systems utilizing cascade de-noising algorithm, in: Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), 2004, pp. 809–818. Burri, Nikolic, Gohl, Schneider, Rehder, Omari, Achtelik, Siegwart (b0200) 2016; 35 Zrelli (b0045) 2019; 13 Qu, Yang, Zhang, Xie, Qiang, Chen (b0230) 2021; 21 Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Lituiev, Copeland, Aboian, Mari Aparici (b0355) 2019; 290 R. Clark, S. Wang, H. Wen, A. Markham, N. Trigoni, Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017. X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley, C. Stachniss, OverlapNet: Loop closing for LiDAR-based SLAM, arXiv preprint arXiv:2105.11344, (2021). L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, arXiv preprint arXiv:1906.11435, (2019). Aslan, Durdu, Yusefi, Sabanci, Sungur, Tutorial (b0005) 2021 Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (b0345) 2018; 10 RYZE, Tello, 2020. Delmerico, Scaramuzza (b0470) 2018 S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, R. Siegwart, A robust and modular multi-sensor fusion approach applied to mav navigation, in: 2013 IEEE/RSJ international conference on intelligent robots and systems, IEEE, 2013, pp. 3923–3929. C.K. Williams, C.E. Rasmussen, Gaussian processes for regression, (1996). L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019, pp. 6906–6913. C. Chen, B. Wang, C.X. Lu, N. Trigoni, A. Markham, A survey on deep learning for localization and mapping: Towards the age of spatial machine intelligence, arXiv preprint arXiv:2006.12567, (2020). P. Li, T. Qin, B. Hu, F. Zhu, S. Shen, Monocular visual-inertial state estimation for mobile augmented reality, in: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 2017, pp. 11–21. Aslan, Sabanci, Durdu (b0270) 2021; 68 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. A. Zrelli, T. Ezzedine, A comparative strategies of node deployment for Structural Health Monitoring, in: 2016 4th International Conference on Control Engineering & Information Technology (CEIT), IEEE, 2016, pp. 1–4. Yousif, Bab-Hadiashar, Hoseinnezhad (b0330) 2015; 1 Yang, Wei, Jeon, Bencatel, Girard (b0495) 2017 M. Karaim, A. Noureldin, T.B. Karamat, Low-cost IMU Data Denoising using Savitzky-Golay Filters, in: 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA), 2019, pp. 1–5. D. Sun, X. Yang, M.-Y. Liu, J. Kautz, Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8934–8943. Richter, Toledano-Ayala (b0385) 2015; 15 Servières, Renaudin, Dupuis, Antigny (b0015) 2021; 2021 Jiang, Yuan, Zhang, Zhang (b0445) 2021; 68 Zrelli (b0065) 2021 Brossard, Bonnabel, Barrau (b0275) 2020; 5 A. Canziani, A. Paszke, E. Culurciello, An analysis of deep neural network models for practical applications, arXiv preprint arXiv:1605.07678, (2016). Ban, Wang, Chen, Wang, Xiao (b0145) 2021; 70 Krizhevsky, Sutskever, Hinton (b0240) 2012; 25 Mishra, Singh, Chaudhary (b0365) 2021 Koklu, Cinar, Taspinar (b0150) 2022; 71 Kaiser, Martinelli, Fontana, Scaramuzza (b0410) 2017; 2 Williams, Rasmussen (b0295) 2006 B. Huang, J. Zhao, J. Liu, A survey of simultaneous localization and mapping, arXiv preprint arXiv:1909.05214, (2019). Le Gentil, Vidal-Calleja, Huang (b0300) 2020; 5 Stumberg, Usenko, Cremers (b0430) 2018 Kang, Park (b0485) 2015; 34 Fu, Zhang, Chen, Peng, Yang, Chen (b0040) 2013; 10 Fayyad, Jaradat, Gruyer, Najjaran (b0225) 2020; 20 Cao, Ling, Xiao (b0280) 2020; 20 Mohamed, Haghbayan, Westerlund, Heikkonen, Tenhunen, Plosila (b0035) 2019; 7 Qin, Li, Shen (b0420) 2018; 34 Yuan, Lai, Lyu, Shi, Zhao, Huang (b0095) 2018; 9 C. Li, S.L. Waslander, Towards End-to-end Learning of Visual Inertial Odometry with an EKF, in: 2020 17th Conference on Computer and Robot Vision (CRV), IEEE, 2020, pp. 190–197. Gomez-Ojeda, Moreno, Zuniga-Noel, Scaramuzza, Gonzalez-Jimenez (b0450) 2019; 35 R. Li, J. Liu, L. Zhang, Y. Hang, LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments, in: 2014 DGON inertial sensors and systems (ISS), IEEE, 2014, pp. 1–15. Forster, Carlone, Dellaert, Scaramuzza (b0435) 2017; 33 C. Forster, M. Pizzoli, D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, in: 2014 IEEE international conference on robotics and automation (ICRA), IEEE, 2014, pp. 15–22. J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, in: European conference on computer vision, Springer, 2014, pp. 834–849. Cinar, Koklu (b0160) 2021; 35 M. Khaddour, S. Shidlovskiy, D. Shashev, M. Mondal, Survey of Denoising Methods for Inertial Sensor Measurements, in: 2021 International Conference on Information Technology (ICIT), IEEE, 2021, pp. 787–790. Mur-Artal, Montiel, Tardos (b0120) 2015; 31 Mur-Artal, Tardos (b0130) 2017; 2 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9. Zhao, Huang, Wei, Hu (b0165) 2021; 10 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826. Jiang, Cheng, Yi, Liu (b0395) 2021; 569 K. Kamarudin, S. Mamduh, A. Yeon, R. Visvanathan, A. Shakaff, A. Zakaria, L. Kamarudin, N. Rahim, Improving performance of 2D SLAM methods by complementing Kinect with laser scanner, in: 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), IEEE, 2015, pp. 278–283. Geiger, Lenz, Stiller, Urtasun (b0190) 2013; 32 M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213–3223. Costante, Ciarfuglia (b0320) 2018; 3 ROS, 2020. Khlaifi, Zrelli, Ezzedine (b0060) 2021; 229 Chen, Zhu, Li, You (b0180) 2018; 7 F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258. Yusefi, Durdu, Aslan, Sungur (b0475) 2021; 9 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014). Leutenegger, Lynen, Bosse, Siegwart, Furgale (b0415) 2015; 34 N. Yang, L.V. Stumberg, R. Wang, D. Cremers, D3vo: Deep depth, deep pose and deep uncertainty for monocular visual odometry, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1281–1292. Noack, Doerk, Li, Streit, Vaia, Yager, Fukuto (b0390) 2020; 10 Pandey, Pena, Byrne, Moloney (b0220) 2021; 21 Schulz, Speekenbrink, Krause (b0400) 2018; 85 Mourikis, Roumeliotis (b0100) 2007 A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an open-source library for real-time metric-semantic localization and mapping, in: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 1689–1696. Savitzky, Golay (b0285) 1964; 36 Kizrak (10.1016/j.measurement.2022.111030_b0350) 2018; 11 Schafer (10.1016/j.measurement.2022.111030_b0290) 2011; 28 Qu (10.1016/j.measurement.2022.111030_b0230) 2021; 21 Forster (10.1016/j.measurement.2022.111030_b0435) 2017; 33 10.1016/j.measurement.2022.111030_b0315 Zhao (10.1016/j.measurement.2022.111030_b0165) 2021; 10 10.1016/j.measurement.2022.111030_b0210 Mur-Artal (10.1016/j.measurement.2022.111030_b0125) 2017; 33 10.1016/j.measurement.2022.111030_b0055 Servières (10.1016/j.measurement.2022.111030_b0015) 2021; 2021 10.1016/j.measurement.2022.111030_b0050 Pandey (10.1016/j.measurement.2022.111030_b0220) 2021; 21 10.1016/j.measurement.2022.111030_b0170 Leutenegger (10.1016/j.measurement.2022.111030_b0415) 2015; 34 Ban (10.1016/j.measurement.2022.111030_b0145) 2021; 70 Ferrera (10.1016/j.measurement.2022.111030_b0455) 2021; 6 Mahdianpari (10.1016/j.measurement.2022.111030_b0345) 2018; 10 Li (10.1016/j.measurement.2022.111030_b0070) 2018; 3 Noack (10.1016/j.measurement.2022.111030_b0390) 2020; 10 Mohamed (10.1016/j.measurement.2022.111030_b0035) 2019; 7 Yousif (10.1016/j.measurement.2022.111030_b0330) 2015; 1 10.1016/j.measurement.2022.111030_b0205 10.1016/j.measurement.2022.111030_b0325 10.1016/j.measurement.2022.111030_b0265 Koklu (10.1016/j.measurement.2022.111030_b0150) 2022; 71 10.1016/j.measurement.2022.111030_b0140 10.1016/j.measurement.2022.111030_b0380 10.1016/j.measurement.2022.111030_b0260 Yang (10.1016/j.measurement.2022.111030_b0495) 2017 Brossard (10.1016/j.measurement.2022.111030_b0275) 2020; 5 Yusefi (10.1016/j.measurement.2022.111030_b0475) 2021; 9 Mur-Artal (10.1016/j.measurement.2022.111030_b0120) 2015; 31 10.1016/j.measurement.2022.111030_b0135 Zrelli (10.1016/j.measurement.2022.111030_b0045) 2019; 13 10.1016/j.measurement.2022.111030_b0310 10.1016/j.measurement.2022.111030_b0030 Qin (10.1016/j.measurement.2022.111030_b0420) 2018; 34 Burri (10.1016/j.measurement.2022.111030_b0200) 2016; 35 Richter (10.1016/j.measurement.2022.111030_b0385) 2015; 15 Zrelli (10.1016/j.measurement.2022.111030_b0065) 2021 10.1016/j.measurement.2022.111030_b0425 Delmerico (10.1016/j.measurement.2022.111030_b0470) 2018 10.1016/j.measurement.2022.111030_b0305 10.1016/j.measurement.2022.111030_b0025 Mishra (10.1016/j.measurement.2022.111030_b0365) 2021 10.1016/j.measurement.2022.111030_b0360 Mourikis (10.1016/j.measurement.2022.111030_b0100) 2007 Chen (10.1016/j.measurement.2022.111030_b0180) 2018; 7 10.1016/j.measurement.2022.111030_b0480 10.1016/j.measurement.2022.111030_b0080 Aslan (10.1016/j.measurement.2022.111030_b0270) 2021; 68 Cao (10.1016/j.measurement.2022.111030_b0280) 2020; 20 10.1016/j.measurement.2022.111030_b0115 Chen (10.1016/j.measurement.2022.111030_b0440) 2019; 7 Khlaifi (10.1016/j.measurement.2022.111030_b0060) 2021; 229 10.1016/j.measurement.2022.111030_b0375 10.1016/j.measurement.2022.111030_b0255 10.1016/j.measurement.2022.111030_b0010 10.1016/j.measurement.2022.111030_b0250 10.1016/j.measurement.2022.111030_b0370 Stumberg (10.1016/j.measurement.2022.111030_b0430) 2018 Le Gentil (10.1016/j.measurement.2022.111030_b0300) 2020; 5 Xu (10.1016/j.measurement.2022.111030_b0085) 2021; 13 Fu (10.1016/j.measurement.2022.111030_b0040) 2013; 10 Jiang (10.1016/j.measurement.2022.111030_b0445) 2021; 68 Yuan (10.1016/j.measurement.2022.111030_b0095) 2018; 9 10.1016/j.measurement.2022.111030_b0245 10.1016/j.measurement.2022.111030_b0340 Wang (10.1016/j.measurement.2022.111030_b0175) 2020 10.1016/j.measurement.2022.111030_b0185 Geiger (10.1016/j.measurement.2022.111030_b0190) 2013; 32 10.1016/j.measurement.2022.111030_b0460 Williams (10.1016/j.measurement.2022.111030_b0295) 2006 Pal (10.1016/j.measurement.2022.111030_b0405) 2010; 37 Krizhevsky (10.1016/j.measurement.2022.111030_b0240) 2012; 25 Mur-Artal (10.1016/j.measurement.2022.111030_b0130) 2017; 2 Fayyad (10.1016/j.measurement.2022.111030_b0225) 2020; 20 Schulz (10.1016/j.measurement.2022.111030_b0400) 2018; 85 Jang (10.1016/j.measurement.2022.111030_b0490) 2020; 5 Jiang (10.1016/j.measurement.2022.111030_b0395) 2021; 569 Ding (10.1016/j.measurement.2022.111030_b0355) 2019; 290 10.1016/j.measurement.2022.111030_b0215 Dong (10.1016/j.measurement.2022.111030_b0335) 2020; 93 10.1016/j.measurement.2022.111030_b0110 10.1016/j.measurement.2022.111030_b0195 10.1016/j.measurement.2022.111030_b0075 Kang (10.1016/j.measurement.2022.111030_b0485) 2015; 34 Aslan (10.1016/j.measurement.2022.111030_b0005) 2021 Taspinar (10.1016/j.measurement.2022.111030_b0155) 2022; 30 Gomez-Ojeda (10.1016/j.measurement.2022.111030_b0450) 2019; 35 Wang (10.1016/j.measurement.2022.111030_b0090) 2020; 20 Kaiser (10.1016/j.measurement.2022.111030_b0410) 2017; 2 Savitzky (10.1016/j.measurement.2022.111030_b0285) 1964; 36 Campos (10.1016/j.measurement.2022.111030_b0020) 2021 Cinar (10.1016/j.measurement.2022.111030_b0160) 2021; 35 Weytjens (10.1016/j.measurement.2022.111030_b0235) 2020 10.1016/j.measurement.2022.111030_b0105 10.1016/j.measurement.2022.111030_b0465 Costante (10.1016/j.measurement.2022.111030_b0320) 2018; 3 |
References_xml | – reference: F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258. – volume: 85 start-page: 1 year: 2018 end-page: 16 ident: b0400 article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. – volume: 32 start-page: 1231 year: 2013 end-page: 1237 ident: b0190 article-title: Vision meets robotics: The kitti dataset publication-title: Int. J. Robot. Res. – volume: 37 start-page: 942 year: 2010 end-page: 947 ident: b0405 article-title: Modelling pile capacity using Gaussian process regression publication-title: Comput. Geotech. – volume: 15 start-page: 22587 year: 2015 end-page: 22615 ident: b0385 article-title: Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks publication-title: Sensors – volume: 35 start-page: 229 year: 2021 end-page: 243 ident: b0160 article-title: Determination of Effective and Specific Physical Features of Rice Varieties by Computer Vision In Exterior Quality Inspection publication-title: Selcuk J. Agric. Food Sci. – start-page: 2582 year: 2017 end-page: 2587 ident: b0495 article-title: Real-time optimal path planning and wind estimation using Gaussian process regression for precision airdrop publication-title: 2017 American Control Conference (ACC) – volume: 5 start-page: 4796 year: 2020 end-page: 4803 ident: b0275 article-title: Denoising imu gyroscopes with deep learning for open-loop attitude estimation publication-title: IEEE Robot. Autom. Lett. – volume: 290 start-page: 456 year: 2019 end-page: 464 ident: b0355 article-title: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain publication-title: Radiology – reference: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213–3223. – volume: 1 start-page: 289 year: 2015 end-page: 311 ident: b0330 article-title: An overview to visual odometry and visual SLAM: Applications to mobile robotics publication-title: Intell. Ind. Syst. – start-page: 1 year: 2021 end-page: 17 ident: b0020 article-title: ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM publication-title: IEEE Trans. Robot. – volume: 2021 year: 2021 ident: b0015 article-title: Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking publication-title: J. Sens. – volume: 7 start-page: 185408 year: 2019 end-page: 185421 ident: b0440 article-title: A Stereo Visual-Inertial SLAM Approach for Indoor Mobile Robots in Unknown Environments Without Occlusions publication-title: IEEE Access – volume: 10 start-page: 1119 year: 2018 ident: b0345 article-title: Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery publication-title: Remote Sens. – volume: 21 start-page: 1313 year: 2021 ident: b0220 article-title: Leveraging deep learning for visual odometry using optical flow publication-title: Sensors – reference: A. Zrelli, T. Ezzedine, A comparative strategies of node deployment for Structural Health Monitoring, in: 2016 4th International Conference on Control Engineering & Information Technology (CEIT), IEEE, 2016, pp. 1–4. – reference: C. Forster, M. Pizzoli, D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, in: 2014 IEEE international conference on robotics and automation (ICRA), IEEE, 2014, pp. 15–22. – reference: N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, 2004, pp. 2149-2154. – volume: 13 start-page: 772 year: 2021 ident: b0085 article-title: Robust Visual-Inertial Navigation System for Low Precision Sensors under Indoor and Outdoor Environments publication-title: Remote Sens. – start-page: 321 year: 2020 end-page: 333 ident: b0235 article-title: Process outcome prediction: CNN vs. LSTM (with attention) publication-title: International Conference on Business Process Management – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: b0285 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Analyt. Chem. – reference: Y. Jiao, G. Shi, T.D. Tran, Optical Flow Estimation via Motion Feature Recovery, arXiv preprint arXiv:2101.06333, (2021). – volume: 13 start-page: 3012 year: 2019 end-page: 3019 ident: b0045 article-title: Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems publication-title: IET Commun. – volume: 5 start-page: 5905 year: 2020 end-page: 5912 ident: b0490 article-title: Multi-Robot Active Sensing and Environmental Model Learning With Distributed Gaussian Process publication-title: IEEE Robot. Autom. Lett. – volume: 28 start-page: 111 year: 2011 end-page: 117 ident: b0290 article-title: What is a Savitzky-Golay filter?[lecture notes] publication-title: IEEE Signal Process. Mag. – volume: 5 start-page: 2108 year: 2020 end-page: 2114 ident: b0300 article-title: Gaussian process preintegration for inertial-aided state estimation publication-title: IEEE Robot. Autom. Lett. – volume: 11 start-page: 263 year: 2018 end-page: 286 ident: b0350 article-title: Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma publication-title: Bilişim Teknolojileri Dergisi – volume: 21 start-page: 1605 year: 2021 ident: b0230 article-title: An Outline of Multi-Sensor Fusion Methods for Mobile Agents Indoor Navigation publication-title: Sensors – year: 2006 ident: b0295 article-title: Gaussian processes for machine learning – start-page: 2510 year: 2018 end-page: 2517 ident: b0430 article-title: Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA) – reference: N. Yang, L.V. Stumberg, R. Wang, D. Cremers, D3vo: Deep depth, deep pose and deep uncertainty for monocular visual odometry, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1281–1292. – volume: 35 start-page: 1157 year: 2016 end-page: 1163 ident: b0200 article-title: The EuRoC micro aerial vehicle datasets publication-title: Int. J. Robot. Res. – reference: S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, R. Siegwart, A robust and modular multi-sensor fusion approach applied to mav navigation, in: 2013 IEEE/RSJ international conference on intelligent robots and systems, IEEE, 2013, pp. 3923–3929. – volume: 68 start-page: 102716 year: 2021 ident: b0270 article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: numeric to image publication-title: Biomed. Signal Process. Control – reference: P. Li, T. Qin, B. Hu, F. Zhu, S. Shen, Monocular visual-inertial state estimation for mobile augmented reality, in: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 2017, pp. 11–21. – year: 2020 ident: b0175 article-title: Approaches challenges and applications for deep visual odometry toward to complicated and emerging areas publication-title: IEEE Trans. Cogn. Developm. Syst. – reference: R. Clark, S. Wang, H. Wen, A. Markham, N. Trigoni, Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017. – volume: 34 start-page: 1004 year: 2018 end-page: 1020 ident: b0420 article-title: Vins-mono: A robust and versatile monocular visual-inertial state estimator publication-title: IEEE Trans. Robot. – reference: D. Sun, X. Yang, M.-Y. Liu, J. Kautz, Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8934–8943. – reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9. – volume: 7 start-page: 97466 year: 2019 end-page: 97486 ident: b0035 article-title: A Survey on Odometry for Autonomous Navigation Systems publication-title: IEEE Access – volume: 9 start-page: 10054 year: 2021 end-page: 10069 ident: b0475 article-title: LSTM and Filter Based Comparison Analysis for Indoor Global Localization in UAVs publication-title: IEEE Access – reference: C.K. Williams, C.E. Rasmussen, Gaussian processes for regression, (1996). – reference: ROS, 2020. – volume: 2 start-page: 18 year: 2017 end-page: 25 ident: b0410 article-title: Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation publication-title: IEEE Robot. Autom. Lett. – reference: RYZE, Tello, 2020. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. – reference: A. Canziani, A. Paszke, E. Culurciello, An analysis of deep neural network models for practical applications, arXiv preprint arXiv:1605.07678, (2016). – start-page: 227 year: 2021 end-page: 269 ident: b0005 article-title: Mobile Robotics, SLAM, Bayesian Filter, Keyframe Bundle Adjustment and ROS Applications publication-title: Robot Operating System (ROS): The Complete Reference (Volume 6) – volume: 70 start-page: 1 year: 2021 end-page: 19 ident: b0145 article-title: Monocular visual odometry based on depth and optical flow using deep learning publication-title: IEEE Trans. Instrument. Meas. – volume: 10 start-page: 17663 year: 2020 ident: b0390 article-title: Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels publication-title: Sci. Rep. – reference: Y. Almalioglu, M. Turan, A.E. Sari, M.R.U. Saputra, P.P. de Gusmão, A. Markham, N. Trigoni, Selfvio: Self-supervised deep monocular visual-inertial odometry and depth estimation, arXiv preprint arXiv:1911.09968, (2019). – volume: 34 start-page: 314 year: 2015 end-page: 334 ident: b0415 article-title: Keyframe-based visual–inertial odometry using nonlinear optimization publication-title: Int. J. Robot. Res. – reference: M. Karaim, A. Noureldin, T.B. Karamat, Low-cost IMU Data Denoising using Savitzky-Golay Filters, in: 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA), 2019, pp. 1–5. – start-page: 3565 year: 2007 end-page: 3572 ident: b0100 article-title: A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation publication-title: 2007 Proceedings IEEE International Conference on Robotics and Automation – reference: M. Khaddour, S. Shidlovskiy, D. Shashev, M. Mondal, Survey of Denoising Methods for Inertial Sensor Measurements, in: 2021 International Conference on Information Technology (ICIT), IEEE, 2021, pp. 787–790. – volume: 93 year: 2020 ident: b0335 article-title: Inception v3 based cervical cell classification combined with artificially extracted features publication-title: Appl. Soft Comput. – volume: 35 start-page: 734 year: 2019 end-page: 746 ident: b0450 article-title: PL-SLAM: A stereo SLAM system through the combination of points and line segments publication-title: IEEE Trans. Robot. – reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826. – volume: 10 start-page: 222 year: 2021 ident: b0165 article-title: Ego-Motion Estimation Using Recurrent Convolutional Neural Networks through Optical Flow Learning publication-title: Electronics – volume: 9 start-page: 626 year: 2018 ident: b0095 article-title: A novel fault-tolerant navigation and positioning method with stereo-camera/micro electro mechanical systems inertial measurement unit (MEMS-IMU) in hostile environment publication-title: Micromachines – volume: 2 start-page: 796 year: 2017 end-page: 803 ident: b0130 article-title: Visual-inertial monocular SLAM with map reuse publication-title: IEEE Robot. Autom. Lett. – volume: 30 start-page: 73 year: 2022 end-page: 88 ident: b0155 article-title: Classification by a stacking model using CNN features for COVID-19 infection diagnosis publication-title: J. X-ray Sci. Technol. – reference: L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019, pp. 6906–6913. – volume: 20 start-page: 4386 year: 2020 ident: b0090 article-title: VIMO: A Visual-Inertial-Magnetic Navigation System Based on Non-Linear Optimization publication-title: Sensors – reference: X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley, C. Stachniss, OverlapNet: Loop closing for LiDAR-based SLAM, arXiv preprint arXiv:2105.11344, (2021). – volume: 33 start-page: 1 year: 2017 end-page: 21 ident: b0435 article-title: On-Manifold Preintegration for Real-Time Visual-Inertial Odometry publication-title: IEEE Trans. Robot. – volume: 31 start-page: 1147 year: 2015 end-page: 1163 ident: b0120 article-title: ORB-SLAM: a versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. – volume: 229 start-page: 166257 year: 2021 ident: b0060 article-title: Optical fiber sensors in border detection application: Temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio publication-title: Optik – reference: K. Kamarudin, S. Mamduh, A. Yeon, R. Visvanathan, A. Shakaff, A. Zakaria, L. Kamarudin, N. Rahim, Improving performance of 2D SLAM methods by complementing Kinect with laser scanner, in: 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), IEEE, 2015, pp. 278–283. – reference: B. Huang, J. Zhao, J. Liu, A survey of simultaneous localization and mapping, arXiv preprint arXiv:1909.05214, (2019). – volume: 71 start-page: 103216 year: 2022 ident: b0150 article-title: CNN-based bi-directional and directional long-short term memory network for determination of face mask publication-title: Biomed. Signal Process. Control – reference: R. Li, J. Liu, L. Zhang, Y. Hang, LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments, in: 2014 DGON inertial sensors and systems (ISS), IEEE, 2014, pp. 1–15. – reference: C. Chen, B. Wang, C.X. Lu, N. Trigoni, A. Markham, A survey on deep learning for localization and mapping: Towards the age of spatial machine intelligence, arXiv preprint arXiv:2006.12567, (2020). – volume: 7 start-page: 45 year: 2018 ident: b0180 article-title: A review of visual-inertial simultaneous localization and mapping from filtering-based and optimization-based perspectives publication-title: Robotics – reference: J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, in: European conference on computer vision, Springer, 2014, pp. 834–849. – volume: 10 start-page: 203 year: 2013 ident: b0040 article-title: Precise localization of mobile robots via odometry and wireless sensor network publication-title: Int. J. Adv. Robot. Syst. – reference: G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces, in: 2007 6th IEEE and ACM international symposium on mixed and augmented reality, IEEE, 2007, pp. 225–234. – reference: M. Bloesch, S. Omari, M. Hutter, R. Siegwart, Robust visual inertial odometry using a direct EKF-based approach, in: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, 2015, pp. 298–304. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b0240 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – reference: L. Han, Y. Lin, G. Du, S. Lian, Deepvio: Self-supervised deep learning of monocular visual inertial odometry using 3d geometric constraints, arXiv preprint arXiv:1906.11435, (2019). – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014). – start-page: 2502 year: 2018 end-page: 2509 ident: b0470 article-title: A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA) – year: 2021 ident: b0365 article-title: A hybrid noise removal algorithm for MEMS sensors publication-title: Mater. Today: Proc. – volume: 68 start-page: 11212 year: 2021 end-page: 11222 ident: b0445 article-title: DVIO: An Optimization-Based Tightly Coupled Direct Visual-Inertial Odometry publication-title: IEEE Trans. Ind. Electron. – reference: K.-W. Chiang, H. Hou, X. Niu, N. El-Sheimy, Improving the positioning accuracy of DGPS/MEMS IMU integrated systems utilizing cascade de-noising algorithm, in: Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), 2004, pp. 809–818. – volume: 569 start-page: 728 year: 2021 end-page: 745 ident: b0395 article-title: An efficient constrained global optimization algorithm with a clustering-assisted multiobjective infill criterion using Gaussian process regression for expensive problems publication-title: Inform. Sci. – reference: A. Zrelli, T. Ezzedine, Enhanced architecture for SHM system based on optical sensor and WSN, in: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), IEEE, 2017, pp. 1–6. – volume: 33 start-page: 1255 year: 2017 end-page: 1262 ident: b0125 article-title: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras publication-title: IEEE Trans. Robot. – volume: 3 start-page: 2330 year: 2018 end-page: 2337 ident: b0070 article-title: Pose-graph SLAM using forward-looking sonar publication-title: IEEE Robot. Autom. Lett. – reference: C. Li, S.L. Waslander, Towards End-to-end Learning of Visual Inertial Odometry with an EKF, in: 2020 17th Conference on Computer and Robot Vision (CRV), IEEE, 2020, pp. 190–197. – volume: 34 start-page: 307 year: 2015 end-page: 325 ident: b0485 article-title: Motion optimization using Gaussian process dynamical models publication-title: Multibody Syst. Dyn. – volume: 6 start-page: 1399 year: 2021 end-page: 1406 ident: b0455 article-title: OV publication-title: IEEE Robot. Autom. Lett. – volume: 3 start-page: 1735 year: 2018 end-page: 1742 ident: b0320 article-title: LS-VO: Learning Dense Optical Subspace for Robust Visual Odometry Estimation publication-title: IEEE Robot. Autom. Lett. – start-page: 1 year: 2021 end-page: 24 ident: b0065 article-title: Hardware, Software Platforms, Operating Systems and Routing Protocols for Internet of Things Applications publication-title: Wireless Personal Commun. – reference: A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an open-source library for real-time metric-semantic localization and mapping, in: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 1689–1696. – volume: 20 start-page: 4922 year: 2020 ident: b0280 article-title: Study on the influence of image noise on monocular feature-based visual slam based on ffdnet publication-title: Sensors – volume: 20 start-page: 4220 year: 2020 ident: b0225 article-title: Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review publication-title: Sensors – ident: 10.1016/j.measurement.2022.111030_b0135 doi: 10.1007/978-3-319-10605-2_54 – volume: 68 start-page: 11212 issue: 11 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0445 article-title: DVIO: An Optimization-Based Tightly Coupled Direct Visual-Inertial Odometry publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3036243 – volume: 9 start-page: 626 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0095 article-title: A novel fault-tolerant navigation and positioning method with stereo-camera/micro electro mechanical systems inertial measurement unit (MEMS-IMU) in hostile environment publication-title: Micromachines doi: 10.3390/mi9120626 – volume: 31 start-page: 1147 year: 2015 ident: 10.1016/j.measurement.2022.111030_b0120 article-title: ORB-SLAM: a versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2463671 – volume: 7 start-page: 97466 year: 2019 ident: 10.1016/j.measurement.2022.111030_b0035 article-title: A Survey on Odometry for Autonomous Navigation Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929133 – ident: 10.1016/j.measurement.2022.111030_b0030 doi: 10.1109/IROS40897.2019.8968467 – volume: 34 start-page: 1004 issue: 4 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0420 article-title: Vins-mono: A robust and versatile monocular visual-inertial state estimator publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2018.2853729 – volume: 15 start-page: 22587 year: 2015 ident: 10.1016/j.measurement.2022.111030_b0385 article-title: Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks publication-title: Sensors doi: 10.3390/s150922587 – start-page: 321 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0235 article-title: Process outcome prediction: CNN vs. LSTM (with attention) – ident: 10.1016/j.measurement.2022.111030_b0025 doi: 10.1109/CVPR42600.2020.00136 – year: 2020 ident: 10.1016/j.measurement.2022.111030_b0175 article-title: Approaches challenges and applications for deep visual odometry toward to complicated and emerging areas publication-title: IEEE Trans. Cogn. Developm. Syst. – ident: 10.1016/j.measurement.2022.111030_b0260 doi: 10.1109/CVPR.2017.195 – ident: 10.1016/j.measurement.2022.111030_b0480 – start-page: 2510 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0430 article-title: Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization – volume: 10 start-page: 222 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0165 article-title: Ego-Motion Estimation Using Recurrent Convolutional Neural Networks through Optical Flow Learning publication-title: Electronics doi: 10.3390/electronics10030222 – volume: 3 start-page: 2330 issue: 3 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0070 article-title: Pose-graph SLAM using forward-looking sonar publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2809510 – ident: 10.1016/j.measurement.2022.111030_b0080 doi: 10.1109/IRIS.2015.7451625 – start-page: 2582 year: 2017 ident: 10.1016/j.measurement.2022.111030_b0495 article-title: Real-time optimal path planning and wind estimation using Gaussian process regression for precision airdrop – volume: 9 start-page: 10054 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0475 article-title: LSTM and Filter Based Comparison Analysis for Indoor Global Localization in UAVs publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049896 – volume: 11 start-page: 263 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0350 article-title: Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma publication-title: Bilişim Teknolojileri Dergisi doi: 10.17671/gazibtd.419205 – volume: 34 start-page: 307 issue: 4 year: 2015 ident: 10.1016/j.measurement.2022.111030_b0485 article-title: Motion optimization using Gaussian process dynamical models publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-014-9441-8 – volume: 7 start-page: 45 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0180 article-title: A review of visual-inertial simultaneous localization and mapping from filtering-based and optimization-based perspectives publication-title: Robotics doi: 10.3390/robotics7030045 – ident: 10.1016/j.measurement.2022.111030_b0170 – ident: 10.1016/j.measurement.2022.111030_b0460 doi: 10.1109/ICRA40945.2020.9196885 – volume: 13 start-page: 3012 issue: 18 year: 2019 ident: 10.1016/j.measurement.2022.111030_b0045 article-title: Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems publication-title: IET Commun. doi: 10.1049/iet-com.2018.5260 – start-page: 3565 year: 2007 ident: 10.1016/j.measurement.2022.111030_b0100 article-title: A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation – ident: 10.1016/j.measurement.2022.111030_b0465 doi: 10.1109/CRV50864.2020.00033 – volume: 5 start-page: 5905 issue: 4 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0490 article-title: Multi-Robot Active Sensing and Environmental Model Learning With Distributed Gaussian Process publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3010456 – ident: 10.1016/j.measurement.2022.111030_b0425 doi: 10.1109/IROS.2013.6696917 – volume: 20 start-page: 4922 issue: 17 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0280 article-title: Study on the influence of image noise on monocular feature-based visual slam based on ffdnet publication-title: Sensors doi: 10.3390/s20174922 – ident: 10.1016/j.measurement.2022.111030_b0010 doi: 10.15607/RSS.2020.XVI.009 – ident: 10.1016/j.measurement.2022.111030_b0110 doi: 10.1109/ISMAR.2007.4538852 – volume: 93 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0335 article-title: Inception v3 based cervical cell classification combined with artificially extracted features publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106311 – volume: 21 start-page: 1313 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0220 article-title: Leveraging deep learning for visual odometry using optical flow publication-title: Sensors doi: 10.3390/s21041313 – volume: 2021 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0015 article-title: Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking publication-title: J. Sens. doi: 10.1155/2021/2054828 – volume: 28 start-page: 111 issue: 4 year: 2011 ident: 10.1016/j.measurement.2022.111030_b0290 article-title: What is a Savitzky-Golay filter?[lecture notes] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2011.941097 – volume: 5 start-page: 2108 issue: 2 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0300 article-title: Gaussian process preintegration for inertial-aided state estimation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2970940 – volume: 6 start-page: 1399 issue: 2 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0455 article-title: OV2SLAM: A Fully Online and Versatile Visual SLAM for Real-Time Applications publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3058069 – volume: 35 start-page: 1157 year: 2016 ident: 10.1016/j.measurement.2022.111030_b0200 article-title: The EuRoC micro aerial vehicle datasets publication-title: Int. J. Robot. Res. doi: 10.1177/0278364915620033 – volume: 34 start-page: 314 issue: 3 year: 2015 ident: 10.1016/j.measurement.2022.111030_b0415 article-title: Keyframe-based visual–inertial odometry using nonlinear optimization publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914554813 – ident: 10.1016/j.measurement.2022.111030_b0375 doi: 10.1109/ICCSPA.2019.8713728 – volume: 10 start-page: 1119 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0345 article-title: Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery publication-title: Remote Sens. doi: 10.3390/rs10071119 – ident: 10.1016/j.measurement.2022.111030_b0075 doi: 10.1109/InertialSensors.2014.7049479 – ident: 10.1016/j.measurement.2022.111030_b0360 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.measurement.2022.111030_b0240 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – volume: 37 start-page: 942 issue: 7-8 year: 2010 ident: 10.1016/j.measurement.2022.111030_b0405 article-title: Modelling pile capacity using Gaussian process regression publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2010.07.012 – volume: 5 start-page: 4796 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0275 article-title: Denoising imu gyroscopes with deep learning for open-loop attitude estimation publication-title: IEEE Robot. Autom. Lett. – volume: 20 start-page: 4386 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0090 article-title: VIMO: A Visual-Inertial-Magnetic Navigation System Based on Non-Linear Optimization publication-title: Sensors doi: 10.3390/s20164386 – volume: 13 start-page: 772 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0085 article-title: Robust Visual-Inertial Navigation System for Low Precision Sensors under Indoor and Outdoor Environments publication-title: Remote Sens. doi: 10.3390/rs13040772 – volume: 35 start-page: 734 issue: 3 year: 2019 ident: 10.1016/j.measurement.2022.111030_b0450 article-title: PL-SLAM: A stereo SLAM system through the combination of points and line segments publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2019.2899783 – ident: 10.1016/j.measurement.2022.111030_b0315 – ident: 10.1016/j.measurement.2022.111030_b0370 doi: 10.1109/ICIT52682.2021.9491668 – ident: 10.1016/j.measurement.2022.111030_b0140 doi: 10.1109/ICRA.2014.6906584 – ident: 10.1016/j.measurement.2022.111030_b0050 doi: 10.1109/CEIT.2016.7929097 – ident: 10.1016/j.measurement.2022.111030_b0105 doi: 10.1109/IROS.2015.7353389 – ident: 10.1016/j.measurement.2022.111030_b0380 – volume: 10 start-page: 17663 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0390 article-title: Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels publication-title: Sci. Rep. doi: 10.1038/s41598-020-74394-1 – ident: 10.1016/j.measurement.2022.111030_b0305 – start-page: 1 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0065 article-title: Hardware, Software Platforms, Operating Systems and Routing Protocols for Internet of Things Applications publication-title: Wireless Personal Commun. – volume: 229 start-page: 166257 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0060 article-title: Optical fiber sensors in border detection application: Temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio publication-title: Optik doi: 10.1016/j.ijleo.2021.166257 – ident: 10.1016/j.measurement.2022.111030_b0210 doi: 10.1109/IROS40897.2019.8968467 – ident: 10.1016/j.measurement.2022.111030_b0250 doi: 10.1109/CVPR.2015.7298594 – ident: 10.1016/j.measurement.2022.111030_b0310 doi: 10.1109/IROS.2004.1389727 – ident: 10.1016/j.measurement.2022.111030_b0265 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.measurement.2022.111030_b0325 doi: 10.1109/ICIP42928.2021.9506523 – volume: 35 start-page: 229 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0160 article-title: Determination of Effective and Specific Physical Features of Rice Varieties by Computer Vision In Exterior Quality Inspection publication-title: Selcuk J. Agric. Food Sci. – volume: 68 start-page: 102716 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0270 article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: numeric to image publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102716 – volume: 2 start-page: 796 issue: 2 year: 2017 ident: 10.1016/j.measurement.2022.111030_b0130 article-title: Visual-inertial monocular SLAM with map reuse publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2653359 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0145 article-title: Monocular visual odometry based on depth and optical flow using deep learning publication-title: IEEE Trans. Instrument. Meas. doi: 10.1109/TIM.2020.3024011 – volume: 7 start-page: 185408 year: 2019 ident: 10.1016/j.measurement.2022.111030_b0440 article-title: A Stereo Visual-Inertial SLAM Approach for Indoor Mobile Robots in Unknown Environments Without Occlusions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961266 – volume: 30 start-page: 73 issue: 1 year: 2022 ident: 10.1016/j.measurement.2022.111030_b0155 article-title: Classification by a stacking model using CNN features for COVID-19 infection diagnosis publication-title: J. X-ray Sci. Technol. – year: 2006 ident: 10.1016/j.measurement.2022.111030_b0295 – volume: 2 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.measurement.2022.111030_b0410 article-title: Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2016.2521413 – volume: 10 start-page: 203 issue: 4 year: 2013 ident: 10.1016/j.measurement.2022.111030_b0040 article-title: Precise localization of mobile robots via odometry and wireless sensor network publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/56217 – ident: 10.1016/j.measurement.2022.111030_b0245 – volume: 20 start-page: 4220 issue: 15 year: 2020 ident: 10.1016/j.measurement.2022.111030_b0225 article-title: Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review publication-title: Sensors doi: 10.3390/s20154220 – volume: 71 start-page: 103216 year: 2022 ident: 10.1016/j.measurement.2022.111030_b0150 article-title: CNN-based bi-directional and directional long-short term memory network for determination of face mask publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103216 – start-page: 227 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0005 article-title: Mobile Robotics, SLAM, Bayesian Filter, Keyframe Bundle Adjustment and ROS Applications – ident: 10.1016/j.measurement.2022.111030_b0195 – ident: 10.1016/j.measurement.2022.111030_b0340 – ident: 10.1016/j.measurement.2022.111030_b0255 doi: 10.1109/CVPR.2016.308 – ident: 10.1016/j.measurement.2022.111030_b0055 doi: 10.23919/SOFTCOM.2017.8115533 – ident: 10.1016/j.measurement.2022.111030_b0215 doi: 10.1109/CVPR.2018.00931 – volume: 21 start-page: 1605 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0230 article-title: An Outline of Multi-Sensor Fusion Methods for Mobile Agents Indoor Navigation publication-title: Sensors doi: 10.3390/s21051605 – year: 2021 ident: 10.1016/j.measurement.2022.111030_b0365 article-title: A hybrid noise removal algorithm for MEMS sensors publication-title: Mater. Today: Proc. – volume: 1 start-page: 289 issue: 4 year: 2015 ident: 10.1016/j.measurement.2022.111030_b0330 article-title: An overview to visual odometry and visual SLAM: Applications to mobile robotics publication-title: Intell. Ind. Syst. doi: 10.1007/s40903-015-0032-7 – start-page: 2502 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0470 article-title: A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots – volume: 33 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.measurement.2022.111030_b0435 article-title: On-Manifold Preintegration for Real-Time Visual-Inertial Odometry publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2016.2597321 – volume: 32 start-page: 1231 issue: 11 year: 2013 ident: 10.1016/j.measurement.2022.111030_b0190 article-title: Vision meets robotics: The kitti dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913491297 – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0400 article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2018.03.001 – volume: 290 start-page: 456 year: 2019 ident: 10.1016/j.measurement.2022.111030_b0355 article-title: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain publication-title: Radiology doi: 10.1148/radiol.2018180958 – ident: 10.1016/j.measurement.2022.111030_b0205 doi: 10.1109/CVPR.2016.350 – ident: 10.1016/j.measurement.2022.111030_b0115 doi: 10.1109/ISMAR.2017.18 – ident: 10.1016/j.measurement.2022.111030_b0185 doi: 10.1609/aaai.v31i1.11215 – volume: 569 start-page: 728 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0395 article-title: An efficient constrained global optimization algorithm with a clustering-assisted multiobjective infill criterion using Gaussian process regression for expensive problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.05.015 – volume: 3 start-page: 1735 issue: 3 year: 2018 ident: 10.1016/j.measurement.2022.111030_b0320 article-title: LS-VO: Learning Dense Optical Subspace for Robust Visual Odometry Estimation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2803211 – volume: 33 start-page: 1255 year: 2017 ident: 10.1016/j.measurement.2022.111030_b0125 article-title: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2017.2705103 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 10.1016/j.measurement.2022.111030_b0285 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Analyt. Chem. doi: 10.1021/ac60214a047 – start-page: 1 year: 2021 ident: 10.1016/j.measurement.2022.111030_b0020 article-title: ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM publication-title: IEEE Trans. Robot. |
SSID | ssj0006396 |
Score | 2.481314 |
Snippet | •An end-to-end architecture is designed that makes UAV pose estimation based on optical flow-inertial-visual features.•Inertial numeric data is converted to... This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111030 |
SubjectTerms | Artificial intelligence Datasets Deep learning Denoising Estimating techniques EuRoC Feature extraction Frames Gaussian process Gaussian process regression Inertial image Neural networks Normal distribution Optical flow (image analysis) Pose estimation UAV Unmanned aerial vehicles Visual inertial odometry |
Title | Visual-Inertial Image-Odometry Network (VIIONet): A Gaussian process regression-based deep architecture proposal for UAV pose estimation |
URI | https://dx.doi.org/10.1016/j.measurement.2022.111030 https://www.proquest.com/docview/2687836732 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFLamIRAc0BggBttkJA5wMG0cx4nRLtXEaEGUA7TazYpjeypa06hJD1w487N5L07WgjhM4ujIL4n8Xr73nvO9Z0JepV7lSjnDuM08EyIpGASxjonUey9U5G2B1cifp3I8Ex8vk8s9ct7XwiCtssP-gOktWndXBt1qDqrFYvB1iK3GwQFx3p7AhD1BhUjRyt_-3NI8wAPLsM8SM5x9j7zccryW2304SBU5RwBpCdH_9lF_oXXrgi4OyMMudqSj8HqPyJ4rD8mDnY6Ch-Ruy-gs6sfk13xRb_JrNimROQ1ikyVAB_tiV0vXrH_QaeB_09fzCcCpa968oyP6Id_UWFVJq1A_QNfuKhBlS4b-zlLrXEV3_z7g1GpVwwMg_KWz0ZzCyFFs3hGqIp-Q2cX7b-dj1h27wAohZcME6Ec5nygvC4guZGYj60U6NDbJPGQgXEXCDJUtYlNEuUxiCYmuz1NI3gy2t4ufkv1yVbpnhIK-Ze4SO1TGityAUUTOZ8ZClJDFxmRHJOsXWhddT3I8GuNa9-Sz73pHRxp1pIOOjgi_Ea1CY47bCJ312tR_WJkGB3Ib8ePeAnT3qdeaywwrYdKYP_-_u78g93GE1IQoOSb7zXrjTiDiacxpa9Kn5M5o8mk8_Q1WQASU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrXgdEBRQCwWMxAEO1m4Sx4kRl1VF2dB2OdBd9WbFsY226majTfbAP-BnM46TdkEcKnHMYxLLM_lmxvlmDPAusSIXwiga6tRSxuKCYhBrKEustUwEVheuGvlsyicz9vUivtiBo74WxtEqO-z3mN6idXdm2M3msFosht9HrtU4OqAwbHdgYndg13WnigewO85OJtNrQEYnzP1SS0SdwD14e0PzWt4sxWG2GIYOQ1pO9L_d1F-A3Xqh48fwqAsfydiP8AnsmHIPHm41FdyDuy2ps6ifwq_5ot7kVzQrHXkaxbIlogf9pldL06x_kqmngJP38wwR1TQfPpIx-ZJvaldYSSpfQkDW5ofnypbUuTxNtDEV2f4B4W6tVjW-ACNgMhvPCR4Z4vp3-MLIZzA7_nx-NKHdzgu0YJw3lKGKhLGxsLzAAIOnOtCWJSOl49RiEhKKgKmR0EWkiiDnccQx17V5gvmbch3uoucwKFel2QeCKue5ifVIKM1yhXYRGJsqjYFCGimVHkDaT7QsurbkbneMK9nzzy7llo6k05H0OjqA8Fq08r05biP0qdem_MPQJPqQ24gf9hYgu6-9liFPXTFMEoUv_u_pb-D-5PzsVJ5m05OX8MBdcUyFID6EQbPemFcYADXqdWfgvwE0LgdF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual-Inertial+Image-Odometry+Network+%28VIIONet%29%3A+A+Gaussian+process+regression-based+deep+architecture+proposal+for+UAV+pose+estimation&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Durdu%2C+Akif&rft.au=Sabanci%2C+Kadir&rft.date=2022-05-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=194&rft_id=info:doi/10.1016%2Fj.measurement.2022.111030&rft.externalDocID=S0263224122002974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |