Improved marine predator MPPT algorithm for photovoltaic systems in partial shading conditions

When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 21092 - 13
Main Authors Zheng, Hanbo, Du, Qi, Mo, Shuqin, Qin, Tuanfa, Wang, Shusheng, Li, Zhe
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms.
AbstractList When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms.When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms.
Abstract When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms.
When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms.
ArticleNumber 21092
Author Wang, Shusheng
Du, Qi
Li, Zhe
Mo, Shuqin
Zheng, Hanbo
Qin, Tuanfa
Author_xml – sequence: 1
  givenname: Hanbo
  surname: Zheng
  fullname: Zheng, Hanbo
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University
– sequence: 2
  givenname: Qi
  surname: Du
  fullname: Du, Qi
  email: 2212401011@st.gxu.edu.cn
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University
– sequence: 3
  givenname: Shuqin
  surname: Mo
  fullname: Mo, Shuqin
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University
– sequence: 4
  givenname: Tuanfa
  surname: Qin
  fullname: Qin, Tuanfa
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University
– sequence: 5
  givenname: Shusheng
  surname: Wang
  fullname: Wang, Shusheng
  organization: China Water Northeastern Investigation Design & Research CO., LTD
– sequence: 6
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  organization: China Water Northeastern Investigation Design & Research CO., LTD
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40596335$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpH2CBvGQT8DvxCqGKx0hFdFG2WE58M-NRYgfbM1L_PW5TqnaDN7auz_2urXNeo5MQAyD0lpIPlPDuYxZU6q4hTDZECdI1-gU6Y0TIhnHGTp6cT9FFzntSl2RaUP0KnQoiteJcnqHfm3lJ8QgOzzb5AHhJ4GyJCf-4vr7BdtrG5MtuxmMtLbtY4jFOxfoB59tcYM7YB7zYVLydcN5Z58MWDzE4X3wM-Q16Odopw8XDfo5-ff1yc_m9ufr5bXP5-aoZhFKlEdp2shMtBdLxlrERyNA6Zylo6gR1hCltxdhzC_0InYKRqRaU7WBQFhzl52izcl20e7MkX39za6L15r4Q09bcvXGYwKi-VawlPTjOBIheS2e1UI71gnJwqrI-razl0M_gBggl2ekZ9PlN8DuzjUdDGaOtUqIS3j8QUvxzgFzM7PMA02QDxEM21RTFpdJMVum7p8Mep_xzqArYKhhSzDnB-CihxNwlwaxJMDUJ5j4JRtcmvjblKg5bSGYfDylUB_7X9RfZyLf9
Cites_doi 10.1016/j.apenergy.2013.12.054
10.1016/j.solener.2018.06.080
10.1007/978-3-030-05578-3_13
10.1109/JESTPE.2019.2900999
10.1016/j.compeleceng.2024.110037
10.1016/j.ijepes.2020.105997
10.1109/ACCESS.2021.3072972
10.3390/en15176172
10.1109/ACCESS.2020.2999311
10.1016/j.eswa.2020.113377
10.1016/j.asoc.2017.05.017
10.1155/2024/5585826
10.1007/978-981-16-4369-9_33
10.1016/j.egypro.2019.04.013
10.1016/j.procs.2020.03.116
10.1016/j.enbuild.2013.07.085
10.1016/j.ijepes.2019.05.074
10.1016/j.renene.2019.12.078
10.1016/j.epsr.2023.109742
10.1080/15435075.2016.1261709
10.1007/s00202-023-02165-y
10.1016/j.compeleceng.2024.109991
10.1038/s41598-024-84333-z
10.1109/JSYST.2020.3003255
10.1016/j.ijepes.2021.107805
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-06408-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_6b76270bed324e4b95da946d2b413ed6
PMC12217664
40596335
10_1038_s41598_025_06408_9
Genre Journal Article
GrantInformation_xml – fundername: Science Fund for Distinguished Young Scholars of Guangxi Province
  grantid: 2024GXNSFFA999017
– fundername: National Natural Science Foundation of China
  grantid: 52277139 and 52367014
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c466t-49a858471e083722fe0c7dda1e91d41d0269a4fb3aebfe86ef267e6a8ec6aed13
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 18:33:14 EDT 2025
Fri Jul 11 16:57:23 EDT 2025
Sat Jul 05 01:30:32 EDT 2025
Thu Jul 03 08:44:02 EDT 2025
Wed Jul 02 02:43:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Marine predator algorithm
Local shading
Maximum photovoltaic power tracking
Photovoltaic system
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-49a858471e083722fe0c7dda1e91d41d0269a4fb3aebfe86ef267e6a8ec6aed13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-06408-9
PMID 40596335
PQID 3226356925
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_6b76270bed324e4b95da946d2b413ed6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12217664
proquest_miscellaneous_3226356925
pubmed_primary_40596335
crossref_primary_10_1038_s41598_025_06408_9
springer_journals_10_1038_s41598_025_06408_9
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References JP Ram (6408_CR23) 2020; 8
H Salmi (6408_CR19) 2016; 5
M Abdel-Salam (6408_CR7) 2018; 171
D Kumar (6408_CR18) 2017; 14
6408_CR21
M Mishra (6408_CR3) 2024; 106
A Faramarzi (6408_CR30) 2020; 152
6408_CR25
U Yilmaz (6408_CR11) 2019; 113
MNI Jamaludin (6408_CR26) 2025; 15
D Debnath (6408_CR15) 2020; 20
P Manoharan (6408_CR22) 2020; 15
MFN Tajuddin (6408_CR10) 2013; 67
AIM Ali (6408_CR29) 2022; 137
HE Colak (6408_CR1) 2020; 149
MV da Rocha (6408_CR5) 2020; 40
6408_CR12
K Ishaque (6408_CR6) 2014; 119
GP Lei (6408_CR28) 2024; 2024
H Belmadani (6408_CR2) 2024; 2024
FE Lamzouri (6408_CR13) 2020; 170
K Guo (6408_CR14) 2020; 8
AL Ibrahim (6408_CR24) 2025; 123
S Titri (6408_CR17) 2017; 58
I Dagal (6408_CR16) 2025; 122
A Omar (6408_CR8) 2023; 224
CP Rao (6408_CR9) 2021; 9
SK Vankadara (6408_CR27) 2022; 15
MI Mohamed (6408_CR20) 2019; 162
K Mahmoud (6408_CR4) 2020; 120
References_xml – volume: 119
  start-page: 228
  year: 2014
  ident: 6408_CR6
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.12.054
– volume: 171
  start-page: 547
  year: 2018
  ident: 6408_CR7
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.06.080
– ident: 6408_CR25
  doi: 10.1007/978-3-030-05578-3_13
– volume: 8
  start-page: 1361
  issue: 2
  year: 2020
  ident: 6408_CR23
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  doi: 10.1109/JESTPE.2019.2900999
– volume: 123
  start-page: 110037
  year: 2025
  ident: 6408_CR24
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.110037
– volume: 120
  start-page: 105997
  year: 2020
  ident: 6408_CR4
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.105997
– ident: 6408_CR21
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 6408_CR19
  publication-title: Int. J. Intell. Inform. Syst.
– volume: 9
  start-page: 58790
  year: 2021
  ident: 6408_CR9
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3072972
– volume: 15
  start-page: 6172
  issue: 17
  year: 2022
  ident: 6408_CR27
  publication-title: Energies
  doi: 10.3390/en15176172
– volume: 8
  start-page: 103476
  year: 2020
  ident: 6408_CR14
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2999311
– volume: 152
  start-page: 113377
  year: 2020
  ident: 6408_CR30
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 58
  start-page: 465
  year: 2017
  ident: 6408_CR17
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.017
– volume: 20
  start-page: 87
  issue: 1
  year: 2020
  ident: 6408_CR15
  publication-title: Int. Energy J.
– volume: 2024
  start-page: 1664320
  issue: 1
  year: 2024
  ident: 6408_CR28
  publication-title: Int. J. Energy Res.
– volume: 2024
  start-page: 5585826
  issue: 1
  year: 2024
  ident: 6408_CR2
  publication-title: Int. J. Energy Res.
  doi: 10.1155/2024/5585826
– ident: 6408_CR12
  doi: 10.1007/978-981-16-4369-9_33
– volume: 40
  start-page: 100761
  year: 2020
  ident: 6408_CR5
  publication-title: Sustain. Energy Technol. Assess.
– volume: 162
  start-page: 117
  year: 2019
  ident: 6408_CR20
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.04.013
– volume: 170
  start-page: 887
  year: 2020
  ident: 6408_CR13
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.116
– volume: 67
  start-page: 245
  year: 2013
  ident: 6408_CR10
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.07.085
– volume: 113
  start-page: 634
  year: 2019
  ident: 6408_CR11
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.05.074
– volume: 149
  start-page: 565
  year: 2020
  ident: 6408_CR1
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.078
– volume: 224
  start-page: 109742
  year: 2023
  ident: 6408_CR8
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109742
– volume: 14
  start-page: 416
  issue: 4
  year: 2017
  ident: 6408_CR18
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2016.1261709
– volume: 106
  start-page: 3427
  issue: 3
  year: 2024
  ident: 6408_CR3
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-023-02165-y
– volume: 122
  start-page: 109991
  year: 2025
  ident: 6408_CR16
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.109991
– volume: 15
  start-page: 650
  issue: 1
  year: 2025
  ident: 6408_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-84333-z
– volume: 15
  start-page: 3024
  issue: 2
  year: 2020
  ident: 6408_CR22
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2020.3003255
– volume: 137
  start-page: 107805
  year: 2022
  ident: 6408_CR29
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107805
SSID ssj0000529419
Score 2.4509485
Snippet When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will...
Abstract When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 21092
SubjectTerms 639/4077
639/4077/4073
639/4077/909
Humanities and Social Sciences
Local shading
Marine predator algorithm
Maximum photovoltaic power tracking
multidisciplinary
Photovoltaic system
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9N3tI6jQW2tiS7IsHduQEAopOSSQU4XkGXcXGntZO4f--44kb8i2pb30ahk9ZjSaGc3oG8bekUoPEbW8kFBiERG4ilCCLjA0sjatx9rH-46zL_r0Un2-qq_ulPqKOWEZHjgT7lAHEtemDAik-lEFW4O3SgMNUUmEBLZNOu-OM5VRvYVVlZ1fyZTSHI6kqeJrMlEXMXhFUr6jiRJg_5-szN-TJX-JmCZFdPKQPZgtSP4xz_wRu4f9Y7afa0r-eMK-5msCBH7t48s-vt4gRM-an52fX3D__duwWU3La07WKl8vh2mgA2ryq5ZnUOeRr3q-jnShQcZlSrHn5DRDzu16yi5Pji-OTou5iELREg-mQllvYii0QjK2GiE6LNsGwFdoK1AVkA9mveqC9Bg6NBo7oRvU3mCrPUIln7G9fujxBeNA5qFpLDRBGQUmBKO87CR1aUOtjVqw91uCunXGynApxi2Ny-R3RH6XyO_sgn2KNL_9M-Jcpw_EfTdz3_2L-wv2dssxR3IRgx2-x-FmdHRQReg9K-oFe545eDuUijWHpKQWs8PbnbnstvSrZcLeroSIkJq01g_bbeBmqR__stiX_2Oxr9h9kfZvTBZ-zfamzQ2-IZNoCgdp9_8EgT4JHg
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved marine predator MPPT algorithm for photovoltaic systems in partial shading conditions
URI https://link.springer.com/article/10.1038/s41598-025-06408-9
https://www.ncbi.nlm.nih.gov/pubmed/40596335
https://www.proquest.com/docview/3226356925
https://pubmed.ncbi.nlm.nih.gov/PMC12217664
https://doaj.org/article/6b76270bed324e4b95da946d2b413ed6
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCX0e4z7RY02NtmZluyLD2moaUEWsLWQp4mJOvcBFY7xO7D_vueZDuQrRT2ZLBkSzqdTqf7-ImQL7ilW49aHjEXQ-QRuCIbOxGBzVkmCwOZ8faOq2txectni2yxR9IhFyYE7QdIyyCmh-iw7w1uND4ZLM0i73vCRbpPDj10u-fqqZhu7Srec8UT1efHxEw-8enOHhSg-p_SL_8Nk_zLVxq2oIsj8qrXHemk6-0x2YPqNXnR3Sb55w351RkIwNF743P66HoDzp-p6dV8fkPN77t6s2qX9xT1VLpe1m2Noqk1q4J2cM4NXVV07WmBjTTLEFxP8bjsuqiut-T24vxmehn11ydEBVK_jbgy0jtBE0A1K0_TEuIid84koBLHE4enL2V4aZkBW4IUUKYiB2EkFMKAS9g7clDVFXwg1KFiKHPlcssld9JayQ0rGf5S2UxIPiJfB4LqdYeSoYN3m0ndkV8j-XUgv1YjcuZpvq3pEa7Di3pzp_sZ18KimM5jCw5VPuBWZc4oLhyyVsLAiRH5PMyYxhXh3Rymgvqh0SiiPOieSrMRed_N4LYp7m8bYgxL5M7c7vRlt6RaLQPqdpKmHkwTx_ptYAPdr_fmmcGe_F_1U_IyDZzqA4I_koN28wCfUO1p7Zjs54t8TA4nk9nPGT7Pzq_nP8aB-8fBlPAIP0gDZQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGEIIXxOcoMDASbxCR2I5jP0K1qcA67aGT9oRlx5e1EkuqJnvgv-fsJJXKJqS9xkls353vzr67nwn5iCbdBdTyhPsUkoDAlbjUywRcwXNVWshtOO-Yn8rZufhxkV_sETbWwsSk_QhpGdX0mB32pUVDE4rBWJ6E2BMu0nvkPvraMqRxTeV0e64SIlci00N9TMrVLZ_u2KAI1X-bf3kzTfKfWGk0QcdPyOPBd6Rf-9E-JXtQPyMP-tsk_zwnv_oDAvD0yoaaPrregA97ajo_O1tQ-_uy2ay65RVFP5Wul03XoGrq7KqkPZxzS1c1XQdaYCftMibXU9wu-z6r6wU5Pz5aTGfJcH1CUiL1u0Roq0IQNAN0swrGKkjLwnubgc68yDzuvrQVleMWXAVKQsVkAdIqKKUFn_GXZL9uanhFqEfHUBXaF04o4ZVzSlhecfyldsgCMSGfRoKadY-SYWJ0myvTk98g-U0kv9ET8i3QfPtmQLiOD5rNpRk4bqRDNV2kDjy6fCCczr3VQnoUrYyDlxPyYeSYwRURwhy2hua6NaiiAuieZvmEHPQc3HYlwm1DnGOL2uHtzlh2W-rVMqJuZ4wFME2c6-dRDMyw3tv_TPb13V5_Tx7OFvMTc_L99Ocb8ohFqQ3JwW_Jfre5hkN0gTr3Lsr8X0K3AVI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKK1AvqOW5pQUjcYNAEjuOfYQtq_JotYdW6gnLjifdlWgSbdID_56xk6y0tELqNU5ie2Y8nvHMfCbkHW7p1qOWR8zFEHkErsjGTkRgc5bJwkBm_HnH6Zk4ueDfL7PLLSLGWpiQtB8gLYOaHrPDPrW40fhisDSLfOwJF-nHxpUPyA7a27F3uqZiuj5b8dErnqihRiZm8o7PN_ahANd_l415O1Xyn3hp2IZme-TxYD_Sz_2I98kWVE_Iw_5GyT9Pya_-kAAcvTa-ro82K3Der6an8_k5Nb-v6tWyW1xTtFVps6i7GtVTZ5YF7SGdW7qsaOPpgZ20i5BgT9Fldn1m1zNyMft6Pj2JhisUogI50EVcGekDoQmgqZWnaQlxkTtnElCJ44lDD0wZXlpmwJYgBZSpyEEYCYUw4BL2nGxXdQUvCXVoHMpcudxyyZ20VnLDSoa_VDYTkk_I-5GguumRMnSIcDOpe_JrJL8O5NdqQr54mq_f9CjX4UG9utID17WwqKrz2IJDsw-4VZkziguH4pUwcGJC3o4c07gqfKjDVFDftBrVlAfeU2k2IS96Dq674v7GIcawRW7wdmMsmy3VchGQt5M09YCaONcPoxjoYc23_5nswf1ef0MezY9n-ue3sx-vyG4ahNbnBx-S7W51A0doBXX2dRD5v-IFAls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+marine+predator+MPPT+algorithm+for+photovoltaic+systems+in+partial+shading+conditions&rft.jtitle=Scientific+reports&rft.au=Zheng%2C+Hanbo&rft.au=Du%2C+Qi&rft.au=Mo%2C+Shuqin&rft.au=Qin%2C+Tuanfa&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-06408-9&rft_id=info%3Apmid%2F40596335&rft.externalDocID=PMC12217664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon