Improved marine predator MPPT algorithm for photovoltaic systems in partial shading conditions
When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 21092 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2025
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms. |
---|---|
AbstractList | When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms.When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms. Abstract When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms. When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will be a challenge to track the maximum power point (MPP), which impacts power generation efficiency. Therefore, achieving efficient maximum power point tracking (MPPT) in a photovoltaic (PV) system under PS is an important element in enhancing PV system efficiency. To optimize PV array output efficiency under PS conditions, this paper investigates a MPPT algorithm for PV arrays in partial shading environments. This algorithm is optimized and improved accordingly based on the Marine Predator Algorithm (MPA). Firstly, the initial position voltage is modified, which provides a more accurate and stable basis for the subsequent calculation. Next, the mechanism of overstepping is optimized to ensure that the particles will not exceed the preset range in the search process. Then, introducing the elite population guidance mechanism and restart algorithm to speed up the tracking of the entire algorithm. Lastly, the Perturbation and Observation algorithm is added to minimize the power fluctuation and improve tracking accuracy. The improved algorithm and the original algorithm, particle swarm algorithm, and incremental conductance method are embedded in the model of the PV system for the simulation of maximum power point tracking, respectively. Experiments show that the tracking time of the improved algorithm is improved by 32.6%, 76.5%, and 50% compared to the original algorithm, particle swarm algorithm, and incremental conductance method, respectively, under uniform illumination. Under dynamic irradiance conditions, the proposed algorithm has a tracking efficiency of up to 99.95%, which is over 15% higher than the comparison algorithm. The outcomes reveal that the improved algorithm is faster and more efficient in tracking compared to the other three algorithms. |
ArticleNumber | 21092 |
Author | Wang, Shusheng Du, Qi Li, Zhe Mo, Shuqin Zheng, Hanbo Qin, Tuanfa |
Author_xml | – sequence: 1 givenname: Hanbo surname: Zheng fullname: Zheng, Hanbo organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University – sequence: 2 givenname: Qi surname: Du fullname: Du, Qi email: 2212401011@st.gxu.edu.cn organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University – sequence: 3 givenname: Shuqin surname: Mo fullname: Mo, Shuqin organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University – sequence: 4 givenname: Tuanfa surname: Qin fullname: Qin, Tuanfa organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University – sequence: 5 givenname: Shusheng surname: Wang fullname: Wang, Shusheng organization: China Water Northeastern Investigation Design & Research CO., LTD – sequence: 6 givenname: Zhe surname: Li fullname: Li, Zhe organization: China Water Northeastern Investigation Design & Research CO., LTD |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40596335$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1UREvpH2CBvGQT8DvxCqGKx0hFdFG2WE58M-NRYgfbM1L_PW5TqnaDN7auz_2urXNeo5MQAyD0lpIPlPDuYxZU6q4hTDZECdI1-gU6Y0TIhnHGTp6cT9FFzntSl2RaUP0KnQoiteJcnqHfm3lJ8QgOzzb5AHhJ4GyJCf-4vr7BdtrG5MtuxmMtLbtY4jFOxfoB59tcYM7YB7zYVLydcN5Z58MWDzE4X3wM-Q16Odopw8XDfo5-ff1yc_m9ufr5bXP5-aoZhFKlEdp2shMtBdLxlrERyNA6Zylo6gR1hCltxdhzC_0InYKRqRaU7WBQFhzl52izcl20e7MkX39za6L15r4Q09bcvXGYwKi-VawlPTjOBIheS2e1UI71gnJwqrI-razl0M_gBggl2ekZ9PlN8DuzjUdDGaOtUqIS3j8QUvxzgFzM7PMA02QDxEM21RTFpdJMVum7p8Mep_xzqArYKhhSzDnB-CihxNwlwaxJMDUJ5j4JRtcmvjblKg5bSGYfDylUB_7X9RfZyLf9 |
Cites_doi | 10.1016/j.apenergy.2013.12.054 10.1016/j.solener.2018.06.080 10.1007/978-3-030-05578-3_13 10.1109/JESTPE.2019.2900999 10.1016/j.compeleceng.2024.110037 10.1016/j.ijepes.2020.105997 10.1109/ACCESS.2021.3072972 10.3390/en15176172 10.1109/ACCESS.2020.2999311 10.1016/j.eswa.2020.113377 10.1016/j.asoc.2017.05.017 10.1155/2024/5585826 10.1007/978-981-16-4369-9_33 10.1016/j.egypro.2019.04.013 10.1016/j.procs.2020.03.116 10.1016/j.enbuild.2013.07.085 10.1016/j.ijepes.2019.05.074 10.1016/j.renene.2019.12.078 10.1016/j.epsr.2023.109742 10.1080/15435075.2016.1261709 10.1007/s00202-023-02165-y 10.1016/j.compeleceng.2024.109991 10.1038/s41598-024-84333-z 10.1109/JSYST.2020.3003255 10.1016/j.ijepes.2021.107805 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1038/s41598-025-06408-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_6b76270bed324e4b95da946d2b413ed6 PMC12217664 40596335 10_1038_s41598_025_06408_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science Fund for Distinguished Young Scholars of Guangxi Province grantid: 2024GXNSFFA999017 – fundername: National Natural Science Foundation of China grantid: 52277139 and 52367014 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c466t-49a858471e083722fe0c7dda1e91d41d0269a4fb3aebfe86ef267e6a8ec6aed13 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Aug 21 18:33:14 EDT 2025 Fri Jul 11 16:57:23 EDT 2025 Sat Jul 05 01:30:32 EDT 2025 Thu Jul 03 08:44:02 EDT 2025 Wed Jul 02 02:43:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Marine predator algorithm Local shading Maximum photovoltaic power tracking Photovoltaic system |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-49a858471e083722fe0c7dda1e91d41d0269a4fb3aebfe86ef267e6a8ec6aed13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-06408-9 |
PMID | 40596335 |
PQID | 3226356925 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6b76270bed324e4b95da946d2b413ed6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12217664 proquest_miscellaneous_3226356925 pubmed_primary_40596335 crossref_primary_10_1038_s41598_025_06408_9 springer_journals_10_1038_s41598_025_06408_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | JP Ram (6408_CR23) 2020; 8 H Salmi (6408_CR19) 2016; 5 M Abdel-Salam (6408_CR7) 2018; 171 D Kumar (6408_CR18) 2017; 14 6408_CR21 M Mishra (6408_CR3) 2024; 106 A Faramarzi (6408_CR30) 2020; 152 6408_CR25 U Yilmaz (6408_CR11) 2019; 113 MNI Jamaludin (6408_CR26) 2025; 15 D Debnath (6408_CR15) 2020; 20 P Manoharan (6408_CR22) 2020; 15 MFN Tajuddin (6408_CR10) 2013; 67 AIM Ali (6408_CR29) 2022; 137 HE Colak (6408_CR1) 2020; 149 MV da Rocha (6408_CR5) 2020; 40 6408_CR12 K Ishaque (6408_CR6) 2014; 119 GP Lei (6408_CR28) 2024; 2024 H Belmadani (6408_CR2) 2024; 2024 FE Lamzouri (6408_CR13) 2020; 170 K Guo (6408_CR14) 2020; 8 AL Ibrahim (6408_CR24) 2025; 123 S Titri (6408_CR17) 2017; 58 I Dagal (6408_CR16) 2025; 122 A Omar (6408_CR8) 2023; 224 CP Rao (6408_CR9) 2021; 9 SK Vankadara (6408_CR27) 2022; 15 MI Mohamed (6408_CR20) 2019; 162 K Mahmoud (6408_CR4) 2020; 120 |
References_xml | – volume: 119 start-page: 228 year: 2014 ident: 6408_CR6 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.12.054 – volume: 171 start-page: 547 year: 2018 ident: 6408_CR7 publication-title: Sol. Energy doi: 10.1016/j.solener.2018.06.080 – ident: 6408_CR25 doi: 10.1007/978-3-030-05578-3_13 – volume: 8 start-page: 1361 issue: 2 year: 2020 ident: 6408_CR23 publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2019.2900999 – volume: 123 start-page: 110037 year: 2025 ident: 6408_CR24 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.110037 – volume: 120 start-page: 105997 year: 2020 ident: 6408_CR4 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.105997 – ident: 6408_CR21 – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 6408_CR19 publication-title: Int. J. Intell. Inform. Syst. – volume: 9 start-page: 58790 year: 2021 ident: 6408_CR9 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3072972 – volume: 15 start-page: 6172 issue: 17 year: 2022 ident: 6408_CR27 publication-title: Energies doi: 10.3390/en15176172 – volume: 8 start-page: 103476 year: 2020 ident: 6408_CR14 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2999311 – volume: 152 start-page: 113377 year: 2020 ident: 6408_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 58 start-page: 465 year: 2017 ident: 6408_CR17 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.017 – volume: 20 start-page: 87 issue: 1 year: 2020 ident: 6408_CR15 publication-title: Int. Energy J. – volume: 2024 start-page: 1664320 issue: 1 year: 2024 ident: 6408_CR28 publication-title: Int. J. Energy Res. – volume: 2024 start-page: 5585826 issue: 1 year: 2024 ident: 6408_CR2 publication-title: Int. J. Energy Res. doi: 10.1155/2024/5585826 – ident: 6408_CR12 doi: 10.1007/978-981-16-4369-9_33 – volume: 40 start-page: 100761 year: 2020 ident: 6408_CR5 publication-title: Sustain. Energy Technol. Assess. – volume: 162 start-page: 117 year: 2019 ident: 6408_CR20 publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.04.013 – volume: 170 start-page: 887 year: 2020 ident: 6408_CR13 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.116 – volume: 67 start-page: 245 year: 2013 ident: 6408_CR10 publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.07.085 – volume: 113 start-page: 634 year: 2019 ident: 6408_CR11 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.05.074 – volume: 149 start-page: 565 year: 2020 ident: 6408_CR1 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.078 – volume: 224 start-page: 109742 year: 2023 ident: 6408_CR8 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109742 – volume: 14 start-page: 416 issue: 4 year: 2017 ident: 6408_CR18 publication-title: Int. J. Green Energy doi: 10.1080/15435075.2016.1261709 – volume: 106 start-page: 3427 issue: 3 year: 2024 ident: 6408_CR3 publication-title: Electr. Eng. doi: 10.1007/s00202-023-02165-y – volume: 122 start-page: 109991 year: 2025 ident: 6408_CR16 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109991 – volume: 15 start-page: 650 issue: 1 year: 2025 ident: 6408_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-024-84333-z – volume: 15 start-page: 3024 issue: 2 year: 2020 ident: 6408_CR22 publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.3003255 – volume: 137 start-page: 107805 year: 2022 ident: 6408_CR29 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107805 |
SSID | ssj0000529419 |
Score | 2.4509485 |
Snippet | When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance, it will... Abstract When the photovoltaic arrays are subject to partial shading (PS), their output characteristics show a multi-peak phenomenon. Under this circumstance,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 21092 |
SubjectTerms | 639/4077 639/4077/4073 639/4077/909 Humanities and Social Sciences Local shading Marine predator algorithm Maximum photovoltaic power tracking multidisciplinary Photovoltaic system Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9N3tI6jQW2tiS7IsHduQEAopOSSQU4XkGXcXGntZO4f--44kb8i2pb30ahk9ZjSaGc3oG8bekUoPEbW8kFBiERG4ilCCLjA0sjatx9rH-46zL_r0Un2-qq_ulPqKOWEZHjgT7lAHEtemDAik-lEFW4O3SgMNUUmEBLZNOu-OM5VRvYVVlZ1fyZTSHI6kqeJrMlEXMXhFUr6jiRJg_5-szN-TJX-JmCZFdPKQPZgtSP4xz_wRu4f9Y7afa0r-eMK-5msCBH7t48s-vt4gRM-an52fX3D__duwWU3La07WKl8vh2mgA2ryq5ZnUOeRr3q-jnShQcZlSrHn5DRDzu16yi5Pji-OTou5iELREg-mQllvYii0QjK2GiE6LNsGwFdoK1AVkA9mveqC9Bg6NBo7oRvU3mCrPUIln7G9fujxBeNA5qFpLDRBGQUmBKO87CR1aUOtjVqw91uCunXGynApxi2Ny-R3RH6XyO_sgn2KNL_9M-Jcpw_EfTdz3_2L-wv2dssxR3IRgx2-x-FmdHRQReg9K-oFe545eDuUijWHpKQWs8PbnbnstvSrZcLeroSIkJq01g_bbeBmqR__stiX_2Oxr9h9kfZvTBZ-zfamzQ2-IZNoCgdp9_8EgT4JHg priority: 102 providerName: Directory of Open Access Journals |
Title | Improved marine predator MPPT algorithm for photovoltaic systems in partial shading conditions |
URI | https://link.springer.com/article/10.1038/s41598-025-06408-9 https://www.ncbi.nlm.nih.gov/pubmed/40596335 https://www.proquest.com/docview/3226356925 https://pubmed.ncbi.nlm.nih.gov/PMC12217664 https://doaj.org/article/6b76270bed324e4b95da946d2b413ed6 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCX0e4z7RY02NtmZluyLD2moaUEWsLWQp4mJOvcBFY7xO7D_vueZDuQrRT2ZLBkSzqdTqf7-ImQL7ilW49aHjEXQ-QRuCIbOxGBzVkmCwOZ8faOq2txectni2yxR9IhFyYE7QdIyyCmh-iw7w1uND4ZLM0i73vCRbpPDj10u-fqqZhu7Srec8UT1efHxEw-8enOHhSg-p_SL_8Nk_zLVxq2oIsj8qrXHemk6-0x2YPqNXnR3Sb55w351RkIwNF743P66HoDzp-p6dV8fkPN77t6s2qX9xT1VLpe1m2Noqk1q4J2cM4NXVV07WmBjTTLEFxP8bjsuqiut-T24vxmehn11ydEBVK_jbgy0jtBE0A1K0_TEuIid84koBLHE4enL2V4aZkBW4IUUKYiB2EkFMKAS9g7clDVFXwg1KFiKHPlcssld9JayQ0rGf5S2UxIPiJfB4LqdYeSoYN3m0ndkV8j-XUgv1YjcuZpvq3pEa7Di3pzp_sZ18KimM5jCw5VPuBWZc4oLhyyVsLAiRH5PMyYxhXh3Rymgvqh0SiiPOieSrMRed_N4LYp7m8bYgxL5M7c7vRlt6RaLQPqdpKmHkwTx_ptYAPdr_fmmcGe_F_1U_IyDZzqA4I_koN28wCfUO1p7Zjs54t8TA4nk9nPGT7Pzq_nP8aB-8fBlPAIP0gDZQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGEIIXxOcoMDASbxCR2I5jP0K1qcA67aGT9oRlx5e1EkuqJnvgv-fsJJXKJqS9xkls353vzr67nwn5iCbdBdTyhPsUkoDAlbjUywRcwXNVWshtOO-Yn8rZufhxkV_sETbWwsSk_QhpGdX0mB32pUVDE4rBWJ6E2BMu0nvkPvraMqRxTeV0e64SIlci00N9TMrVLZ_u2KAI1X-bf3kzTfKfWGk0QcdPyOPBd6Rf-9E-JXtQPyMP-tsk_zwnv_oDAvD0yoaaPrregA97ajo_O1tQ-_uy2ay65RVFP5Wul03XoGrq7KqkPZxzS1c1XQdaYCftMibXU9wu-z6r6wU5Pz5aTGfJcH1CUiL1u0Roq0IQNAN0swrGKkjLwnubgc68yDzuvrQVleMWXAVKQsVkAdIqKKUFn_GXZL9uanhFqEfHUBXaF04o4ZVzSlhecfyldsgCMSGfRoKadY-SYWJ0myvTk98g-U0kv9ET8i3QfPtmQLiOD5rNpRk4bqRDNV2kDjy6fCCczr3VQnoUrYyDlxPyYeSYwRURwhy2hua6NaiiAuieZvmEHPQc3HYlwm1DnGOL2uHtzlh2W-rVMqJuZ4wFME2c6-dRDMyw3tv_TPb13V5_Tx7OFvMTc_L99Ocb8ohFqQ3JwW_Jfre5hkN0gTr3Lsr8X0K3AVI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKK1AvqOW5pQUjcYNAEjuOfYQtq_JotYdW6gnLjifdlWgSbdID_56xk6y0tELqNU5ie2Y8nvHMfCbkHW7p1qOWR8zFEHkErsjGTkRgc5bJwkBm_HnH6Zk4ueDfL7PLLSLGWpiQtB8gLYOaHrPDPrW40fhisDSLfOwJF-nHxpUPyA7a27F3uqZiuj5b8dErnqihRiZm8o7PN_ahANd_l415O1Xyn3hp2IZme-TxYD_Sz_2I98kWVE_Iw_5GyT9Pya_-kAAcvTa-ro82K3Der6an8_k5Nb-v6tWyW1xTtFVps6i7GtVTZ5YF7SGdW7qsaOPpgZ20i5BgT9Fldn1m1zNyMft6Pj2JhisUogI50EVcGekDoQmgqZWnaQlxkTtnElCJ44lDD0wZXlpmwJYgBZSpyEEYCYUw4BL2nGxXdQUvCXVoHMpcudxyyZ20VnLDSoa_VDYTkk_I-5GguumRMnSIcDOpe_JrJL8O5NdqQr54mq_f9CjX4UG9utID17WwqKrz2IJDsw-4VZkziguH4pUwcGJC3o4c07gqfKjDVFDftBrVlAfeU2k2IS96Dq674v7GIcawRW7wdmMsmy3VchGQt5M09YCaONcPoxjoYc23_5nswf1ef0MezY9n-ue3sx-vyG4ahNbnBx-S7W51A0doBXX2dRD5v-IFAls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+marine+predator+MPPT+algorithm+for+photovoltaic+systems+in+partial+shading+conditions&rft.jtitle=Scientific+reports&rft.au=Zheng%2C+Hanbo&rft.au=Du%2C+Qi&rft.au=Mo%2C+Shuqin&rft.au=Qin%2C+Tuanfa&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-06408-9&rft_id=info%3Apmid%2F40596335&rft.externalDocID=PMC12217664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |