Ginger: a representative material of herb-derived exosome-like nanoparticles
Edible plant-derived exosome-like nanoparticles (PELNs) provide numerous benefits, including high yield, low cost, ethical compatibility, and multiple health benefits, which enable them to address technical constraints associated with mammalian nanoparticles. Herbs, known for their abundant bioactiv...
Saved in:
Published in | Frontiers in nutrition (Lausanne) Vol. 10; p. 1223349 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
13.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Edible plant-derived exosome-like nanoparticles (PELNs) provide numerous benefits, including high yield, low cost, ethical compatibility, and multiple health benefits, which enable them to address technical constraints associated with mammalian nanoparticles. Herbs, known for their abundant bioactive components, are considered the primary source of natural medicines within the plant kingdom. Recently, a number of herbaceous sources have been investigated for the isolation and functionality of exosome-like nanoparticles (ELNs). However, they are commonly referred to as PELNs, and their distinct pharmacological properties are overlooked. In this review, these herb-derived ELNs are designated as HELNs, a novel herbal product that may also exhibit superior pharmacological activity compared to other types of PELNs. Among the documented HELNs, ginger-derived exosome-like nanoparticles (GELNs) are the most extensively studied. This review employs GELNs as an exemplar to delineate the process of extraction and purification, together with their physical and biochemical characteristics and therapeutic potential. The aim of this review is to promote the development and application of HELNs, and future research is encouraged to uncover their additional properties, extending beyond those of GELNs. |
---|---|
AbstractList | Edible plant-derived exosome-like nanoparticles (PELNs) provide numerous benefits, including high yield, low cost, ethical compatibility, and multiple health benefits, which enable them to address technical constraints associated with mammalian nanoparticles. Herbs, known for their abundant bioactive components, are considered the primary source of natural medicines within the plant kingdom. Recently, a number of herbaceous sources have been investigated for the isolation and functionality of exosome-like nanoparticles (ELNs). However, they are commonly referred to as PELNs, and their distinct pharmacological properties are overlooked. In this review, these herb-derived ELNs are designated as HELNs, a novel herbal product that may also exhibit superior pharmacological activity compared to other types of PELNs. Among the documented HELNs, ginger-derived exosome-like nanoparticles (GELNs) are the most extensively studied. This review employs GELNs as an exemplar to delineate the process of extraction and purification, together with their physical and biochemical characteristics and therapeutic potential. The aim of this review is to promote the development and application of HELNs, and future research is encouraged to uncover their additional properties, extending beyond those of GELNs.Edible plant-derived exosome-like nanoparticles (PELNs) provide numerous benefits, including high yield, low cost, ethical compatibility, and multiple health benefits, which enable them to address technical constraints associated with mammalian nanoparticles. Herbs, known for their abundant bioactive components, are considered the primary source of natural medicines within the plant kingdom. Recently, a number of herbaceous sources have been investigated for the isolation and functionality of exosome-like nanoparticles (ELNs). However, they are commonly referred to as PELNs, and their distinct pharmacological properties are overlooked. In this review, these herb-derived ELNs are designated as HELNs, a novel herbal product that may also exhibit superior pharmacological activity compared to other types of PELNs. Among the documented HELNs, ginger-derived exosome-like nanoparticles (GELNs) are the most extensively studied. This review employs GELNs as an exemplar to delineate the process of extraction and purification, together with their physical and biochemical characteristics and therapeutic potential. The aim of this review is to promote the development and application of HELNs, and future research is encouraged to uncover their additional properties, extending beyond those of GELNs. Edible plant-derived exosome-like nanoparticles (PELNs) provide numerous benefits, including high yield, low cost, ethical compatibility, and multiple health benefits, which enable them to address technical constraints associated with mammalian nanoparticles. Herbs, known for their abundant bioactive components, are considered the primary source of natural medicines within the plant kingdom. Recently, a number of herbaceous sources have been investigated for the isolation and functionality of exosome-like nanoparticles (ELNs). However, they are commonly referred to as PELNs, and their distinct pharmacological properties are overlooked. In this review, these herb-derived ELNs are designated as HELNs, a novel herbal product that may also exhibit superior pharmacological activity compared to other types of PELNs. Among the documented HELNs, ginger-derived exosome-like nanoparticles (GELNs) are the most extensively studied. This review employs GELNs as an exemplar to delineate the process of extraction and purification, together with their physical and biochemical characteristics and therapeutic potential. The aim of this review is to promote the development and application of HELNs, and future research is encouraged to uncover their additional properties, extending beyond those of GELNs. |
Author | He, Wenxi Zhu, He |
AuthorAffiliation | 2 NHC Key Laboratory of Respiratory Diseases, the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China 1 Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China |
AuthorAffiliation_xml | – name: 2 NHC Key Laboratory of Respiratory Diseases, the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China – name: 1 Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China |
Author_xml | – sequence: 1 givenname: He surname: Zhu fullname: Zhu, He – sequence: 2 givenname: Wenxi surname: He fullname: He, Wenxi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37521414$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9v1DAQxS1UREvpB-CCcuSSxf-SOFwQqmiptBIXkLhZY3uydUnsxc6u4NvjdLeoReLk8fjN7431XpKTEAMS8prRlRCqfzeE3bzilIsV41wI2T8jZ5z3ba1a9v3kUX1KLnK-o5QywRvJ5AtyKrqGs1KekfW1DxtM7yuoEm4TZgwzzH6P1QQzJg9jFYfqFpOpXbnu0VX4K-Y4YT36H1gFCHELafZ2xPyKPB9gzHhxPM_Jt6tPXy8_1-sv1zeXH9e1lW0717Kz7cAGYZqOIUcxCFQOTWkBSCMlcNVb11CqZNc2gjFpuZOicbRl6JCLc3Jz4LoId3qb_ATpt47g9X0jpo0-rqSp6IxruQHqjARnesM6DqqR1PTKQl9YHw6s7c5M6Gz5f4LxCfTpS_C3ehP3mhW05FwWwtsjIcWfO8yznny2OI4QMO6y5kpK2kvOVJG-eWz21-UhjyLoDgKbYs4JB239kkdcvP1YTPUSvl7C10v4-hh-mWT_TD7A_z_zB2oks_Q |
CitedBy_id | crossref_primary_10_2147_IJN_S483091 crossref_primary_10_3389_fnut_2025_1544746 crossref_primary_10_1371_journal_pone_0304335 crossref_primary_10_1007_s13346_024_01621_x crossref_primary_10_1016_j_tice_2024_102562 crossref_primary_10_1016_j_biopha_2024_116543 crossref_primary_10_3390_molecules29245926 crossref_primary_10_5483_BMBRep_2024_0193 crossref_primary_10_2147_IJN_S425173 crossref_primary_10_1016_j_ijpx_2024_100305 crossref_primary_10_1186_s12967_024_05892_3 crossref_primary_10_2174_0122117385281838240105110106 crossref_primary_10_1039_D4TB02394C crossref_primary_10_2147_IJN_S478435 crossref_primary_10_3389_fbioe_2023_1215650 crossref_primary_10_1007_s10565_024_09867_4 crossref_primary_10_3390_biomedicines12092142 crossref_primary_10_2147_IJN_S496664 crossref_primary_10_1016_j_jddst_2024_105649 crossref_primary_10_1016_j_lfs_2025_123472 crossref_primary_10_1016_j_reth_2024_10_001 |
Cites_doi | 10.1038/s41598-018-32953-7 10.1038/mt.2016.159 10.1208/s12249-021-02087-7 10.1016/j.chom.2018.10.001 10.1016/j.bbcan.2017.10.001 10.1080/10408391003698669 10.1146/annurev-cellbio-101512-122326 10.1021/acs.chemrev.5b00046 10.1016/j.febslet.2009.09.041 10.1371/journal.pone.0199438 10.1080/21688370.2015.1134415 10.1016/j.bbrc.2009.02.160 10.1016/j.phrs.2022.106472 10.3402/jev.v4.27031 10.1038/s41565-017-0012-z 10.1038/srep23978 10.1038/s41467-020-15889-3 10.1016/j.heliyon.2019.e01989 10.1038/mt.2013.64 10.1021/acsomega.1c02162 10.1038/s41467-021-24384-2 10.1016/j.jconrel.2023.01.071 10.1186/s12943-019-0985-3 10.1111/jipb.13181 10.2147/IJN.S394133 10.3390/molecules21040482 10.1080/10408398209527343 10.4314/tjpr.v12i2.19 10.1155/2018/8545347 10.1002/mnfr.201300729 10.1080/10837450.2023.2202242 10.1002/adma.202005709 10.1038/nrm.2017.125 10.1080/10408398.2023.2204375 10.1016/0092-8674(83)90040-5 10.1371/journal.pntd.0009423 10.1016/j.suc.2019.08.001 10.1186/1471-2164-14-319 10.21769/BioProtoc.3969 10.1093/jxb/erx355 10.1016/j.jconrel.2016.06.017 10.7150/thno.52570 10.3390/molecules23081844 10.1080/07853890.2022.2031274 10.1038/mt.2015.188 10.1038/s41569-018-0064-2 10.1016/j.addr.2021.114108 10.3390/nu13031026 10.3402/jev.v4.28713 10.1016/j.jnutbio.2020.108486 10.1038/aps.2017.178 10.3390/nu13051686 10.3390/biom9100551 10.2217/nnm-2017-0196 10.1038/srep17319 10.1002/advs.202003505 10.1158/0008-5472.CAN-14-3095 10.3390/biom11010087 10.1021/acs.jafc.1c07306 10.1016/j.jep.2017.12.019 10.1007/s11427-018-9438-y 10.1186/s12951-022-01421-w 10.1002/biof.1808 10.1039/D2NR07018A 10.3390/biomedicines10061352 10.1186/s12951-023-01919-x 10.1210/er.2009-0013 10.1002/mnfr.202200142 10.1016/j.biomaterials.2016.06.018 10.1186/s12951-022-01755-5 10.1016/j.biomaterials.2021.121178 10.3389/fbioe.2022.1023700 10.21769/BioProtoc.3685 10.1016/S0021-9258(18)64849-5 10.3402/jev.v4.29509 10.7150/thno.52558 10.1002/jev2.12182 10.1111/1750-3841.15787 10.1142/S0192415X22500410 10.1126/science.aau6977 10.1016/j.taap.2021.115425 10.1038/s41598-020-61358-8 10.7150/thno.18133 10.1152/japplphysiol.00914.2018 10.1039/C6AN00892E 10.1038/aps.2017.12 10.3390/molecules27238184 10.1016/j.ajps.2021.05.006 10.7150/thno.27608 10.1038/s41423-021-00740-6 10.1002/ptr.6362 10.1016/j.jprot.2010.06.006 10.1080/20013078.2018.1535750 10.4103/abr.abr_114_18 10.21769/BioProtoc.3390 10.3390/antiox10121881 10.3389/fendo.2020.00267 10.3390/v11010010 10.7150/thno.62514 10.1021/acs.molpharmaceut.9b00246 10.1016/j.jnutbio.2015.08.025 10.1016/j.biomaterials.2020.120467 10.3390/ma13143066 10.1016/j.phytochem.2015.07.012 10.1016/j.pharmthera.2017.02.020 10.1016/j.isci.2020.100869 10.1016/j.nut.2019.04.007 10.1016/j.ymthe.2021.05.005 10.1007/978-1-4939-2550-6_15 10.3390/ph14060571 10.1016/j.ymthe.2020.11.030 10.1016/S0092-8674(04)00045-5 10.1016/j.isci.2019.10.032 10.1039/D1NR06015E 10.1016/j.immuni.2016.02.015 10.1080/08820139.2021.1891094 10.3390/biom10020291 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Zhu and He. Copyright © 2023 Zhu and He. 2023 Zhu and He |
Copyright_xml | – notice: Copyright © 2023 Zhu and He. – notice: Copyright © 2023 Zhu and He. 2023 Zhu and He |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fnut.2023.1223349 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2296-861X |
ExternalDocumentID | oai_doaj_org_article_037bd62ba0db4adb9b172a8540b98ca9 PMC10374224 37521414 10_3389_fnut_2023_1223349 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: 82104302 and 82100931 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c466t-47c6f1f3b571e2e3f3e8debf1faa4b44a289cd500847653114c2d435d061ede23 |
IEDL.DBID | M48 |
ISSN | 2296-861X |
IngestDate | Wed Aug 27 01:23:35 EDT 2025 Thu Aug 21 18:36:41 EDT 2025 Fri Jul 11 10:50:31 EDT 2025 Thu Apr 03 07:00:46 EDT 2025 Tue Jul 01 02:33:45 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | nanoparticle traditional Chinese medicine exosome herb ginger |
Language | English |
License | Copyright © 2023 Zhu and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-47c6f1f3b571e2e3f3e8debf1faa4b44a289cd500847653114c2d435d061ede23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Tanima Bhattacharya, Chungnam National University, Republic of Korea Reviewed by: Hitesh Chopra, Chitkara University, India; Pooja Mittal, RIMT University, India; Kanokwan Sansanaphongpricha, National Science and Technology Development Agency (NSTDA), Thailand; Sayan Ganguly, University of Waterloo, Canada |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnut.2023.1223349 |
PMID | 37521414 |
PQID | 2844094218 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_037bd62ba0db4adb9b172a8540b98ca9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374224 proquest_miscellaneous_2844094218 pubmed_primary_37521414 crossref_citationtrail_10_3389_fnut_2023_1223349 crossref_primary_10_3389_fnut_2023_1223349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-13 |
PublicationDateYYYYMMDD | 2023-07-13 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in nutrition (Lausanne) |
PublicationTitleAlternate | Front Nutr |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Ferrucci (ref99) 2018; 15 Xie (ref77) 2019; 18 Honary (ref75) 2013; 12 Bhattacharjee (ref76) 2016; 235 Bartel (ref85) 2004; 116 Rasmussen (ref74) 2020; 11 Huang (ref97) 2021; 18 Wang (ref113) 2015; 75 Regente (ref37) 2017; 68 Li (ref116) 2016; 21 Mu (ref14) 2014; 58 Chen (ref27) 2023; 21 Wu (ref108) 2021; 269 Luan (ref6) 2017; 38 Kim (ref115) 2022; 17 Takakura (ref26) 2022; 10 Suharta (ref32) 2021; 86 Kumar (ref44) 2021; 11 Wynn (ref96) 2016; 44 Liu (ref31) 2023 Zu (ref38) 2021; 279 Linares (ref70) 2015; 4 Sarvarian (ref78) 2022; 51 Li (ref68) 2017; 7 Salehi (ref34) 2019; 9 Chang (ref73) 2018; 13 Mathieu (ref87) 2021; 12 Lee (ref94) 2009; 382 Wu (ref24) 2022; 27 Huang (ref63) 2021; 63 Ou (ref40) 2023; 21 van Niel (ref3) 2018; 19 Konoshenko (ref65) 2018; 2018 Suresh (ref41) 2021; 6 Sung (ref57) 2020; 10 Semwal (ref54) 2015; 117 Baliga (ref53) 2011; 51 Liu (ref82) 2022; 20 Flynn (ref101) 2019; 99 Rahmani (ref88) 2014; 6 Saw (ref112) 2020; 63 Sung (ref58) 2019; 9 Dad (ref110) 2021; 29 Zhuang (ref48) 2015; 4 Man (ref50) 2021; 22 Vechetti (ref1) 2019; 127 Bjorklund (ref92) 2019; 66 Teng (ref2) 2020; 8 Lashgari (ref102) 2022; 48 Seo (ref36) 2023; 15 Pattni (ref111) 2015; 115 Kalarikkal (ref15) 2021; 414 Zhang (ref47) 2016; 24 Cong (ref12) 2022; 182 Hasani (ref89) 2019; 33 Aramaki (ref79) 2020; 13 Wang (ref19) 2023; 18 Wang (ref49) 2021; 13 Colombo (ref80) 2014; 30 Khan (ref100) 2020; 11 Del Pozo-Acebo (ref18) 2022; 185 Mao (ref43) 2021; 13 Long (ref56) 2021; 11 Weng (ref72) 2016; 141 Witwer (ref117) 2021; 10 Yu (ref8) 2022; 10 Zhang (ref107) 2021; 33 Yin (ref22) 2022; 70 Bischoff-Kont (ref91) 2021; 14 Livshits (ref64) 2015; 5 Rahimi Ghiasi (ref17) 2018; 7 Zhang (ref25) 2016; 101 Greening (ref66) 2015; 1295 Pi (ref69) 2018; 13 Kawamoto (ref95) 2016; 27 Kiyama (ref52) 2020; 86 Zhuang (ref109) 2016; 24 Durazzo (ref35) 2018; 23 Liang (ref106) 2021; 11 Kalarikkal (ref45) 2020; 10 Sanchez (ref5) 2021; 13 Sundaram (ref28) 2020; 23 Anusha (ref11) 2022; 66 Teng (ref42) 2021; 29 Kalluri (ref9) 2020; 367 Kwaifa (ref98) 2020; 10 Chen (ref23) 2019; 16 Sundaram (ref61) 2019; 21 Ezzat (ref93) 2018; 214 Govindarajan (ref55) 1982; 17 Pan (ref4) 1983; 33 Ju (ref16) 2013; 21 El-Sayed (ref33) 2019; 5 Hwang (ref39) 2023; 355 Li (ref83) 2018; 39 Zhang (ref46) 2017; 12 Zhang (ref62) 2016; 4 Perut (ref21) 2021; 11 Fernandes (ref105) 2022; 54 Barile (ref7) 2017; 174 Teng (ref29) 2018; 24 Beck (ref90) 2009; 30 Regente (ref10) 2009; 583 Lobb (ref67) 2015; 4 Li (ref30) 2018; 8 Mathivanan (ref81) 2010; 73 Folch (ref84) 1957; 226 Kumar (ref20) 2022; 12 Barzin (ref59) 2023; 28 Wang (ref13) 2018; 8 Kim (ref60) 2021; 10 Abd El Wahab (ref51) 2021; 15 Thery (ref118) 2018; 7 Van Belleghem (ref103) 2018; 11 Rider (ref71) 2016; 6 Lai (ref104) 2022; 50 Huang (ref86) 2013; 14 Wu (ref114) 2017; 1868 |
References_xml | – volume: 8 start-page: 14644 year: 2018 ident: ref30 article-title: Arrowtail RNA for ligand display on ginger exosome-like Nanovesicles to systemic deliver siRNA for Cancer suppression publication-title: Sci Rep doi: 10.1038/s41598-018-32953-7 – volume: 24 start-page: 1783 year: 2016 ident: ref47 article-title: Edible ginger-derived Nano-lipids loaded with doxorubicin as a novel drug-delivery approach for Colon Cancer therapy publication-title: Mol Ther J Am Soc Gene Ther doi: 10.1038/mt.2016.159 – volume: 22 start-page: 206 year: 2021 ident: ref50 article-title: The study of ginger-derived extracellular vesicles as a natural nanoscale drug carrier and their intestinal absorption in rats publication-title: AAPS PharmSciTech doi: 10.1208/s12249-021-02087-7 – volume: 24 start-page: 637 year: 2018 ident: ref29 article-title: Plant-derived Exosomal MicroRNAs shape the gut microbiota publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.10.001 – volume: 1868 start-page: 538 year: 2017 ident: ref114 article-title: Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside publication-title: Biochim Biophys Acta Rev Cancer doi: 10.1016/j.bbcan.2017.10.001 – volume: 51 start-page: 499 year: 2011 ident: ref53 article-title: Update on the chemopreventive effects of ginger and its phytochemicals publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408391003698669 – volume: 30 start-page: 255 year: 2014 ident: ref80 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-101512-122326 – volume: 115 start-page: 10938 year: 2015 ident: ref111 article-title: New developments in liposomal drug delivery publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00046 – volume: 583 start-page: 3363 year: 2009 ident: ref10 article-title: Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins publication-title: FEBS Lett doi: 10.1016/j.febslet.2009.09.041 – volume: 13 start-page: e0199438 year: 2018 ident: ref73 article-title: Exosome purification based on PEG-coated Fe3O4 nanoparticles publication-title: PLoS One doi: 10.1371/journal.pone.0199438 – volume: 4 start-page: e1134415 year: 2016 ident: ref62 article-title: Plant derived edible nanoparticles as a new therapeutic approach against diseases publication-title: Tissue Barriers doi: 10.1080/21688370.2015.1134415 – volume: 382 start-page: 134 year: 2009 ident: ref94 article-title: 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.02.160 – volume: 185 start-page: 106472 year: 2022 ident: ref18 article-title: Therapeutic potential of broccoli-derived extracellular vesicles as nanocarriers of exogenous miRNAs publication-title: Pharmacol Res doi: 10.1016/j.phrs.2022.106472 – volume: 4 start-page: 27031 year: 2015 ident: ref67 article-title: Optimized exosome isolation protocol for cell culture supernatant and human plasma publication-title: J Extracell Vesicles doi: 10.3402/jev.v4.27031 – volume: 13 start-page: 82 year: 2018 ident: ref69 article-title: Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression publication-title: Nat Nanotechnol doi: 10.1038/s41565-017-0012-z – volume: 6 start-page: 23978 year: 2016 ident: ref71 article-title: ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles publication-title: Sci Rep doi: 10.1038/srep23978 – volume: 11 start-page: 2337 year: 2020 ident: ref74 article-title: Size and surface charge characterization of nanoparticles with a salt gradient publication-title: Nat Commun doi: 10.1038/s41467-020-15889-3 – volume: 5 start-page: e01989 year: 2019 ident: ref33 article-title: Potential application of herbs and spices and their effects in functional dairy products publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01989 – volume: 21 start-page: 1345 year: 2013 ident: ref16 article-title: Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis publication-title: Mol Ther J Am Soc Gene Ther doi: 10.1038/mt.2013.64 – volume: 6 start-page: 17635 year: 2021 ident: ref41 article-title: Low pH-based method to increase the yield of plant-derived nanoparticles from fresh ginger rhizomes publication-title: ACS Omega doi: 10.1021/acsomega.1c02162 – volume: 12 start-page: 4389 year: 2021 ident: ref87 article-title: Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9 publication-title: Nat Commun doi: 10.1038/s41467-021-24384-2 – volume: 355 start-page: 184 year: 2023 ident: ref39 article-title: Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice publication-title: J Control Release doi: 10.1016/j.jconrel.2023.01.071 – volume: 18 start-page: 83 year: 2019 ident: ref77 article-title: The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers publication-title: Mol Cancer doi: 10.1186/s12943-019-0985-3 – volume: 63 start-page: 2020 year: 2021 ident: ref63 article-title: Effective methods for isolation and purification of extracellular vesicles from plants publication-title: J Integr Plant Biol doi: 10.1111/jipb.13181 – volume: 18 start-page: 2431 year: 2023 ident: ref19 article-title: Selenium biofortification enhanced miR167a expression in broccoli extracellular vesicles inducing apoptosis in human pancreatic Cancer cells by targeting IRS1 publication-title: Int J Nanomedicine doi: 10.2147/IJN.S394133 – volume: 21 start-page: 482 year: 2016 ident: ref116 article-title: Distinguishing Astragalus mongholicus and its planting soil samples from different regions by ICP-AES publication-title: Molecules doi: 10.3390/molecules21040482 – volume: 17 start-page: 1 year: 1982 ident: ref55 article-title: Ginger--chemistry, technology, and quality evaluation: part 1 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398209527343 – volume: 12 start-page: 255 year: 2013 ident: ref75 article-title: Effect of zeta potential on the properties of Nano-drug delivery systems - a review (part 1) publication-title: Trop J Pharm Res doi: 10.4314/tjpr.v12i2.19 – volume: 2018 start-page: 1 year: 2018 ident: ref65 article-title: Isolation of extracellular vesicles: general methodologies and latest trends publication-title: Biomed Res Int doi: 10.1155/2018/8545347 – volume: 58 start-page: 1561 year: 2014 ident: ref14 article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201300729 – volume: 28 start-page: 383 year: 2023 ident: ref59 article-title: Application of plant-derived exosome-like nanoparticles in drug delivery publication-title: Pharm Dev Technol doi: 10.1080/10837450.2023.2202242 – volume: 33 start-page: e2005709 year: 2021 ident: ref107 article-title: Engineered extracellular vesicles for Cancer therapy publication-title: Adv Mater doi: 10.1002/adma.202005709 – volume: 19 start-page: 213 year: 2018 ident: ref3 article-title: Shedding light on the cell biology of extracellular vesicles publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2017.125 – start-page: 1 year: 2023 ident: ref31 article-title: Plant-derived nanoparticles and plant virus nanoparticles: bioactivity, health management, and delivery potential publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2023.2204375 – volume: 33 start-page: 967 year: 1983 ident: ref4 article-title: Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor publication-title: Cells doi: 10.1016/0092-8674(83)90040-5 – volume: 15 start-page: e0009423 year: 2021 ident: ref51 article-title: Ginger (Zingiber Officinale)-derived nanoparticles in Schistosoma mansoni infected mice: Hepatoprotective and enhancer of etiological treatment publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0009423 – volume: 99 start-page: 1051 year: 2019 ident: ref101 article-title: Inflammatory bowel disease presentation and diagnosis publication-title: Surg Clin North Am doi: 10.1016/j.suc.2019.08.001 – volume: 14 start-page: 319 year: 2013 ident: ref86 article-title: Characterization of human plasma-derived exosomal RNAs by deep sequencing publication-title: BMC Genomics doi: 10.1186/1471-2164-14-319 – volume: 11 start-page: e3969 year: 2021 ident: ref56 article-title: Atomic force microscopy to characterize ginger lipid-derived nanoparticles (GLDNP) publication-title: Bio-protocol doi: 10.21769/BioProtoc.3969 – volume: 68 start-page: 5485 year: 2017 ident: ref37 article-title: Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth publication-title: J Exp Bot doi: 10.1093/jxb/erx355 – volume: 235 start-page: 337 year: 2016 ident: ref76 article-title: DLS and zeta potential - what they are and what they are not? publication-title: J Control Release doi: 10.1016/j.jconrel.2016.06.017 – volume: 11 start-page: 3183 year: 2021 ident: ref106 article-title: Engineering exosomes for targeted drug delivery publication-title: Theranostics doi: 10.7150/thno.52570 – volume: 23 start-page: 1844 year: 2018 ident: ref35 article-title: From plant compounds to botanicals and Back: a current snapshot publication-title: Molecules doi: 10.3390/molecules23081844 – volume: 54 start-page: 524 year: 2022 ident: ref105 article-title: Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines publication-title: Ann Med doi: 10.1080/07853890.2022.2031274 – volume: 24 start-page: 96 year: 2016 ident: ref109 article-title: Grapefruit-derived Nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression publication-title: Mol Ther J Am Soc Gene Ther doi: 10.1038/mt.2015.188 – volume: 15 start-page: 505 year: 2018 ident: ref99 article-title: Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty publication-title: Nat Rev Cardiol doi: 10.1038/s41569-018-0064-2 – volume: 182 start-page: 114108 year: 2022 ident: ref12 article-title: Technology insight: plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers? publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2021.114108 – volume: 13 start-page: 1026 year: 2021 ident: ref5 article-title: Breast Milk: a source of functional compounds with potential application in nutrition and therapy publication-title: Nutrients doi: 10.3390/nu13031026 – volume: 4 start-page: 28713 year: 2015 ident: ref48 article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage publication-title: J Extracell Vesicles doi: 10.3402/jev.v4.28713 – volume: 86 start-page: 108486 year: 2020 ident: ref52 article-title: Nutritional implications of ginger: chemistry, biological activities and signaling pathways publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2020.108486 – volume: 39 start-page: 542 year: 2018 ident: ref83 article-title: Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2017.178 – volume: 13 start-page: 1686 year: 2021 ident: ref49 article-title: Oral administration of ginger-derived lipid nanoparticles and Dmt1 siRNA potentiates the effect of dietary Iron restriction and mitigates pre-existing Iron overload in Hamp KO mice publication-title: Nutrients doi: 10.3390/nu13051686 – volume: 9 start-page: 551 year: 2019 ident: ref34 article-title: Antidiabetic potential of medicinal plants and their active components publication-title: Biomol Ther doi: 10.3390/biom9100551 – volume: 12 start-page: 1927 year: 2017 ident: ref46 article-title: Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis publication-title: Nanomedicine doi: 10.2217/nnm-2017-0196 – volume: 5 start-page: 17319 year: 2015 ident: ref64 article-title: Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol publication-title: Sci Rep doi: 10.1038/srep17319 – volume: 8 start-page: 2003505 year: 2020 ident: ref2 article-title: Shedding light on extracellular vesicle biogenesis and bioengineering publication-title: Adv Sci doi: 10.1002/advs.202003505 – volume: 75 start-page: 2520 year: 2015 ident: ref113 article-title: Grapefruit-derived Nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3095 – volume: 11 start-page: 87 year: 2021 ident: ref21 article-title: Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells publication-title: Biomol Ther doi: 10.3390/biom11010087 – volume: 70 start-page: 4725 year: 2022 ident: ref22 article-title: Characterization of the MicroRNA profile of ginger exosome-like nanoparticles and their anti-inflammatory effects in intestinal Caco-2 cells publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.1c07306 – volume: 214 start-page: 113 year: 2018 ident: ref93 article-title: The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2017.12.019 – volume: 63 start-page: 485 year: 2020 ident: ref112 article-title: siRNA therapeutics: a clinical reality publication-title: Sci China Life Sci doi: 10.1007/s11427-018-9438-y – volume: 20 start-page: 206 year: 2022 ident: ref82 article-title: Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy publication-title: J Nanobiotechnol doi: 10.1186/s12951-022-01421-w – volume: 48 start-page: 7 year: 2022 ident: ref102 article-title: Ginger and its constituents: role in treatment of inflammatory bowel disease publication-title: Biofactors doi: 10.1002/biof.1808 – volume: 15 start-page: 5798 year: 2023 ident: ref36 article-title: Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation publication-title: Nanoscale doi: 10.1039/D2NR07018A – volume: 10 start-page: 1352 year: 2022 ident: ref26 article-title: Citrus limonL.-derived Nanovesicles show an inhibitory effect on cell growth in p53-inactivated colorectal Cancer cells via the macropinocytosis pathway publication-title: Biomedicine doi: 10.3390/biomedicines10061352 – volume: 21 start-page: 160 year: 2023 ident: ref40 article-title: Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: preparation, characterization, and immunostimulatory effect via TNF-alpha/NF-kappaB/PU.1 axis publication-title: J Nanobiotechnol doi: 10.1186/s12951-023-01919-x – volume: 30 start-page: 830 year: 2009 ident: ref90 article-title: Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases publication-title: Endocr Rev doi: 10.1210/er.2009-0013 – volume: 66 start-page: e2200142 year: 2022 ident: ref11 article-title: Dietary exosome-like nanoparticles: an updated review on their pharmacological and drug delivery applications publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.202200142 – volume: 101 start-page: 321 year: 2016 ident: ref25 article-title: Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.018 – volume: 21 start-page: 6 year: 2023 ident: ref27 article-title: Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation publication-title: J Nanobiotechnol doi: 10.1186/s12951-022-01755-5 – volume: 279 start-page: 121178 year: 2021 ident: ref38 article-title: ’Green’ nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121178 – volume: 10 start-page: 1023700 year: 2022 ident: ref8 article-title: New frontiers of oral sciences: focus on the source and biomedical application of extracellular vesicles publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.1023700 – volume: 10 start-page: e3685 year: 2020 ident: ref57 article-title: Preparation and characterization of ginger lipid-derived nanoparticles for Colon-targeted siRNA delivery publication-title: Bio-protocol doi: 10.21769/BioProtoc.3685 – volume: 226 start-page: 497 year: 1957 ident: ref84 article-title: A simple method for the isolation and purification of total lipides from animal tissues publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)64849-5 – volume: 4 start-page: 29509 year: 2015 ident: ref70 article-title: High-speed centrifugation induces aggregation of extracellular vesicles publication-title: J Extracell Vesicles doi: 10.3402/jev.v4.29509 – volume: 11 start-page: 4061 year: 2021 ident: ref44 article-title: miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (tnaA) gene publication-title: Theranostics doi: 10.7150/thno.52558 – volume: 10 start-page: e12182 year: 2021 ident: ref117 article-title: Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles publication-title: J extracell Vesicles doi: 10.1002/jev2.12182 – volume: 6 start-page: 125 year: 2014 ident: ref88 article-title: Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities publication-title: Int J Physiol Pathophysiol Pharmacol – volume: 86 start-page: 2838 year: 2021 ident: ref32 article-title: Plant-derived exosome-like nanoparticles: a concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient publication-title: J Food Sci doi: 10.1111/1750-3841.15787 – volume: 50 start-page: 1007 year: 2022 ident: ref104 article-title: Zingiber officinale: a systematic review of botany, Phytochemistry and pharmacology of gut microbiota-related gastrointestinal benefits publication-title: Am J Chin Med doi: 10.1142/S0192415X22500410 – volume: 367 start-page: eaau6977 year: 2020 ident: ref9 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science doi: 10.1126/science.aau6977 – volume: 414 start-page: 115425 year: 2021 ident: ref15 article-title: Edible plant-derived exosomal microRNAs: exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2021.115425 – volume: 10 start-page: 4456 year: 2020 ident: ref45 article-title: A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes publication-title: Sci Rep doi: 10.1038/s41598-020-61358-8 – volume: 7 start-page: 789 year: 2017 ident: ref68 article-title: Progress in exosome isolation techniques publication-title: Theranostics doi: 10.7150/thno.18133 – volume: 127 start-page: 645 year: 2019 ident: ref1 article-title: Emerging role of extracellular vesicles in the regulation of skeletal muscle adaptation publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00914.2018 – volume: 141 start-page: 4640 year: 2016 ident: ref72 article-title: Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling publication-title: Analyst doi: 10.1039/C6AN00892E – volume: 38 start-page: 754 year: 2017 ident: ref6 article-title: Engineering exosomes as refined biological nanoplatforms for drug delivery publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2017.12 – volume: 27 start-page: 8184 year: 2022 ident: ref24 article-title: Edible Pueraria lobata-derived exosomes promote M2 macrophage polarization publication-title: Molecules doi: 10.3390/molecules27238184 – volume: 17 start-page: 53 year: 2022 ident: ref115 article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities publication-title: Asian J Pharm Sci doi: 10.1016/j.ajps.2021.05.006 – volume: 8 start-page: 4912 year: 2018 ident: ref13 article-title: Blood exosomes regulate the tissue distribution of grapefruit-derived nanovector via CD36 and IGFR1 pathways publication-title: Theranostics doi: 10.7150/thno.27608 – volume: 18 start-page: 2114 year: 2021 ident: ref97 article-title: NLRP3 inflammasome activation and cell death publication-title: Cell Mol Immunol doi: 10.1038/s41423-021-00740-6 – volume: 33 start-page: 1639 year: 2019 ident: ref89 article-title: Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials publication-title: Phytother Res PTR doi: 10.1002/ptr.6362 – volume: 73 start-page: 1907 year: 2010 ident: ref81 article-title: Exosomes: extracellular organelles important in intercellular communication publication-title: J Proteome doi: 10.1016/j.jprot.2010.06.006 – volume: 7 start-page: 1535750 year: 2018 ident: ref118 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J Extracell Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 7 start-page: 125 year: 2018 ident: ref17 article-title: Leucine-rich repeat-containing G-protein coupled receptor 5 gene overexpression of the rat small intestinal progenitor cells in response to orally administered grape exosome-like Nanovesicles publication-title: Adv Biomed Res doi: 10.4103/abr.abr_114_18 – volume: 9 start-page: e3390 year: 2019 ident: ref58 article-title: Isolation, purification, and characterization of ginger-derived nanoparticles (GDNPs) from ginger, rhizome of Zingiber officinale publication-title: Bio-protocol doi: 10.21769/BioProtoc.3390 – volume: 10 start-page: 1881 year: 2021 ident: ref60 article-title: The herbal formula JI017 induces ER stress via Nox4 in breast Cancer cells publication-title: Antioxidants doi: 10.3390/antiox10121881 – volume: 11 start-page: 267 year: 2020 ident: ref100 article-title: The immune landscape of visceral adipose tissue during obesity and aging publication-title: Front Endocrinol doi: 10.3389/fendo.2020.00267 – volume: 11 start-page: 10 year: 2018 ident: ref103 article-title: Interactions between bacteriophage, Bacteria, and the mammalian immune system publication-title: Viruses doi: 10.3390/v11010010 – volume: 12 start-page: 1388 year: 2022 ident: ref20 article-title: Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance publication-title: Theranostics doi: 10.7150/thno.62514 – volume: 16 start-page: 2690 year: 2019 ident: ref23 article-title: Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 Inflammasome activation publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.9b00246 – volume: 27 start-page: 112 year: 2016 ident: ref95 article-title: Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2015.08.025 – volume: 269 start-page: 120467 year: 2021 ident: ref108 article-title: Extracellular vesicles: a bright star of nanomedicine publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120467 – volume: 13 start-page: 3066 year: 2020 ident: ref79 article-title: Formulation of Bicelles based on lecithin-nonionic surfactant mixtures publication-title: Materials doi: 10.3390/ma13143066 – volume: 117 start-page: 554 year: 2015 ident: ref54 article-title: Gingerols and shogaols: important nutraceutical principles from ginger publication-title: Phytochemistry doi: 10.1016/j.phytochem.2015.07.012 – volume: 174 start-page: 63 year: 2017 ident: ref7 article-title: Exosomes: therapy delivery tools and biomarkers of diseases publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2017.02.020 – volume: 23 start-page: 100869 year: 2020 ident: ref28 article-title: Plant-derived Exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis publication-title: iScience doi: 10.1016/j.isci.2020.100869 – volume: 66 start-page: 153 year: 2019 ident: ref92 article-title: Does diet play a role in reducing nociception related to inflammation and chronic pain? publication-title: Nutrition doi: 10.1016/j.nut.2019.04.007 – volume: 29 start-page: 2424 year: 2021 ident: ref42 article-title: Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12 publication-title: Mol Ther J Am Soc Gene Ther doi: 10.1016/j.ymthe.2021.05.005 – volume: 1295 start-page: 179 year: 2015 ident: ref66 article-title: A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-2550-6_15 – volume: 14 start-page: 571 year: 2021 ident: ref91 article-title: Benefits of ginger and its constituent 6-Shogaol in inhibiting inflammatory processes publication-title: Pharmaceuticals doi: 10.3390/ph14060571 – volume: 29 start-page: 13 year: 2021 ident: ref110 article-title: Plant exosome-like Nanovesicles: emerging therapeutics and drug delivery Nanoplatforms publication-title: Mol Ther J Am Soc Gene Ther doi: 10.1016/j.ymthe.2020.11.030 – volume: 116 start-page: 281 year: 2004 ident: ref85 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cells doi: 10.1016/S0092-8674(04)00045-5 – volume: 21 start-page: 308 year: 2019 ident: ref61 article-title: Plant-derived Exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis publication-title: iScience doi: 10.1016/j.isci.2019.10.032 – volume: 13 start-page: 20157 year: 2021 ident: ref43 article-title: A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies publication-title: Nanoscale doi: 10.1039/D1NR06015E – volume: 44 start-page: 450 year: 2016 ident: ref96 article-title: Macrophages in tissue repair, regeneration, and fibrosis publication-title: Immunity doi: 10.1016/j.immuni.2016.02.015 – volume: 51 start-page: 1039 year: 2022 ident: ref78 article-title: Application of emerging plant-derived nanoparticles as a novel approach for Nano-drug delivery systems publication-title: Immunol Investig doi: 10.1080/08820139.2021.1891094 – volume: 10 start-page: 291 year: 2020 ident: ref98 article-title: Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications publication-title: Biomol Ther doi: 10.3390/biom10020291 |
SSID | ssj0001325414 |
Score | 2.3877916 |
SecondaryResourceType | review_article |
Snippet | Edible plant-derived exosome-like nanoparticles (PELNs) provide numerous benefits, including high yield, low cost, ethical compatibility, and multiple health... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1223349 |
SubjectTerms | exosome ginger herb nanoparticle Nutrition traditional Chinese medicine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqnrhUpUAJFGQkxKGS2zj2JllufLUVgj11pd4sjz0Rqy4JorsVP58ZJ7vaRRW99BjHUaw3Y80b2_MsxFsToNTgg7I6R2XH9UjV1jcKIuudgbGQisS-T8qLqf16NbrauOqLz4T18sA9cKe5qSCWBfg8gvURxkAh19dENGBcB59K9yjmbSRTaXXFFHy_db-NSVnY-LRpl3x0sjAnmiKiYe3MjUCU9PrvIpn_npXcCD5n-2JvYI3yQz_ax2IH2wORfZ7hQr6Tg7TnXE5WyvpPxLfztFz3XnqZZCuHEqNblMRQk9PJrpFkL1CRHm8xSvzT3XQ_Uc1n1yhb31I2PRyaeyqmZ18uP12o4eIEFWxZLpStQtnoxsCo0ligaQzWEYGavLdgracsK8QRa-lXJU1CbUMRiTdFCu4YsTDPxG7btfhcSJ9Tf6YF3qLVqKGpK28I27qAUPomE_kKRRcGVXG-3GLuKLtg4B0D7xh4NwCfieP1J796SY3_df7Ipll3ZDXs1EA-4gYY3H0-kok3K8M6mj28JeJb7JY3joIzJ7jEczJx2Bt6_StTEbUhJ8pEveUCW2PZftPOfiSFbi6-tESOXjzE6F-KR4wILyhrcyR2F7-X-IqY0AJeJ6f_CxSiCD4 priority: 102 providerName: Directory of Open Access Journals |
Title | Ginger: a representative material of herb-derived exosome-like nanoparticles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37521414 https://www.proquest.com/docview/2844094218 https://pubmed.ncbi.nlm.nih.gov/PMC10374224 https://doaj.org/article/037bd62ba0db4adb9b172a8540b98ca9 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBlGegrYyEOCC5JLE3ySKhilepEO2JlXqzPPakrFgS2EdV_j0zXu-KRSsOHJPYSfTNWPONH98I8Ux7qApwXpkiR2WGzUA1xrUKAuudgTYQD4mdnVenI_PpYnCxI1blrRKAs62pHdeTGk0nR9c_fx3TgH_NGSfF25dtt-BdkaU-KijYaTO8IW5SYKq5oMFZYvtxykWXXPR6uba5vedGdIoi_tuY598bKP-ISCd3xO1EJeWbpe33xA52d0X2foxz-Vwmvc-JPF_J7d8Tnz_GObxX0smoZZnOHV2hJNoaPVH2rSQjggp0eYVB4nU_67-jmoy_oexcRyl22kl3X4xOPnx5d6pSNQXlTVXNlal91RathkFdYIm61dgEBLrlnAFjHKVePgxYYL-uaGQWxpeByFSgiI8BS_1A7HZ9h4-EdDm1Z67gDJoCC2ib2mnCtinBV67NRL5C0fokNc4VLyaWUg4G3jLwloG3CfhMvFh3-bHU2fhX47dsmnVDlsiON_rppU0w2FzXEKoSXB7AuABDII9wDTFUGDbe0UuergxraUjxOonrsF_MLEVsznqJ_GTi4dLQ60_pmvgOOVEmmg0X2PiXzSfd-GuU7eYTmYYY0-P_7_pE3GIceG650Ptidz5d4AGRojkcxsmEw-jwvwE9nA9z |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ginger%3A+a+representative+material+of+herb-derived+exosome-like+nanoparticles&rft.jtitle=Frontiers+in+nutrition+%28Lausanne%29&rft.au=Zhu%2C+He&rft.au=He%2C+Wenxi&rft.date=2023-07-13&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-861X&rft.volume=10&rft_id=info:doi/10.3389%2Ffnut.2023.1223349&rft.externalDocID=PMC10374224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-861X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-861X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-861X&client=summon |