Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV...
Saved in:
Published in | Journal of experimental botany Vol. 70; no. 18; pp. 4657 - 4669 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
24.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism. |
---|---|
AbstractList | Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism. Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism. Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism. In cells of Nicotiana benthamiana infected with Bamboo mosaic virus , autophagy is hijacked by the virus to provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism. |
Author | Hsiao, Yung-Jen Huang, Ying-Wen Tsai, Ching-Hsiu Li, Siou-Cen Huang, Ying-Ping Hsu, Yau-Huei |
AuthorAffiliation | 2 Advanced Plant Biotechnology Center, National Chung Hsing University , Taichung, Taiwan 3 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University , Taichung, Taiwan 1 Graduate Institute of Biotechnology, National Chung Hsing University , Taichung, Taiwan |
AuthorAffiliation_xml | – name: 1 Graduate Institute of Biotechnology, National Chung Hsing University , Taichung, Taiwan – name: 2 Advanced Plant Biotechnology Center, National Chung Hsing University , Taichung, Taiwan – name: 3 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University , Taichung, Taiwan |
Author_xml | – sequence: 1 givenname: Ying-Ping surname: Huang fullname: Huang, Ying-Ping – sequence: 2 givenname: Ying-Wen surname: Huang fullname: Huang, Ying-Wen – sequence: 3 givenname: Yung-Jen surname: Hsiao fullname: Hsiao, Yung-Jen – sequence: 4 givenname: Siou-Cen surname: Li fullname: Li, Siou-Cen – sequence: 5 givenname: Yau-Huei surname: Hsu fullname: Hsu, Yau-Huei – sequence: 6 givenname: Ching-Hsiu surname: Tsai fullname: Tsai, Ching-Hsiu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31552430$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1PGzEQxS0EIoFy4U7lY1Vpy3j9sdkLEo3aUgnBhZ4tr-NNHO3awfZGpH99HQIRVMgHj-Tfe288c4IOnXcGoXMC3wjU9HL51Fya8Ldk7ACNCRNQlIySQzQGKMsCal6N0EmMSwDgwPkxGlHCeWZgjJrrIfnVQs032EZs3dp3azPLBVYx2pism-O0MDiYVWe1StY77Fv8XfWN97j3UVmN1zYMWzG-s9onq5zCjXFpofpt_QkdtaqL5uzlPkV_fv54mN4Ut_e_fk-vbwvNhEgFbcjM1JxpClC3pG3JrJ1oVlEyAd3URClWmYkALkBTXk9oRfMvmSC6aRnnhp6iq53vamh6M9O5g6A6uQq2V2EjvbLy_YuzCzn3aykqAZRCNvjyYhD842Bikr2N2nSdcsYPUZZlXZFS5JPRz2-z9iGvg80A7AAdfIzBtFLb9Dy-HG07SUBudyfz7uRud1ny9T_Jq-uH8MUOXsbkw54sRZ37y4P5B5n9pw8 |
CitedBy_id | crossref_primary_10_1016_j_tim_2023_06_008 crossref_primary_10_1111_nph_18210 crossref_primary_10_1186_s12870_020_02711_x crossref_primary_10_3390_v13112189 crossref_primary_10_1007_s42994_023_00097_6 crossref_primary_10_1146_annurev_virology_010220_054709 crossref_primary_10_3390_ijms231911410 crossref_primary_10_1371_journal_ppat_1009956 crossref_primary_10_1371_journal_ppat_1012085 crossref_primary_10_3390_v15122324 crossref_primary_10_1007_s00018_022_04281_7 crossref_primary_10_1111_jipb_13313 crossref_primary_10_3389_fmicb_2023_1191403 crossref_primary_10_1371_journal_ppat_1009370 crossref_primary_10_1111_jipb_13452 crossref_primary_10_1007_s44154_024_00176_8 crossref_primary_10_1016_j_plaphy_2023_107771 crossref_primary_10_1080_13880209_2020_1803367 crossref_primary_10_1093_jxb_erad459 crossref_primary_10_1007_s00425_022_04004_z crossref_primary_10_1111_nph_16268 crossref_primary_10_1371_journal_ppat_1009963 crossref_primary_10_3389_fmicb_2020_00736 crossref_primary_10_3389_fpls_2023_1183144 crossref_primary_10_1111_jipb_13580 crossref_primary_10_1016_j_plgene_2021_100320 crossref_primary_10_1016_j_xplc_2024_101198 crossref_primary_10_1038_s41579_023_00995_y crossref_primary_10_1002_1873_3468_14349 |
Cites_doi | 10.3389/fpls.2013.00006 10.1016/j.pbi.2017.05.001 10.1146/annurev-phyto-073009-114239 10.1094/MPMI-22-12-1523 10.1099/vir.0.81975-0 10.1128/JVI.79.14.9046-9053.2005 10.1016/j.bbrc.2013.01.103 10.1016/j.tplants.2012.05.006 10.1016/j.virol.2015.02.029 10.3389/fmicb.2017.00437 10.1016/j.bbabio.2013.11.009 10.1016/j.coviro.2015.11.002 10.3389/fpls.2012.00290 10.1104/pp.111.189605 10.1016/j.febslet.2010.01.018 10.1093/nar/gkl1061 10.1111/j.1364-3703.2009.00597.x 10.1146/annurev.micro.112408.134012 10.1371/journal.ppat.1002726 10.1111/nph.12304 10.1016/j.tplants.2015.10.008 10.1111/febs.13712 10.4161/auto.36261 10.1094/MPMI-04-14-0112-R 10.1105/tpc.114.134692 10.1371/journal.ppat.1003599 10.4161/auto.25176 10.1371/journal.pone.0052909 10.1104/pp.106.092106 10.1016/j.cell.2009.02.036 10.1016/j.tplants.2017.06.007 10.1094/Phyto-82-731 10.1016/j.cell.2005.03.007 10.1104/pp.112.208108 10.1104/pp.108.130013 10.1128/JVI.77.17.9124-9135.2003 10.1186/1471-2229-10-286 10.1016/j.virol.2010.03.026 10.1128/JVI.78.3.1271-1280.2004 10.1073/pnas.1318207111 10.1128/JVI.05595-11 10.1128/JVI.00153-06 10.1111/j.1365-2443.2008.01238.x 10.3389/fpls.2013.00005 10.1104/pp.104.050245 10.1105/tpc.112.108993 10.1016/S1534-5807(04)00099-1 10.1016/j.semcdb.2017.07.018 10.1007/BF00034936 10.1128/JVI.00460-13 10.1111/mpp.12080 10.1016/j.virol.2015.01.025 10.4161/auto.4158 10.1111/j.1469-8137.2011.03717.x 10.3389/fmicb.2017.00522 10.1104/pp.113.229666 10.1099/vir.0.19442-0 10.1128/JVI.75.24.12114-12120.2001 10.4161/auto.5629 10.1128/JVI.75.2.782-788.2001 10.1371/journal.pone.0073091 10.1128/JVI.00556-11 10.1128/JVI.01824-09 10.1007/s00535-009-0132-9 10.4161/auto.5056 10.1104/pp.106.093864 10.1128/JVI.73.4.2703-2709.1999 10.1099/vir.0.81625-0 10.1094/MPMI-23-7-0903 10.1128/JVI.72.12.10093-10099.1998 10.4161/psb.20336 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019 |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/jxb/erz244 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 4669 |
ExternalDocumentID | PMC6760330 31552430 10_1093_jxb_erz244 26962634 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; ; grantid: 102-2311-B-005-006 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 4.4 482 48X 5GY 5VS 5WA 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CS3 CZ4 D-I DAKXR DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JENOY JLS JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NU- O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TLC TN5 TR2 UHB UPT W8F WH7 WOQ X7H YAYTL YKOAZ YQT YSK YXANX YZZ ZKX ~02 ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF M49 NPM 7X8 2~F 5PM ABBHK AEUPB DATOO IPSME JPM SA0 |
ID | FETCH-LOGICAL-c466t-3b1de954c3009f1ff1df8c473180cb91aa47e860560c3598373431461cbf455e3 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 18:21:20 EDT 2025 Fri Jul 11 05:22:22 EDT 2025 Thu Apr 03 07:08:14 EDT 2025 Tue Jul 01 03:05:42 EDT 2025 Thu Apr 24 23:08:38 EDT 2025 Thu Jun 19 19:50:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | autophagy chloroplast chlorophagy viral RNA replication BaMV 3-MA ATG5 rapamycin |
Language | English |
License | http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-3b1de954c3009f1ff1df8c473180cb91aa47e860560c3598373431461cbf455e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3744-8821 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6760330 |
PMID | 31552430 |
PQID | 2297126262 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6760330 proquest_miscellaneous_2297126262 pubmed_primary_31552430 crossref_citationtrail_10_1093_jxb_erz244 crossref_primary_10_1093_jxb_erz244 jstor_primary_26962634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-24 |
PublicationDateYYYYMMDD | 2019-09-24 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: UK |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Chen (2019092421020850900_CIT0001) 2013; 199 Tilsner (2019092421020850900_CIT0059) 2012; 158 Shinohara (2019092421020850900_CIT0058) 2013; 432 Michaeli (2019092421020850900_CIT0046) 2016; 21 Heinlein (2019092421020850900_CIT0013) 2015; 479-480 Wada (2019092421020850900_CIT0062) 2009; 149 Wei (2019092421020850900_CIT0066) 2010; 84 Xiong (2019092421020850900_CIT0069) 2007; 143 Reinero (2019092421020850900_CIT0055) 1986; 6 Kwon (2019092421020850900_CIT0024) 2013; 161 Dong (2019092421020850900_CIT0008) 2013; 8 Torrance (2019092421020850900_CIT0060) 2006; 87 Woo (2019092421020850900_CIT0067) 2014; 111 Lee (2019092421020850900_CIT0027) 2011; 85 Lin (2019092421020850900_CIT0035) 2005; 79 Lin (2019092421020850900_CIT0039) 2006; 87 Cheng (2019092421020850900_CIT0003) 2013; 163 Masclaux-Daubresse (2019092421020850900_CIT0043) 2016; 12 Noda (2019092421020850900_CIT0048) 2008; 13 Lin (2019092421020850900_CIT0036) 2007; 35 Prod’homme (2019092421020850900_CIT0052) 2003; 77 Lin (2019092421020850900_CIT0037) 2010; 402 Jin (2019092421020850900_CIT0023) 2013; 8 Meng (2019092421020850900_CIT0045) 2017; 8 Harrison-Lowe (2019092421020850900_CIT0012) 2008; 4 Richards (2019092421020850900_CIT0056) 2013; 87 Hofius (2019092421020850900_CIT0014) 2009; 137 Lin (2019092421020850900_CIT0040) 1992; 82 Richetta (2019092421020850900_CIT0057) 2013; 9 Li (2019092421020850900_CIT0032) 2001; 75 den Boon (2019092421020850900_CIT0007) 2010; 64 Prasanth (2019092421020850900_CIT0051) 2011; 85 Fujiki (2019092421020850900_CIT0009) 2007; 143 Qin (2019092421020850900_CIT0054) 2012; 7 Wang (2019092421020850900_CIT0063) 2018; 80 Cowan (2019092421020850900_CIT0006) 2012; 3 Noda (2019092421020850900_CIT0049) 2010; 584 Clavel (2019092421020850900_CIT0005) 2017; 22 Jang (2019092421020850900_CIT0022) 2013; 4 Li (2019092421020850900_CIT0030) 2012; 17 Li (2019092421020850900_CIT0033) 1998; 72 Patel (2019092421020850900_CIT0050) 2008; 4 Wang (2019092421020850900_CIT0065) 2013; 25 Leivar (2019092421020850900_CIT0028) 2005; 137 Tsai (2019092421020850900_CIT0061) 1999; 73 Yano (2019092421020850900_CIT0070) 2007; 3 Huh (2019092421020850900_CIT0018) 2011; 191 Huang (2019092421020850900_CIT0017) 2012; 8 Mizui (2019092421020850900_CIT0047) 2010; 45 Hung (2019092421020850900_CIT0020) 2014; 27 Huang (2019092421020850900_CIT0015) 2004; 78 Lan (2019092421020850900_CIT0026) 2010; 23 Cheng (2019092421020850900_CIT0004) 2010; 10 Xiang (2019092421020850900_CIT0068) 2006; 80 Huang (2019092421020850900_CIT0016) 2017; 8 Lin (2019092421020850900_CIT0038) 2004; 85 Linnik (2019092421020850900_CIT0041) 2013; 4 Wang (2019092421020850900_CIT0064) 2013; 9 Han (2019092421020850900_CIT0010) 2015; 27 Harak (2019092421020850900_CIT0011) 2015; 479-480 Chen (2019092421020850900_CIT0002) 2010; 11 Masclaux-Daubresse (2019092421020850900_CIT0044) 2017; 39 Liu (2019092421020850900_CIT0042) 2005; 121 Hung (2019092421020850900_CIT0019) 2014; 15 Laliberté (2019092421020850900_CIT0025) 2010; 48 Zientara-Rytter (2019092421020850900_CIT0071) 2016; 283 Levine (2019092421020850900_CIT0029) 2004; 6 Li (2019092421020850900_CIT0034) 2001; 75 Li (2019092421020850900_CIT0031) 2016; 17 Qiao (2019092421020850900_CIT0053) 2009; 22 Ishida (2019092421020850900_CIT0021) 2014; 1837 |
References_xml | – volume: 4 start-page: 6 year: 2013 ident: 2019092421020850900_CIT0041 article-title: Unraveling the structure of viral replication complexes at super-resolution publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2013.00006 – volume: 39 start-page: 8 year: 2017 ident: 2019092421020850900_CIT0044 article-title: Regulation of nutrient recycling via autophagy publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2017.05.001 – volume: 48 start-page: 69 year: 2010 ident: 2019092421020850900_CIT0025 article-title: Cellular remodeling during plant virus infection publication-title: Annual Review of Phytopathology doi: 10.1146/annurev-phyto-073009-114239 – volume: 22 start-page: 1523 year: 2009 ident: 2019092421020850900_CIT0053 article-title: Plastocyanin transit peptide interacts with Potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-22-12-1523 – volume: 87 start-page: 2403 year: 2006 ident: 2019092421020850900_CIT0060 article-title: Barley stripe mosaic virus-encoded proteins triple-gene block 2 and γb localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication publication-title: The Journal of General Virology doi: 10.1099/vir.0.81975-0 – volume: 79 start-page: 9046 year: 2005 ident: 2019092421020850900_CIT0035 article-title: Structural and functional analysis of the cis-acting elements required for plus-strand RNA synthesis of Bamboo mosaic virus publication-title: Journal of Virology doi: 10.1128/JVI.79.14.9046-9053.2005 – volume: 432 start-page: 326 year: 2013 ident: 2019092421020850900_CIT0058 article-title: Unfolded protein response pathways regulate Hepatitis C virus replication via modulation of autophagy publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2013.01.103 – volume: 17 start-page: 526 year: 2012 ident: 2019092421020850900_CIT0030 article-title: Autophagy: a multifaceted intracellular system for bulk and selective recycling publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2012.05.006 – volume: 479-480 start-page: 418 year: 2015 ident: 2019092421020850900_CIT0011 article-title: Ultrastructure of the replication sites of positive-strand RNA viruses publication-title: Virology doi: 10.1016/j.virol.2015.02.029 – volume: 8 start-page: 437 year: 2017 ident: 2019092421020850900_CIT0016 article-title: Host factors in the infection cycle of Bamboo mosaic virus publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2017.00437 – volume: 1837 start-page: 512 year: 2014 ident: 2019092421020850900_CIT0021 article-title: Roles of autophagy in chloroplast recycling publication-title: Biochimica et Biophysica Acta doi: 10.1016/j.bbabio.2013.11.009 – volume: 17 start-page: 19 year: 2016 ident: 2019092421020850900_CIT0031 article-title: The altered photosynthetic machinery during compatible virus infection publication-title: Current Opinion in Virology doi: 10.1016/j.coviro.2015.11.002 – volume: 3 start-page: 290 year: 2012 ident: 2019092421020850900_CIT0006 article-title: The Potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2012.00290 – volume: 158 start-page: 1359 year: 2012 ident: 2019092421020850900_CIT0059 article-title: The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory publication-title: Plant Physiology doi: 10.1104/pp.111.189605 – volume: 584 start-page: 1379 year: 2010 ident: 2019092421020850900_CIT0049 article-title: Atg8-family interacting motif crucial for selective autophagy publication-title: FEBS Letters doi: 10.1016/j.febslet.2010.01.018 – volume: 35 start-page: 424 year: 2007 ident: 2019092421020850900_CIT0036 article-title: Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus publication-title: Nucleic Acids Research doi: 10.1093/nar/gkl1061 – volume: 11 start-page: 203 year: 2010 ident: 2019092421020850900_CIT0002 article-title: The 3´-terminal sequence of Bamboo mosaic virus minus-strand RNA interacts with RNA-dependent RNA polymerase and initiates plus-strand RNA synthesis publication-title: Molecular Plant Pathology doi: 10.1111/j.1364-3703.2009.00597.x – volume: 64 start-page: 241 year: 2010 ident: 2019092421020850900_CIT0007 article-title: Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories publication-title: Annual Review of Microbiology doi: 10.1146/annurev.micro.112408.134012 – volume: 8 start-page: e1002726 year: 2012 ident: 2019092421020850900_CIT0017 article-title: Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1002726 – volume: 199 start-page: 749 year: 2013 ident: 2019092421020850900_CIT0001 article-title: The glutathione transferase of Nicotiana benthamiana NbGSTU4 plays a role in regulating the early replication of Bamboo mosaic virus publication-title: New Phytologist doi: 10.1111/nph.12304 – volume: 21 start-page: 134 year: 2016 ident: 2019092421020850900_CIT0046 article-title: Autophagy in plants – what’s new on the menu? publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2015.10.008 – volume: 283 start-page: 3534 year: 2016 ident: 2019092421020850900_CIT0071 article-title: To deliver or to degrade – an interplay of the ubiquitin–proteasome system, autophagy and vesicular transport in plants publication-title: The FEBS Journal doi: 10.1111/febs.13712 – volume: 12 start-page: 896 year: 2016 ident: 2019092421020850900_CIT0043 article-title: Autophagy controls carbon, nitrogen, and redox homeostasis in plants publication-title: Autophagy doi: 10.4161/auto.36261 – volume: 27 start-page: 1211 year: 2014 ident: 2019092421020850900_CIT0020 article-title: Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-04-14-0112-R – volume: 27 start-page: 1316 year: 2015 ident: 2019092421020850900_CIT0010 article-title: Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana publication-title: The Plant Cell doi: 10.1105/tpc.114.134692 – volume: 9 start-page: e1003599 year: 2013 ident: 2019092421020850900_CIT0057 article-title: Sustained autophagy contributes to measles virus infectivity publication-title: PLoS Pathogens doi: 10.1371/journal.ppat.1003599 – volume: 9 start-page: 1247 year: 2013 ident: 2019092421020850900_CIT0064 article-title: Autophagic degradation of leaf starch in plants publication-title: Autophagy doi: 10.4161/auto.25176 – volume: 8 start-page: e52909 year: 2013 ident: 2019092421020850900_CIT0023 article-title: Japanese encephalitis virus activates autophagy as a viral immune evasion strategy publication-title: PLoS ONE doi: 10.1371/journal.pone.0052909 – volume: 143 start-page: 291 year: 2007 ident: 2019092421020850900_CIT0069 article-title: Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.106.092106 – volume: 137 start-page: 773 year: 2009 ident: 2019092421020850900_CIT0014 article-title: Autophagic components contribute to hypersensitive cell death in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2009.02.036 – volume: 22 start-page: 646 year: 2017 ident: 2019092421020850900_CIT0005 article-title: Autophagy: a double-edged sword to fight plant viruses publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2017.06.007 – volume: 82 start-page: 731 year: 1992 ident: 2019092421020850900_CIT0040 article-title: Genome properties of Bamboo mosaic virus publication-title: Phytopathology doi: 10.1094/Phyto-82-731 – volume: 121 start-page: 567 year: 2005 ident: 2019092421020850900_CIT0042 article-title: Autophagy regulates programmed cell death during the plant innate immune response publication-title: Cell doi: 10.1016/j.cell.2005.03.007 – volume: 161 start-page: 1722 year: 2013 ident: 2019092421020850900_CIT0024 article-title: The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.112.208108 – volume: 149 start-page: 885 year: 2009 ident: 2019092421020850900_CIT0062 article-title: Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves publication-title: Plant Physiology doi: 10.1104/pp.108.130013 – volume: 77 start-page: 9124 year: 2003 ident: 2019092421020850900_CIT0052 article-title: Targeting of the Turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein publication-title: Journal of Virology doi: 10.1128/JVI.77.17.9124-9135.2003 – volume: 10 start-page: 286 year: 2010 ident: 2019092421020850900_CIT0004 article-title: Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism publication-title: BMC Plant Biology doi: 10.1186/1471-2229-10-286 – volume: 402 start-page: 1 year: 2010 ident: 2019092421020850900_CIT0037 article-title: Viral interactions with macroautophagy: a double-edged sword publication-title: Virology doi: 10.1016/j.virol.2010.03.026 – volume: 78 start-page: 1271 year: 2004 ident: 2019092421020850900_CIT0015 article-title: Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of Bamboo mosaic virus publication-title: Journal of Virology doi: 10.1128/JVI.78.3.1271-1280.2004 – volume: 111 start-page: 9325 year: 2014 ident: 2019092421020850900_CIT0067 article-title: Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1318207111 – volume: 85 start-page: 12022 year: 2011 ident: 2019092421020850900_CIT0027 article-title: The interaction between Bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts publication-title: Journal of Virology doi: 10.1128/JVI.05595-11 – volume: 80 start-page: 7952 year: 2006 ident: 2019092421020850900_CIT0068 article-title: A 38-amino-acid sequence encompassing the arm domain of the Cucumber necrosis virus coat protein functions as a chloroplast transit Peptide in infected plants publication-title: Journal of Virology doi: 10.1128/JVI.00153-06 – volume: 13 start-page: 1211 year: 2008 ident: 2019092421020850900_CIT0048 article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy publication-title: Genes to Cells doi: 10.1111/j.1365-2443.2008.01238.x – volume: 4 start-page: 5 year: 2013 ident: 2019092421020850900_CIT0022 article-title: Insights into Alternanthera mosaic virus TGB3 functions: interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2013.00005 – volume: 137 start-page: 57 year: 2005 ident: 2019092421020850900_CIT0028 article-title: Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase publication-title: Plant Physiology doi: 10.1104/pp.104.050245 – volume: 25 start-page: 1383 year: 2013 ident: 2019092421020850900_CIT0065 article-title: Autophagy contributes to leaf starch degradation publication-title: The Plant Cell doi: 10.1105/tpc.112.108993 – volume: 6 start-page: 463 year: 2004 ident: 2019092421020850900_CIT0029 article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy publication-title: Developmental Cell doi: 10.1016/S1534-5807(04)00099-1 – volume: 80 start-page: 113 year: 2018 ident: 2019092421020850900_CIT0063 article-title: New advances in autophagy in plants: regulation, selectivity and function publication-title: Seminars in Cell & Developmental Biology doi: 10.1016/j.semcdb.2017.07.018 – volume: 6 start-page: 291 year: 1986 ident: 2019092421020850900_CIT0055 article-title: Association of TMV coat protein with chloroplast membranes in virus-infected leaves publication-title: Plant Molecular Biology doi: 10.1007/BF00034936 – volume: 87 start-page: 9966 year: 2013 ident: 2019092421020850900_CIT0056 article-title: How positive-strand RNA viruses benefit from autophagosome maturation publication-title: Journal of Virology doi: 10.1128/JVI.00460-13 – volume: 15 start-page: 196 year: 2014 ident: 2019092421020850900_CIT0019 article-title: Two key arginine residues in the coat protein of Bamboo mosaic virus differentially affect the accumulation of viral genomic and subgenomic RNAs publication-title: Molecular Plant Pathology doi: 10.1111/mpp.12080 – volume: 479-480 start-page: 657 year: 2015 ident: 2019092421020850900_CIT0013 article-title: Plant virus replication and movement publication-title: Virology doi: 10.1016/j.virol.2015.01.025 – volume: 3 start-page: 360 year: 2007 ident: 2019092421020850900_CIT0070 article-title: Constitutive autophagy in plant root cells publication-title: Autophagy doi: 10.4161/auto.4158 – volume: 191 start-page: 746 year: 2011 ident: 2019092421020850900_CIT0018 article-title: A zinc finger protein Tsip1 controls Cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant publication-title: New Phytologist doi: 10.1111/j.1469-8137.2011.03717.x – volume: 8 start-page: 522 year: 2017 ident: 2019092421020850900_CIT0045 article-title: Function and structural organization of the replication protein of Bamboo mosaic virus publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2017.00522 – volume: 163 start-page: 1598 year: 2013 ident: 2019092421020850900_CIT0003 article-title: Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants publication-title: Plant Physiology doi: 10.1104/pp.113.229666 – volume: 85 start-page: 251 year: 2004 ident: 2019092421020850900_CIT0038 article-title: Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement publication-title: The Journal of General Virology doi: 10.1099/vir.0.19442-0 – volume: 75 start-page: 12114 year: 2001 ident: 2019092421020850900_CIT0034 article-title: The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5´ cap structure by exhibiting RNA 5´-triphosphatase activity publication-title: Journal of Virology doi: 10.1128/JVI.75.24.12114-12120.2001 – volume: 4 start-page: 339 year: 2008 ident: 2019092421020850900_CIT0012 article-title: Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana publication-title: Autophagy doi: 10.4161/auto.5629 – volume: 75 start-page: 782 year: 2001 ident: 2019092421020850900_CIT0032 article-title: Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of Bamboo mosaic virus replicase publication-title: Journal of Virology doi: 10.1128/JVI.75.2.782-788.2001 – volume: 8 start-page: e73091 year: 2013 ident: 2019092421020850900_CIT0008 article-title: The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4) infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0073091 – volume: 85 start-page: 8829 year: 2011 ident: 2019092421020850900_CIT0051 article-title: Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA publication-title: Journal of Virology doi: 10.1128/JVI.00556-11 – volume: 84 start-page: 799 year: 2010 ident: 2019092421020850900_CIT0066 article-title: Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication publication-title: Journal of Virology doi: 10.1128/JVI.01824-09 – volume: 45 start-page: 195 year: 2010 ident: 2019092421020850900_CIT0047 article-title: Inhibition of Hepatitis C virus replication by chloroquine targeting virus-associated autophagy publication-title: Journal of Gastroenterology doi: 10.1007/s00535-009-0132-9 – volume: 4 start-page: 20 year: 2008 ident: 2019092421020850900_CIT0050 article-title: Arabidopsis ATG6 is required to limit the pathogen-associated cell death response publication-title: Autophagy doi: 10.4161/auto.5056 – volume: 143 start-page: 1132 year: 2007 ident: 2019092421020850900_CIT0009 article-title: An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination publication-title: Plant Physiology doi: 10.1104/pp.106.093864 – volume: 73 start-page: 2703 year: 1999 ident: 2019092421020850900_CIT0061 article-title: Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of Bamboo mosaic potexvirus RNA publication-title: Journal of Virology doi: 10.1128/JVI.73.4.2703-2709.1999 – volume: 87 start-page: 1357 year: 2006 ident: 2019092421020850900_CIT0039 article-title: Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the Bamboo mosaic virus satellite RNA-mediated expression system publication-title: The Journal of General Virology doi: 10.1099/vir.0.81625-0 – volume: 23 start-page: 903 year: 2010 ident: 2019092421020850900_CIT0026 article-title: A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-23-7-0903 – volume: 72 start-page: 10093 year: 1998 ident: 2019092421020850900_CIT0033 article-title: Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of Bamboo mosaic virus publication-title: Journal of Virology doi: 10.1128/JVI.72.12.10093-10099.1998 – volume: 7 start-page: 708 year: 2012 ident: 2019092421020850900_CIT0054 article-title: Characterization of the role of calcium in regulating the microtubule-destabilizing activity of MDP25 publication-title: Plant Signaling & Behavior doi: 10.4161/psb.20336 |
SSID | ssj0005055 |
Score | 2.450617 |
Snippet | Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4657 |
SubjectTerms | Autophagy Cell Biology Chloroplasts - metabolism Nicotiana - physiology Nicotiana - virology Plant Diseases - virology Potexvirus - physiology Research Papers Virus Replication |
Title | Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana |
URI | https://www.jstor.org/stable/26962634 https://www.ncbi.nlm.nih.gov/pubmed/31552430 https://www.proquest.com/docview/2297126262 https://pubmed.ncbi.nlm.nih.gov/PMC6760330 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXxG2sGyAjeEFVWBI7t8dtApVxERKb2J4i23G0INqgNpnQ_gZ_mHPs3Lq1EvASpYnjRv6-HB_b53wm5FWWs4QJrhzgbuJwLnNH4kyckEGgE6UCFWOC86fP4fSUH58FZ6PR70HUUl3JN-pqbV7J_6AK1wBXzJL9B2S7SuECnAO-cASE4fhXGB_UKAsgMHcPw6rA0lxq1FKagEeM326TCbXQ3SI1-oaHYgau9WRWLkWhJpfFojYxscgJ_NzFREJHdCFmeL7Bd13ZF0CWVWtRDD-aGehz-HvnS9sz3rjzrc9Bmy4LYWZsz8HyOMf9jY8m1OBrUdbOUXO1maDwTASW309Qbkh8HBplGA-Dp2f7XW3tMA9dqKTpIBpDbXcYaQkZD8wuD9unm592-5cb3YOVzvr-SyJdFle-lZ68JrjthwlK9PBb5LYPYw8zTn__oY8bcoOglaDHt241bxO2DxXv22pXvBwb6LpuCHM9Enfg2pzcJ_caXOmBJdgDMtLzh-TOoYH1EZEdy2ixpC3L4IR2LKPAMjpgGS1zallGLcuoYRk-07GMDlj2mJy-e3tyNHWanTkcBW1bOUx6mU4Crhi46LmX516Wx4pH0EG4SiaeEDzSMYyUQ1ehRCSLGGDJQ0_JnIMRYNtka17O9Q6hjGe4FixclmkeMwXD_zDOVa5xSdCVckxety2Zqka2HndP-ZHa8AmWQqunttXH5GVX9qcVa1lbatsA0hVpAR-TFy1CKRhZXDkTc13Wy9T3k8jzoZA_Jk8sYt3TDEUMOXPHJFrBsiuAAu6rd-bFhRFyD6PQZczd3fRCe-Ru_0E9JVvVotbPwAeu5HPDyT8kqbmk |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+is+involved+in+assisting+the+replication+of+Bamboo+mosaic+virus+in+Nicotiana+benthamiana&rft.jtitle=Journal+of+experimental+botany&rft.au=Huang%2C+Ying-Ping&rft.au=Huang%2C+Ying-Wen&rft.au=Hsiao%2C+Yung-Jen&rft.au=Li%2C+Siou-Cen&rft.date=2019-09-24&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=70&rft.issue=18&rft.spage=4657&rft.epage=4669&rft_id=info:doi/10.1093%2Fjxb%2Ferz244&rft.externalDocID=26962634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |