Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana

Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 70; no. 18; pp. 4657 - 4669
Main Authors Huang, Ying-Ping, Huang, Ying-Wen, Hsiao, Yung-Jen, Li, Siou-Cen, Hsu, Yau-Huei, Tsai, Ching-Hsiu
Format Journal Article
LanguageEnglish
Published England Oxford University Press 24.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
AbstractList Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism. In cells of Nicotiana benthamiana infected with Bamboo mosaic virus , autophagy is hijacked by the virus to provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Author Hsiao, Yung-Jen
Huang, Ying-Wen
Tsai, Ching-Hsiu
Li, Siou-Cen
Huang, Ying-Ping
Hsu, Yau-Huei
AuthorAffiliation 2 Advanced Plant Biotechnology Center, National Chung Hsing University , Taichung, Taiwan
3 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University , Taichung, Taiwan
1 Graduate Institute of Biotechnology, National Chung Hsing University , Taichung, Taiwan
AuthorAffiliation_xml – name: 1 Graduate Institute of Biotechnology, National Chung Hsing University , Taichung, Taiwan
– name: 2 Advanced Plant Biotechnology Center, National Chung Hsing University , Taichung, Taiwan
– name: 3 Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University , Taichung, Taiwan
Author_xml – sequence: 1
  givenname: Ying-Ping
  surname: Huang
  fullname: Huang, Ying-Ping
– sequence: 2
  givenname: Ying-Wen
  surname: Huang
  fullname: Huang, Ying-Wen
– sequence: 3
  givenname: Yung-Jen
  surname: Hsiao
  fullname: Hsiao, Yung-Jen
– sequence: 4
  givenname: Siou-Cen
  surname: Li
  fullname: Li, Siou-Cen
– sequence: 5
  givenname: Yau-Huei
  surname: Hsu
  fullname: Hsu, Yau-Huei
– sequence: 6
  givenname: Ching-Hsiu
  surname: Tsai
  fullname: Tsai, Ching-Hsiu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31552430$$D View this record in MEDLINE/PubMed
BookMark eNptkc1PGzEQxS0EIoFy4U7lY1Vpy3j9sdkLEo3aUgnBhZ4tr-NNHO3awfZGpH99HQIRVMgHj-Tfe288c4IOnXcGoXMC3wjU9HL51Fya8Ldk7ACNCRNQlIySQzQGKMsCal6N0EmMSwDgwPkxGlHCeWZgjJrrIfnVQs032EZs3dp3azPLBVYx2pism-O0MDiYVWe1StY77Fv8XfWN97j3UVmN1zYMWzG-s9onq5zCjXFpofpt_QkdtaqL5uzlPkV_fv54mN4Ut_e_fk-vbwvNhEgFbcjM1JxpClC3pG3JrJ1oVlEyAd3URClWmYkALkBTXk9oRfMvmSC6aRnnhp6iq53vamh6M9O5g6A6uQq2V2EjvbLy_YuzCzn3aykqAZRCNvjyYhD842Bikr2N2nSdcsYPUZZlXZFS5JPRz2-z9iGvg80A7AAdfIzBtFLb9Dy-HG07SUBudyfz7uRud1ny9T_Jq-uH8MUOXsbkw54sRZ37y4P5B5n9pw8
CitedBy_id crossref_primary_10_1016_j_tim_2023_06_008
crossref_primary_10_1111_nph_18210
crossref_primary_10_1186_s12870_020_02711_x
crossref_primary_10_3390_v13112189
crossref_primary_10_1007_s42994_023_00097_6
crossref_primary_10_1146_annurev_virology_010220_054709
crossref_primary_10_3390_ijms231911410
crossref_primary_10_1371_journal_ppat_1009956
crossref_primary_10_1371_journal_ppat_1012085
crossref_primary_10_3390_v15122324
crossref_primary_10_1007_s00018_022_04281_7
crossref_primary_10_1111_jipb_13313
crossref_primary_10_3389_fmicb_2023_1191403
crossref_primary_10_1371_journal_ppat_1009370
crossref_primary_10_1111_jipb_13452
crossref_primary_10_1007_s44154_024_00176_8
crossref_primary_10_1016_j_plaphy_2023_107771
crossref_primary_10_1080_13880209_2020_1803367
crossref_primary_10_1093_jxb_erad459
crossref_primary_10_1007_s00425_022_04004_z
crossref_primary_10_1111_nph_16268
crossref_primary_10_1371_journal_ppat_1009963
crossref_primary_10_3389_fmicb_2020_00736
crossref_primary_10_3389_fpls_2023_1183144
crossref_primary_10_1111_jipb_13580
crossref_primary_10_1016_j_plgene_2021_100320
crossref_primary_10_1016_j_xplc_2024_101198
crossref_primary_10_1038_s41579_023_00995_y
crossref_primary_10_1002_1873_3468_14349
Cites_doi 10.3389/fpls.2013.00006
10.1016/j.pbi.2017.05.001
10.1146/annurev-phyto-073009-114239
10.1094/MPMI-22-12-1523
10.1099/vir.0.81975-0
10.1128/JVI.79.14.9046-9053.2005
10.1016/j.bbrc.2013.01.103
10.1016/j.tplants.2012.05.006
10.1016/j.virol.2015.02.029
10.3389/fmicb.2017.00437
10.1016/j.bbabio.2013.11.009
10.1016/j.coviro.2015.11.002
10.3389/fpls.2012.00290
10.1104/pp.111.189605
10.1016/j.febslet.2010.01.018
10.1093/nar/gkl1061
10.1111/j.1364-3703.2009.00597.x
10.1146/annurev.micro.112408.134012
10.1371/journal.ppat.1002726
10.1111/nph.12304
10.1016/j.tplants.2015.10.008
10.1111/febs.13712
10.4161/auto.36261
10.1094/MPMI-04-14-0112-R
10.1105/tpc.114.134692
10.1371/journal.ppat.1003599
10.4161/auto.25176
10.1371/journal.pone.0052909
10.1104/pp.106.092106
10.1016/j.cell.2009.02.036
10.1016/j.tplants.2017.06.007
10.1094/Phyto-82-731
10.1016/j.cell.2005.03.007
10.1104/pp.112.208108
10.1104/pp.108.130013
10.1128/JVI.77.17.9124-9135.2003
10.1186/1471-2229-10-286
10.1016/j.virol.2010.03.026
10.1128/JVI.78.3.1271-1280.2004
10.1073/pnas.1318207111
10.1128/JVI.05595-11
10.1128/JVI.00153-06
10.1111/j.1365-2443.2008.01238.x
10.3389/fpls.2013.00005
10.1104/pp.104.050245
10.1105/tpc.112.108993
10.1016/S1534-5807(04)00099-1
10.1016/j.semcdb.2017.07.018
10.1007/BF00034936
10.1128/JVI.00460-13
10.1111/mpp.12080
10.1016/j.virol.2015.01.025
10.4161/auto.4158
10.1111/j.1469-8137.2011.03717.x
10.3389/fmicb.2017.00522
10.1104/pp.113.229666
10.1099/vir.0.19442-0
10.1128/JVI.75.24.12114-12120.2001
10.4161/auto.5629
10.1128/JVI.75.2.782-788.2001
10.1371/journal.pone.0073091
10.1128/JVI.00556-11
10.1128/JVI.01824-09
10.1007/s00535-009-0132-9
10.4161/auto.5056
10.1104/pp.106.093864
10.1128/JVI.73.4.2703-2709.1999
10.1099/vir.0.81625-0
10.1094/MPMI-23-7-0903
10.1128/JVI.72.12.10093-10099.1998
10.4161/psb.20336
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/jxb/erz244
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 4669
ExternalDocumentID PMC6760330
31552430
10_1093_jxb_erz244
26962634
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ; ;
  grantid: 102-2311-B-005-006
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
4.4
482
48X
5GY
5VS
5WA
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CS3
CZ4
D-I
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JENOY
JLS
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NU-
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TLC
TN5
TR2
UHB
UPT
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
2~F
5PM
ABBHK
AEUPB
DATOO
IPSME
JPM
SA0
ID FETCH-LOGICAL-c466t-3b1de954c3009f1ff1df8c473180cb91aa47e860560c3598373431461cbf455e3
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 18:21:20 EDT 2025
Fri Jul 11 05:22:22 EDT 2025
Thu Apr 03 07:08:14 EDT 2025
Tue Jul 01 03:05:42 EDT 2025
Thu Apr 24 23:08:38 EDT 2025
Thu Jun 19 19:50:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords autophagy
chloroplast
chlorophagy
viral RNA replication
BaMV
3-MA
ATG5
rapamycin
Language English
License http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-3b1de954c3009f1ff1df8c473180cb91aa47e860560c3598373431461cbf455e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3744-8821
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6760330
PMID 31552430
PQID 2297126262
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6760330
proquest_miscellaneous_2297126262
pubmed_primary_31552430
crossref_citationtrail_10_1093_jxb_erz244
crossref_primary_10_1093_jxb_erz244
jstor_primary_26962634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-24
PublicationDateYYYYMMDD 2019-09-24
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: UK
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chen (2019092421020850900_CIT0001) 2013; 199
Tilsner (2019092421020850900_CIT0059) 2012; 158
Shinohara (2019092421020850900_CIT0058) 2013; 432
Michaeli (2019092421020850900_CIT0046) 2016; 21
Heinlein (2019092421020850900_CIT0013) 2015; 479-480
Wada (2019092421020850900_CIT0062) 2009; 149
Wei (2019092421020850900_CIT0066) 2010; 84
Xiong (2019092421020850900_CIT0069) 2007; 143
Reinero (2019092421020850900_CIT0055) 1986; 6
Kwon (2019092421020850900_CIT0024) 2013; 161
Dong (2019092421020850900_CIT0008) 2013; 8
Torrance (2019092421020850900_CIT0060) 2006; 87
Woo (2019092421020850900_CIT0067) 2014; 111
Lee (2019092421020850900_CIT0027) 2011; 85
Lin (2019092421020850900_CIT0035) 2005; 79
Lin (2019092421020850900_CIT0039) 2006; 87
Cheng (2019092421020850900_CIT0003) 2013; 163
Masclaux-Daubresse (2019092421020850900_CIT0043) 2016; 12
Noda (2019092421020850900_CIT0048) 2008; 13
Lin (2019092421020850900_CIT0036) 2007; 35
Prod’homme (2019092421020850900_CIT0052) 2003; 77
Lin (2019092421020850900_CIT0037) 2010; 402
Jin (2019092421020850900_CIT0023) 2013; 8
Meng (2019092421020850900_CIT0045) 2017; 8
Harrison-Lowe (2019092421020850900_CIT0012) 2008; 4
Richards (2019092421020850900_CIT0056) 2013; 87
Hofius (2019092421020850900_CIT0014) 2009; 137
Lin (2019092421020850900_CIT0040) 1992; 82
Richetta (2019092421020850900_CIT0057) 2013; 9
Li (2019092421020850900_CIT0032) 2001; 75
den Boon (2019092421020850900_CIT0007) 2010; 64
Prasanth (2019092421020850900_CIT0051) 2011; 85
Fujiki (2019092421020850900_CIT0009) 2007; 143
Qin (2019092421020850900_CIT0054) 2012; 7
Wang (2019092421020850900_CIT0063) 2018; 80
Cowan (2019092421020850900_CIT0006) 2012; 3
Noda (2019092421020850900_CIT0049) 2010; 584
Clavel (2019092421020850900_CIT0005) 2017; 22
Jang (2019092421020850900_CIT0022) 2013; 4
Li (2019092421020850900_CIT0030) 2012; 17
Li (2019092421020850900_CIT0033) 1998; 72
Patel (2019092421020850900_CIT0050) 2008; 4
Wang (2019092421020850900_CIT0065) 2013; 25
Leivar (2019092421020850900_CIT0028) 2005; 137
Tsai (2019092421020850900_CIT0061) 1999; 73
Yano (2019092421020850900_CIT0070) 2007; 3
Huh (2019092421020850900_CIT0018) 2011; 191
Huang (2019092421020850900_CIT0017) 2012; 8
Mizui (2019092421020850900_CIT0047) 2010; 45
Hung (2019092421020850900_CIT0020) 2014; 27
Huang (2019092421020850900_CIT0015) 2004; 78
Lan (2019092421020850900_CIT0026) 2010; 23
Cheng (2019092421020850900_CIT0004) 2010; 10
Xiang (2019092421020850900_CIT0068) 2006; 80
Huang (2019092421020850900_CIT0016) 2017; 8
Lin (2019092421020850900_CIT0038) 2004; 85
Linnik (2019092421020850900_CIT0041) 2013; 4
Wang (2019092421020850900_CIT0064) 2013; 9
Han (2019092421020850900_CIT0010) 2015; 27
Harak (2019092421020850900_CIT0011) 2015; 479-480
Chen (2019092421020850900_CIT0002) 2010; 11
Masclaux-Daubresse (2019092421020850900_CIT0044) 2017; 39
Liu (2019092421020850900_CIT0042) 2005; 121
Hung (2019092421020850900_CIT0019) 2014; 15
Laliberté (2019092421020850900_CIT0025) 2010; 48
Zientara-Rytter (2019092421020850900_CIT0071) 2016; 283
Levine (2019092421020850900_CIT0029) 2004; 6
Li (2019092421020850900_CIT0034) 2001; 75
Li (2019092421020850900_CIT0031) 2016; 17
Qiao (2019092421020850900_CIT0053) 2009; 22
Ishida (2019092421020850900_CIT0021) 2014; 1837
References_xml – volume: 4
  start-page: 6
  year: 2013
  ident: 2019092421020850900_CIT0041
  article-title: Unraveling the structure of viral replication complexes at super-resolution
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2013.00006
– volume: 39
  start-page: 8
  year: 2017
  ident: 2019092421020850900_CIT0044
  article-title: Regulation of nutrient recycling via autophagy
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2017.05.001
– volume: 48
  start-page: 69
  year: 2010
  ident: 2019092421020850900_CIT0025
  article-title: Cellular remodeling during plant virus infection
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev-phyto-073009-114239
– volume: 22
  start-page: 1523
  year: 2009
  ident: 2019092421020850900_CIT0053
  article-title: Plastocyanin transit peptide interacts with Potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-22-12-1523
– volume: 87
  start-page: 2403
  year: 2006
  ident: 2019092421020850900_CIT0060
  article-title: Barley stripe mosaic virus-encoded proteins triple-gene block 2 and γb localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication
  publication-title: The Journal of General Virology
  doi: 10.1099/vir.0.81975-0
– volume: 79
  start-page: 9046
  year: 2005
  ident: 2019092421020850900_CIT0035
  article-title: Structural and functional analysis of the cis-acting elements required for plus-strand RNA synthesis of Bamboo mosaic virus
  publication-title: Journal of Virology
  doi: 10.1128/JVI.79.14.9046-9053.2005
– volume: 432
  start-page: 326
  year: 2013
  ident: 2019092421020850900_CIT0058
  article-title: Unfolded protein response pathways regulate Hepatitis C virus replication via modulation of autophagy
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2013.01.103
– volume: 17
  start-page: 526
  year: 2012
  ident: 2019092421020850900_CIT0030
  article-title: Autophagy: a multifaceted intracellular system for bulk and selective recycling
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2012.05.006
– volume: 479-480
  start-page: 418
  year: 2015
  ident: 2019092421020850900_CIT0011
  article-title: Ultrastructure of the replication sites of positive-strand RNA viruses
  publication-title: Virology
  doi: 10.1016/j.virol.2015.02.029
– volume: 8
  start-page: 437
  year: 2017
  ident: 2019092421020850900_CIT0016
  article-title: Host factors in the infection cycle of Bamboo mosaic virus
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2017.00437
– volume: 1837
  start-page: 512
  year: 2014
  ident: 2019092421020850900_CIT0021
  article-title: Roles of autophagy in chloroplast recycling
  publication-title: Biochimica et Biophysica Acta
  doi: 10.1016/j.bbabio.2013.11.009
– volume: 17
  start-page: 19
  year: 2016
  ident: 2019092421020850900_CIT0031
  article-title: The altered photosynthetic machinery during compatible virus infection
  publication-title: Current Opinion in Virology
  doi: 10.1016/j.coviro.2015.11.002
– volume: 3
  start-page: 290
  year: 2012
  ident: 2019092421020850900_CIT0006
  article-title: The Potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2012.00290
– volume: 158
  start-page: 1359
  year: 2012
  ident: 2019092421020850900_CIT0059
  article-title: The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.189605
– volume: 584
  start-page: 1379
  year: 2010
  ident: 2019092421020850900_CIT0049
  article-title: Atg8-family interacting motif crucial for selective autophagy
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2010.01.018
– volume: 35
  start-page: 424
  year: 2007
  ident: 2019092421020850900_CIT0036
  article-title: Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkl1061
– volume: 11
  start-page: 203
  year: 2010
  ident: 2019092421020850900_CIT0002
  article-title: The 3´-terminal sequence of Bamboo mosaic virus minus-strand RNA interacts with RNA-dependent RNA polymerase and initiates plus-strand RNA synthesis
  publication-title: Molecular Plant Pathology
  doi: 10.1111/j.1364-3703.2009.00597.x
– volume: 64
  start-page: 241
  year: 2010
  ident: 2019092421020850900_CIT0007
  article-title: Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories
  publication-title: Annual Review of Microbiology
  doi: 10.1146/annurev.micro.112408.134012
– volume: 8
  start-page: e1002726
  year: 2012
  ident: 2019092421020850900_CIT0017
  article-title: Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1002726
– volume: 199
  start-page: 749
  year: 2013
  ident: 2019092421020850900_CIT0001
  article-title: The glutathione transferase of Nicotiana benthamiana NbGSTU4 plays a role in regulating the early replication of Bamboo mosaic virus
  publication-title: New Phytologist
  doi: 10.1111/nph.12304
– volume: 21
  start-page: 134
  year: 2016
  ident: 2019092421020850900_CIT0046
  article-title: Autophagy in plants – what’s new on the menu?
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2015.10.008
– volume: 283
  start-page: 3534
  year: 2016
  ident: 2019092421020850900_CIT0071
  article-title: To deliver or to degrade – an interplay of the ubiquitin–proteasome system, autophagy and vesicular transport in plants
  publication-title: The FEBS Journal
  doi: 10.1111/febs.13712
– volume: 12
  start-page: 896
  year: 2016
  ident: 2019092421020850900_CIT0043
  article-title: Autophagy controls carbon, nitrogen, and redox homeostasis in plants
  publication-title: Autophagy
  doi: 10.4161/auto.36261
– volume: 27
  start-page: 1211
  year: 2014
  ident: 2019092421020850900_CIT0020
  article-title: Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-04-14-0112-R
– volume: 27
  start-page: 1316
  year: 2015
  ident: 2019092421020850900_CIT0010
  article-title: Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana
  publication-title: The Plant Cell
  doi: 10.1105/tpc.114.134692
– volume: 9
  start-page: e1003599
  year: 2013
  ident: 2019092421020850900_CIT0057
  article-title: Sustained autophagy contributes to measles virus infectivity
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1003599
– volume: 9
  start-page: 1247
  year: 2013
  ident: 2019092421020850900_CIT0064
  article-title: Autophagic degradation of leaf starch in plants
  publication-title: Autophagy
  doi: 10.4161/auto.25176
– volume: 8
  start-page: e52909
  year: 2013
  ident: 2019092421020850900_CIT0023
  article-title: Japanese encephalitis virus activates autophagy as a viral immune evasion strategy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052909
– volume: 143
  start-page: 291
  year: 2007
  ident: 2019092421020850900_CIT0069
  article-title: Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.092106
– volume: 137
  start-page: 773
  year: 2009
  ident: 2019092421020850900_CIT0014
  article-title: Autophagic components contribute to hypersensitive cell death in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.036
– volume: 22
  start-page: 646
  year: 2017
  ident: 2019092421020850900_CIT0005
  article-title: Autophagy: a double-edged sword to fight plant viruses
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2017.06.007
– volume: 82
  start-page: 731
  year: 1992
  ident: 2019092421020850900_CIT0040
  article-title: Genome properties of Bamboo mosaic virus
  publication-title: Phytopathology
  doi: 10.1094/Phyto-82-731
– volume: 121
  start-page: 567
  year: 2005
  ident: 2019092421020850900_CIT0042
  article-title: Autophagy regulates programmed cell death during the plant innate immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2005.03.007
– volume: 161
  start-page: 1722
  year: 2013
  ident: 2019092421020850900_CIT0024
  article-title: The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.112.208108
– volume: 149
  start-page: 885
  year: 2009
  ident: 2019092421020850900_CIT0062
  article-title: Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.130013
– volume: 77
  start-page: 9124
  year: 2003
  ident: 2019092421020850900_CIT0052
  article-title: Targeting of the Turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein
  publication-title: Journal of Virology
  doi: 10.1128/JVI.77.17.9124-9135.2003
– volume: 10
  start-page: 286
  year: 2010
  ident: 2019092421020850900_CIT0004
  article-title: Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-10-286
– volume: 402
  start-page: 1
  year: 2010
  ident: 2019092421020850900_CIT0037
  article-title: Viral interactions with macroautophagy: a double-edged sword
  publication-title: Virology
  doi: 10.1016/j.virol.2010.03.026
– volume: 78
  start-page: 1271
  year: 2004
  ident: 2019092421020850900_CIT0015
  article-title: Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of Bamboo mosaic virus
  publication-title: Journal of Virology
  doi: 10.1128/JVI.78.3.1271-1280.2004
– volume: 111
  start-page: 9325
  year: 2014
  ident: 2019092421020850900_CIT0067
  article-title: Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1318207111
– volume: 85
  start-page: 12022
  year: 2011
  ident: 2019092421020850900_CIT0027
  article-title: The interaction between Bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts
  publication-title: Journal of Virology
  doi: 10.1128/JVI.05595-11
– volume: 80
  start-page: 7952
  year: 2006
  ident: 2019092421020850900_CIT0068
  article-title: A 38-amino-acid sequence encompassing the arm domain of the Cucumber necrosis virus coat protein functions as a chloroplast transit Peptide in infected plants
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00153-06
– volume: 13
  start-page: 1211
  year: 2008
  ident: 2019092421020850900_CIT0048
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Genes to Cells
  doi: 10.1111/j.1365-2443.2008.01238.x
– volume: 4
  start-page: 5
  year: 2013
  ident: 2019092421020850900_CIT0022
  article-title: Insights into Alternanthera mosaic virus TGB3 functions: interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2013.00005
– volume: 137
  start-page: 57
  year: 2005
  ident: 2019092421020850900_CIT0028
  article-title: Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.050245
– volume: 25
  start-page: 1383
  year: 2013
  ident: 2019092421020850900_CIT0065
  article-title: Autophagy contributes to leaf starch degradation
  publication-title: The Plant Cell
  doi: 10.1105/tpc.112.108993
– volume: 6
  start-page: 463
  year: 2004
  ident: 2019092421020850900_CIT0029
  article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy
  publication-title: Developmental Cell
  doi: 10.1016/S1534-5807(04)00099-1
– volume: 80
  start-page: 113
  year: 2018
  ident: 2019092421020850900_CIT0063
  article-title: New advances in autophagy in plants: regulation, selectivity and function
  publication-title: Seminars in Cell & Developmental Biology
  doi: 10.1016/j.semcdb.2017.07.018
– volume: 6
  start-page: 291
  year: 1986
  ident: 2019092421020850900_CIT0055
  article-title: Association of TMV coat protein with chloroplast membranes in virus-infected leaves
  publication-title: Plant Molecular Biology
  doi: 10.1007/BF00034936
– volume: 87
  start-page: 9966
  year: 2013
  ident: 2019092421020850900_CIT0056
  article-title: How positive-strand RNA viruses benefit from autophagosome maturation
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00460-13
– volume: 15
  start-page: 196
  year: 2014
  ident: 2019092421020850900_CIT0019
  article-title: Two key arginine residues in the coat protein of Bamboo mosaic virus differentially affect the accumulation of viral genomic and subgenomic RNAs
  publication-title: Molecular Plant Pathology
  doi: 10.1111/mpp.12080
– volume: 479-480
  start-page: 657
  year: 2015
  ident: 2019092421020850900_CIT0013
  article-title: Plant virus replication and movement
  publication-title: Virology
  doi: 10.1016/j.virol.2015.01.025
– volume: 3
  start-page: 360
  year: 2007
  ident: 2019092421020850900_CIT0070
  article-title: Constitutive autophagy in plant root cells
  publication-title: Autophagy
  doi: 10.4161/auto.4158
– volume: 191
  start-page: 746
  year: 2011
  ident: 2019092421020850900_CIT0018
  article-title: A zinc finger protein Tsip1 controls Cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2011.03717.x
– volume: 8
  start-page: 522
  year: 2017
  ident: 2019092421020850900_CIT0045
  article-title: Function and structural organization of the replication protein of Bamboo mosaic virus
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2017.00522
– volume: 163
  start-page: 1598
  year: 2013
  ident: 2019092421020850900_CIT0003
  article-title: Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.229666
– volume: 85
  start-page: 251
  year: 2004
  ident: 2019092421020850900_CIT0038
  article-title: Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement
  publication-title: The Journal of General Virology
  doi: 10.1099/vir.0.19442-0
– volume: 75
  start-page: 12114
  year: 2001
  ident: 2019092421020850900_CIT0034
  article-title: The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5´ cap structure by exhibiting RNA 5´-triphosphatase activity
  publication-title: Journal of Virology
  doi: 10.1128/JVI.75.24.12114-12120.2001
– volume: 4
  start-page: 339
  year: 2008
  ident: 2019092421020850900_CIT0012
  article-title: Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana
  publication-title: Autophagy
  doi: 10.4161/auto.5629
– volume: 75
  start-page: 782
  year: 2001
  ident: 2019092421020850900_CIT0032
  article-title: Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of Bamboo mosaic virus replicase
  publication-title: Journal of Virology
  doi: 10.1128/JVI.75.2.782-788.2001
– volume: 8
  start-page: e73091
  year: 2013
  ident: 2019092421020850900_CIT0008
  article-title: The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4) infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073091
– volume: 85
  start-page: 8829
  year: 2011
  ident: 2019092421020850900_CIT0051
  article-title: Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00556-11
– volume: 84
  start-page: 799
  year: 2010
  ident: 2019092421020850900_CIT0066
  article-title: Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01824-09
– volume: 45
  start-page: 195
  year: 2010
  ident: 2019092421020850900_CIT0047
  article-title: Inhibition of Hepatitis C virus replication by chloroquine targeting virus-associated autophagy
  publication-title: Journal of Gastroenterology
  doi: 10.1007/s00535-009-0132-9
– volume: 4
  start-page: 20
  year: 2008
  ident: 2019092421020850900_CIT0050
  article-title: Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
  publication-title: Autophagy
  doi: 10.4161/auto.5056
– volume: 143
  start-page: 1132
  year: 2007
  ident: 2019092421020850900_CIT0009
  article-title: An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.093864
– volume: 73
  start-page: 2703
  year: 1999
  ident: 2019092421020850900_CIT0061
  article-title: Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of Bamboo mosaic potexvirus RNA
  publication-title: Journal of Virology
  doi: 10.1128/JVI.73.4.2703-2709.1999
– volume: 87
  start-page: 1357
  year: 2006
  ident: 2019092421020850900_CIT0039
  article-title: Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the Bamboo mosaic virus satellite RNA-mediated expression system
  publication-title: The Journal of General Virology
  doi: 10.1099/vir.0.81625-0
– volume: 23
  start-page: 903
  year: 2010
  ident: 2019092421020850900_CIT0026
  article-title: A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-23-7-0903
– volume: 72
  start-page: 10093
  year: 1998
  ident: 2019092421020850900_CIT0033
  article-title: Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of Bamboo mosaic virus
  publication-title: Journal of Virology
  doi: 10.1128/JVI.72.12.10093-10099.1998
– volume: 7
  start-page: 708
  year: 2012
  ident: 2019092421020850900_CIT0054
  article-title: Characterization of the role of calcium in regulating the microtubule-destabilizing activity of MDP25
  publication-title: Plant Signaling & Behavior
  doi: 10.4161/psb.20336
SSID ssj0005055
Score 2.450617
Snippet Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4657
SubjectTerms Autophagy
Cell Biology
Chloroplasts - metabolism
Nicotiana - physiology
Nicotiana - virology
Plant Diseases - virology
Potexvirus - physiology
Research Papers
Virus Replication
Title Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana
URI https://www.jstor.org/stable/26962634
https://www.ncbi.nlm.nih.gov/pubmed/31552430
https://www.proquest.com/docview/2297126262
https://pubmed.ncbi.nlm.nih.gov/PMC6760330
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXxG2sGyAjeEFVWBI7t8dtApVxERKb2J4i23G0INqgNpnQ_gZ_mHPs3Lq1EvASpYnjRv6-HB_b53wm5FWWs4QJrhzgbuJwLnNH4kyckEGgE6UCFWOC86fP4fSUH58FZ6PR70HUUl3JN-pqbV7J_6AK1wBXzJL9B2S7SuECnAO-cASE4fhXGB_UKAsgMHcPw6rA0lxq1FKagEeM326TCbXQ3SI1-oaHYgau9WRWLkWhJpfFojYxscgJ_NzFREJHdCFmeL7Bd13ZF0CWVWtRDD-aGehz-HvnS9sz3rjzrc9Bmy4LYWZsz8HyOMf9jY8m1OBrUdbOUXO1maDwTASW309Qbkh8HBplGA-Dp2f7XW3tMA9dqKTpIBpDbXcYaQkZD8wuD9unm592-5cb3YOVzvr-SyJdFle-lZ68JrjthwlK9PBb5LYPYw8zTn__oY8bcoOglaDHt241bxO2DxXv22pXvBwb6LpuCHM9Enfg2pzcJ_caXOmBJdgDMtLzh-TOoYH1EZEdy2ixpC3L4IR2LKPAMjpgGS1zallGLcuoYRk-07GMDlj2mJy-e3tyNHWanTkcBW1bOUx6mU4Crhi46LmX516Wx4pH0EG4SiaeEDzSMYyUQ1ehRCSLGGDJQ0_JnIMRYNtka17O9Q6hjGe4FixclmkeMwXD_zDOVa5xSdCVckxety2Zqka2HndP-ZHa8AmWQqunttXH5GVX9qcVa1lbatsA0hVpAR-TFy1CKRhZXDkTc13Wy9T3k8jzoZA_Jk8sYt3TDEUMOXPHJFrBsiuAAu6rd-bFhRFyD6PQZczd3fRCe-Ru_0E9JVvVotbPwAeu5HPDyT8kqbmk
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+is+involved+in+assisting+the+replication+of+Bamboo+mosaic+virus+in+Nicotiana+benthamiana&rft.jtitle=Journal+of+experimental+botany&rft.au=Huang%2C+Ying-Ping&rft.au=Huang%2C+Ying-Wen&rft.au=Hsiao%2C+Yung-Jen&rft.au=Li%2C+Siou-Cen&rft.date=2019-09-24&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=70&rft.issue=18&rft.spage=4657&rft.epage=4669&rft_id=info:doi/10.1093%2Fjxb%2Ferz244&rft.externalDocID=26962634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon