Ensemble learning of decomposition-based machine learning models for multistep-ahead daily streamflow forecasting in northwest China

Accurate daily streamflow forecasts remain challenging in arid regions. A Bayesian model averaging (BMA) ensemble learning strategy was proposed to forecast 1-, 2-, and 3-day-ahead streamflow in Dunhuang Oasis, northwest China. The efficiency of BMA was compared with four decomposition-based machine...

Full description

Saved in:
Bibliographic Details
Published inHydrological Sciences Journal Vol. 69; no. 11; pp. 1501 - 1522
Main Authors Yu, Haijiao, Yang, Linshan, Feng, Qi, Barzegar, Rahim, Adamowski, Jan F., Wen, Xiaohu
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 17.08.2024
Informa UK Limited
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate daily streamflow forecasts remain challenging in arid regions. A Bayesian model averaging (BMA) ensemble learning strategy was proposed to forecast 1-, 2-, and 3-day-ahead streamflow in Dunhuang Oasis, northwest China. The efficiency of BMA was compared with four decomposition-based machine learning and deep learning models. Satisfactory forecasts were achieved with all proposed models at all lead times; however, based on Nash-Sutcliffe efficiency values of 0.976, 0.967, and 0.957, BMA achieved the greatest accuracy for 1-, 2-, and 3-day-ahead streamflow forecasts, respectively. Uncertainty analysis confirmed the reliability of BMA in yielding consistently accurate streamflow forecasts. Thus, BMA could provide an efficient alternative approach to multistep-ahead daily streamflow forecasting. The incorporation of data decomposition techniques (e.g. variational mode decomposition) and deep learning algorithms (e.g. deep belief network) into BMA may provide worthy technical references for supervised learning of streamflow systems in data-scarce regions.
AbstractList Accurate daily streamflow forecasts remain challenging in arid regions. A Bayesian model averaging (BMA) ensemble learning strategy was proposed to forecast 1-, 2-, and 3-day-ahead streamflow in Dunhuang Oasis, northwest China. The efficiency of BMA was compared with four decomposition-based machine learning and deep learning models. Satisfactory forecasts were achieved with all proposed models at all lead times; however, based on Nash-Sutcliffe efficiency values of 0.976, 0.967, and 0.957, BMA achieved the greatest accuracy for 1-, 2-, and 3-day-ahead streamflow forecasts, respectively. Uncertainty analysis confirmed the reliability of BMA in yielding consistently accurate streamflow forecasts. Thus, BMA could provide an efficient alternative approach to multistep-ahead daily streamflow forecasting. The incorporation of data decomposition techniques (e.g. variational mode decomposition) and deep learning algorithms (e.g. deep belief network) into BMA may provide worthy technical references for supervised learning of streamflow systems in data-scarce regions.
Author Feng, Qi
Barzegar, Rahim
Adamowski, Jan F.
Wen, Xiaohu
Yu, Haijiao
Yang, Linshan
Author_xml – sequence: 1
  givenname: Haijiao
  surname: Yu
  fullname: Yu, Haijiao
  organization: Linyi University
– sequence: 2
  givenname: Linshan
  surname: Yang
  fullname: Yang, Linshan
  email: yanglsh08@lzb.ac.cn
  organization: Qilian Mountains Eco-environment Research Center in Gansu Province
– sequence: 3
  givenname: Qi
  surname: Feng
  fullname: Feng, Qi
  organization: Qilian Mountains Eco-environment Research Center in Gansu Province
– sequence: 4
  givenname: Rahim
  surname: Barzegar
  fullname: Barzegar, Rahim
  organization: Université du Québec en Abitibi-Témiscamingue
– sequence: 5
  givenname: Jan F.
  surname: Adamowski
  fullname: Adamowski, Jan F.
  organization: United Nations University, Institute for Water, Environment and Health
– sequence: 6
  givenname: Xiaohu
  surname: Wen
  fullname: Wen, Xiaohu
  organization: Qilian Mountains Eco-environment Research Center in Gansu Province
BackLink https://cir.nii.ac.jp/crid/1870303266592437248$$DView record in CiNii
BookMark eNqFkc2OFCEUhYkZE3tGH8GkEl24qZYCCoq40XTGn2QSN7omVHGxmVDQAp1O731wIT0mZha64W6-cw_3nGt0FWIAhF4OeDvgCb_FhBPOudgSTNiWUMEmPj1BGzKMuKeMjldo05i-Qc_Qdc73GFMmOd2gX7chwzp76DzoFFz40UXbGVjieojZFRdDP-sMplv1snfhL26NBnzubEzdevTF5QKHXu9Bm85o589dLgn0an08NQgWnUvTudCFmMr-BLl0u7pTP0dPrfYZXjzMG_T94-233ef-7uunL7sPd_3COC89WaxlgEGOxIABJgUHyWdJODUTmwUGM9NBMm1HI7QcLAhq68kMBjqJydAb9Oay95Diz2O1V6vLC3ivA8RjVnQYqeAjJmNFXz1C7-Mxhfo7RbGUknNJRaXeXaglxZwTWLW4oltoJdUI1IBVa0j9aUi1htRDQ1U9PlIfklt1Ov9X9_qiC85Vw_YOk8AU0wqPkjAqCGvY-wvmQo1_1aeYvFFFn31MNumwuHbxP51-A7ijtmY
CitedBy_id crossref_primary_10_1016_j_apor_2025_104496
crossref_primary_10_1080_02626667_2025_2471430
Cites_doi 10.1007/s00034-023-02496-y
10.1016/j.jhydrol.2021.126225
10.3390/s23041872
10.1016/j.engappai.2023.106408
10.1038/s41598-019-56847-4
10.1007/s11269-014-0860-3
10.1007/s11269-023-03579-w
10.1016/0005-1098(76)90077-7
10.1016/j.proeng.2016.07.546
10.1016/j.jhydrol.2019.124253
10.1016/j.jhydrol.2023.130438
10.1016/j.jhydrol.2020.125577
10.1016/j.jece.2023.110086
10.1029/2017WR021857
10.1029/2020WR028713
10.1029/2000JD900719
10.1007/s00521-017-3128-z
10.1016/j.envsoft.2020.104669
10.1016/j.agwat.2022.108062
10.1016/j.jhydrol.2021.126196
10.1016/j.ymssp.2023.110913
10.1016/j.est.2023.109196
10.1016/j.jhydrol.2012.11.015
10.1007/BF00927673
10.13031/2013.23153
10.1016/j.jhydrol.2020.124544
10.1016/B978-0-12-820673-7.00008-1
10.1214/aos/1013203451
10.1002/hyp.14276
10.1016/j.jhydrol.2015.06.041
10.1016/j.apgeochem.2012.10.007
10.1007/s11269-023-03688-6
10.1016/S0167-9473(01)00065-2
10.1371/journal.pone.0248489
10.1007/s12206-023-1225-8
10.1007/s13201-023-01943-0
10.1016/j.ecoinf.2023.102452
10.1109/TSP.2013.2288675
10.1029/2021WR030058
10.3390/w15193455
10.3390/w15050947
10.1016/j.jhydrol.2018.05.003
10.2166/wcc.2023.240
10.1007/s11269-023-03722-7
10.1016/j.catena.2019.02.012
10.1002/2017WR020482
10.1007/s00521-020-05523-0
10.1016/j.jhydrol.2011.11.054
10.1016/j.scitotenv.2017.04.189
10.1162/neco.2006.18.7.1527
10.1016/j.accre.2017.08.004
10.1016/j.jhydrol.2019.01.072
10.2166/hydro.2023.116
10.5194/hess-24-2343-2020
10.1016/j.jhydrol.2020.124901
10.1016/j.ymssp.2018.01.019
10.1016/j.ecolind.2023.110092
10.1016/j.knosys.2017.02.013
10.1016/j.jhydrol.2021.126794
10.1038/s41598-021-96751-4
10.1007/s11269-022-03264-4
10.1029/2020WR028392
10.1016/j.engappai.2023.107034
10.1029/2020WR028390
10.1038/s41598-023-50600-8
10.1016/j.ecoinf.2023.102109
10.1029/2022GL102611
10.1016/j.physa.2018.11.061
10.1016/j.eswa.2023.123076
10.1007/s00521-020-04995-4
10.1016/j.jhydrol.2021.126423
10.1007/BF01580138
10.3390/w15213843
10.1016/j.jhydrol.2021.126266
10.1016/j.agwat.2019.03.045
10.1109/ICASSP.2011.5947265
10.1214/ss/1009212519
10.1016/j.scitotenv.2019.01.054
10.1016/j.energy.2019.116502
10.3390/rs16020283
10.1016/j.jhydrol.2021.126258
10.1016/j.jhydrol.2018.12.060
10.2166/nh.2023.024
10.1016/j.atmosres.2020.105167
10.3390/w15203624
10.1029/2020WR028029
10.1007/s40333-019-0092-8
10.1016/j.scitotenv.2020.144715
10.1007/s11269-019-2183-x
10.1016/j.asoc.2021.107081
10.1016/j.geomorph.2019.02.011
10.1016/j.jhydrol.2021.126154
10.1155/2020/4064851
10.5194/hess-24-5491-2020
10.1080/02626667.2022.2149334
10.1016/j.ecoinf.2023.102455
10.1016/j.jhydrol.2023.130320
10.1016/j.jhydrol.2020.124627
10.1080/02626667.2019.1661417
10.1016/j.jher.2023.07.004
ContentType Journal Article
Copyright 2024 IAHS 2024
2024 IAHS
Copyright_xml – notice: 2024 IAHS 2024
– notice: 2024 IAHS
DBID RYH
AAYXX
CITATION
7QH
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
7S9
L.6
DOI 10.1080/02626667.2024.2374868
DatabaseName CiNii Complete
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2150-3435
EndPage 1522
ExternalDocumentID 10_1080_02626667_2024_2374868
2374868
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the Young Elite Scientist Sponsorship Program of CAST
  grantid: YESS20200089
– fundername: the Strategic Priority Research Program of CAS
  grantid: XDB0720202
– fundername: the Youth Innovation Promotion Association of CAS
  grantid: 2022435
– fundername: National Natural Science Fund of China
  grantid: 52379030
GroupedDBID .7F
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AEOZL
AEPSL
AEYOC
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
ESX
E~A
E~B
FRP
GBTJF
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX0
O9-
P2P
REX
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
UT5
UU3
XJN
ZGOLN
~02
~S~
AAGDL
AAHIA
ADYSH
AFRVT
AIYEW
AMPGV
RYH
AAYXX
CITATION
7QH
7ST
7TG
7UA
ACUHS
C1K
F1W
H96
KL.
L.G
SOI
TASJS
7S9
L.6
ID FETCH-LOGICAL-c466t-2cff4e0e952dede4976e96b9263d84b70edb3194af5d7a91fe73f6674e13878d3
ISSN 0262-6667
2150-3435
IngestDate Fri Jul 11 09:17:42 EDT 2025
Wed Aug 13 04:32:52 EDT 2025
Tue Jul 01 04:12:49 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Thu Jun 26 23:00:21 EDT 2025
Wed Dec 25 09:06:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-2cff4e0e952dede4976e96b9263d84b70edb3194af5d7a91fe73f6674e13878d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3099966937
PQPubID 436427
PageCount 22
ParticipantIDs nii_cinii_1870303266592437248
crossref_citationtrail_10_1080_02626667_2024_2374868
proquest_journals_3099966937
informaworld_taylorfrancis_310_1080_02626667_2024_2374868
proquest_miscellaneous_3153765025
crossref_primary_10_1080_02626667_2024_2374868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-17
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-17
  day: 17
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Hydrological Sciences Journal
PublicationYear 2024
Publisher Taylor & Francis
Informa UK Limited
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Informa UK Limited
– name: Taylor & Francis Ltd
References e_1_3_5_27_1
e_1_3_5_100_1
e_1_3_5_23_1
e_1_3_5_46_1
e_1_3_5_69_1
e_1_3_5_88_1
e_1_3_5_108_1
e_1_3_5_61_1
e_1_3_5_80_1
e_1_3_5_42_1
e_1_3_5_65_1
e_1_3_5_84_1
e_1_3_5_9_1
e_1_3_5_5_1
Hinton G. (e_1_3_5_40_1) 2010
e_1_3_5_39_1
e_1_3_5_16_1
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_77_1
e_1_3_5_58_1
e_1_3_5_50_1
e_1_3_5_92_1
e_1_3_5_73_1
e_1_3_5_54_1
e_1_3_5_96_1
e_1_3_5_31_1
e_1_3_5_101_1
e_1_3_5_28_1
e_1_3_5_24_1
e_1_3_5_109_1
e_1_3_5_66_1
e_1_3_5_47_1
e_1_3_5_89_1
e_1_3_5_105_1
e_1_3_5_81_1
e_1_3_5_62_1
e_1_3_5_43_1
e_1_3_5_85_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
e_1_3_5_17_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_55_1
e_1_3_5_78_1
e_1_3_5_59_1
e_1_3_5_70_1
e_1_3_5_93_1
e_1_3_5_51_1
e_1_3_5_74_1
e_1_3_5_97_1
e_1_3_5_32_1
e_1_3_5_29_1
e_1_3_5_102_1
e_1_3_5_25_1
Hu H. (e_1_3_5_44_1) 2020; 2020
e_1_3_5_67_1
e_1_3_5_48_1
e_1_3_5_106_1
e_1_3_5_82_1
e_1_3_5_3_1
e_1_3_5_63_1
e_1_3_5_86_1
e_1_3_5_21_1
e_1_3_5_7_1
e_1_3_5_18_1
e_1_3_5_37_1
e_1_3_5_14_1
e_1_3_5_33_1
e_1_3_5_56_1
Shi Y. (e_1_3_5_79_1) 2005
e_1_3_5_94_1
e_1_3_5_71_1
e_1_3_5_52_1
e_1_3_5_98_1
e_1_3_5_75_1
e_1_3_5_10_1
e_1_3_5_90_1
e_1_3_5_26_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_107_1
e_1_3_5_68_1
e_1_3_5_49_1
e_1_3_5_103_1
e_1_3_5_83_1
e_1_3_5_2_1
e_1_3_5_60_1
e_1_3_5_41_1
e_1_3_5_87_1
e_1_3_5_64_1
Zhang X. (e_1_3_5_104_1) 2001; 43
e_1_3_5_6_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_57_1
e_1_3_5_99_1
e_1_3_5_19_1
e_1_3_5_72_1
e_1_3_5_91_1
e_1_3_5_53_1
e_1_3_5_76_1
e_1_3_5_95_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_3_1
  doi: 10.1007/s00034-023-02496-y
– ident: e_1_3_5_57_1
  doi: 10.1016/j.jhydrol.2021.126225
– ident: e_1_3_5_49_1
  doi: 10.3390/s23041872
– ident: e_1_3_5_96_1
  doi: 10.1016/j.engappai.2023.106408
– ident: e_1_3_5_12_1
  doi: 10.1038/s41598-019-56847-4
– ident: e_1_3_5_32_1
– ident: e_1_3_5_26_1
  doi: 10.1007/s11269-014-0860-3
– ident: e_1_3_5_85_1
  doi: 10.1007/s11269-023-03579-w
– ident: e_1_3_5_7_1
  doi: 10.1016/0005-1098(76)90077-7
– ident: e_1_3_5_63_1
  doi: 10.1016/j.proeng.2016.07.546
– ident: e_1_3_5_14_1
  doi: 10.1016/j.jhydrol.2019.124253
– ident: e_1_3_5_93_1
  doi: 10.1016/j.jhydrol.2023.130438
– ident: e_1_3_5_15_1
  doi: 10.1016/j.jhydrol.2020.125577
– ident: e_1_3_5_90_1
  doi: 10.1016/j.jece.2023.110086
– ident: e_1_3_5_62_1
  doi: 10.1029/2017WR021857
– ident: e_1_3_5_75_1
  doi: 10.1029/2020WR028713
– ident: e_1_3_5_82_1
  doi: 10.1029/2000JD900719
– ident: e_1_3_5_81_1
  doi: 10.1007/s00521-017-3128-z
– ident: e_1_3_5_86_1
  doi: 10.1016/j.envsoft.2020.104669
– ident: e_1_3_5_92_1
  doi: 10.1016/j.agwat.2022.108062
– ident: e_1_3_5_6_1
  doi: 10.1016/j.jhydrol.2021.126196
– ident: e_1_3_5_87_1
  doi: 10.1016/j.ymssp.2023.110913
– ident: e_1_3_5_51_1
  doi: 10.1016/j.est.2023.109196
– ident: e_1_3_5_22_1
  doi: 10.1016/j.jhydrol.2012.11.015
– ident: e_1_3_5_39_1
  doi: 10.1007/BF00927673
– ident: e_1_3_5_60_1
  doi: 10.13031/2013.23153
– ident: e_1_3_5_53_1
  doi: 10.1016/j.jhydrol.2020.124544
– ident: e_1_3_5_23_1
  doi: 10.1016/B978-0-12-820673-7.00008-1
– ident: e_1_3_5_28_1
  doi: 10.1214/aos/1013203451
– ident: e_1_3_5_107_1
  doi: 10.1002/hyp.14276
– ident: e_1_3_5_102_1
  doi: 10.1016/j.jhydrol.2015.06.041
– ident: e_1_3_5_58_1
  doi: 10.1016/j.apgeochem.2012.10.007
– ident: e_1_3_5_4_1
  doi: 10.1007/s11269-023-03688-6
– ident: e_1_3_5_29_1
  doi: 10.1016/S0167-9473(01)00065-2
– ident: e_1_3_5_97_1
  doi: 10.1371/journal.pone.0248489
– ident: e_1_3_5_48_1
  doi: 10.1007/s12206-023-1225-8
– ident: e_1_3_5_2_1
  doi: 10.1007/s13201-023-01943-0
– ident: e_1_3_5_35_1
– ident: e_1_3_5_16_1
  doi: 10.1016/j.ecoinf.2023.102452
– volume-title: Concise glacier inventory of China
  year: 2005
  ident: e_1_3_5_79_1
– ident: e_1_3_5_19_1
  doi: 10.1109/TSP.2013.2288675
– ident: e_1_3_5_20_1
– ident: e_1_3_5_76_1
  doi: 10.1029/2021WR030058
– ident: e_1_3_5_54_1
  doi: 10.3390/w15193455
– ident: e_1_3_5_67_1
  doi: 10.3390/w15050947
– ident: e_1_3_5_71_1
  doi: 10.1016/j.jhydrol.2018.05.003
– ident: e_1_3_5_80_1
  doi: 10.2166/wcc.2023.240
– ident: e_1_3_5_59_1
  doi: 10.1007/s11269-023-03722-7
– ident: e_1_3_5_70_1
  doi: 10.1016/j.catena.2019.02.012
– ident: e_1_3_5_94_1
  doi: 10.1002/2017WR020482
– ident: e_1_3_5_31_1
  doi: 10.1007/s00521-020-05523-0
– ident: e_1_3_5_45_1
  doi: 10.1016/j.jhydrol.2011.11.054
– ident: e_1_3_5_5_1
  doi: 10.1016/j.scitotenv.2017.04.189
– ident: e_1_3_5_41_1
  doi: 10.1162/neco.2006.18.7.1527
– ident: e_1_3_5_88_1
  doi: 10.1016/j.accre.2017.08.004
– ident: e_1_3_5_43_1
  doi: 10.1016/j.jhydrol.2019.01.072
– ident: e_1_3_5_21_1
  doi: 10.2166/hydro.2023.116
– ident: e_1_3_5_56_1
  doi: 10.5194/hess-24-2343-2020
– ident: e_1_3_5_65_1
  doi: 10.1016/j.jhydrol.2020.124901
– ident: e_1_3_5_55_1
  doi: 10.1016/j.ymssp.2018.01.019
– ident: e_1_3_5_13_1
  doi: 10.1016/j.ecolind.2023.110092
– volume-title: A practical guide to training restricted boltzmann machines (Version 1)
  year: 2010
  ident: e_1_3_5_40_1
– ident: e_1_3_5_17_1
  doi: 10.1016/j.knosys.2017.02.013
– ident: e_1_3_5_36_1
  doi: 10.1016/j.jhydrol.2021.126794
– ident: e_1_3_5_33_1
  doi: 10.1038/s41598-021-96751-4
– ident: e_1_3_5_89_1
  doi: 10.1007/s11269-022-03264-4
– ident: e_1_3_5_84_1
  doi: 10.1029/2020WR028392
– ident: e_1_3_5_78_1
  doi: 10.1016/j.engappai.2023.107034
– ident: e_1_3_5_69_1
  doi: 10.1029/2020WR028390
– ident: e_1_3_5_106_1
  doi: 10.1038/s41598-023-50600-8
– ident: e_1_3_5_9_1
  doi: 10.1016/j.ecoinf.2023.102109
– ident: e_1_3_5_99_1
  doi: 10.1029/2022GL102611
– ident: e_1_3_5_11_1
  doi: 10.1016/j.physa.2018.11.061
– ident: e_1_3_5_47_1
  doi: 10.1016/j.eswa.2023.123076
– ident: e_1_3_5_10_1
  doi: 10.1007/s00521-020-04995-4
– ident: e_1_3_5_52_1
  doi: 10.1016/j.jhydrol.2021.126423
– ident: e_1_3_5_73_1
  doi: 10.1007/BF01580138
– ident: e_1_3_5_24_1
  doi: 10.3390/w15213843
– ident: e_1_3_5_108_1
  doi: 10.1016/j.jhydrol.2021.126266
– ident: e_1_3_5_61_1
  doi: 10.1016/j.agwat.2019.03.045
– ident: e_1_3_5_83_1
  doi: 10.1109/ICASSP.2011.5947265
– ident: e_1_3_5_25_1
– ident: e_1_3_5_42_1
  doi: 10.1214/ss/1009212519
– ident: e_1_3_5_68_1
  doi: 10.1016/j.scitotenv.2019.01.054
– ident: e_1_3_5_98_1
  doi: 10.1016/j.energy.2019.116502
– ident: e_1_3_5_103_1
  doi: 10.3390/rs16020283
– ident: e_1_3_5_34_1
  doi: 10.1016/j.jhydrol.2021.126258
– ident: e_1_3_5_91_1
  doi: 10.1016/j.jhydrol.2018.12.060
– ident: e_1_3_5_38_1
  doi: 10.2166/nh.2023.024
– ident: e_1_3_5_30_1
– ident: e_1_3_5_100_1
  doi: 10.1016/j.atmosres.2020.105167
– ident: e_1_3_5_74_1
  doi: 10.3390/w15203624
– ident: e_1_3_5_8_1
  doi: 10.1029/2020WR028029
– ident: e_1_3_5_105_1
  doi: 10.1007/s40333-019-0092-8
– ident: e_1_3_5_95_1
  doi: 10.1016/j.scitotenv.2020.144715
– ident: e_1_3_5_37_1
  doi: 10.1007/s11269-019-2183-x
– ident: e_1_3_5_77_1
  doi: 10.1016/j.asoc.2021.107081
– volume: 43
  start-page: 1294
  issue: 12
  year: 2001
  ident: e_1_3_5_104_1
  article-title: Ecological restoration and sustainable agricultural paradigm of mountain-oasis-ecotone-desert system in the north of the Tianshan Mountains
  publication-title: Journal of Integrative Plant Biology
– ident: e_1_3_5_66_1
  doi: 10.1016/j.geomorph.2019.02.011
– ident: e_1_3_5_101_1
  doi: 10.1016/j.jhydrol.2021.126154
– volume: 2020
  start-page: 1
  year: 2020
  ident: e_1_3_5_44_1
  article-title: A comparative study of VMD-based hybrid forecasting model for nonstationary daily streamflow time series
  publication-title: Complexity
  doi: 10.1155/2020/4064851
– ident: e_1_3_5_109_1
  doi: 10.5194/hess-24-5491-2020
– ident: e_1_3_5_18_1
  doi: 10.1080/02626667.2022.2149334
– ident: e_1_3_5_46_1
  doi: 10.1016/j.ecoinf.2023.102455
– ident: e_1_3_5_64_1
  doi: 10.1016/j.jhydrol.2023.130320
– ident: e_1_3_5_27_1
  doi: 10.1016/j.jhydrol.2020.124627
– ident: e_1_3_5_72_1
  doi: 10.1080/02626667.2019.1661417
– ident: e_1_3_5_50_1
  doi: 10.1016/j.jher.2023.07.004
SSID ssj0034963
ssib006544270
ssib031649816
ssib002496053
ssib001220490
ssib001134578
ssib001711759
ssib006544269
ssib020738279
Score 2.4104457
Snippet Accurate daily streamflow forecasts remain challenging in arid regions. A Bayesian model averaging (BMA) ensemble learning strategy was proposed to forecast...
SourceID proquest
crossref
nii
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1501
SubjectTerms Algorithms
Arid regions
Arid zones
Bayesian analysis
Bayesian model averaging
Bayesian theory
Belief networks
China
Daily
Daily forecasts
Decomposition
Deep learning
Ensemble learning
Forecasting
Learning algorithms
Machine learning
Mathematical models
oases
oasis
Probability theory
Stream discharge
Stream flow
Streamflow forecasting
Supervised learning
Uncertainty analysis
Title Ensemble learning of decomposition-based machine learning models for multistep-ahead daily streamflow forecasting in northwest China
URI https://www.tandfonline.com/doi/abs/10.1080/02626667.2024.2374868
https://cir.nii.ac.jp/crid/1870303266592437248
https://www.proquest.com/docview/3099966937
https://www.proquest.com/docview/3153765025
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9NAFB_qetCL-InVXRnBW0lJJpOvo0jXIuuK0EJvYZKZuJE2LW2KuGev_s--N5lJUrewq5dQJjPJNO-X95X3Qcg7wTIeJFI6LFGuw5mSTgxSwolYHsQsgVUBJid_vgync_5pESwGg9-9qKV9nY3z66N5Jf9DVRgDumKW7D9Qtr0oDMBvoC8cgcJwvBONJ9VOrTD1aWkdHKD6SYVh4iYWy0EpJUcrHTLZm6cb4OhSDE1IIdB64whgzHIkBXo8MIdErIrl-gdOUrnY1Sb7pdIN2EGYdL23rXY7_Sm3LTM1snU36v8V3QJMiztRfi_Fuh00bmswjXdXHWDhaevhr2Xncd1eq28mKlxclau-24Jx9MM2WZoNdwNVAwQAb2qVWFbcdG2xkPNGmzHM8hzQMViPyeJYT2DbszeEgYmeZGCzhWE0xl2MGZbbaRr5HBbfvvySns8vLtLZZDG7R-4zsDqQbfrupRXsWFofAxbanduEMCzVfuwmB6rOQSFcUGSqsrwh_rVOM3tMHhljhL5vkPWEDFT1lDz4qEwZ82fkl0UYtcih64IeQRg1COvmNQijsBv6F8KoRhjtEEZ7CKNlRVuEUY2w52R-Ppl9mDqmb4eT8zCsHZYXBVeuSgImlVQcNF6VhFnCQl_GPItcJTPg_FwUgYxE4hUq8gt4eFx5fhzF0n9BTqp1pV4Smrsiy8GE8WPUJb0M1NEsi5h0VcZU7Ikh4fYRp7kpao-9VZapZ2vfGsqkSJnUUGZIxu2yTVPV5bYFSZ9-aa3daUXT-yb1b1l7BsSG7eHRi1HEgs2E4Qz4zZzD-VMLg9S8kXBJV3siwHgYkrftaWD9-D1PVGq9x9tiLaYArJZXd5jzmjzs3sNTclJv9-oMFOo6e6Nh_geURseb
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKOZQLb8T2AUaCo5fEcV4HDghabWm7p1bqLdjxGFbsZis2q2o584v4K_whZhynakGoB9QDl1wcJ5Znxt-MPf6GsZdaGpWW1gpZQiSUBCsKRAmRyzotZIm9UrqcfDTORifqw2l6usZ-9HdhKK2SYmjXEUX4tZqMmzaj-5S41xg3IK5kOYZ3Ug0lMahkRUisPIDVOYZtizf771HGr6Tc2z1-NxKhsoCoVZa1QtbOKYigTKUFCwoxGcrMlDJLbKFMHoE1qJtKu9Tmuowd5InDHyqIkyIvbILfvcVup2WWk20l0bhf_Yl_Pen2daSgMfa3hv427Ct4eIUtFdGumUz-wAgPfHv32M9-yrp8ly_DZWuG9bff2CT_rzm9z-4GP5y_7QznAVuD5iHbCCXhP68ese-7zQJmZgo8FNb4xOeOW6Ac_JDoJsgFsHzm81EvveerCy04zjH3-ZpoSGdCI-pZbvVkuuJ0QUfP3HR-Ti9BrReUfM4nDW98dXuUAveFzR-zkxuZhCdsvZk38JTxOtKmRu89KciNig16Ysbk0kZgJBSxHjDVK05VBz53KisyreKe9jWItCKRVkGkAza86HbWEZpc16G8rJVV63eSXFf2pUqu6buDKozDo2dcELpguEAn-XRcrLB9u1fuKqyd-MnIB-HoNw_Yi4tmXPXoKEs3MF_Sb4mGKEWHffMfhvecbYyOjw6rw_3xwRa7Q010XBDn22y9_bqEHfQ3W_PMGzhnH29a-38BO9iAvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkYAL_4iFFowERy-J4_wdOCDaVUthxYFKvQU7HpcVu9kVm1W1nHkhXoUnYsZxqhaEekA9cMnFcWJ5xp4Z-5tvGHuupVFpaa2QJURCSbCiQCshclmnhSyxV0rJye_H2d6henuUHm2wH30uDMEqKYZ2HVGE36tpcS-s6xFxLzFsQLOS5RjdSTWURKCSFQFXeQDrE4zalq_2d1DEL6Qc7X58sydCYQFRqyxrhaydUxBBmUoLFhSaZCgzU8ossYUyeQTWoGoq7VKb6zJ2kCcOf6ggToq8sAl-9wq7mlFiJ2WNRON-8yf69aQ71pGCxtgnDf1t2OfM4TmyVDR2zWTyh4nwdm90i_3sZ6yDu3wZrlozrL_9Rib5X03pbXYzeOH8dbds7rANaO6y66Eg_Of1PfZ9t1nCzEyBh7Iax3zuuAVC4AeYmyAHwPKZR6Oeec_XFlpynGLu0Zq4jBZCo82z3OrJdM0pPUfP3HR-Qi9BrZcEPeeThje-tj0Kgfuy5vfZ4aVMwgO22cwbeMh4HWlTo--eFORExQb9MGNyaSMwEopYD5jq9aaqA5s7FRWZVnFP-hpEWpFIqyDSARuedlt0dCYXdSjPKmXV-nMk1xV9qZIL-m6jBuPw6BkXZFswWKB7fLosVti-1et2FXZO_GTkQ3D0mgfs2Wkz7nl0kaUbmK_ot0RClKK7_ugfhveUXfuwM6re7Y8PHrMb1EJ3BXG-xTbbryvYRmezNU_88ubs02Ur_y_ki39j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+learning+of+decomposition-based+machine+learning+models+for+multistep-ahead+daily+streamflow+forecasting+in+northwest+China&rft.jtitle=Hydrological+sciences+journal&rft.au=Yu%2C+Haijiao&rft.au=Yang%2C+Linshan&rft.au=Feng%2C+Qi&rft.au=Barzegar%2C+Rahim&rft.date=2024-08-17&rft.issn=2150-3435&rft.volume=69&rft.issue=11+p.1501-1522&rft.spage=1501&rft.epage=1522&rft_id=info:doi/10.1080%2F02626667.2024.2374868&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-6667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-6667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-6667&client=summon