Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects
Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 pol...
Saved in:
Published in | Cell metabolism Vol. 33; no. 8; pp. 1701 - 1715.e5 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches.
[Display omitted]
•n-3 and n-6 PUFAs preferentially accumulate in lipid droplets of acidic cancer cells•Excess LC-PUFAs undergo peroxidation and induce ferroptosis in acidic cancer cells•DGAT inhibitors prevent the formation of lipid droplets and promote ferroptosis•DGATi enhance the tumor growth inhibitory effects of dietary n-3 LC-PUFAs in mice
Tumor acidosis is associated with the metabolic use of fatty acids. Dierge et al. describe that in acidic cancer cells, n-3 and n-6 LC-PUFAs that exceed lipid droplet storage capacity undergo peroxidation and induce ferroptosis. Antitumor effects of dietary n-3 LC-PUFAs are further increased upon administration of DGAT inhibitors. |
---|---|
AbstractList | Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches. Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches.Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches. Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches. [Display omitted] •n-3 and n-6 PUFAs preferentially accumulate in lipid droplets of acidic cancer cells•Excess LC-PUFAs undergo peroxidation and induce ferroptosis in acidic cancer cells•DGAT inhibitors prevent the formation of lipid droplets and promote ferroptosis•DGATi enhance the tumor growth inhibitory effects of dietary n-3 LC-PUFAs in mice Tumor acidosis is associated with the metabolic use of fatty acids. Dierge et al. describe that in acidic cancer cells, n-3 and n-6 LC-PUFAs that exceed lipid droplet storage capacity undergo peroxidation and induce ferroptosis. Antitumor effects of dietary n-3 LC-PUFAs are further increased upon administration of DGAT inhibitors. |
Author | Mignolet, Eric Corbet, Cyril Mignard, Louise Guilbaud, Céline Larondelle, Yvan Dessy, Chantal Bastien, Estelle Dierge, Emeline Debock, Elena Feron, Olivier |
Author_xml | – sequence: 1 givenname: Emeline surname: Dierge fullname: Dierge, Emeline organization: Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium – sequence: 2 givenname: Elena surname: Debock fullname: Debock, Elena organization: Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium – sequence: 3 givenname: Céline surname: Guilbaud fullname: Guilbaud, Céline organization: Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium – sequence: 4 givenname: Cyril surname: Corbet fullname: Corbet, Cyril organization: Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium – sequence: 5 givenname: Eric surname: Mignolet fullname: Mignolet, Eric organization: Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium – sequence: 6 givenname: Louise surname: Mignard fullname: Mignard, Louise organization: Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium – sequence: 7 givenname: Estelle surname: Bastien fullname: Bastien, Estelle organization: Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium – sequence: 8 givenname: Chantal surname: Dessy fullname: Dessy, Chantal organization: Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium – sequence: 9 givenname: Yvan surname: Larondelle fullname: Larondelle, Yvan organization: Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium – sequence: 10 givenname: Olivier surname: Feron fullname: Feron, Olivier email: olivier.feron@uclouvain.be organization: Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34118189$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctqHDEURIVxiF_5gSyCltl0W-_uhmyCyQsMySJeC1m6whq6pYmkNpk_8GdHM2NvsjAIrnSpU4iqC3QaUwSE3lPSU0LV9aa3C9SeEUZ7Ivu2OkHndOKsGwQjp-0uJekE5fQMXZSyIYQrPvG36IwLSkc6Tufo6Rfk9Dc4U0OKOHkcO45NdG0qvE3zbo3F1DWbCg57U-sOGxtcwSHi-gCHR7C4rkvKGOJjyCkuECuewTRVTdhDzmlbUwmlW8CFg5OJNVgTLTTIe7C1XKE33swF3j3PS3T39cvvm-_d7c9vP24-33ZWKFU7NnlhvHLOKUHHkRElBt8OEEf9ZJW4J9IbxUZLOGcTIxQG6RzhkltDB88v0cej7zanPyuUqpdQLMyziZDWopkURFI-UNKkH56l6337ud7msJi80y_pNcF4FNicSsngtQ31kGTNJsyaEr0vSm_0vii9L0oTqduqoew_9MX9VejTEYIW0GOArIsN0FJ0IbcMtUvhNfwf5A2t2A |
CitedBy_id | crossref_primary_10_3389_fceld_2023_1219672 crossref_primary_10_1200_JCO_24_02444 crossref_primary_10_1242_dmm_050814 crossref_primary_10_1016_j_ecoenv_2023_115543 crossref_primary_10_1016_j_celrep_2023_112945 crossref_primary_10_1097_MD_0000000000035403 crossref_primary_10_1016_j_ccell_2023_02_009 crossref_primary_10_1038_s41598_023_42136_8 crossref_primary_10_1038_s41420_025_02364_5 crossref_primary_10_1016_j_jconrel_2023_06_035 crossref_primary_10_3390_antiox12030733 crossref_primary_10_3389_fragi_2022_852643 crossref_primary_10_1016_j_bbadis_2024_167576 crossref_primary_10_1038_s41419_022_04775_z crossref_primary_10_1016_j_microc_2023_109551 crossref_primary_10_1021_acs_bioconjchem_4c00334 crossref_primary_10_1016_j_ijpharm_2022_122041 crossref_primary_10_1016_j_molmet_2024_101930 crossref_primary_10_3389_fcell_2024_1404006 crossref_primary_10_1038_s41589_023_01512_1 crossref_primary_10_3390_biomedicines11020280 crossref_primary_10_1016_j_jlr_2025_100765 crossref_primary_10_1016_j_yjmcc_2022_10_004 crossref_primary_10_1038_s41420_025_02390_3 crossref_primary_10_1038_s41556_024_01364_4 crossref_primary_10_3390_nu15082006 crossref_primary_10_1016_j_isci_2024_109774 crossref_primary_10_1038_s41467_024_54435_3 crossref_primary_10_1016_j_celrep_2022_110493 crossref_primary_10_1021_acs_analchem_1c04806 crossref_primary_10_1038_s41580_024_00703_5 crossref_primary_10_1080_10408347_2023_2261130 crossref_primary_10_3390_immuno2010014 crossref_primary_10_1158_2326_6066_CIR_21_0802 crossref_primary_10_1002_adhm_202404505 crossref_primary_10_3390_cancers14030562 crossref_primary_10_3390_ijms26052322 crossref_primary_10_1016_j_immuni_2024_08_003 crossref_primary_10_1158_2326_6066_CIR_23_0359 crossref_primary_10_1038_s41420_024_01825_7 crossref_primary_10_3389_fphar_2025_1519278 crossref_primary_10_1016_j_jbc_2024_107168 crossref_primary_10_1002_smll_202207544 crossref_primary_10_1002_cai2_7 crossref_primary_10_1016_j_jconrel_2023_11_042 crossref_primary_10_1016_j_tips_2024_04_007 crossref_primary_10_1038_s41557_023_01242_w crossref_primary_10_1002_cac2_12644 crossref_primary_10_1038_s41586_022_05443_0 crossref_primary_10_1038_s42003_024_07180_8 crossref_primary_10_1016_j_ejphar_2023_175497 crossref_primary_10_1021_acsanm_3c04959 crossref_primary_10_1016_j_biomaterials_2024_122820 crossref_primary_10_3390_cells12081128 crossref_primary_10_1038_s41392_022_01104_w crossref_primary_10_1002_fft2_314 crossref_primary_10_1002_ange_202415671 crossref_primary_10_1038_s41556_025_01610_3 crossref_primary_10_1016_j_pbiomolbio_2024_02_005 crossref_primary_10_1186_s13046_022_02493_0 crossref_primary_10_1016_j_cmet_2021_07_011 crossref_primary_10_1016_j_cmet_2022_09_023 crossref_primary_10_1021_acs_molpharmaceut_2c00333 crossref_primary_10_52601_bpr_2021_210010 crossref_primary_10_1016_j_ccell_2023_05_001 crossref_primary_10_1515_med_2023_0845 crossref_primary_10_7717_peerj_13264 crossref_primary_10_3390_cells12242821 crossref_primary_10_1186_s12944_024_02025_z crossref_primary_10_1016_j_jgg_2025_01_009 crossref_primary_10_1016_j_copbio_2023_102993 crossref_primary_10_1021_acschembio_4c00835 crossref_primary_10_3389_fimmu_2024_1477267 crossref_primary_10_1002_mog2_25 crossref_primary_10_1038_s41574_023_00845_0 crossref_primary_10_1016_j_ijpharm_2024_124132 crossref_primary_10_1038_s41392_024_02088_5 crossref_primary_10_3390_cimb45110574 crossref_primary_10_1016_j_tranon_2024_102227 crossref_primary_10_1016_j_heliyon_2023_e23507 crossref_primary_10_2147_IJGM_S401225 crossref_primary_10_1089_ars_2022_0202 crossref_primary_10_3390_cells11223705 crossref_primary_10_1016_j_neures_2022_04_003 crossref_primary_10_1080_19768354_2023_2189933 crossref_primary_10_1186_s13046_023_02664_7 crossref_primary_10_1002_smll_202306402 crossref_primary_10_1016_j_drup_2021_100797 crossref_primary_10_1016_j_hbpd_2023_10_005 crossref_primary_10_1039_D2TB01815B crossref_primary_10_1016_j_jconrel_2022_05_022 crossref_primary_10_3389_fnut_2022_977076 crossref_primary_10_3389_fonc_2021_778492 crossref_primary_10_1016_j_biopha_2022_113662 crossref_primary_10_1111_pcmr_13208 crossref_primary_10_3390_foods10122952 crossref_primary_10_3390_nu16183130 crossref_primary_10_1038_s41419_022_05070_7 crossref_primary_10_1038_s41420_023_01369_2 crossref_primary_10_3389_fonc_2025_1502673 crossref_primary_10_1016_j_ccell_2024_03_011 crossref_primary_10_1016_j_cej_2024_153364 crossref_primary_10_1016_j_cej_2024_153366 crossref_primary_10_1016_j_mito_2024_101974 crossref_primary_10_3389_fonc_2024_1441338 crossref_primary_10_1016_j_heliyon_2023_e19815 crossref_primary_10_1038_s41467_022_35707_2 crossref_primary_10_1186_s12944_023_01830_2 crossref_primary_10_1016_j_isci_2025_111956 crossref_primary_10_1002_tox_24273 crossref_primary_10_3389_fphar_2024_1383203 crossref_primary_10_1007_s00204_024_03681_x crossref_primary_10_1021_acsmaterialslett_4c01192 crossref_primary_10_1016_j_canlet_2025_217512 crossref_primary_10_1186_s13578_023_01044_0 crossref_primary_10_1016_j_molmet_2023_101791 crossref_primary_10_1080_07853890_2024_2445774 crossref_primary_10_1016_j_drup_2025_101224 crossref_primary_10_1016_j_plefa_2022_102530 crossref_primary_10_1016_j_arr_2024_102194 crossref_primary_10_3389_fcell_2021_813668 crossref_primary_10_1038_s41573_023_00749_8 crossref_primary_10_1016_j_canlet_2024_216811 crossref_primary_10_1038_s41467_024_48307_z crossref_primary_10_3390_ijms24010249 crossref_primary_10_3390_nu13082751 crossref_primary_10_1016_j_intimp_2025_114454 crossref_primary_10_1016_j_jnutbio_2022_109186 crossref_primary_10_1016_j_scitotenv_2023_163552 crossref_primary_10_1016_j_prostaglandins_2022_106637 crossref_primary_10_1007_s12013_024_01611_3 crossref_primary_10_1038_s44321_024_00142_x crossref_primary_10_3389_fcell_2023_1104725 crossref_primary_10_1038_s41467_024_51945_y crossref_primary_10_1038_s41467_025_56711_2 crossref_primary_10_1186_s12865_022_00492_6 crossref_primary_10_1016_j_cell_2022_06_003 crossref_primary_10_1016_j_foodchem_2021_131793 crossref_primary_10_7554_eLife_74391 crossref_primary_10_3390_cancers14184526 crossref_primary_10_1016_j_phymed_2024_156195 crossref_primary_10_1021_jacsau_2c00681 crossref_primary_10_3389_fnut_2023_1033195 crossref_primary_10_1007_s10495_025_02083_3 crossref_primary_10_1080_13880209_2024_2309891 crossref_primary_10_3390_cells12050804 crossref_primary_10_3390_biom14050555 crossref_primary_10_1186_s12944_024_02202_0 crossref_primary_10_3390_nu17050794 crossref_primary_10_4274_tjps_galenos_2024_40583 crossref_primary_10_3390_antiox12071332 crossref_primary_10_1016_j_drup_2022_100806 crossref_primary_10_1016_j_tcb_2023_05_003 crossref_primary_10_1186_s12951_024_02842_5 crossref_primary_10_1038_s41467_024_49202_3 crossref_primary_10_1038_s41467_025_56675_3 crossref_primary_10_1042_BST20230550 crossref_primary_10_3390_ijms241914796 crossref_primary_10_1016_j_freeradbiomed_2024_10_273 crossref_primary_10_1021_acs_bioconjchem_4c00287 crossref_primary_10_1038_s41467_023_44412_7 crossref_primary_10_1002_jpen_2599 crossref_primary_10_1152_physrev_00031_2024 crossref_primary_10_1002_anie_202415671 crossref_primary_10_3390_insects15040294 crossref_primary_10_1002_wnan_2010 crossref_primary_10_1080_07853890_2024_2346543 crossref_primary_10_3390_nu15071658 crossref_primary_10_4103_1673_5374_350187 crossref_primary_10_1038_s41418_021_00859_z crossref_primary_10_1016_j_jpha_2023_03_010 crossref_primary_10_1016_j_chembiol_2024_09_008 crossref_primary_10_1038_s41598_025_92383_0 crossref_primary_10_3389_fpubh_2022_910675 crossref_primary_10_1021_acsami_3c01350 crossref_primary_10_1021_acscentsci_3c00052 crossref_primary_10_1038_s41556_023_01136_6 crossref_primary_10_1038_s41423_021_00781_x crossref_primary_10_1016_j_jbo_2025_100660 crossref_primary_10_1038_s12276_023_01077_y crossref_primary_10_1016_j_canlet_2023_216152 crossref_primary_10_1016_j_phrs_2023_106817 crossref_primary_10_3389_fmolb_2023_1075704 crossref_primary_10_1016_j_semcancer_2025_02_013 crossref_primary_10_1016_j_chroma_2021_462742 crossref_primary_10_1038_s41698_024_00783_8 crossref_primary_10_1021_acs_analchem_4c04805 crossref_primary_10_3390_ijms232214170 crossref_primary_10_1016_j_jneuroim_2024_578444 crossref_primary_10_1016_j_snb_2024_135331 crossref_primary_10_1016_j_molcel_2021_08_027 crossref_primary_10_1016_j_bulcan_2022_06_005 crossref_primary_10_1002_smll_202310118 crossref_primary_10_1146_annurev_nutr_062320_114541 crossref_primary_10_3389_fendo_2022_901884 crossref_primary_10_1038_s41419_023_06153_9 crossref_primary_10_1016_j_tem_2024_09_003 crossref_primary_10_1016_j_molcel_2022_03_022 crossref_primary_10_1038_s41419_025_07330_8 crossref_primary_10_1007_s00018_023_04889_3 crossref_primary_10_1016_j_bbcan_2024_189258 crossref_primary_10_1136_jitc_2021_003430 crossref_primary_10_1186_s12943_024_01977_1 crossref_primary_10_1002_mco2_70010 crossref_primary_10_1039_D1FO02795F crossref_primary_10_1016_j_ajps_2023_100829 crossref_primary_10_1038_s41420_025_02301_6 crossref_primary_10_3389_fonc_2022_1085034 crossref_primary_10_1111_apha_14087 crossref_primary_10_1007_s11033_024_10139_x crossref_primary_10_1021_acs_jafc_4c00118 crossref_primary_10_3389_fcell_2022_901321 crossref_primary_10_1007_s10565_024_09853_w crossref_primary_10_1038_s41598_024_55050_4 crossref_primary_10_1016_j_cellsig_2023_110719 crossref_primary_10_1146_annurev_biochem_052521_033527 crossref_primary_10_1038_s41420_024_02253_3 crossref_primary_10_3389_fphar_2022_1036140 crossref_primary_10_1021_acschembio_4c00229 crossref_primary_10_1016_j_cmet_2024_11_010 crossref_primary_10_3389_fimmu_2022_925290 crossref_primary_10_1038_s41401_023_01159_7 crossref_primary_10_1097_MD_0000000000040122 crossref_primary_10_1007_s11427_022_2265_6 crossref_primary_10_1161_HYPERTENSIONAHA_123_20921 crossref_primary_10_17116_repro20243005135 crossref_primary_10_1002_pmic_202100308 crossref_primary_10_1186_s12944_024_02426_0 crossref_primary_10_1016_j_clnesp_2024_03_009 crossref_primary_10_1021_acs_molpharmaceut_2c00642 crossref_primary_10_1186_s13045_023_01498_2 crossref_primary_10_1016_j_isci_2024_111601 crossref_primary_10_1038_s41589_022_01249_3 crossref_primary_10_1016_j_coisb_2021_100401 crossref_primary_10_1016_j_jid_2024_11_007 crossref_primary_10_1016_j_snb_2024_136913 crossref_primary_10_1038_s44319_024_00089_7 crossref_primary_10_1152_ajpcell_00429_2024 crossref_primary_10_3390_life11111119 crossref_primary_10_1073_pnas_2319055121 crossref_primary_10_1038_s41585_024_00869_9 crossref_primary_10_1126_sciadv_adi2465 crossref_primary_10_1136_jitc_2024_009752 crossref_primary_10_1038_s41391_024_00854_8 crossref_primary_10_1016_j_foodres_2024_114053 crossref_primary_10_1021_acs_jmedchem_3c01652 crossref_primary_10_1007_s13668_025_00639_y crossref_primary_10_1016_j_foodchem_2025_143396 crossref_primary_10_1093_jpp_rgae045 crossref_primary_10_1016_j_ebiom_2024_105088 crossref_primary_10_1016_j_jgg_2023_03_005 crossref_primary_10_3389_fphar_2022_917513 crossref_primary_10_1016_j_lfs_2022_120394 crossref_primary_10_1038_s41388_024_03020_5 crossref_primary_10_1038_s44321_024_00090_6 crossref_primary_10_1158_1541_7786_MCR_24_0433 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_3390_nu15081927 crossref_primary_10_1007_s13346_021_01104_3 crossref_primary_10_1016_j_molcel_2023_03_005 crossref_primary_10_1038_s41598_024_54837_9 crossref_primary_10_15252_emmm_202318367 crossref_primary_10_3390_cells11213430 crossref_primary_10_1016_j_biopha_2022_112747 crossref_primary_10_1038_s41420_025_02351_w crossref_primary_10_1186_s13018_023_04448_3 crossref_primary_10_1007_s10495_022_01795_0 crossref_primary_10_1111_febs_16665 crossref_primary_10_3390_antiox13030352 crossref_primary_10_1186_s12951_024_02297_8 crossref_primary_10_3390_foundations2030045 crossref_primary_10_2147_DDDT_S374328 crossref_primary_10_1016_j_intimp_2024_111959 crossref_primary_10_1002_pros_24680 crossref_primary_10_1089_ars_2023_0278 |
Cites_doi | 10.1038/s41416-020-0761-6 10.1038/s41586-018-0729-3 10.1158/1055-9965.EPI-17-0689 10.1371/journal.pone.0115147 10.7554/eLife.54166 10.1016/j.addr.2020.07.013 10.1016/j.chembiol.2017.08.028 10.1139/y59-099 10.1038/nature23007 10.1038/s41586-018-0316-7 10.1016/j.cmet.2019.11.010 10.1016/j.cmet.2016.07.003 10.1038/s41586-020-2623-z 10.1158/2159-8290.CD-19-0338 10.1016/j.cmet.2017.07.012 10.1016/j.cmet.2016.12.010 10.1016/j.canlet.2008.03.044 10.1016/j.ccell.2019.04.002 10.3390/jcm5020015 10.1097/MCO.0000000000000601 10.1038/s41580-020-00324-8 10.1093/advances/nmx022 10.1016/j.cell.2016.12.039 10.1242/dmm.035758 10.1016/j.chembiol.2015.11.016 10.1016/j.cmet.2020.06.002 10.1016/j.molcel.2015.10.018 10.1016/j.ccell.2020.04.005 10.1016/j.biochi.2020.08.020 10.1038/ejcn.2011.214 10.1080/2162402X.2019.1591878 10.1017/S0954422416000044 10.1016/j.cmet.2016.01.007 10.1038/s41568-019-0198-5 10.1038/s41586-018-0343-4 10.1194/jlr.R800018-JLR200 10.1038/s41467-019-14262-3 10.7554/eLife.44235 10.1016/j.chembiol.2019.01.008 10.1038/nature22379 10.1158/0008-5472.CAN-14-0705 10.1038/s41568-019-0227-4 10.1097/MCO.0000000000000381 10.1038/nrclinonc.2016.24 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmet.2021.05.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1715.e5 |
ExternalDocumentID | 34118189 10_1016_j_cmet_2021_05_016 S1550413121002333 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-29f4af6ddd6418820647f47fe0d1f9c64b05fa628c03329201e75dd0353ca17f3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Jul 10 23:13:05 EDT 2025 Mon Jul 21 05:59:05 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Fri Feb 23 02:39:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | ferroptosis fatty acids peroxidation diacylglycerol acyltransferase acidosis docosahexaenoic acid polyunsaturated fatty acids cancer lipid droplets spheroids |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-29f4af6ddd6418820647f47fe0d1f9c64b05fa628c03329201e75dd0353ca17f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1550413121002333/pdf |
PMID | 34118189 |
PQID | 2540513710 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2540513710 pubmed_primary_34118189 crossref_citationtrail_10_1016_j_cmet_2021_05_016 crossref_primary_10_1016_j_cmet_2021_05_016 elsevier_sciencedirect_doi_10_1016_j_cmet_2021_05_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-03 |
PublicationDateYYYYMMDD | 2021-08-03 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hassannia, Vandenabeele, Vanden Berghe (bib18) 2019; 35 Lv, Zhu, Wang, Wang, Guan (bib27) 2014; 9 Luengo, Gui, Vander Heiden (bib25) 2017; 24 Viswanathan, Ryan, Dhruv, Gill, Eichhoff, Seashore-Ludlow, Kaffenberger, Eaton, Shimada, Aguirre (bib43) 2017; 547 Zick, Snyder, Abrams (bib47) 2018; 32 Dierge, Feron (bib14) 2019; 22 Palm, Thompson (bib32) 2017; 546 Butler, Perone, Dehairs, Lupien, de Laat, Talebi, Loda, Kinlaw, Swinnen (bib4) 2020; 159 Serini, Ottes Vasconcelos, Fasano, Calviello (bib33) 2016; 29 Nassar, Mah, Dehairs, Burvenich, Irani, Centenera, Helm, Shrestha, Moldovan, Don (bib30) 2020; 9 Kanarek, Keys, Cantor, Lewis, Chan, Kunchok, Abu-Remaileh, Freinkman, Schweitzer, Sabatini (bib21) 2018; 559 Van Blarigan, Fuchs, Niedzwiecki, Ye, Zhang, Song, Saltz, Mayer, Mowat, Whittom (bib40) 2018; 27 Corbet, Feron (bib7) 2017; 20 Steck, Murphy (bib36) 2020; 20 Ubellacker, Tasdogan, Ramesh, Shen, Mitchell, Martin-Sandoval, Gu, McCormick, Durham, Spitz (bib39) 2020; 585 Berquin, Edwards, Chen (bib2) 2008; 269 Lien, Vander Heiden (bib24) 2019; 19 Zhang, Tan, Daniels, Zandkarimi, Liu, Brown, Uchida, O'Connor, Stockwell (bib46) 2019; 26 Tajan, Vousden (bib38) 2020; 37 Snaebjornsson, Janaki-Raman, Schulze (bib35) 2020; 31 Lang, Green, Wang, Yu, Choi, Jiang, Liao, Zhou, Zhang, Dow (bib22) 2019; 9 Davidson, Papagiannakopoulos, Olenchock, Heyman, Keibler, Luengo, Bauer, Jha, O'Brien, Pierce (bib11) 2016; 23 van der Meij, Langius, Spreeuwenberg, Slootmaker, Paul, Smit, van Leeuwen (bib41) 2012; 66 Bagchi, MacDougald (bib1) 2019; 149 Lévesque, Pol, Ferrere, Galluzzi, Zitvogel, Kroemer (bib23) 2019; 8 Xia, Lin, Jin, Zhao, Kang, Pan, Liu, Qian, Qian, Konstantakou (bib44) 2017; 25 Corbet, Pinto, Martherus, Santiago de Jesus, Polet, Feron (bib9) 2016; 24 Mayne, Playdon, Rock (bib28) 2016; 13 Muir, Danai, Vander Heiden (bib29) 2018; 11 DeNicola, Cantley (bib13) 2015; 60 Gonzalez, O'Prey, Cardaci, Barthet, Sakamaki, Beaumatin, Roseweir, Gay, Mackay, Malviya (bib16) 2018; 563 Sullivan, Danai, Lewis, Chan, Gui, Kunchok, Dennstedt, Vander Heiden, Muir (bib37) 2019; 8 Corbet, Bastien, Santiago de Jesus, Dierge, Martherus, Vander Linden, Doix, Degavre, Guilbaud, Petit (bib10) 2020; 11 D'Eliseo, Velotti (bib12) 2016; 5 Chitraju, Mejhert, Haas, Diaz-Ramirez, Grueter, Imbriglio, Pinto, Koliwad, Walther, Farese (bib6) 2017; 26 Dierge, Larondelle, Feron (bib15) 2020; 178 Hopkins, Pauli, Du, Wang, Li, Wu, Amadiume, Goncalves, Hodakoski, Lundquist (bib19) 2018; 560 Bligh, Dyer (bib3) 1959; 37 Corbet, Draoui, Polet, Pinto, Drozak, Riant, Feron (bib8) 2014; 74 Nestle (bib31) 2018; 9 Shimada, Hayano, Pagano, Stockwell (bib34) 2016; 23 Yen, Stone, Koliwad, Harris, Farese (bib45) 2008; 49 Lund, Larsen, Lauritzen (bib26) 2018; 7 Vander Heiden, DeBerardinis (bib42) 2017; 168 Cheng, Geng, Pan, Wu, Zhong, Wang, Tian, Cheng, Zhang, Puduvalli (bib5) 2020; 32 Hanson, Thorpe, Winstanley, Abdelhamid, Hooper (bib17) 2020; 122 Jiang, Stockwell, Conrad (bib20) 2021; 22 Viswanathan (10.1016/j.cmet.2021.05.016_bib43) 2017; 547 Berquin (10.1016/j.cmet.2021.05.016_bib2) 2008; 269 Corbet (10.1016/j.cmet.2021.05.016_bib10) 2020; 11 D'Eliseo (10.1016/j.cmet.2021.05.016_bib12) 2016; 5 Luengo (10.1016/j.cmet.2021.05.016_bib25) 2017; 24 Lang (10.1016/j.cmet.2021.05.016_bib22) 2019; 9 Jiang (10.1016/j.cmet.2021.05.016_bib20) 2021; 22 Mayne (10.1016/j.cmet.2021.05.016_bib28) 2016; 13 Serini (10.1016/j.cmet.2021.05.016_bib33) 2016; 29 Corbet (10.1016/j.cmet.2021.05.016_bib8) 2014; 74 Hopkins (10.1016/j.cmet.2021.05.016_bib19) 2018; 560 Bligh (10.1016/j.cmet.2021.05.016_bib3) 1959; 37 Gonzalez (10.1016/j.cmet.2021.05.016_bib16) 2018; 563 Hanson (10.1016/j.cmet.2021.05.016_bib17) 2020; 122 Dierge (10.1016/j.cmet.2021.05.016_bib14) 2019; 22 Bagchi (10.1016/j.cmet.2021.05.016_bib1) 2019; 149 Corbet (10.1016/j.cmet.2021.05.016_bib9) 2016; 24 van der Meij (10.1016/j.cmet.2021.05.016_bib41) 2012; 66 Lévesque (10.1016/j.cmet.2021.05.016_bib23) 2019; 8 Lund (10.1016/j.cmet.2021.05.016_bib26) 2018; 7 Butler (10.1016/j.cmet.2021.05.016_bib4) 2020; 159 Nassar (10.1016/j.cmet.2021.05.016_bib30) 2020; 9 Zhang (10.1016/j.cmet.2021.05.016_bib46) 2019; 26 Palm (10.1016/j.cmet.2021.05.016_bib32) 2017; 546 Chitraju (10.1016/j.cmet.2021.05.016_bib6) 2017; 26 Hassannia (10.1016/j.cmet.2021.05.016_bib18) 2019; 35 Shimada (10.1016/j.cmet.2021.05.016_bib34) 2016; 23 Corbet (10.1016/j.cmet.2021.05.016_bib7) 2017; 20 Sullivan (10.1016/j.cmet.2021.05.016_bib37) 2019; 8 Nestle (10.1016/j.cmet.2021.05.016_bib31) 2018; 9 Snaebjornsson (10.1016/j.cmet.2021.05.016_bib35) 2020; 31 Zick (10.1016/j.cmet.2021.05.016_bib47) 2018; 32 Dierge (10.1016/j.cmet.2021.05.016_bib15) 2020; 178 Vander Heiden (10.1016/j.cmet.2021.05.016_bib42) 2017; 168 Van Blarigan (10.1016/j.cmet.2021.05.016_bib40) 2018; 27 DeNicola (10.1016/j.cmet.2021.05.016_bib13) 2015; 60 Tajan (10.1016/j.cmet.2021.05.016_bib38) 2020; 37 Cheng (10.1016/j.cmet.2021.05.016_bib5) 2020; 32 Yen (10.1016/j.cmet.2021.05.016_bib45) 2008; 49 Ubellacker (10.1016/j.cmet.2021.05.016_bib39) 2020; 585 Lien (10.1016/j.cmet.2021.05.016_bib24) 2019; 19 Steck (10.1016/j.cmet.2021.05.016_bib36) 2020; 20 Kanarek (10.1016/j.cmet.2021.05.016_bib21) 2018; 559 Lv (10.1016/j.cmet.2021.05.016_bib27) 2014; 9 Davidson (10.1016/j.cmet.2021.05.016_bib11) 2016; 23 Muir (10.1016/j.cmet.2021.05.016_bib29) 2018; 11 Xia (10.1016/j.cmet.2021.05.016_bib44) 2017; 25 34348094 - Cell Metab. 2021 Aug 3;33(8):1507-1509 |
References_xml | – volume: 60 start-page: 514 year: 2015 end-page: 523 ident: bib13 article-title: Cancer's fuel choice: new flavors for a picky eater publication-title: Mol. Cell – volume: 159 start-page: 245 year: 2020 end-page: 293 ident: bib4 article-title: Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention publication-title: Adv. Drug Deliv. Rev. – volume: 22 start-page: 266 year: 2021 end-page: 282 ident: bib20 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 8 year: 2019 ident: bib37 article-title: Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability publication-title: eLife – volume: 559 start-page: 632 year: 2018 end-page: 636 ident: bib21 article-title: Histidine catabolism is a major determinant of methotrexate sensitivity publication-title: Nature – volume: 13 start-page: 504 year: 2016 end-page: 515 ident: bib28 article-title: Diet, nutrition, and cancer: past, present and future publication-title: Nat. Rev. Clin. Oncol. – volume: 74 start-page: 5507 year: 2014 end-page: 5519 ident: bib8 article-title: The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy publication-title: Cancer Res – volume: 19 start-page: 651 year: 2019 end-page: 661 ident: bib24 article-title: A framework for examining how diet impacts tumour metabolism publication-title: Nat. Rev. Cancer – volume: 23 start-page: 517 year: 2016 end-page: 528 ident: bib11 article-title: Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer publication-title: Cell Metab – volume: 32 start-page: 229 year: 2020 end-page: 242.e8 ident: bib5 article-title: Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress publication-title: Cell Metab – volume: 5 start-page: 15 year: 2016 ident: bib12 article-title: Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy publication-title: J. Clin. Med. – volume: 546 start-page: 234 year: 2017 end-page: 242 ident: bib32 article-title: Nutrient acquisition strategies of mammalian cells publication-title: Nature – volume: 37 start-page: 767 year: 2020 end-page: 785 ident: bib38 article-title: Dietary approaches to cancer therapy publication-title: Cancer Cell – volume: 178 start-page: 56 year: 2020 end-page: 68 ident: bib15 article-title: Cancer diets for cancer patients: lessons from mouse studies and new insights from the study of fatty acid metabolism in tumors publication-title: Biochimie – volume: 585 start-page: 113 year: 2020 end-page: 118 ident: bib39 article-title: Lymph protects metastasizing melanoma cells from ferroptosis publication-title: Nature – volume: 27 start-page: 438 year: 2018 end-page: 445 ident: bib40 article-title: Marine omega-3 polyunsaturated fatty acid and fish intake after colon cancer diagnosis and survival: CALGB 89803 (Alliance) publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 49 start-page: 2283 year: 2008 end-page: 2301 ident: bib45 article-title: Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis publication-title: J. Lipid Res. – volume: 563 start-page: 719 year: 2018 end-page: 723 ident: bib16 article-title: Mannose impairs tumour growth and enhances chemotherapy publication-title: Nature – volume: 66 start-page: 399 year: 2012 end-page: 404 ident: bib41 article-title: Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT publication-title: Eur. J. Clin. Nutr. – volume: 560 start-page: 499 year: 2018 end-page: 503 ident: bib19 article-title: Suppression of insulin feedback enhances the efficacy of PI3K inhibitors publication-title: Nature – volume: 11 year: 2018 ident: bib29 article-title: Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies publication-title: Dis. Model. Mech. – volume: 37 start-page: 911 year: 1959 end-page: 917 ident: bib3 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. – volume: 547 start-page: 453 year: 2017 end-page: 457 ident: bib43 article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway publication-title: Nature – volume: 269 start-page: 363 year: 2008 end-page: 377 ident: bib2 article-title: Multi-targeted therapy of cancer by omega-3 fatty acids publication-title: Cancer Lett – volume: 35 start-page: 830 year: 2019 end-page: 849 ident: bib18 article-title: Targeting ferroptosis to iron out cancer publication-title: Cancer Cell – volume: 9 start-page: e115147 year: 2014 ident: bib27 article-title: Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis publication-title: PLoS One – volume: 20 start-page: 125 year: 2020 end-page: 138 ident: bib36 article-title: Dietary patterns and cancer risk publication-title: Nat. Rev. Cancer – volume: 8 start-page: 1591878 year: 2019 ident: bib23 article-title: Trial watch: dietary interventions for cancer therapy publication-title: Oncoimmunology – volume: 23 start-page: 225 year: 2016 end-page: 235 ident: bib34 article-title: Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity publication-title: Cell Chem. Biol. – volume: 31 start-page: 62 year: 2020 end-page: 76 ident: bib35 article-title: Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer publication-title: Cell Metab – volume: 22 start-page: 427 year: 2019 end-page: 433 ident: bib14 article-title: Dealing with saturated and unsaturated fatty acid metabolism for anticancer therapy publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 24 start-page: 311 year: 2016 end-page: 323 ident: bib9 article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation publication-title: Cell Metab – volume: 11 start-page: 454 year: 2020 ident: bib10 article-title: TGFbeta2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells publication-title: Nat. Commun. – volume: 149 year: 2019 ident: bib1 article-title: Identification and dissection of diverse mouse adipose depots publication-title: J. Vis. Exp. – volume: 20 start-page: 254 year: 2017 end-page: 260 ident: bib7 article-title: Emerging roles of lipid metabolism in cancer progression publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 122 start-page: 1260 year: 2020 end-page: 1270 ident: bib17 article-title: Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: systematic review and meta-analysis of randomised trials publication-title: Br. J. Cancer – volume: 7 start-page: 88 year: 2018 end-page: 95 ident: bib26 article-title: Fish oil as a potential activator of brown and beige fat thermogenesis publication-title: Adipocyte – volume: 26 start-page: 623 year: 2019 end-page: 633.e9 ident: bib46 article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model publication-title: Cell Chem. Biol. – volume: 32 start-page: 542 year: 2018 end-page: 547 ident: bib47 article-title: Pros and cons of dietary strategies popular among cancer patients publication-title: Oncology (Williston Park) – volume: 9 year: 2020 ident: bib30 article-title: Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis publication-title: eLife – volume: 26 start-page: 407 year: 2017 end-page: 418.e3 ident: bib6 article-title: Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis publication-title: Cell Metab – volume: 9 start-page: 1673 year: 2019 end-page: 1685 ident: bib22 article-title: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11 publication-title: Cancer Discov – volume: 24 start-page: 1161 year: 2017 end-page: 1180 ident: bib25 article-title: Targeting metabolism for cancer therapy publication-title: Cell Chem. Biol. – volume: 9 start-page: 148 year: 2018 end-page: 150 ident: bib31 article-title: Perspective: challenges and controversial issues in the dietary guidelines for Americans, 1980–2015 publication-title: Adv. Nutr. – volume: 25 start-page: 358 year: 2017 end-page: 373 ident: bib44 article-title: Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth publication-title: Cell Metab – volume: 168 start-page: 657 year: 2017 end-page: 669 ident: bib42 article-title: Understanding the intersections between metabolism and cancer biology publication-title: Cell – volume: 29 start-page: 102 year: 2016 end-page: 125 ident: bib33 article-title: How plausible is the use of dietary n-3 PUFA in the adjuvant therapy of cancer? publication-title: Nutr. Res. Rev. – volume: 122 start-page: 1260 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib17 article-title: Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: systematic review and meta-analysis of randomised trials publication-title: Br. J. Cancer doi: 10.1038/s41416-020-0761-6 – volume: 563 start-page: 719 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib16 article-title: Mannose impairs tumour growth and enhances chemotherapy publication-title: Nature doi: 10.1038/s41586-018-0729-3 – volume: 27 start-page: 438 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib40 article-title: Marine omega-3 polyunsaturated fatty acid and fish intake after colon cancer diagnosis and survival: CALGB 89803 (Alliance) publication-title: Cancer Epidemiol. Biomarkers Prev. doi: 10.1158/1055-9965.EPI-17-0689 – volume: 9 start-page: e115147 year: 2014 ident: 10.1016/j.cmet.2021.05.016_bib27 article-title: Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis publication-title: PLoS One doi: 10.1371/journal.pone.0115147 – volume: 9 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib30 article-title: Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis publication-title: eLife doi: 10.7554/eLife.54166 – volume: 7 start-page: 88 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib26 article-title: Fish oil as a potential activator of brown and beige fat thermogenesis publication-title: Adipocyte – volume: 159 start-page: 245 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib4 article-title: Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.07.013 – volume: 24 start-page: 1161 year: 2017 ident: 10.1016/j.cmet.2021.05.016_bib25 article-title: Targeting metabolism for cancer therapy publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2017.08.028 – volume: 37 start-page: 911 year: 1959 ident: 10.1016/j.cmet.2021.05.016_bib3 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. doi: 10.1139/y59-099 – volume: 149 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib1 article-title: Identification and dissection of diverse mouse adipose depots publication-title: J. Vis. Exp. – volume: 547 start-page: 453 year: 2017 ident: 10.1016/j.cmet.2021.05.016_bib43 article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway publication-title: Nature doi: 10.1038/nature23007 – volume: 559 start-page: 632 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib21 article-title: Histidine catabolism is a major determinant of methotrexate sensitivity publication-title: Nature doi: 10.1038/s41586-018-0316-7 – volume: 31 start-page: 62 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib35 article-title: Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer publication-title: Cell Metab doi: 10.1016/j.cmet.2019.11.010 – volume: 24 start-page: 311 year: 2016 ident: 10.1016/j.cmet.2021.05.016_bib9 article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation publication-title: Cell Metab doi: 10.1016/j.cmet.2016.07.003 – volume: 585 start-page: 113 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib39 article-title: Lymph protects metastasizing melanoma cells from ferroptosis publication-title: Nature doi: 10.1038/s41586-020-2623-z – volume: 9 start-page: 1673 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib22 article-title: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0338 – volume: 26 start-page: 407 year: 2017 ident: 10.1016/j.cmet.2021.05.016_bib6 article-title: Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis publication-title: Cell Metab doi: 10.1016/j.cmet.2017.07.012 – volume: 25 start-page: 358 year: 2017 ident: 10.1016/j.cmet.2021.05.016_bib44 article-title: Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth publication-title: Cell Metab doi: 10.1016/j.cmet.2016.12.010 – volume: 32 start-page: 542 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib47 article-title: Pros and cons of dietary strategies popular among cancer patients publication-title: Oncology (Williston Park) – volume: 269 start-page: 363 year: 2008 ident: 10.1016/j.cmet.2021.05.016_bib2 article-title: Multi-targeted therapy of cancer by omega-3 fatty acids publication-title: Cancer Lett doi: 10.1016/j.canlet.2008.03.044 – volume: 35 start-page: 830 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib18 article-title: Targeting ferroptosis to iron out cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.04.002 – volume: 5 start-page: 15 year: 2016 ident: 10.1016/j.cmet.2021.05.016_bib12 article-title: Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy publication-title: J. Clin. Med. doi: 10.3390/jcm5020015 – volume: 22 start-page: 427 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib14 article-title: Dealing with saturated and unsaturated fatty acid metabolism for anticancer therapy publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0000000000000601 – volume: 22 start-page: 266 year: 2021 ident: 10.1016/j.cmet.2021.05.016_bib20 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00324-8 – volume: 9 start-page: 148 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib31 article-title: Perspective: challenges and controversial issues in the dietary guidelines for Americans, 1980–2015 publication-title: Adv. Nutr. doi: 10.1093/advances/nmx022 – volume: 168 start-page: 657 year: 2017 ident: 10.1016/j.cmet.2021.05.016_bib42 article-title: Understanding the intersections between metabolism and cancer biology publication-title: Cell doi: 10.1016/j.cell.2016.12.039 – volume: 11 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib29 article-title: Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies publication-title: Dis. Model. Mech. doi: 10.1242/dmm.035758 – volume: 23 start-page: 225 year: 2016 ident: 10.1016/j.cmet.2021.05.016_bib34 article-title: Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2015.11.016 – volume: 32 start-page: 229 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib5 article-title: Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress publication-title: Cell Metab doi: 10.1016/j.cmet.2020.06.002 – volume: 60 start-page: 514 year: 2015 ident: 10.1016/j.cmet.2021.05.016_bib13 article-title: Cancer's fuel choice: new flavors for a picky eater publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.018 – volume: 37 start-page: 767 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib38 article-title: Dietary approaches to cancer therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.04.005 – volume: 178 start-page: 56 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib15 article-title: Cancer diets for cancer patients: lessons from mouse studies and new insights from the study of fatty acid metabolism in tumors publication-title: Biochimie doi: 10.1016/j.biochi.2020.08.020 – volume: 66 start-page: 399 year: 2012 ident: 10.1016/j.cmet.2021.05.016_bib41 article-title: Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT publication-title: Eur. J. Clin. Nutr. doi: 10.1038/ejcn.2011.214 – volume: 8 start-page: 1591878 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib23 article-title: Trial watch: dietary interventions for cancer therapy publication-title: Oncoimmunology doi: 10.1080/2162402X.2019.1591878 – volume: 29 start-page: 102 year: 2016 ident: 10.1016/j.cmet.2021.05.016_bib33 article-title: How plausible is the use of dietary n-3 PUFA in the adjuvant therapy of cancer? publication-title: Nutr. Res. Rev. doi: 10.1017/S0954422416000044 – volume: 23 start-page: 517 year: 2016 ident: 10.1016/j.cmet.2021.05.016_bib11 article-title: Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer publication-title: Cell Metab doi: 10.1016/j.cmet.2016.01.007 – volume: 19 start-page: 651 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib24 article-title: A framework for examining how diet impacts tumour metabolism publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0198-5 – volume: 560 start-page: 499 year: 2018 ident: 10.1016/j.cmet.2021.05.016_bib19 article-title: Suppression of insulin feedback enhances the efficacy of PI3K inhibitors publication-title: Nature doi: 10.1038/s41586-018-0343-4 – volume: 49 start-page: 2283 year: 2008 ident: 10.1016/j.cmet.2021.05.016_bib45 article-title: Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis publication-title: J. Lipid Res. doi: 10.1194/jlr.R800018-JLR200 – volume: 11 start-page: 454 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib10 article-title: TGFbeta2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-14262-3 – volume: 8 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib37 article-title: Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability publication-title: eLife doi: 10.7554/eLife.44235 – volume: 26 start-page: 623 year: 2019 ident: 10.1016/j.cmet.2021.05.016_bib46 article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2019.01.008 – volume: 546 start-page: 234 year: 2017 ident: 10.1016/j.cmet.2021.05.016_bib32 article-title: Nutrient acquisition strategies of mammalian cells publication-title: Nature doi: 10.1038/nature22379 – volume: 74 start-page: 5507 year: 2014 ident: 10.1016/j.cmet.2021.05.016_bib8 article-title: The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0705 – volume: 20 start-page: 125 year: 2020 ident: 10.1016/j.cmet.2021.05.016_bib36 article-title: Dietary patterns and cancer risk publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0227-4 – volume: 20 start-page: 254 year: 2017 ident: 10.1016/j.cmet.2021.05.016_bib7 article-title: Emerging roles of lipid metabolism in cancer progression publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0000000000000381 – volume: 13 start-page: 504 year: 2016 ident: 10.1016/j.cmet.2021.05.016_bib28 article-title: Diet, nutrition, and cancer: past, present and future publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.24 – reference: 34348094 - Cell Metab. 2021 Aug 3;33(8):1507-1509 |
SSID | ssj0036393 |
Score | 2.6997712 |
Snippet | Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1701 |
SubjectTerms | acidosis Animals cancer diacylglycerol acyltransferase docosahexaenoic acid Fatty Acids Fatty Acids, Omega-3 - pharmacology Fatty Acids, Omega-6 - pharmacology Fatty Acids, Unsaturated - metabolism Ferroptosis lipid droplets Mice Neoplasms - drug therapy peroxidation polyunsaturated fatty acids spheroids |
Title | Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects |
URI | https://dx.doi.org/10.1016/j.cmet.2021.05.016 https://www.ncbi.nlm.nih.gov/pubmed/34118189 https://www.proquest.com/docview/2540513710 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HgeCLeH6upxLBNynbNGnaPOrhcfgggh7sW8jmAyp7zdJ2wf0P_LOdSdpDH-4ehEJJSNqQmc78Qmd-Q8h75oSFE5cqmLK-EFLYQhlTFeC7rWmkVGKboi2-yqtr8WVTb07IxZILg2GVs-3PNj1Z67lnPe_met916-8IrsEEIwMWOB6OjJ9ctCmJb_NpscYcPHAKsofBBY6eE2dyjJe98RhPWbHM3invck53gc_khC4fk0czeqQf8wLPyInvn5AHuZ7k8Sn5_c0P8VeXyyTRGGhfcGp6B3dJ93F3PPQjEnkCvnQ0mGk6UmM7N9KupwAEU6OzdDrcxIH-lQJHd6AJI50iDX4Y4n6KYwdH5FTlA54EwkFjaj1MyuEhz8j15ecfF1fFXGqhsELKqahUECZI55wUrEVOd9EEuHzpWFBWgsTqYGTV2pJzLHDFfFM7V_KaW8OawJ-T0z72_iWh1vPWhm2jXCPh8KZah6R4TVkp5PbyckXYssfazjzkWA5jp5eAs58a5aJRLrqsNXStyIfbOfvMwnHv6HoRnf5HlzS4iXvnvVvkrOEjwz8npvfxMOoKcS3jgMZW5EVWgNt1AAwAlNSqV__51nPyEFspqJC_JqfTcPBvAOhM27dJk_8AXWX6rw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZpSmkvoe9u-lKhPRWxlmXL1qGHvsJuk4ZCE9ibqtUDXDbWYntp9x_0__QPdmTZoT0kh0LAYCxb8qAZz3zCo28QeklNpmHFJQgV2pKMZ5oIpVICsVurgnORLftsi2M-O80-LfLFDvo97oUJaZWD748-vffWQ8t0mM3puqqmXwO4BhccGLAg8LCxgvWh3f6AdVv7Zv4BlPwqTQ8-nryfkaG0ANEZ5x1JhcuU48YYntEycJhnhYPDJoY6oTlImDvF01InjIWCTtQWuTEJy5lWtHAMxr2GrgP6KII3mC_eje6fQcjvs_pBOhLEG3bqxKQyfWZDAmdKI10ovygaXoR2-6h3cBvtDXAVv40zcgft2PouuhELWG7voV9fbON_VrEuE_YO14RhVRs4c7z2q-2mbgNzKABag53qui1WujItrmoMyLO_qDTuNme-wX_tucMrML0Wdx472zR-3fm2gjV5X1YERgJrCN5bW-gU81Huo9MrUcADtFv72j5CWFtWarcshCk4rBZFaQILX5GkIpCJWT5BdJxjqQfi81B_YyXHDLfvMuhFBr3IJJfQNEGvz_usI-3HpU_no-rkP8YrIS5d2u_FqGcJX3X4VaNq6zetTAOQpgzg3wQ9jAZwLgfgDoBlpdj_z7c-RzdnJ5-P5NH8-PAxuhXu9BmN7Ana7ZqNfQooq1s-660ao29X_Rn9AbQANvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxidation+of+n-3+and+n-6+polyunsaturated+fatty+acids+in+the+acidic+tumor+environment+leads+to+ferroptosis-mediated+anticancer+effects&rft.jtitle=Cell+metabolism&rft.au=Dierge%2C+Emeline&rft.au=Debock%2C+Elena&rft.au=Guilbaud%2C+C%C3%A9line&rft.au=Corbet%2C+Cyril&rft.date=2021-08-03&rft.issn=1550-4131&rft.volume=33&rft.issue=8&rft.spage=1701&rft.epage=1715.e5&rft_id=info:doi/10.1016%2Fj.cmet.2021.05.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmet_2021_05_016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |