Patterning of light-emitting conjugated polymer nanofibres
Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens 1 , solar cells 2 and lasers 3 , 4 . Some low-dimensional organic semiconductor structures exhibit properties resembling those o...
Saved in:
Published in | Nature nanotechnology Vol. 3; no. 10; pp. 614 - 619 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2008
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens
1
, solar cells
2
and lasers
3
,
4
. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission
5
and enhanced electroluminescence
6
. One-dimensional metallic, III–V and II–VI nanostructures have also been the subject of intense investigation
7
,
8
as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability
9
and electromagnetic confinement within subwavelength volumes
8
, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.
Conjugated polymer fibres offer many advantages over other photonic materials, such as tunable properties and easy processability, making them attractive for optoelectronic applications. The waveguiding performance and emission tunability of fully conjugated, electrospun polymer nanofibres have been assessed and their forward emission shown to improve after periodic structures are imprinted using nanoimprint lithography. |
---|---|
AbstractList | Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens
1
, solar cells
2
and lasers
3
,
4
. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission
5
and enhanced electroluminescence
6
. One-dimensional metallic, III–V and II–VI nanostructures have also been the subject of intense investigation
7
,
8
as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability
9
and electromagnetic confinement within subwavelength volumes
8
, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.
Conjugated polymer fibres offer many advantages over other photonic materials, such as tunable properties and easy processability, making them attractive for optoelectronic applications. The waveguiding performance and emission tunability of fully conjugated, electrospun polymer nanofibres have been assessed and their forward emission shown to improve after periodic structures are imprinted using nanoimprint lithography. Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens, solar cells and lasers. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission and enhanced electroluminescence. One-dimensional metallic, III-V and II-VI nanostructures have also been the subject of intense investigation as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability and electromagnetic confinement within subwavelength volumes, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light. Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens, solar cells and lasers. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission and enhanced electroluminescence. One-dimensional metallic, III-V and II-VI nanostructures have also been the subject of intense investigation as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability and electromagnetic confinement within subwavelength volumes, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens, solar cells and lasers. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission and enhanced electroluminescence. One-dimensional metallic, III-V and II-VI nanostructures have also been the subject of intense investigation as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability and electromagnetic confinement within subwavelength volumes, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light. |
Author | Di Benedetto, Francesca Persano, Luana Cingolani, Roberto Pisignano, Dario Camposeo, Andrea Pagliara, Stefano Stabile, Ripalta Mele, Elisa |
Author_xml | – sequence: 1 givenname: Francesca surname: Di Benedetto fullname: Di Benedetto, Francesca organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano – sequence: 2 givenname: Andrea surname: Camposeo fullname: Camposeo, Andrea organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano – sequence: 3 givenname: Stefano surname: Pagliara fullname: Pagliara, Stefano organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano, Scuola Superiore ISUFI, Università del Salento, via Arnesano – sequence: 4 givenname: Elisa surname: Mele fullname: Mele, Elisa organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano – sequence: 5 givenname: Luana surname: Persano fullname: Persano, Luana organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano – sequence: 6 givenname: Ripalta surname: Stabile fullname: Stabile, Ripalta organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano, Scuola Superiore ISUFI, Università del Salento, via Arnesano – sequence: 7 givenname: Roberto surname: Cingolani fullname: Cingolani, Roberto organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano – sequence: 8 givenname: Dario surname: Pisignano fullname: Pisignano, Dario email: dario.pisignano@unile.it organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano, Scuola Superiore ISUFI, Università del Salento, via Arnesano |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18839001$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtKAzEUQINUbH1sXUpx4W5qXjOTuBPxBYIudB3SzE1NmUlqkln0751arSC4Sgjn3FzOIRr54AGhU4JnBDNx6b32YUYxFjPK6B6akJqLgjFZjnZ3UY_RYUpLjEsqKT9AYyIEkxiTCbp60TlD9M4vpsFOW7d4zwV0LufNiwl-2S90hma6Cu26gzjd_GfdPEI6RvtWtwlOvs8j9HZ3-3rzUDw93z_eXD8VhldVLig3AmQjJWkMKQ2pGsqBGWE0CAscV1YyaWvNiGBGy4qWUpfEMG7tnMylYEfoYjt3FcNHDymrziUDbas9hD6pSla8JlgO4PkfcBn66IfdlKgxL0talQN09g318w4atYqu03GtfpIMAN8CJoaUIlhlXNbZBZ-jdq0iWG3Kq6_yalNeDeUHbfZH203-T7jcCmkA_QLi77b_GJ8YApW5 |
CitedBy_id | crossref_primary_10_3390_ma7020906 crossref_primary_10_1016_j_solener_2020_12_022 crossref_primary_10_1021_nn1034185 crossref_primary_10_1039_c2cp42235b crossref_primary_10_1088_2040_8978_12_2_024003 crossref_primary_10_1002_adom_201500232 crossref_primary_10_1021_jp204582j crossref_primary_10_1002_smll_200801165 crossref_primary_10_1007_s11426_019_9503_0 crossref_primary_10_1039_c4nr00202d crossref_primary_10_1002_lpor_202300745 crossref_primary_10_1016_j_bios_2021_113120 crossref_primary_10_1038_s41524_023_01154_w crossref_primary_10_1021_acs_chemrev_2c00720 crossref_primary_10_1021_jp2053585 crossref_primary_10_1063_1_3275727 crossref_primary_10_1039_c3tc30978a crossref_primary_10_1063_1_4807894 crossref_primary_10_1088_0957_4484_21_21_215304 crossref_primary_10_1021_la9045447 crossref_primary_10_1016_j_xcrp_2020_100029 crossref_primary_10_1063_1_3064139 crossref_primary_10_1039_C7PY00378A crossref_primary_10_1021_acs_chemmater_9b03475 crossref_primary_10_1098_rsta_2012_0337 crossref_primary_10_1021_cm9007409 crossref_primary_10_1038_srep14019 crossref_primary_10_1002_smll_201101172 crossref_primary_10_1002_anie_201501060 crossref_primary_10_1021_am5006207 crossref_primary_10_1016_j_optlastec_2023_110294 crossref_primary_10_1021_am100635v crossref_primary_10_1002_polb_23705 crossref_primary_10_1021_ma400145a crossref_primary_10_1038_lsa_2013_58 crossref_primary_10_1002_ange_201502684 crossref_primary_10_1021_acsami_8b07640 crossref_primary_10_1021_ma401681m crossref_primary_10_1002_macp_201000216 crossref_primary_10_1002_smll_201401487 crossref_primary_10_1002_adma_201201453 crossref_primary_10_1021_nn204055t crossref_primary_10_1016_j_spmi_2009_07_032 crossref_primary_10_1002_adom_201701077 crossref_primary_10_1039_D2SC02172B crossref_primary_10_1039_D0PY00719F crossref_primary_10_1021_nn100775v crossref_primary_10_3390_polym5010019 crossref_primary_10_1002_mame_201200290 crossref_primary_10_1002_adom_202201567 crossref_primary_10_1002_anie_201502684 crossref_primary_10_1016_j_mseb_2012_05_010 crossref_primary_10_1039_c2ra00516f crossref_primary_10_1039_c3ta12745a crossref_primary_10_1039_D1NJ01017D crossref_primary_10_1002_mame_201200277 crossref_primary_10_1021_cm102772x crossref_primary_10_1039_c2sm27543k crossref_primary_10_1002_adma_202415856 crossref_primary_10_1364_OE_18_00A174 crossref_primary_10_1016_j_materresbull_2016_12_022 crossref_primary_10_1002_adfm_201001901 crossref_primary_10_1021_mz200208b crossref_primary_10_1039_C5RA08750C crossref_primary_10_1021_acs_cgd_7b00992 crossref_primary_10_1016_j_dyepig_2025_112632 crossref_primary_10_1021_ma401700d crossref_primary_10_1016_j_micromeso_2010_12_048 crossref_primary_10_1063_1_3534803 crossref_primary_10_3390_coatings13101815 crossref_primary_10_1039_B9NR00206E crossref_primary_10_1002_smll_201501563 crossref_primary_10_1021_acs_chemrev_6b00172 crossref_primary_10_1039_c0nr00181c crossref_primary_10_1021_nl2006164 crossref_primary_10_1039_D0CS00037J crossref_primary_10_1002_adom_201500552 crossref_primary_10_1016_j_cplett_2014_05_096 crossref_primary_10_1039_C2TC00568A crossref_primary_10_1002_chem_201801965 crossref_primary_10_1038_s41428_018_0062_6 crossref_primary_10_1021_acs_macromol_5b01377 crossref_primary_10_1021_acs_nanolett_6b03499 crossref_primary_10_1364_OL_38_001040 crossref_primary_10_1002_mame_201600569 crossref_primary_10_1039_C4RA01865F crossref_primary_10_1021_acs_macromol_8b00023 crossref_primary_10_1021_nl4033439 crossref_primary_10_1002_adma_200904396 crossref_primary_10_1515_nanoph_2016_0142 crossref_primary_10_3390_mi6050544 crossref_primary_10_1021_acsami_6b07797 crossref_primary_10_1038_s41377_024_01383_8 crossref_primary_10_3390_polym7081471 crossref_primary_10_2174_1573413715666190112121113 crossref_primary_10_1021_acs_analchem_5b00309 crossref_primary_10_1002_adma_200900997 crossref_primary_10_1039_c1nr10399g crossref_primary_10_1021_acs_jpcc_6b12783 crossref_primary_10_1021_acs_macromol_6b01721 crossref_primary_10_1002_smll_201300220 crossref_primary_10_1039_c2ra21076b crossref_primary_10_1039_c3pc90002a crossref_primary_10_1021_acsami_8b08490 crossref_primary_10_1002_smll_201203204 crossref_primary_10_1021_ma400379a crossref_primary_10_1039_C3RA45678A crossref_primary_10_1039_C7RA07538C crossref_primary_10_1021_am503580j crossref_primary_10_1002_adma_201305913 crossref_primary_10_1021_ac303107d crossref_primary_10_1021_acs_cgd_8b00918 crossref_primary_10_1364_OE_18_000822 crossref_primary_10_1002_mame_201200364 crossref_primary_10_1021_nn100582f crossref_primary_10_1039_C9RA05693A crossref_primary_10_1039_b923031a crossref_primary_10_3390_sym12122022 crossref_primary_10_1039_c2nr31740k crossref_primary_10_1002_ange_201810422 crossref_primary_10_1002_chem_201704650 crossref_primary_10_1126_sciadv_1500257 crossref_primary_10_1002_lpor_201200074 crossref_primary_10_1038_s41377_024_01414_4 crossref_primary_10_1039_c3tc30523f crossref_primary_10_1063_1_4939263 crossref_primary_10_1080_10426914_2012_700145 crossref_primary_10_1039_C7RA09667D crossref_primary_10_5059_yukigoseikyokaishi_78_962 crossref_primary_10_1063_1_4927672 crossref_primary_10_1039_c3nr03094f crossref_primary_10_1002_mame_201600507 crossref_primary_10_1007_s00542_012_1554_5 crossref_primary_10_1039_b906188f crossref_primary_10_1186_s11671_015_1194_7 crossref_primary_10_1038_ncomms11477 crossref_primary_10_1007_s00604_021_05153_w crossref_primary_10_1021_am502046h crossref_primary_10_1039_c2jm34196d crossref_primary_10_1002_adom_201400232 crossref_primary_10_1016_j_progpolymsci_2014_10_001 crossref_primary_10_1016_j_chempr_2019_06_021 crossref_primary_10_1002_ange_201501060 crossref_primary_10_1039_C9NR07494E crossref_primary_10_1002_advs_202205411 crossref_primary_10_1021_cm900511g crossref_primary_10_1002_anie_201810422 crossref_primary_10_1016_j_polymer_2014_01_031 crossref_primary_10_1038_srep23949 crossref_primary_10_1038_srep39677 crossref_primary_10_1007_s10118_021_2542_y crossref_primary_10_1021_acsapm_9b00914 crossref_primary_10_1016_j_orgel_2020_105965 crossref_primary_10_1016_j_orgel_2016_11_007 crossref_primary_10_1021_acs_nanolett_3c03213 crossref_primary_10_1021_acsami_0c02724 crossref_primary_10_1007_s40097_018_0266_5 |
Cites_doi | 10.1021/ja030326i 10.1016/S0379-6779(00)00597-X 10.1002/smll.200500432 10.1021/ja065043f 10.1021/ma0112164 10.1063/1.2167397 10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M 10.1038/nnano.2007.35 10.1126/science.270.5243.1789 10.1016/j.polymer.2006.01.032 10.1126/science.1100999 10.1038/382695a0 10.1021/ja990139d 10.1021/cr050139y 10.1002/adma.200400606 10.1038/16393 10.1016/S0032-3861(02)00820-0 10.1021/ma047529r 10.1103/PhysRevB.64.125122 10.1021/nl010081c 10.1002/adma.200500577 10.1038/35051047 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2 10.1126/science.1099074 10.1088/0957-4484/7/3/009 10.1021/nl062778+ 10.1021/nl051234p 10.1063/1.2105996 10.1002/marc.200500212 10.1063/1.2357116 10.1126/science.288.5466.652 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2008 Copyright Nature Publishing Group Oct 2008 |
Copyright_xml | – notice: Springer Nature Limited 2008 – notice: Copyright Nature Publishing Group Oct 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/nnano.2008.232 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 619 |
ExternalDocumentID | 2367961581 18839001 10_1038_nnano_2008_232 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c466t-24c8e9d991dc15c16d24e3c8cae8fe406f939f7a3183ca96259a51c34ffb1b983 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 09:18:39 EDT 2025 Sat Aug 23 13:23:17 EDT 2025 Mon Jul 21 06:02:28 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 01:26:21 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-24c8e9d991dc15c16d24e3c8cae8fe406f939f7a3183ca96259a51c34ffb1b983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://dspace.lboro.ac.uk/2134/17814 |
PMID | 18839001 |
PQID | 870455265 |
PQPubID | 546299 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_69647109 proquest_journals_870455265 pubmed_primary_18839001 crossref_citationtrail_10_1038_nnano_2008_232 crossref_primary_10_1038_nnano_2008_232 springer_journals_10_1038_nnano_2008_232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2008 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Tessler, Denton, Friend (CR3) 1996; 382 Jang (CR23) 2005; 17 Reneker, Chun (CR14) 1996; 7 Babel, Li, Xia, Jenekhe (CR22) 2005; 38 Moran-Mirabal (CR17) 2007; 7 Lee (CR25) 2003; 44 Caroll, Lieberwirth, Redmond (CR26) 2007; 2 Turnbull (CR29) 2001; 64 Nguyen (CR5) 2000; 288 Law (CR8) 2004; 305 Yu (CR2) 1995; 270 Duan (CR7) 2001; 409 Dzenis (CR16) 2004; 304 Madhugiri (CR19) 2003; 125 Noy (CR13) 2002; 2 Kakade (CR18) 2007; 129 Li, Babel, Jenekhe, Xia (CR20) 2004; 16 Mele (CR27) 2005; 5 Liu, Sheina, Kowalewski, McCullough (CR12) 2002; 41 Friend (CR1) 1999; 397 Quochi (CR11) 2006; 88 Hu, Yu, Barbara (CR28) 1999; 121 MacDiarmid (CR15) 2001; 119 Liu (CR10) 2006; 2 Chronakis, Grapenson, Jakob (CR24) 2006; 47 Zhang, Kale, Jenekhe (CR6) 2002; 35 Menard (CR9) 2007; 107 Mele (CR31) 2006; 89 Wei, Lee, Kang, Mead (CR21) 2005; 26 McGehee, Heeger (CR4) 2000; 12 Spehr (CR30) 2005; 87 X Zhang (BFnnano2008232_CR6) 2002; 35 AG MacDiarmid (BFnnano2008232_CR15) 2001; 119 A Babel (BFnnano2008232_CR22) 2005; 38 S-H Jang (BFnnano2008232_CR23) 2005; 17 G Yu (BFnnano2008232_CR2) 1995; 270 M Law (BFnnano2008232_CR8) 2004; 305 F Quochi (BFnnano2008232_CR11) 2006; 88 S Madhugiri (BFnnano2008232_CR19) 2003; 125 D Hu (BFnnano2008232_CR28) 1999; 121 M Kakade (BFnnano2008232_CR18) 2007; 129 D Li (BFnnano2008232_CR20) 2004; 16 E Mele (BFnnano2008232_CR27) 2005; 5 T Spehr (BFnnano2008232_CR30) 2005; 87 H Liu (BFnnano2008232_CR10) 2006; 2 RH Friend (BFnnano2008232_CR1) 1999; 397 A Noy (BFnnano2008232_CR13) 2002; 2 M Wei (BFnnano2008232_CR21) 2005; 26 OD Caroll (BFnnano2008232_CR26) 2007; 2 E Menard (BFnnano2008232_CR9) 2007; 107 Y Dzenis (BFnnano2008232_CR16) 2004; 304 S Chronakis (BFnnano2008232_CR24) 2006; 47 GA Turnbull (BFnnano2008232_CR29) 2001; 64 JM Moran-Mirabal (BFnnano2008232_CR17) 2007; 7 MD McGehee (BFnnano2008232_CR4) 2000; 12 N Tessler (BFnnano2008232_CR3) 1996; 382 KH Lee (BFnnano2008232_CR25) 2003; 44 E Mele (BFnnano2008232_CR31) 2006; 89 DH Reneker (BFnnano2008232_CR14) 1996; 7 T-Q Nguyen (BFnnano2008232_CR5) 2000; 288 X Duan (BFnnano2008232_CR7) 2001; 409 J Liu (BFnnano2008232_CR12) 2002; 41 |
References_xml | – volume: 125 start-page: 14531 year: 2003 end-page: 14538 ident: CR19 article-title: Electrospun MEH-PPV/SBA-15 composite nanofibres using a dual syringe method publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030326i – volume: 119 start-page: 27 year: 2001 end-page: 30 ident: CR15 article-title: Electrostatically-generated nanofibres of electronic polymers publication-title: Synth. Met. doi: 10.1016/S0379-6779(00)00597-X – volume: 2 start-page: 495 year: 2006 end-page: 499 ident: CR10 article-title: Electrospun polymer nanofibres as subwavelength optical waveguides incorporating quantum dots publication-title: Small doi: 10.1002/smll.200500432 – volume: 129 start-page: 2777 year: 2007 end-page: 2782 ident: CR18 article-title: Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibres publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065043f – volume: 35 start-page: 382 year: 2002 end-page: 393 ident: CR6 article-title: Electroluminescence of multicomponent conjugated polymers. 2. photophysics and enhancement of electroluminescence from blends of polyquinolines publication-title: Macromolecules doi: 10.1021/ma0112164 – volume: 88 start-page: 041106 year: 2006 ident: CR11 article-title: Gain amplification and lasing properties of individual organic nanofibres publication-title: Appl.Phys. Lett. doi: 10.1063/1.2167397 – volume: 41 start-page: 329 year: 2002 end-page: 332 ident: CR12 article-title: Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: nanowire morphologies in new di- and tri-block copolymers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M – volume: 2 start-page: 180 year: 2007 end-page: 184 ident: CR26 article-title: Microcavity effects and optically pumped lasing in single conjugated polymer nanowires publication-title: Nature Nanotech. doi: 10.1038/nnano.2007.35 – volume: 270 start-page: 1789 year: 1995 end-page: 1791 ident: CR2 article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 47 start-page: 1597 year: 2006 end-page: 1603 ident: CR24 article-title: Conductive polypyrrole nanofibres via electrospinning: Electrical and morphological properties publication-title: Polymer doi: 10.1016/j.polymer.2006.01.032 – volume: 305 start-page: 1269 year: 2004 end-page: 1273 ident: CR8 article-title: Nanoribbon waveguides for subwavelength photonics integration publication-title: Science doi: 10.1126/science.1100999 – volume: 382 start-page: 695 year: 1996 end-page: 697 ident: CR3 article-title: Lasing from conjugated-polymer microcavities publication-title: Nature doi: 10.1038/382695a0 – volume: 121 start-page: 6936 year: 1999 end-page: 6937 ident: CR28 article-title: Single-molecule spectroscopy of the conjugated polymer MEH-PPV publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990139d – volume: 107 start-page: 1117 year: 2007 end-page: 1160 ident: CR9 article-title: Micro and nanopatterning techniques for organic electronic and optoelectronic systems publication-title: Chem. Rev. doi: 10.1021/cr050139y – volume: 16 start-page: 2062 year: 2004 end-page: 2066 ident: CR20 article-title: Nanofibres of conjugated polymers prepared by electrospinning with a two-capillary spinneret publication-title: Adv. Mater. doi: 10.1002/adma.200400606 – volume: 397 start-page: 121 year: 1999 end-page: 128 ident: CR1 article-title: Electroluminescence in conjugated polymers publication-title: Nature doi: 10.1038/16393 – volume: 44 start-page: 1287 year: 2003 end-page: 1294 ident: CR25 article-title: Characterization of nano-structured poly(e-caprolactone) nonwoven mats via electrospinning publication-title: Polymer doi: 10.1016/S0032-3861(02)00820-0 – volume: 38 start-page: 4705 year: 2005 end-page: 4711 ident: CR22 article-title: Electrospun nanofibres of blends of conjugated polymers: morphology, optical properties and field-effect transistors publication-title: Macromolecules doi: 10.1021/ma047529r – volume: 64 start-page: 125122 year: 2001 ident: CR29 article-title: Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.125122 – volume: 2 start-page: 109 year: 2002 end-page: 112 ident: CR13 article-title: Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography publication-title: Nano Lett. doi: 10.1021/nl010081c – volume: 17 start-page: 2177 year: 2005 end-page: 2180 ident: CR23 article-title: Welded electrochromic conductive polymer nanofibres by electrostatic spinning publication-title: Adv. Mater. doi: 10.1002/adma.200500577 – volume: 409 start-page: 66 year: 2001 end-page: 69 ident: CR7 article-title: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices publication-title: Nature doi: 10.1038/35051047 – volume: 12 start-page: 1655 year: 2000 end-page: 1668 ident: CR4 article-title: Semiconducting (conjugated) polymers as materials for solid-state lasers publication-title: Adv. Mater. doi: 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2 – volume: 304 start-page: 1917 year: 2004 end-page: 1919 ident: CR16 article-title: Spinning continuous fibres for nanotechnology publication-title: Science doi: 10.1126/science.1099074 – volume: 7 start-page: 216 year: 1996 end-page: 223 ident: CR14 article-title: Nanometre diameter fibres of polymer, produced by electrospinning publication-title: Nanotechnology doi: 10.1088/0957-4484/7/3/009 – volume: 7 start-page: 458 year: 2007 end-page: 463 ident: CR17 article-title: Electrospun light-emitting nanofibres publication-title: Nano Lett. doi: 10.1021/nl062778+ – volume: 5 start-page: 1915 year: 2005 end-page: 1919 ident: CR27 article-title: Multilevel, room-temperature nanoimprint lithography for conjugated polymer-based photonics publication-title: Nano Lett. doi: 10.1021/nl051234p – volume: 87 start-page: 161103 year: 2005 ident: CR30 article-title: Organic solid-state ultraviolet-laser based on spiro-terphenyl publication-title: Appl. Phys. Lett. doi: 10.1063/1.2105996 – volume: 26 start-page: 1127 year: 2005 end-page: 1132 ident: CR21 article-title: Preparation of core–sheath nanofibres from conducting polymer blends publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200500212 – volume: 89 start-page: 131109 year: 2006 ident: CR31 article-title: Polymeric distributed feedback lasers by room-temperature nanoimprint lithography publication-title: Appl. Phys. Lett. doi: 10.1063/1.2357116 – volume: 288 start-page: 652 year: 2000 end-page: 656 ident: CR5 article-title: Control of energy transfer in oriented conjugated polymer–mesoporous silica composites publication-title: Science doi: 10.1126/science.288.5466.652 – volume: 119 start-page: 27 year: 2001 ident: BFnnano2008232_CR15 publication-title: Synth. Met. doi: 10.1016/S0379-6779(00)00597-X – volume: 16 start-page: 2062 year: 2004 ident: BFnnano2008232_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.200400606 – volume: 107 start-page: 1117 year: 2007 ident: BFnnano2008232_CR9 publication-title: Chem. Rev. doi: 10.1021/cr050139y – volume: 2 start-page: 495 year: 2006 ident: BFnnano2008232_CR10 publication-title: Small doi: 10.1002/smll.200500432 – volume: 26 start-page: 1127 year: 2005 ident: BFnnano2008232_CR21 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200500212 – volume: 304 start-page: 1917 year: 2004 ident: BFnnano2008232_CR16 publication-title: Science doi: 10.1126/science.1099074 – volume: 121 start-page: 6936 year: 1999 ident: BFnnano2008232_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990139d – volume: 2 start-page: 109 year: 2002 ident: BFnnano2008232_CR13 publication-title: Nano Lett. doi: 10.1021/nl010081c – volume: 44 start-page: 1287 year: 2003 ident: BFnnano2008232_CR25 publication-title: Polymer doi: 10.1016/S0032-3861(02)00820-0 – volume: 7 start-page: 216 year: 1996 ident: BFnnano2008232_CR14 publication-title: Nanotechnology doi: 10.1088/0957-4484/7/3/009 – volume: 38 start-page: 4705 year: 2005 ident: BFnnano2008232_CR22 publication-title: Macromolecules doi: 10.1021/ma047529r – volume: 270 start-page: 1789 year: 1995 ident: BFnnano2008232_CR2 publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 2 start-page: 180 year: 2007 ident: BFnnano2008232_CR26 publication-title: Nature Nanotech. doi: 10.1038/nnano.2007.35 – volume: 64 start-page: 125122 year: 2001 ident: BFnnano2008232_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.125122 – volume: 288 start-page: 652 year: 2000 ident: BFnnano2008232_CR5 publication-title: Science doi: 10.1126/science.288.5466.652 – volume: 397 start-page: 121 year: 1999 ident: BFnnano2008232_CR1 publication-title: Nature doi: 10.1038/16393 – volume: 88 start-page: 041106 year: 2006 ident: BFnnano2008232_CR11 publication-title: Appl.Phys. Lett. doi: 10.1063/1.2167397 – volume: 5 start-page: 1915 year: 2005 ident: BFnnano2008232_CR27 publication-title: Nano Lett. doi: 10.1021/nl051234p – volume: 129 start-page: 2777 year: 2007 ident: BFnnano2008232_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065043f – volume: 12 start-page: 1655 year: 2000 ident: BFnnano2008232_CR4 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2 – volume: 17 start-page: 2177 year: 2005 ident: BFnnano2008232_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.200500577 – volume: 409 start-page: 66 year: 2001 ident: BFnnano2008232_CR7 publication-title: Nature doi: 10.1038/35051047 – volume: 7 start-page: 458 year: 2007 ident: BFnnano2008232_CR17 publication-title: Nano Lett. doi: 10.1021/nl062778+ – volume: 89 start-page: 131109 year: 2006 ident: BFnnano2008232_CR31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2357116 – volume: 382 start-page: 695 year: 1996 ident: BFnnano2008232_CR3 publication-title: Nature doi: 10.1038/382695a0 – volume: 35 start-page: 382 year: 2002 ident: BFnnano2008232_CR6 publication-title: Macromolecules doi: 10.1021/ma0112164 – volume: 47 start-page: 1597 year: 2006 ident: BFnnano2008232_CR24 publication-title: Polymer doi: 10.1016/j.polymer.2006.01.032 – volume: 305 start-page: 1269 year: 2004 ident: BFnnano2008232_CR8 publication-title: Science doi: 10.1126/science.1100999 – volume: 125 start-page: 14531 year: 2003 ident: BFnnano2008232_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030326i – volume: 41 start-page: 329 year: 2002 ident: BFnnano2008232_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M – volume: 87 start-page: 161103 year: 2005 ident: BFnnano2008232_CR30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2105996 |
SSID | ssj0052924 |
Score | 2.3650405 |
Snippet | Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 614 |
SubjectTerms | Chemistry and Materials Science Crystallization - methods Electrochemistry - instrumentation Electrochemistry - methods Emissions letter Light Light sources Lithography Luminescent Measurements Materials Science Nanotechnology Nanotechnology - instrumentation Nanotechnology - methods Nanotechnology and Microengineering Nanotubes - chemistry Nanotubes - ultrastructure Optical properties Optics Optics and Photonics - methods Photochemistry - instrumentation Photochemistry - methods Polymers Polymers - chemical synthesis Polymers - chemistry Scattering, Radiation Semiconductors Solar cells Static Electricity |
Title | Patterning of light-emitting conjugated polymer nanofibres |
URI | https://link.springer.com/article/10.1038/nnano.2008.232 https://www.ncbi.nlm.nih.gov/pubmed/18839001 https://www.proquest.com/docview/870455265 https://www.proquest.com/docview/69647109 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH64XPQg7sal5iDoZTDLJJl4ERWrCJYiFnoL01lAqUm17cF_77zJUqXqJZcMyfCWeet8D-DEmCRPCy8hknmaUKl9MuA8JMaWppEy-qQE5iEfO_F9jz70o37VmzOu2irrM9Ee1LIQmCM_N3JFI8Ryvxy9ExwahcXVaoLGIiwjchkKddJv4q0oSMuZtgllxERiSY3ZGLLzPOd5UXZSBmHw0ybNOZpzRVJre9rrsFY5je5VyeUNWFD5Jqx-gxLcgouuBcrELIdbaHdo8UHU24tta3ZN0Ps6xYSZdEfF8PNNfbi4NW1iZTXehl779vnmnlRzEYigcTwhARVMpdJ4dlL4kfBjGVAVCia4YloZC63TMNUJR3UVPMUIh0e-CKnWA3-QsnAHlvIiV3vgWp9HYvUdtZlLhvhcnjYHoKRBEnEHSE2ZTFSg4Ti7YpjZ4nXIMkvJcpiloaQDp836UQmX8efKg5rQWaU246xhsgPHzVsj71jE4LkqpuMsxquzvpc6sFtyZ_YfZpw9Y3UdOKvZNfvy75vY_3cTB7AS1Oi3_iEsTT6m6si4IJNBywqaebL2XQuWr2873acvg87cSg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO-GFpoDCC5WE9tJHKQKIWDZ0oc4tFJvweuHRLVNtt1dof4o_iMzznoLKnDrOZZjjcfzzcP-BuAlQlLmTVYxqzLPpPU5G2ktGGJpXTg8T85QHvLgsBweyy8nxckK_IxvYehaZbSJwVDbzlCOfBv1ShbE5f5ucs6oaRQVV2MHjV4r9tzlD4zYpju7H3F7X3E--HT0YcgWTQWYkWU5Y1wa5WqLbpE1eWHy0nLphFFGO-UdwpuvRe0rTbpudE3hgS5yI6T3o3xUK4Hz3oLbUiCQ08P0wedo-Ate9z10K6kYRn5V5IgUarttddv1Nze54H9i4DXH9lpRNmDd4D7cWzip6fteqx7Aimsfwtpv1IWP4O3XQMxJWZW08-k48JG4s-_hGnWKQfbpnBJ0Np1048szd5HS0jzG5m76GI5vRGRPYLXtWrcOafCxLFX7yXpoq4gPLPNocK3kVaETYFEyjVmQlFOvjHETiuVCNUGSffNMlGQCr5fjJz09xz9HbkRBN4tjOm2WSpXA1vIrni8qmujWdfNpU9JT3TyrE3ja787VfxQ6l4jyCbyJ23U1898X8ey_i9iCO8Ojg_1mf_dwbwPu8si8m2_C6uxi7p6j-zMbvQhKl8K3m9byX8v7Fxs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAUF5hQLNAQQXaxPHSRwkVJW2qz5gtUJU6i14_ZCotsnS3RXqT-PfMZPE21Yt3HqO5Vjjz_PwjL8BeIsmKXI6ypmRkWPCuJiNlUoY2tIitXierKZ7yK_DbP9YHJ6kJyvwx7-FobJKrxMbRW1qTXfkfcSVSInLve-6qojR7mBr-otRAylKtPpuGi1CjuzFb4zeZp8OdnGr33E-2Pu-s8-6BgNMiyybMy60tIVBF8noONVxZriwiZZaWeksmjpXJIXLFeFeq4JCBZXGOhHOjeNxIROc9x6s5hQU9WD1895w9M2bgZQXbUfdXEiGcWDuGSMT2a8qVdVtHSdP-HWLeMPNvZGibSzf4BE87FzWcLvF2GNYsdU6rF0hMnwCH0cNTSfdsYS1CycNO4k9-9kUVYcYcp8u6LrOhNN6cnFmz0NamsNI3c6ewvGdCO0Z9Kq6si8gbDwuQ7l_0iXKSGIHixyqXyN4nqoAmJdMqTvKcuqcMSmb1Hkiy0aSbStNlGQA75fjpy1Zxz9HbnhBl92hnZVLiAWwufyKp41SKKqy9WJWZvRwN46KAJ63u3P5H4muJtr8AD747bqc-fZFvPzvIjbhPiK8_HIwPNqAB9zT8MavoDc_X9jX6AvNx2861IXw466B_hdj8xyt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+of+light-emitting+conjugated+polymer+nanofibres&rft.jtitle=Nature+nanotechnology&rft.au=Di+Benedetto%2C+Francesca&rft.au=Camposeo%2C+Andrea&rft.au=Pagliara%2C+Stefano&rft.au=Mele%2C+Elisa&rft.date=2008-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=3&rft.issue=10&rft.spage=614&rft_id=info:doi/10.1038%2Fnnano.2008.232&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2367961581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |