Patterning of light-emitting conjugated polymer nanofibres

Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens 1 , solar cells 2 and lasers 3 , 4 . Some low-dimensional organic semiconductor structures exhibit properties resembling those o...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 3; no. 10; pp. 614 - 619
Main Authors Di Benedetto, Francesca, Camposeo, Andrea, Pagliara, Stefano, Mele, Elisa, Persano, Luana, Stabile, Ripalta, Cingolani, Roberto, Pisignano, Dario
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2008
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens 1 , solar cells 2 and lasers 3 , 4 . Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission 5 and enhanced electroluminescence 6 . One-dimensional metallic, III–V and II–VI nanostructures have also been the subject of intense investigation 7 , 8 as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability 9 and electromagnetic confinement within subwavelength volumes 8 , they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light. Conjugated polymer fibres offer many advantages over other photonic materials, such as tunable properties and easy processability, making them attractive for optoelectronic applications. The waveguiding performance and emission tunability of fully conjugated, electrospun polymer nanofibres have been assessed and their forward emission shown to improve after periodic structures are imprinted using nanoimprint lithography.
AbstractList Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens 1 , solar cells 2 and lasers 3 , 4 . Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission 5 and enhanced electroluminescence 6 . One-dimensional metallic, III–V and II–VI nanostructures have also been the subject of intense investigation 7 , 8 as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability 9 and electromagnetic confinement within subwavelength volumes 8 , they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light. Conjugated polymer fibres offer many advantages over other photonic materials, such as tunable properties and easy processability, making them attractive for optoelectronic applications. The waveguiding performance and emission tunability of fully conjugated, electrospun polymer nanofibres have been assessed and their forward emission shown to improve after periodic structures are imprinted using nanoimprint lithography.
Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens, solar cells and lasers. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission and enhanced electroluminescence. One-dimensional metallic, III-V and II-VI nanostructures have also been the subject of intense investigation as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability and electromagnetic confinement within subwavelength volumes, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.
Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens, solar cells and lasers. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission and enhanced electroluminescence. One-dimensional metallic, III-V and II-VI nanostructures have also been the subject of intense investigation as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability and electromagnetic confinement within subwavelength volumes, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens, solar cells and lasers. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission and enhanced electroluminescence. One-dimensional metallic, III-V and II-VI nanostructures have also been the subject of intense investigation as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability and electromagnetic confinement within subwavelength volumes, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.
Author Di Benedetto, Francesca
Persano, Luana
Cingolani, Roberto
Pisignano, Dario
Camposeo, Andrea
Pagliara, Stefano
Stabile, Ripalta
Mele, Elisa
Author_xml – sequence: 1
  givenname: Francesca
  surname: Di Benedetto
  fullname: Di Benedetto, Francesca
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano
– sequence: 2
  givenname: Andrea
  surname: Camposeo
  fullname: Camposeo, Andrea
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano
– sequence: 3
  givenname: Stefano
  surname: Pagliara
  fullname: Pagliara, Stefano
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano, Scuola Superiore ISUFI, Università del Salento, via Arnesano
– sequence: 4
  givenname: Elisa
  surname: Mele
  fullname: Mele, Elisa
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano
– sequence: 5
  givenname: Luana
  surname: Persano
  fullname: Persano, Luana
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano
– sequence: 6
  givenname: Ripalta
  surname: Stabile
  fullname: Stabile, Ripalta
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano, Scuola Superiore ISUFI, Università del Salento, via Arnesano
– sequence: 7
  givenname: Roberto
  surname: Cingolani
  fullname: Cingolani, Roberto
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano
– sequence: 8
  givenname: Dario
  surname: Pisignano
  fullname: Pisignano, Dario
  email: dario.pisignano@unile.it
  organization: Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano, Scuola Superiore ISUFI, Università del Salento, via Arnesano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18839001$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtKAzEUQINUbH1sXUpx4W5qXjOTuBPxBYIudB3SzE1NmUlqkln0751arSC4Sgjn3FzOIRr54AGhU4JnBDNx6b32YUYxFjPK6B6akJqLgjFZjnZ3UY_RYUpLjEsqKT9AYyIEkxiTCbp60TlD9M4vpsFOW7d4zwV0LufNiwl-2S90hma6Cu26gzjd_GfdPEI6RvtWtwlOvs8j9HZ3-3rzUDw93z_eXD8VhldVLig3AmQjJWkMKQ2pGsqBGWE0CAscV1YyaWvNiGBGy4qWUpfEMG7tnMylYEfoYjt3FcNHDymrziUDbas9hD6pSla8JlgO4PkfcBn66IfdlKgxL0talQN09g318w4atYqu03GtfpIMAN8CJoaUIlhlXNbZBZ-jdq0iWG3Kq6_yalNeDeUHbfZH203-T7jcCmkA_QLi77b_GJ8YApW5
CitedBy_id crossref_primary_10_3390_ma7020906
crossref_primary_10_1016_j_solener_2020_12_022
crossref_primary_10_1021_nn1034185
crossref_primary_10_1039_c2cp42235b
crossref_primary_10_1088_2040_8978_12_2_024003
crossref_primary_10_1002_adom_201500232
crossref_primary_10_1021_jp204582j
crossref_primary_10_1002_smll_200801165
crossref_primary_10_1007_s11426_019_9503_0
crossref_primary_10_1039_c4nr00202d
crossref_primary_10_1002_lpor_202300745
crossref_primary_10_1016_j_bios_2021_113120
crossref_primary_10_1038_s41524_023_01154_w
crossref_primary_10_1021_acs_chemrev_2c00720
crossref_primary_10_1021_jp2053585
crossref_primary_10_1063_1_3275727
crossref_primary_10_1039_c3tc30978a
crossref_primary_10_1063_1_4807894
crossref_primary_10_1088_0957_4484_21_21_215304
crossref_primary_10_1021_la9045447
crossref_primary_10_1016_j_xcrp_2020_100029
crossref_primary_10_1063_1_3064139
crossref_primary_10_1039_C7PY00378A
crossref_primary_10_1021_acs_chemmater_9b03475
crossref_primary_10_1098_rsta_2012_0337
crossref_primary_10_1021_cm9007409
crossref_primary_10_1038_srep14019
crossref_primary_10_1002_smll_201101172
crossref_primary_10_1002_anie_201501060
crossref_primary_10_1021_am5006207
crossref_primary_10_1016_j_optlastec_2023_110294
crossref_primary_10_1021_am100635v
crossref_primary_10_1002_polb_23705
crossref_primary_10_1021_ma400145a
crossref_primary_10_1038_lsa_2013_58
crossref_primary_10_1002_ange_201502684
crossref_primary_10_1021_acsami_8b07640
crossref_primary_10_1021_ma401681m
crossref_primary_10_1002_macp_201000216
crossref_primary_10_1002_smll_201401487
crossref_primary_10_1002_adma_201201453
crossref_primary_10_1021_nn204055t
crossref_primary_10_1016_j_spmi_2009_07_032
crossref_primary_10_1002_adom_201701077
crossref_primary_10_1039_D2SC02172B
crossref_primary_10_1039_D0PY00719F
crossref_primary_10_1021_nn100775v
crossref_primary_10_3390_polym5010019
crossref_primary_10_1002_mame_201200290
crossref_primary_10_1002_adom_202201567
crossref_primary_10_1002_anie_201502684
crossref_primary_10_1016_j_mseb_2012_05_010
crossref_primary_10_1039_c2ra00516f
crossref_primary_10_1039_c3ta12745a
crossref_primary_10_1039_D1NJ01017D
crossref_primary_10_1002_mame_201200277
crossref_primary_10_1021_cm102772x
crossref_primary_10_1039_c2sm27543k
crossref_primary_10_1002_adma_202415856
crossref_primary_10_1364_OE_18_00A174
crossref_primary_10_1016_j_materresbull_2016_12_022
crossref_primary_10_1002_adfm_201001901
crossref_primary_10_1021_mz200208b
crossref_primary_10_1039_C5RA08750C
crossref_primary_10_1021_acs_cgd_7b00992
crossref_primary_10_1016_j_dyepig_2025_112632
crossref_primary_10_1021_ma401700d
crossref_primary_10_1016_j_micromeso_2010_12_048
crossref_primary_10_1063_1_3534803
crossref_primary_10_3390_coatings13101815
crossref_primary_10_1039_B9NR00206E
crossref_primary_10_1002_smll_201501563
crossref_primary_10_1021_acs_chemrev_6b00172
crossref_primary_10_1039_c0nr00181c
crossref_primary_10_1021_nl2006164
crossref_primary_10_1039_D0CS00037J
crossref_primary_10_1002_adom_201500552
crossref_primary_10_1016_j_cplett_2014_05_096
crossref_primary_10_1039_C2TC00568A
crossref_primary_10_1002_chem_201801965
crossref_primary_10_1038_s41428_018_0062_6
crossref_primary_10_1021_acs_macromol_5b01377
crossref_primary_10_1021_acs_nanolett_6b03499
crossref_primary_10_1364_OL_38_001040
crossref_primary_10_1002_mame_201600569
crossref_primary_10_1039_C4RA01865F
crossref_primary_10_1021_acs_macromol_8b00023
crossref_primary_10_1021_nl4033439
crossref_primary_10_1002_adma_200904396
crossref_primary_10_1515_nanoph_2016_0142
crossref_primary_10_3390_mi6050544
crossref_primary_10_1021_acsami_6b07797
crossref_primary_10_1038_s41377_024_01383_8
crossref_primary_10_3390_polym7081471
crossref_primary_10_2174_1573413715666190112121113
crossref_primary_10_1021_acs_analchem_5b00309
crossref_primary_10_1002_adma_200900997
crossref_primary_10_1039_c1nr10399g
crossref_primary_10_1021_acs_jpcc_6b12783
crossref_primary_10_1021_acs_macromol_6b01721
crossref_primary_10_1002_smll_201300220
crossref_primary_10_1039_c2ra21076b
crossref_primary_10_1039_c3pc90002a
crossref_primary_10_1021_acsami_8b08490
crossref_primary_10_1002_smll_201203204
crossref_primary_10_1021_ma400379a
crossref_primary_10_1039_C3RA45678A
crossref_primary_10_1039_C7RA07538C
crossref_primary_10_1021_am503580j
crossref_primary_10_1002_adma_201305913
crossref_primary_10_1021_ac303107d
crossref_primary_10_1021_acs_cgd_8b00918
crossref_primary_10_1364_OE_18_000822
crossref_primary_10_1002_mame_201200364
crossref_primary_10_1021_nn100582f
crossref_primary_10_1039_C9RA05693A
crossref_primary_10_1039_b923031a
crossref_primary_10_3390_sym12122022
crossref_primary_10_1039_c2nr31740k
crossref_primary_10_1002_ange_201810422
crossref_primary_10_1002_chem_201704650
crossref_primary_10_1126_sciadv_1500257
crossref_primary_10_1002_lpor_201200074
crossref_primary_10_1038_s41377_024_01414_4
crossref_primary_10_1039_c3tc30523f
crossref_primary_10_1063_1_4939263
crossref_primary_10_1080_10426914_2012_700145
crossref_primary_10_1039_C7RA09667D
crossref_primary_10_5059_yukigoseikyokaishi_78_962
crossref_primary_10_1063_1_4927672
crossref_primary_10_1039_c3nr03094f
crossref_primary_10_1002_mame_201600507
crossref_primary_10_1007_s00542_012_1554_5
crossref_primary_10_1039_b906188f
crossref_primary_10_1186_s11671_015_1194_7
crossref_primary_10_1038_ncomms11477
crossref_primary_10_1007_s00604_021_05153_w
crossref_primary_10_1021_am502046h
crossref_primary_10_1039_c2jm34196d
crossref_primary_10_1002_adom_201400232
crossref_primary_10_1016_j_progpolymsci_2014_10_001
crossref_primary_10_1016_j_chempr_2019_06_021
crossref_primary_10_1002_ange_201501060
crossref_primary_10_1039_C9NR07494E
crossref_primary_10_1002_advs_202205411
crossref_primary_10_1021_cm900511g
crossref_primary_10_1002_anie_201810422
crossref_primary_10_1016_j_polymer_2014_01_031
crossref_primary_10_1038_srep23949
crossref_primary_10_1038_srep39677
crossref_primary_10_1007_s10118_021_2542_y
crossref_primary_10_1021_acsapm_9b00914
crossref_primary_10_1016_j_orgel_2020_105965
crossref_primary_10_1016_j_orgel_2016_11_007
crossref_primary_10_1021_acs_nanolett_3c03213
crossref_primary_10_1021_acsami_0c02724
crossref_primary_10_1007_s40097_018_0266_5
Cites_doi 10.1021/ja030326i
10.1016/S0379-6779(00)00597-X
10.1002/smll.200500432
10.1021/ja065043f
10.1021/ma0112164
10.1063/1.2167397
10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M
10.1038/nnano.2007.35
10.1126/science.270.5243.1789
10.1016/j.polymer.2006.01.032
10.1126/science.1100999
10.1038/382695a0
10.1021/ja990139d
10.1021/cr050139y
10.1002/adma.200400606
10.1038/16393
10.1016/S0032-3861(02)00820-0
10.1021/ma047529r
10.1103/PhysRevB.64.125122
10.1021/nl010081c
10.1002/adma.200500577
10.1038/35051047
10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2
10.1126/science.1099074
10.1088/0957-4484/7/3/009
10.1021/nl062778+
10.1021/nl051234p
10.1063/1.2105996
10.1002/marc.200500212
10.1063/1.2357116
10.1126/science.288.5466.652
ContentType Journal Article
Copyright Springer Nature Limited 2008
Copyright Nature Publishing Group Oct 2008
Copyright_xml – notice: Springer Nature Limited 2008
– notice: Copyright Nature Publishing Group Oct 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/nnano.2008.232
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 619
ExternalDocumentID 2367961581
18839001
10_1038_nnano_2008_232
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c466t-24c8e9d991dc15c16d24e3c8cae8fe406f939f7a3183ca96259a51c34ffb1b983
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 09:18:39 EDT 2025
Sat Aug 23 13:23:17 EDT 2025
Mon Jul 21 06:02:28 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 01:26:21 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-24c8e9d991dc15c16d24e3c8cae8fe406f939f7a3183ca96259a51c34ffb1b983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dspace.lboro.ac.uk/2134/17814
PMID 18839001
PQID 870455265
PQPubID 546299
PageCount 6
ParticipantIDs proquest_miscellaneous_69647109
proquest_journals_870455265
pubmed_primary_18839001
crossref_citationtrail_10_1038_nnano_2008_232
crossref_primary_10_1038_nnano_2008_232
springer_journals_10_1038_nnano_2008_232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2008
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Tessler, Denton, Friend (CR3) 1996; 382
Jang (CR23) 2005; 17
Reneker, Chun (CR14) 1996; 7
Babel, Li, Xia, Jenekhe (CR22) 2005; 38
Moran-Mirabal (CR17) 2007; 7
Lee (CR25) 2003; 44
Caroll, Lieberwirth, Redmond (CR26) 2007; 2
Turnbull (CR29) 2001; 64
Nguyen (CR5) 2000; 288
Law (CR8) 2004; 305
Yu (CR2) 1995; 270
Duan (CR7) 2001; 409
Dzenis (CR16) 2004; 304
Madhugiri (CR19) 2003; 125
Noy (CR13) 2002; 2
Kakade (CR18) 2007; 129
Li, Babel, Jenekhe, Xia (CR20) 2004; 16
Mele (CR27) 2005; 5
Liu, Sheina, Kowalewski, McCullough (CR12) 2002; 41
Friend (CR1) 1999; 397
Quochi (CR11) 2006; 88
Hu, Yu, Barbara (CR28) 1999; 121
MacDiarmid (CR15) 2001; 119
Liu (CR10) 2006; 2
Chronakis, Grapenson, Jakob (CR24) 2006; 47
Zhang, Kale, Jenekhe (CR6) 2002; 35
Menard (CR9) 2007; 107
Mele (CR31) 2006; 89
Wei, Lee, Kang, Mead (CR21) 2005; 26
McGehee, Heeger (CR4) 2000; 12
Spehr (CR30) 2005; 87
X Zhang (BFnnano2008232_CR6) 2002; 35
AG MacDiarmid (BFnnano2008232_CR15) 2001; 119
A Babel (BFnnano2008232_CR22) 2005; 38
S-H Jang (BFnnano2008232_CR23) 2005; 17
G Yu (BFnnano2008232_CR2) 1995; 270
M Law (BFnnano2008232_CR8) 2004; 305
F Quochi (BFnnano2008232_CR11) 2006; 88
S Madhugiri (BFnnano2008232_CR19) 2003; 125
D Hu (BFnnano2008232_CR28) 1999; 121
M Kakade (BFnnano2008232_CR18) 2007; 129
D Li (BFnnano2008232_CR20) 2004; 16
E Mele (BFnnano2008232_CR27) 2005; 5
T Spehr (BFnnano2008232_CR30) 2005; 87
H Liu (BFnnano2008232_CR10) 2006; 2
RH Friend (BFnnano2008232_CR1) 1999; 397
A Noy (BFnnano2008232_CR13) 2002; 2
M Wei (BFnnano2008232_CR21) 2005; 26
OD Caroll (BFnnano2008232_CR26) 2007; 2
E Menard (BFnnano2008232_CR9) 2007; 107
Y Dzenis (BFnnano2008232_CR16) 2004; 304
S Chronakis (BFnnano2008232_CR24) 2006; 47
GA Turnbull (BFnnano2008232_CR29) 2001; 64
JM Moran-Mirabal (BFnnano2008232_CR17) 2007; 7
MD McGehee (BFnnano2008232_CR4) 2000; 12
N Tessler (BFnnano2008232_CR3) 1996; 382
KH Lee (BFnnano2008232_CR25) 2003; 44
E Mele (BFnnano2008232_CR31) 2006; 89
DH Reneker (BFnnano2008232_CR14) 1996; 7
T-Q Nguyen (BFnnano2008232_CR5) 2000; 288
X Duan (BFnnano2008232_CR7) 2001; 409
J Liu (BFnnano2008232_CR12) 2002; 41
References_xml – volume: 125
  start-page: 14531
  year: 2003
  end-page: 14538
  ident: CR19
  article-title: Electrospun MEH-PPV/SBA-15 composite nanofibres using a dual syringe method
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030326i
– volume: 119
  start-page: 27
  year: 2001
  end-page: 30
  ident: CR15
  article-title: Electrostatically-generated nanofibres of electronic polymers
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(00)00597-X
– volume: 2
  start-page: 495
  year: 2006
  end-page: 499
  ident: CR10
  article-title: Electrospun polymer nanofibres as subwavelength optical waveguides incorporating quantum dots
  publication-title: Small
  doi: 10.1002/smll.200500432
– volume: 129
  start-page: 2777
  year: 2007
  end-page: 2782
  ident: CR18
  article-title: Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibres
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065043f
– volume: 35
  start-page: 382
  year: 2002
  end-page: 393
  ident: CR6
  article-title: Electroluminescence of multicomponent conjugated polymers. 2. photophysics and enhancement of electroluminescence from blends of polyquinolines
  publication-title: Macromolecules
  doi: 10.1021/ma0112164
– volume: 88
  start-page: 041106
  year: 2006
  ident: CR11
  article-title: Gain amplification and lasing properties of individual organic nanofibres
  publication-title: Appl.Phys. Lett.
  doi: 10.1063/1.2167397
– volume: 41
  start-page: 329
  year: 2002
  end-page: 332
  ident: CR12
  article-title: Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: nanowire morphologies in new di- and tri-block copolymers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M
– volume: 2
  start-page: 180
  year: 2007
  end-page: 184
  ident: CR26
  article-title: Microcavity effects and optically pumped lasing in single conjugated polymer nanowires
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2007.35
– volume: 270
  start-page: 1789
  year: 1995
  end-page: 1791
  ident: CR2
  article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 47
  start-page: 1597
  year: 2006
  end-page: 1603
  ident: CR24
  article-title: Conductive polypyrrole nanofibres via electrospinning: Electrical and morphological properties
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.01.032
– volume: 305
  start-page: 1269
  year: 2004
  end-page: 1273
  ident: CR8
  article-title: Nanoribbon waveguides for subwavelength photonics integration
  publication-title: Science
  doi: 10.1126/science.1100999
– volume: 382
  start-page: 695
  year: 1996
  end-page: 697
  ident: CR3
  article-title: Lasing from conjugated-polymer microcavities
  publication-title: Nature
  doi: 10.1038/382695a0
– volume: 121
  start-page: 6936
  year: 1999
  end-page: 6937
  ident: CR28
  article-title: Single-molecule spectroscopy of the conjugated polymer MEH-PPV
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja990139d
– volume: 107
  start-page: 1117
  year: 2007
  end-page: 1160
  ident: CR9
  article-title: Micro and nanopatterning techniques for organic electronic and optoelectronic systems
  publication-title: Chem. Rev.
  doi: 10.1021/cr050139y
– volume: 16
  start-page: 2062
  year: 2004
  end-page: 2066
  ident: CR20
  article-title: Nanofibres of conjugated polymers prepared by electrospinning with a two-capillary spinneret
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400606
– volume: 397
  start-page: 121
  year: 1999
  end-page: 128
  ident: CR1
  article-title: Electroluminescence in conjugated polymers
  publication-title: Nature
  doi: 10.1038/16393
– volume: 44
  start-page: 1287
  year: 2003
  end-page: 1294
  ident: CR25
  article-title: Characterization of nano-structured poly(e-caprolactone) nonwoven mats via electrospinning
  publication-title: Polymer
  doi: 10.1016/S0032-3861(02)00820-0
– volume: 38
  start-page: 4705
  year: 2005
  end-page: 4711
  ident: CR22
  article-title: Electrospun nanofibres of blends of conjugated polymers: morphology, optical properties and field-effect transistors
  publication-title: Macromolecules
  doi: 10.1021/ma047529r
– volume: 64
  start-page: 125122
  year: 2001
  ident: CR29
  article-title: Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.125122
– volume: 2
  start-page: 109
  year: 2002
  end-page: 112
  ident: CR13
  article-title: Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography
  publication-title: Nano Lett.
  doi: 10.1021/nl010081c
– volume: 17
  start-page: 2177
  year: 2005
  end-page: 2180
  ident: CR23
  article-title: Welded electrochromic conductive polymer nanofibres by electrostatic spinning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500577
– volume: 409
  start-page: 66
  year: 2001
  end-page: 69
  ident: CR7
  article-title: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices
  publication-title: Nature
  doi: 10.1038/35051047
– volume: 12
  start-page: 1655
  year: 2000
  end-page: 1668
  ident: CR4
  article-title: Semiconducting (conjugated) polymers as materials for solid-state lasers
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2
– volume: 304
  start-page: 1917
  year: 2004
  end-page: 1919
  ident: CR16
  article-title: Spinning continuous fibres for nanotechnology
  publication-title: Science
  doi: 10.1126/science.1099074
– volume: 7
  start-page: 216
  year: 1996
  end-page: 223
  ident: CR14
  article-title: Nanometre diameter fibres of polymer, produced by electrospinning
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/7/3/009
– volume: 7
  start-page: 458
  year: 2007
  end-page: 463
  ident: CR17
  article-title: Electrospun light-emitting nanofibres
  publication-title: Nano Lett.
  doi: 10.1021/nl062778+
– volume: 5
  start-page: 1915
  year: 2005
  end-page: 1919
  ident: CR27
  article-title: Multilevel, room-temperature nanoimprint lithography for conjugated polymer-based photonics
  publication-title: Nano Lett.
  doi: 10.1021/nl051234p
– volume: 87
  start-page: 161103
  year: 2005
  ident: CR30
  article-title: Organic solid-state ultraviolet-laser based on spiro-terphenyl
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2105996
– volume: 26
  start-page: 1127
  year: 2005
  end-page: 1132
  ident: CR21
  article-title: Preparation of core–sheath nanofibres from conducting polymer blends
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200500212
– volume: 89
  start-page: 131109
  year: 2006
  ident: CR31
  article-title: Polymeric distributed feedback lasers by room-temperature nanoimprint lithography
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2357116
– volume: 288
  start-page: 652
  year: 2000
  end-page: 656
  ident: CR5
  article-title: Control of energy transfer in oriented conjugated polymer–mesoporous silica composites
  publication-title: Science
  doi: 10.1126/science.288.5466.652
– volume: 119
  start-page: 27
  year: 2001
  ident: BFnnano2008232_CR15
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(00)00597-X
– volume: 16
  start-page: 2062
  year: 2004
  ident: BFnnano2008232_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400606
– volume: 107
  start-page: 1117
  year: 2007
  ident: BFnnano2008232_CR9
  publication-title: Chem. Rev.
  doi: 10.1021/cr050139y
– volume: 2
  start-page: 495
  year: 2006
  ident: BFnnano2008232_CR10
  publication-title: Small
  doi: 10.1002/smll.200500432
– volume: 26
  start-page: 1127
  year: 2005
  ident: BFnnano2008232_CR21
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200500212
– volume: 304
  start-page: 1917
  year: 2004
  ident: BFnnano2008232_CR16
  publication-title: Science
  doi: 10.1126/science.1099074
– volume: 121
  start-page: 6936
  year: 1999
  ident: BFnnano2008232_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja990139d
– volume: 2
  start-page: 109
  year: 2002
  ident: BFnnano2008232_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl010081c
– volume: 44
  start-page: 1287
  year: 2003
  ident: BFnnano2008232_CR25
  publication-title: Polymer
  doi: 10.1016/S0032-3861(02)00820-0
– volume: 7
  start-page: 216
  year: 1996
  ident: BFnnano2008232_CR14
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/7/3/009
– volume: 38
  start-page: 4705
  year: 2005
  ident: BFnnano2008232_CR22
  publication-title: Macromolecules
  doi: 10.1021/ma047529r
– volume: 270
  start-page: 1789
  year: 1995
  ident: BFnnano2008232_CR2
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 2
  start-page: 180
  year: 2007
  ident: BFnnano2008232_CR26
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2007.35
– volume: 64
  start-page: 125122
  year: 2001
  ident: BFnnano2008232_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.125122
– volume: 288
  start-page: 652
  year: 2000
  ident: BFnnano2008232_CR5
  publication-title: Science
  doi: 10.1126/science.288.5466.652
– volume: 397
  start-page: 121
  year: 1999
  ident: BFnnano2008232_CR1
  publication-title: Nature
  doi: 10.1038/16393
– volume: 88
  start-page: 041106
  year: 2006
  ident: BFnnano2008232_CR11
  publication-title: Appl.Phys. Lett.
  doi: 10.1063/1.2167397
– volume: 5
  start-page: 1915
  year: 2005
  ident: BFnnano2008232_CR27
  publication-title: Nano Lett.
  doi: 10.1021/nl051234p
– volume: 129
  start-page: 2777
  year: 2007
  ident: BFnnano2008232_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065043f
– volume: 12
  start-page: 1655
  year: 2000
  ident: BFnnano2008232_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2
– volume: 17
  start-page: 2177
  year: 2005
  ident: BFnnano2008232_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500577
– volume: 409
  start-page: 66
  year: 2001
  ident: BFnnano2008232_CR7
  publication-title: Nature
  doi: 10.1038/35051047
– volume: 7
  start-page: 458
  year: 2007
  ident: BFnnano2008232_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl062778+
– volume: 89
  start-page: 131109
  year: 2006
  ident: BFnnano2008232_CR31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2357116
– volume: 382
  start-page: 695
  year: 1996
  ident: BFnnano2008232_CR3
  publication-title: Nature
  doi: 10.1038/382695a0
– volume: 35
  start-page: 382
  year: 2002
  ident: BFnnano2008232_CR6
  publication-title: Macromolecules
  doi: 10.1021/ma0112164
– volume: 47
  start-page: 1597
  year: 2006
  ident: BFnnano2008232_CR24
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.01.032
– volume: 305
  start-page: 1269
  year: 2004
  ident: BFnnano2008232_CR8
  publication-title: Science
  doi: 10.1126/science.1100999
– volume: 125
  start-page: 14531
  year: 2003
  ident: BFnnano2008232_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030326i
– volume: 41
  start-page: 329
  year: 2002
  ident: BFnnano2008232_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M
– volume: 87
  start-page: 161103
  year: 2005
  ident: BFnnano2008232_CR30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2105996
SSID ssj0052924
Score 2.3650405
Snippet Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 614
SubjectTerms Chemistry and Materials Science
Crystallization - methods
Electrochemistry - instrumentation
Electrochemistry - methods
Emissions
letter
Light
Light sources
Lithography
Luminescent Measurements
Materials Science
Nanotechnology
Nanotechnology - instrumentation
Nanotechnology - methods
Nanotechnology and Microengineering
Nanotubes - chemistry
Nanotubes - ultrastructure
Optical properties
Optics
Optics and Photonics - methods
Photochemistry - instrumentation
Photochemistry - methods
Polymers
Polymers - chemical synthesis
Polymers - chemistry
Scattering, Radiation
Semiconductors
Solar cells
Static Electricity
Title Patterning of light-emitting conjugated polymer nanofibres
URI https://link.springer.com/article/10.1038/nnano.2008.232
https://www.ncbi.nlm.nih.gov/pubmed/18839001
https://www.proquest.com/docview/870455265
https://www.proquest.com/docview/69647109
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH64XPQg7sal5iDoZTDLJJl4ERWrCJYiFnoL01lAqUm17cF_77zJUqXqJZcMyfCWeet8D-DEmCRPCy8hknmaUKl9MuA8JMaWppEy-qQE5iEfO_F9jz70o37VmzOu2irrM9Ee1LIQmCM_N3JFI8Ryvxy9ExwahcXVaoLGIiwjchkKddJv4q0oSMuZtgllxERiSY3ZGLLzPOd5UXZSBmHw0ybNOZpzRVJre9rrsFY5je5VyeUNWFD5Jqx-gxLcgouuBcrELIdbaHdo8UHU24tta3ZN0Ps6xYSZdEfF8PNNfbi4NW1iZTXehl779vnmnlRzEYigcTwhARVMpdJ4dlL4kfBjGVAVCia4YloZC63TMNUJR3UVPMUIh0e-CKnWA3-QsnAHlvIiV3vgWp9HYvUdtZlLhvhcnjYHoKRBEnEHSE2ZTFSg4Ti7YpjZ4nXIMkvJcpiloaQDp836UQmX8efKg5rQWaU246xhsgPHzVsj71jE4LkqpuMsxquzvpc6sFtyZ_YfZpw9Y3UdOKvZNfvy75vY_3cTB7AS1Oi3_iEsTT6m6si4IJNBywqaebL2XQuWr2873acvg87cSg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO-GFpoDCC5WE9tJHKQKIWDZ0oc4tFJvweuHRLVNtt1dof4o_iMzznoLKnDrOZZjjcfzzcP-BuAlQlLmTVYxqzLPpPU5G2ktGGJpXTg8T85QHvLgsBweyy8nxckK_IxvYehaZbSJwVDbzlCOfBv1ShbE5f5ucs6oaRQVV2MHjV4r9tzlD4zYpju7H3F7X3E--HT0YcgWTQWYkWU5Y1wa5WqLbpE1eWHy0nLphFFGO-UdwpuvRe0rTbpudE3hgS5yI6T3o3xUK4Hz3oLbUiCQ08P0wedo-Ate9z10K6kYRn5V5IgUarttddv1Nze54H9i4DXH9lpRNmDd4D7cWzip6fteqx7Aimsfwtpv1IWP4O3XQMxJWZW08-k48JG4s-_hGnWKQfbpnBJ0Np1048szd5HS0jzG5m76GI5vRGRPYLXtWrcOafCxLFX7yXpoq4gPLPNocK3kVaETYFEyjVmQlFOvjHETiuVCNUGSffNMlGQCr5fjJz09xz9HbkRBN4tjOm2WSpXA1vIrni8qmujWdfNpU9JT3TyrE3ja787VfxQ6l4jyCbyJ23U1898X8ey_i9iCO8Ojg_1mf_dwbwPu8si8m2_C6uxi7p6j-zMbvQhKl8K3m9byX8v7Fxs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAUF5hQLNAQQXaxPHSRwkVJW2qz5gtUJU6i14_ZCotsnS3RXqT-PfMZPE21Yt3HqO5Vjjz_PwjL8BeIsmKXI6ypmRkWPCuJiNlUoY2tIitXierKZ7yK_DbP9YHJ6kJyvwx7-FobJKrxMbRW1qTXfkfcSVSInLve-6qojR7mBr-otRAylKtPpuGi1CjuzFb4zeZp8OdnGr33E-2Pu-s8-6BgNMiyybMy60tIVBF8noONVxZriwiZZaWeksmjpXJIXLFeFeq4JCBZXGOhHOjeNxIROc9x6s5hQU9WD1895w9M2bgZQXbUfdXEiGcWDuGSMT2a8qVdVtHSdP-HWLeMPNvZGibSzf4BE87FzWcLvF2GNYsdU6rF0hMnwCH0cNTSfdsYS1CycNO4k9-9kUVYcYcp8u6LrOhNN6cnFmz0NamsNI3c6ewvGdCO0Z9Kq6si8gbDwuQ7l_0iXKSGIHixyqXyN4nqoAmJdMqTvKcuqcMSmb1Hkiy0aSbStNlGQA75fjpy1Zxz9HbnhBl92hnZVLiAWwufyKp41SKKqy9WJWZvRwN46KAJ63u3P5H4muJtr8AD747bqc-fZFvPzvIjbhPiK8_HIwPNqAB9zT8MavoDc_X9jX6AvNx2861IXw466B_hdj8xyt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+of+light-emitting+conjugated+polymer+nanofibres&rft.jtitle=Nature+nanotechnology&rft.au=Di+Benedetto%2C+Francesca&rft.au=Camposeo%2C+Andrea&rft.au=Pagliara%2C+Stefano&rft.au=Mele%2C+Elisa&rft.date=2008-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=3&rft.issue=10&rft.spage=614&rft_id=info:doi/10.1038%2Fnnano.2008.232&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2367961581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon