bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana
Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficienc...
Saved in:
Published in | Journal of experimental botany Vol. 68; no. 7; pp. 1743 - 1755 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficiency. In this study, we show that the bHLH transcription factor bHLH115 is a positive regulator of the Fe-deficiency response. Loss-of-function of bHLH115 causes strong Fe-deficiency symptoms and alleviates expression of genes responsive to Fe deficiency, whereas its overexpression causes the opposite effect. Chromatin immunoprecipitation assays confirmed that bHLH115 binds to the promoters of the Fe-deficiency-responsive genes bHLH38/39/100/101 and POPEYE (PYE), which suggests redundant molecular functions with bHLH34, bHLH104, and bHLH105. This is further supported by the fact that the bhlh115-1 mutant was complemented by overexpression of any of bHLH34, bHLH104, bHLH105, and bHLH115. Further investigations determined that bHLH115 could interact with itself and with bHLH34, bHLH104, and bHLH105. Their differential tissue-specific expression patterns and the severe Fe deficiency symptoms of multiple mutants supported their non-redundant biological functions. Genetic analysis revealed that bHLH115 is negatively regulated by BRUTUS (BTS), an E3 ligase that can interact with bHLH115. Thus, bHLH115 plays key roles in the maintenance of Fe homeostasis in Arabidopsis thaliana. |
---|---|
AbstractList | Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficiency. In this study, we show that the bHLH transcription factor bHLH115 is a positive regulator of the Fe-deficiency response. Loss-of-function of bHLH115 causes strong Fe-deficiency symptoms and alleviates expression of genes responsive to Fe deficiency, whereas its overexpression causes the opposite effect. Chromatin immunoprecipitation assays confirmed that bHLH115 binds to the promoters of the Fe-deficiency-responsive genes bHLH38/39/100/101 and POPEYE (PYE), which suggests redundant molecular functions with bHLH34, bHLH104, and bHLH105. This is further supported by the fact that the bhlh115-1 mutant was complemented by overexpression of any of bHLH34, bHLH104, bHLH105, and bHLH115. Further investigations determined that bHLH115 could interact with itself and with bHLH34, bHLH104, and bHLH105. Their differential tissue-specific expression patterns and the severe Fe deficiency symptoms of multiple mutants supported their non-redundant biological functions. Genetic analysis revealed that bHLH115 is negatively regulated by BRUTUS (BTS), an E3 ligase that can interact with bHLH115. Thus, bHLH115 plays key roles in the maintenance of Fe homeostasis in Arabidopsis thaliana. Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficiency. In this study, we show that the bHLH transcription factor bHLH115 is a positive regulator of the Fe-deficiency response. Loss-of-function of bHLH115 causes strong Fe-deficiency symptoms and alleviates expression of genes responsive to Fe deficiency, whereas its overexpression causes the opposite effect. Chromatin immunoprecipitation assays confirmed that bHLH115 binds to the promoters of the Fe-deficiency-responsive genes bHLH38/39/100/101 and POPEYE (PYE), which suggests redundant molecular functions with bHLH34, bHLH104, and bHLH105. This is further supported by the fact that the bhlh115-1 mutant was complemented by overexpression of any of bHLH34, bHLH104, bHLH105, and bHLH115. Further investigations determined that bHLH115 could interact with itself and with bHLH34, bHLH104, and bHLH105. Their differential tissue-specific expression patterns and the severe Fe deficiency symptoms of multiple mutants supported their non-redundant biological functions. Genetic analysis revealed that bHLH115 is negatively regulated by BRUTUS (BTS), an E3 ligase that can interact with bHLH115. Thus, bHLH115 plays key roles in the maintenance of Fe homeostasis in Arabidopsis thaliana.Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficiency. In this study, we show that the bHLH transcription factor bHLH115 is a positive regulator of the Fe-deficiency response. Loss-of-function of bHLH115 causes strong Fe-deficiency symptoms and alleviates expression of genes responsive to Fe deficiency, whereas its overexpression causes the opposite effect. Chromatin immunoprecipitation assays confirmed that bHLH115 binds to the promoters of the Fe-deficiency-responsive genes bHLH38/39/100/101 and POPEYE (PYE), which suggests redundant molecular functions with bHLH34, bHLH104, and bHLH105. This is further supported by the fact that the bhlh115-1 mutant was complemented by overexpression of any of bHLH34, bHLH104, bHLH105, and bHLH115. Further investigations determined that bHLH115 could interact with itself and with bHLH34, bHLH104, and bHLH105. Their differential tissue-specific expression patterns and the severe Fe deficiency symptoms of multiple mutants supported their non-redundant biological functions. Genetic analysis revealed that bHLH115 is negatively regulated by BRUTUS (BTS), an E3 ligase that can interact with bHLH115. Thus, bHLH115 plays key roles in the maintenance of Fe homeostasis in Arabidopsis thaliana. bHLH115 functions downstream of the E3 ligase BRUTUS and positively controls the expression of the iron-deficiency responsive bHLH transcription factors POPEYE and bHLH38 / 39 / 100 / 101 for iron homeostasis in Arabidopsis. Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficiency. In this study, we show that the bHLH transcription factor bHLH115 is a positive regulator of the Fe-deficiency response. Loss-of-function of bHLH115 causes strong Fe-deficiency symptoms and alleviates expression of genes responsive to Fe deficiency, whereas its overexpression causes the opposite effect. Chromatin immunoprecipitation assays confirmed that bHLH115 binds to the promoters of the Fe-deficiency-responsive genes bHLH38 / 39 / 100 / 101 and POPEYE ( PYE ), which suggests redundant molecular functions with bHLH34, bHLH104, and bHLH105. This is further supported by the fact that the bhlh115-1 mutant was complemented by overexpression of any of bHLH34 , bHLH104 , bHLH105 , and bHLH115 . Further investigations determined that bHLH115 could interact with itself and with bHLH34, bHLH104, and bHLH105. Their differential tissue-specific expression patterns and the severe Fe deficiency symptoms of multiple mutants supported their non-redundant biological functions. Genetic analysis revealed that bHLH115 is negatively regulated by BRUTUS (BTS), an E3 ligase that can interact with bHLH115. Thus, bHLH115 plays key roles in the maintenance of Fe homeostasis in Arabidopsis thaliana . |
Author | Yu, Diqiu Zhang, Huimin Liang, Gang Li, Xiaoli Ai, Qin |
AuthorAffiliation | 1 Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Kunming , Yunnan 650223 , China 3 School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027 , China 2 University of Chinese Academy of Sciences , Beijing 100049 , China |
AuthorAffiliation_xml | – name: 2 University of Chinese Academy of Sciences , Beijing 100049 , China – name: 3 School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027 , China – name: 1 Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Kunming , Yunnan 650223 , China |
Author_xml | – sequence: 1 givenname: Gang surname: Liang fullname: Liang, Gang organization: Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Kunming, Yunnan 650223, China – sequence: 2 givenname: Huimin surname: Zhang fullname: Zhang, Huimin organization: School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China – sequence: 3 givenname: Xiaoli surname: Li fullname: Li, Xiaoli organization: School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China – sequence: 4 givenname: Qin surname: Ai fullname: Ai, Qin organization: University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 5 givenname: Diqiu surname: Yu fullname: Yu, Diqiu organization: Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Kunming, Yunnan 650223, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28369511$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1PGzEQtRBVCbQX7kV7REhb7PXH2hckhFpSKRIXOFu2d5Y42tip7SD49zgK9Es9jTzvzXvjecfoMMQACJ0S_JVgRS9Xz_YS0jNm9ADNCBO47Rglh2iGcde1WPH-CB3nvMIYc8z5R3TUSSoUJ2SG7u18MW9KMiG75DfFx9CMxpWYmh1CCG8SPG4nUyA3PlV0GdcQczHZ10ZorpOxfoib3bMszeRNMJ_Qh9FMGT6_1RP08P3b_c28Xdzd_ri5XrSOCVFaAkKNduicEVIyMQBYIbseKOGSWymlMCMHEOBozyyMXA3Cqh53veKjZAM9QVd73c3WrmFwEOpHJr1Jfm3Si47G67-R4Jf6MT5pzhiRSlWB8zeBFH9uIRe99tnBNJkAcZs1qXsRwRntK_XsT69fJu-nrAS8J7gUc04waueL2R20WvtJE6x3aemalt6nVUcu_hl5V_0v-cuevMo1nd_-gqqOKEpfAYsRom0 |
CitedBy_id | crossref_primary_10_3389_fpls_2022_872242 crossref_primary_10_1007_s11103_018_0735_8 crossref_primary_10_1016_j_jplph_2025_154445 crossref_primary_10_1093_jxb_erab003 crossref_primary_10_1111_nph_19008 crossref_primary_10_1093_jxb_eraa556 crossref_primary_10_1093_plcell_koac215 crossref_primary_10_1093_jxb_erae072 crossref_primary_10_1371_journal_pone_0237998 crossref_primary_10_3390_ijms24119740 crossref_primary_10_1111_jipb_13251 crossref_primary_10_3390_plants12101955 crossref_primary_10_1111_plb_13756 crossref_primary_10_1111_ppl_14128 crossref_primary_10_1093_plphys_kiab375 crossref_primary_10_1016_j_scienta_2019_109018 crossref_primary_10_3389_fpls_2020_00725 crossref_primary_10_3389_fpls_2023_1250588 crossref_primary_10_3389_fpls_2024_1295952 crossref_primary_10_1111_ppl_14091 crossref_primary_10_1111_pce_15090 crossref_primary_10_1038_s41477_024_01896_5 crossref_primary_10_3390_ijms23031635 crossref_primary_10_3389_fpls_2022_956210 crossref_primary_10_1083_jcb_202311048 crossref_primary_10_1094_MPMI_01_18_0009_R crossref_primary_10_1021_acs_jafc_3c09665 crossref_primary_10_3389_fpls_2022_930049 crossref_primary_10_3389_fpls_2024_1358673 crossref_primary_10_1007_s13205_019_1742_4 crossref_primary_10_1016_j_tplants_2022_03_012 crossref_primary_10_3390_plants12101945 crossref_primary_10_1016_j_plantsci_2023_111821 crossref_primary_10_1007_s10534_019_00199_z crossref_primary_10_1007_s12298_020_00841_y crossref_primary_10_1016_j_molp_2021_06_005 crossref_primary_10_1093_jxb_eraa547 crossref_primary_10_1007_s10725_023_00979_1 crossref_primary_10_1007_s00299_024_03382_w crossref_primary_10_1186_s12870_022_03553_5 crossref_primary_10_1007_s12042_020_09253_4 crossref_primary_10_1016_j_plaphy_2024_109457 crossref_primary_10_1111_ppl_70047 crossref_primary_10_1093_pcp_pcae128 crossref_primary_10_3389_fpls_2019_00287 crossref_primary_10_5586_asbp_168700 crossref_primary_10_3390_plants9091095 crossref_primary_10_1073_pnas_1916892116 crossref_primary_10_1016_j_cpb_2024_100354 crossref_primary_10_1111_jipb_12985 crossref_primary_10_1111_jipb_12984 crossref_primary_10_1093_hr_uhad104 crossref_primary_10_1016_j_genrep_2020_100639 crossref_primary_10_1016_j_phytochem_2021_112911 crossref_primary_10_1111_nph_15826 crossref_primary_10_1002_pld3_70029 crossref_primary_10_1007_s00425_017_2703_y crossref_primary_10_1016_j_xplc_2022_100349 crossref_primary_10_7717_peerj_13786 crossref_primary_10_1093_jxb_eraa441 crossref_primary_10_1186_s12864_017_4044_4 crossref_primary_10_1007_s11104_019_04313_5 crossref_primary_10_1093_insilicoplants_diz005 crossref_primary_10_3390_plants12020384 crossref_primary_10_1186_s40529_019_0268_8 crossref_primary_10_1073_pnas_2109063118 crossref_primary_10_1111_pce_14424 crossref_primary_10_32615_bp_2021_004 crossref_primary_10_3389_fpls_2021_677611 crossref_primary_10_1016_j_ijbiomac_2019_09_154 crossref_primary_10_3389_fpls_2022_971773 crossref_primary_10_1007_s11103_019_00917_8 crossref_primary_10_1111_ppl_13184 crossref_primary_10_1111_tpj_16191 crossref_primary_10_3389_fpls_2019_00844 crossref_primary_10_1186_s12864_020_6644_7 crossref_primary_10_3390_ijms252212057 crossref_primary_10_3389_fpls_2022_863849 crossref_primary_10_1016_j_plaphy_2022_02_002 crossref_primary_10_1007_s00425_022_03963_7 crossref_primary_10_3390_ijms22094921 crossref_primary_10_1038_s41467_024_44865_4 crossref_primary_10_1111_tpj_13850 crossref_primary_10_1111_nph_18638 crossref_primary_10_1007_s00299_024_03214_x crossref_primary_10_3390_ijms23052537 crossref_primary_10_3389_fpls_2023_1107405 crossref_primary_10_1080_00380768_2020_1783966 crossref_primary_10_1093_jxb_erad057 crossref_primary_10_1111_nph_16440 crossref_primary_10_1002_jcp_31427 crossref_primary_10_1016_j_csbj_2020_09_009 crossref_primary_10_1016_j_plantsci_2023_111868 crossref_primary_10_1016_j_devcel_2019_01_006 crossref_primary_10_1093_hr_uhae081 crossref_primary_10_1093_jxb_erab393 crossref_primary_10_3389_fpls_2018_01325 crossref_primary_10_1016_j_bbrc_2019_11_063 crossref_primary_10_1016_j_ijbiomac_2021_01_114 crossref_primary_10_1111_pce_14000 crossref_primary_10_1016_j_molp_2020_01_006 crossref_primary_10_1111_nph_15753 crossref_primary_10_1093_pcp_pcz038 crossref_primary_10_1016_j_isci_2019_07_045 crossref_primary_10_1016_j_plantsci_2021_110929 crossref_primary_10_1073_pnas_2024918118 crossref_primary_10_1093_jxb_eraa012 crossref_primary_10_1186_s12870_021_03422_7 crossref_primary_10_3390_f16030416 crossref_primary_10_1111_ppl_13897 crossref_primary_10_3390_ijms232314869 crossref_primary_10_1093_jxb_erae324 crossref_primary_10_3390_ijms22137152 crossref_primary_10_1111_ppl_70134 crossref_primary_10_1111_jipb_12658 crossref_primary_10_1111_jipb_12933 crossref_primary_10_3389_fpls_2021_796893 crossref_primary_10_1111_tpj_15864 crossref_primary_10_1007_s10534_018_0095_5 crossref_primary_10_1186_s12870_020_02601_2 crossref_primary_10_1111_pce_13655 crossref_primary_10_1111_ppl_12698 crossref_primary_10_1007_s10725_019_00485_3 crossref_primary_10_1016_j_freeradbiomed_2018_10_439 crossref_primary_10_1093_plphys_kiab540 crossref_primary_10_1093_plphys_kiac357 crossref_primary_10_1093_plphys_kiac114 crossref_primary_10_1111_jipb_12651 crossref_primary_10_3389_fpls_2021_660303 crossref_primary_10_3389_fpls_2019_00006 crossref_primary_10_3389_fpls_2019_00008 |
Cites_doi | 10.1104/pp.15.01827 10.1016/0076-6879(87)48036-1 10.1093/aob/mcn207 10.1111/pbi.12526 10.1038/sj.cr.7290331 10.1016/j.tplants.2009.02.006 10.1042/bj3590575 10.1046/j.1365-313X.2002.01381.x 10.1104/pp.104.3.815 10.1073/pnas.212448699 10.1038/nprot.2008.38 10.1371/journal.pgen.1003953 10.1093/mp/sss089 10.1111/j.1469-8137.2007.02051.x 10.1093/molbev/msg088 10.1023/A:1019942200164 10.1046/j.1365-313x.1998.00343.x 10.1038/srep06694 10.1105/tpc.110.074096 10.1016/j.bbamcr.2012.03.010 10.1038/cr.2008.26 10.1038/nprot.2008.66 10.1016/j.pbi.2008.06.013 10.1126/science.1176333 10.1046/j.1365-313X.1996.10050835.x 10.1105/tpc.001495 10.1007/s00425-007-0535-x 10.1105/tpc.001263 10.1105/tpc.114.132704 10.1111/j.1469-8137.2009.02908.x 10.1126/science.1176326 10.1016/0005-2728(96)00022-9 10.1105/tpc.001388 10.1146/annurev-arplant-042811-105522 10.1104/pp.114.250837 10.1105/tpc.104.024315 10.1007/s00425-002-0920-4 10.1038/17800 10.1105/tpc.013839 |
ContentType | Journal Article |
Copyright | The Author 2017 The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2017 |
Copyright_xml | – notice: The Author 2017 – notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. – notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/jxb/erx043 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 1755 |
ExternalDocumentID | PMC5441899 28369511 10_1093_jxb_erx043 26392193 |
Genre | Journal Article |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 4.4 482 48X 5GY 5VS 5WA 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACHIC ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CS3 CZ4 D-I DAKXR DATOO DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX IPSME J21 JENOY JLS JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NU- NVLIB O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SA0 TEORI TLC TN5 TR2 UHB UPT W8F WH7 WOQ X7H YAYTL YKOAZ YQT YSK YXANX YZZ ZKX ~02 ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c466t-1e69fbd2ca68846deeb6827e31585b8886af5ee6ec374bef59d6b9702795f84d3 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 18:16:10 EDT 2025 Fri Jul 11 09:06:26 EDT 2025 Mon Jul 21 06:06:00 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Thu Jul 03 08:41:06 EDT 2025 Thu Jun 19 22:20:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | BTS iron bHLH115 Arabidopsis PYE Fe deficiency |
Language | English |
License | The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-1e69fbd2ca68846deeb6827e31585b8886af5ee6ec374bef59d6b9702795f84d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Editor: Hideki Takahashi, Michigan State University Correspondence: ydq@xtbg.ac.cn |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5441899 |
PMID | 28369511 |
PQID | 1884165437 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5441899 proquest_miscellaneous_1884165437 pubmed_primary_28369511 crossref_citationtrail_10_1093_jxb_erx043 crossref_primary_10_1093_jxb_erx043 jstor_primary_26392193 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: UK |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20170523181925_CIT0018) 2010; 22 ( key 20170523181925_CIT0028) 2015; 167 ( key 20170523181925_CIT0015) 2016; 170 ( key 20170523181925_CIT0025) 2009; 326 ( key 20170523181925_CIT0006) 1994; 104 ( key 20170523181925_CIT0017) 2002; 99 ( key 20170523181925_CIT0001) 1998; 16 ( key 20170523181925_CIT0005) 2008 ( key 20170523181925_CIT0030) 2002; 31 ( key 20170523181925_CIT0012) 2012; 1823 ( key 20170523181925_CIT0037) 2008; 18 ( key 20170523181925_CIT0002) 2004; 16 ( key 20170523181925_CIT0013) 2009; 14 ( key 20170523181925_CIT0023) 1999; 397 ( key 20170523181925_CIT0036) 1996; 10 ( key 20170523181925_CIT0011) 2002; 50 ( key 20170523181925_CIT0016) 1987; 148 ( key 20170523181925_CIT0040) 2014; 4 ( key 20170523181925_CIT0034) 2007; 226 ( key 20170523181925_CIT0039) 2015; 27 ( key 20170523181925_CIT0021) 2013; 9 ( key 20170523181925_CIT0022) 2001; 359 ( key 20170523181925_CIT0010) 2003; 216 ( key 20170523181925_CIT0035) 2013; 6 ( key 20170523181925_CIT0004) 2009; 103 ( key 20170523181925_CIT0007) 1996; 1275 ( key 20170523181925_CIT0003) 2002; 14 ( key 20170523181925_CIT0019) 1995 ( key 20170523181925_CIT0027) 2009; 183 ( key 20170523181925_CIT0020) 2008; 3 ( key 20170523181925_CIT0009) 2003; 20 ( key 20170523181925_CIT0008) 2007; 174 ( key 20170523181925_CIT0024) 2002; 14 ( key 20170523181925_CIT0026) 2008; 3 ( key 20170523181925_CIT0033) 2008; 11 ( key 20170523181925_CIT0041) 2016; 14 ( key 20170523181925_CIT0031) 2009; 326 ( key 20170523181925_CIT0014) 2012; 63 ( key 20170523181925_CIT0032) 2002; 14 ( key 20170523181925_CIT0038) 2005; 15 ( key 20170523181925_CIT0029) 2003; 15 |
References_xml | – volume: 170 start-page: 2478 year: 2016 ident: key 20170523181925_CIT0015 article-title: Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana publication-title: Plant Physiology doi: 10.1104/pp.15.01827 – volume: 148 start-page: 350 year: 1987 ident: key 20170523181925_CIT0016 article-title: Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L. eds publication-title: Methods in enzymology doi: 10.1016/0076-6879(87)48036-1 – volume: 103 start-page: 1 year: 2009 ident: key 20170523181925_CIT0004 article-title: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters publication-title: Annals of Botany doi: 10.1093/aob/mcn207 – volume-title: Worldwide prevalence of anaemia 1993–2005 year: 2008 ident: key 20170523181925_CIT0005 – volume: 14 start-page: 1633 year: 2016 ident: key 20170523181925_CIT0041 article-title: Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12526 – volume: 15 start-page: 613 year: 2005 ident: key 20170523181925_CIT0038 article-title: AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants publication-title: Cell Research doi: 10.1038/sj.cr.7290331 – volume: 14 start-page: 280 year: 2009 ident: key 20170523181925_CIT0013 article-title: Homing in on iron homeostasis in plants publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2009.02.006 – volume: 359 start-page: 575 year: 2001 ident: key 20170523181925_CIT0022 article-title: Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family publication-title: The Biochemical Journal doi: 10.1042/bj3590575 – volume: 31 start-page: 589 year: 2002 ident: key 20170523181925_CIT0030 article-title: The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana publication-title: The Plant Journal doi: 10.1046/j.1365-313X.2002.01381.x – volume: 104 start-page: 815 year: 1994 ident: key 20170523181925_CIT0006 article-title: Iron: nutritious, noxious, and not readily available publication-title: Plant Physiology doi: 10.1104/pp.104.3.815 – volume: 99 start-page: 13938 year: 2002 ident: key 20170523181925_CIT0017 article-title: The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.212448699 – volume: 3 start-page: 698 year: 2008 ident: key 20170523181925_CIT0020 article-title: Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans publication-title: Nature Protocols doi: 10.1038/nprot.2008.38 – volume: 9 start-page: e1003953 year: 2013 ident: key 20170523181925_CIT0021 article-title: MYB10 and MYB72 are required for growth under iron-limiting conditions publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1003953 – volume: 6 start-page: 503 year: 2013 ident: key 20170523181925_CIT0035 article-title: Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana publication-title: Molecular Plant doi: 10.1093/mp/sss089 – volume: 174 start-page: 499 year: 2007 ident: key 20170523181925_CIT0008 article-title: Transporters of ligands for essential metal ions in plants publication-title: The New Phytologist doi: 10.1111/j.1469-8137.2007.02051.x – volume: 20 start-page: 735 year: 2003 ident: key 20170523181925_CIT0009 article-title: The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msg088 – volume: 50 start-page: 587 year: 2002 ident: key 20170523181925_CIT0011 article-title: Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects publication-title: Plant Molecular Biology doi: 10.1023/A:1019942200164 – volume: 16 start-page: 735 year: 1998 ident: key 20170523181925_CIT0001 article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana publication-title: The Plant Journal doi: 10.1046/j.1365-313x.1998.00343.x – volume: 4 start-page: 6694 year: 2014 ident: key 20170523181925_CIT0040 article-title: A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum publication-title: Scientific Reports doi: 10.1038/srep06694 – volume: 22 start-page: 2219 year: 2010 ident: key 20170523181925_CIT0018 article-title: The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots publication-title: The Plant Cell doi: 10.1105/tpc.110.074096 – volume: 1823 start-page: 1521 year: 2012 ident: key 20170523181925_CIT0012 article-title: Getting a sense for signals: regulation of the plant iron deficiency response publication-title: Biochimica et Biophysica Acta doi: 10.1016/j.bbamcr.2012.03.010 – volume-title: Mineral nutrition of higher plants year: 1995 ident: key 20170523181925_CIT0019 – volume: 18 start-page: 385 year: 2008 ident: key 20170523181925_CIT0037 article-title: FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis publication-title: Cell Research doi: 10.1038/cr.2008.26 – volume: 3 start-page: 1018 year: 2008 ident: key 20170523181925_CIT0026 article-title: An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants publication-title: Nature Protocols doi: 10.1038/nprot.2008.66 – volume: 11 start-page: 530 year: 2008 ident: key 20170523181925_CIT0033 article-title: Time to pump iron: iron-deficiency-signaling mechanisms of higher plants publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2008.06.013 – volume: 326 start-page: 718 year: 2009 ident: key 20170523181925_CIT0031 article-title: Control of iron homeostasis by an iron-regulated ubiquitin ligase publication-title: Science doi: 10.1126/science.1176333 – volume: 10 start-page: 835 year: 1996 ident: key 20170523181925_CIT0036 article-title: Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency publication-title: The Plant Journal doi: 10.1046/j.1365-313X.1996.10050835.x – volume: 14 start-page: 1787 year: 2002 ident: key 20170523181925_CIT0024 article-title: FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis publication-title: The Plant Cell doi: 10.1105/tpc.001495 – volume: 226 start-page: 897 year: 2007 ident: key 20170523181925_CIT0034 article-title: Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana publication-title: Planta doi: 10.1007/s00425-007-0535-x – volume: 14 start-page: 1347 year: 2002 ident: key 20170523181925_CIT0003 article-title: Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation publication-title: The Plant Cell doi: 10.1105/tpc.001263 – volume: 27 start-page: 787 year: 2015 ident: key 20170523181925_CIT0039 article-title: The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis publication-title: The Plant Cell doi: 10.1105/tpc.114.132704 – volume: 183 start-page: 1072 year: 2009 ident: key 20170523181925_CIT0027 article-title: Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots publication-title: The New Phytologist doi: 10.1111/j.1469-8137.2009.02908.x – volume: 326 start-page: 722 year: 2009 ident: key 20170523181925_CIT0025 article-title: An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis publication-title: Science doi: 10.1126/science.1176326 – volume: 1275 start-page: 161 year: 1996 ident: key 20170523181925_CIT0007 article-title: The ferritins: molecular properties, iron storage function and cellular regulation publication-title: Biochimica et Biophysica Acta doi: 10.1016/0005-2728(96)00022-9 – volume: 14 start-page: 1223 year: 2002 ident: key 20170523181925_CIT0032 article-title: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth publication-title: The Plant Cell doi: 10.1105/tpc.001388 – volume: 63 start-page: 131 year: 2012 ident: key 20170523181925_CIT0014 article-title: Iron uptake, translocation, and regulation in higher plants publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-042811-105522 – volume: 167 start-page: 273 year: 2015 ident: key 20170523181925_CIT0028 article-title: Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors publication-title: Plant Physiology doi: 10.1104/pp.114.250837 – volume: 16 start-page: 3400 year: 2004 ident: key 20170523181925_CIT0002 article-title: The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response publication-title: The Plant Cell doi: 10.1105/tpc.104.024315 – volume: 216 start-page: 541 year: 2003 ident: key 20170523181925_CIT0010 article-title: Iron uptake, trafficking and homeostasis in plants publication-title: Planta doi: 10.1007/s00425-002-0920-4 – volume: 397 start-page: 694 year: 1999 ident: key 20170523181925_CIT0023 article-title: A ferric-chelate reductase for iron uptake from soils publication-title: Nature doi: 10.1038/17800 – volume: 15 start-page: 1749 year: 2003 ident: key 20170523181925_CIT0029 article-title: The Arabidopsis basic/helix-loop-helix transcription factor family publication-title: The Plant Cell doi: 10.1105/tpc.013839 |
SSID | ssj0005055 |
Score | 2.5640252 |
Snippet | Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation... bHLH115 functions downstream of the E3 ligase BRUTUS and positively controls the expression of the iron-deficiency responsive bHLH transcription factors POPEYE... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1743 |
SubjectTerms | Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Chromatin Immunoprecipitation Gene Expression Regulation, Plant Homeostasis Iron - physiology Plant-Environment Interactions Research Paper |
Title | bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana |
URI | https://www.jstor.org/stable/26392193 https://www.ncbi.nlm.nih.gov/pubmed/28369511 https://www.proquest.com/docview/1884165437 https://pubmed.ncbi.nlm.nih.gov/PMC5441899 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96-uCL-HXe-kVEX-ToXT-T5lFFXT9B2IN9K0mbspW7dqldOPzrnUnSL9kD9aXsJtMW8vtlMpNOZgh5yQulAUzlSZHk4KAI5QnGcy_RRRQUYR5xk0vv6ze2PIs_rZP1WBXVnC7p1En-a--5kv9BFdoAVzwl-w_IDg-FBvgN-MIVEIbrX2Gsll-WWOShHue-rZ9zjD1ghR23ttQ8Rl210LtpLnQD9iBmIcGNjlaqqmi2-LfbmB0PeYW1OqsEoJqu1yEYy1O5PecP0i2D043o5Q7rho2y2LauZHNeDVwzbd-dkNuBgFVtCME60VZrxsz3wtipc6dWWTqhD5_oSPSB9ipvm9jqx6VCMNtLfy4GQ7-9MECCRcTAMAzGJWwILOy7rpMbIfgNxsf--HmM-fGTpM9RK6JTeNWpfRHmhHa3zgwUG6O6z_v4M4h2YpWs7pDbDiD62nLjLrmm63vk5huDz32yQhrQGUGoJQh1BKEDQSgShE4IQquaTghCe4I8IGfv363eLj1XRsPLY8Y6L9BMlArmnWQpWJuF1oqlIddRAK6iStOUyTLRmmmcmEqXiSiYEtwPuUjKNC6iQ3JQN7U-IlSDex0IWJdEXMQcTBnt51FcCMmlClVRLsirfuyy3OWYx1In55mNdYgyGPLMDvmCvBhktzazyl6pQwPBIBKCSQ2rLHQ87zHJQCPiZy5Z62b3MwtS_JSexBFfkIcWo_FuB_KC8Bl6gwBmW5_31NXGZF3HYn2pEI-ufOZjcmucHU_IQdfu9FOwWDv1zLDwNz4qmuo |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bHLH+transcription+factor+bHLH115+regulates+iron+homeostasis+in+Arabidopsis+thaliana&rft.jtitle=Journal+of+experimental+botany&rft.au=Liang%2C+Gang&rft.au=Zhang%2C+Huimin&rft.au=Li%2C+Xiaoli&rft.au=Ai%2C+Qin&rft.date=2017-03-01&rft.eissn=1460-2431&rft.volume=68&rft.issue=7&rft.spage=1743&rft_id=info:doi/10.1093%2Fjxb%2Ferx043&rft_id=info%3Apmid%2F28369511&rft.externalDocID=28369511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |