Attention based LSTM framework for robust UWB and INS integration in NLOS environments
This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintai...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 21637 - 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2025
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization. |
---|---|
AbstractList | This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization. This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization.This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization. Abstract This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization. |
ArticleNumber | 21637 |
Author | Wang, Haowen Guo, Xiaojun Ren, Meilin Wei, Junyu Li, Shiqi Qin, Jiangyi |
Author_xml | – sequence: 1 givenname: Meilin surname: Ren fullname: Ren, Meilin organization: CATARC Automotive Test Center (Tianjin) Co., Ltd – sequence: 2 givenname: Junyu surname: Wei fullname: Wei, Junyu email: yujy@nudt.edu.cn organization: College of Intelligence Science and Technoloy, National University of Defense Technology – sequence: 3 givenname: Jiangyi surname: Qin fullname: Qin, Jiangyi email: qjyacmilan@163.com organization: National Innovation Institute of Defense Technology, Academy of Military Science – sequence: 4 givenname: Xiaojun surname: Guo fullname: Guo, Xiaojun organization: College of Intelligence Science and Technoloy, National University of Defense Technology – sequence: 5 givenname: Haowen surname: Wang fullname: Wang, Haowen organization: College of Intelligence Science and Technoloy, National University of Defense Technology – sequence: 6 givenname: Shiqi surname: Li fullname: Li, Shiqi organization: College of Intelligence Science and Technoloy, National University of Defense Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40594095$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1UREvpH2CBvGQT8DvxCpUKykhDu5gWlpbt3AwZErvYSVH_PWZSqnZDvIgf53zX1j0v0UGIARB6Tck7SnjzPgsqdVMRJisiJaEVf4aOGBGyYpyxg0fzQ3SS846UTzItqH6BDgWRWhAtj9C302mCMPUxYGcztHi9ufqKu2RH-B3TT9zFhFN0c57w9feP2IYWry42uA8TbJPd-_qAL9aXGwzhtk8xjAWXX6HnnR0ynNz_j9H1509XZ1-q9eX56ux0XXmh1FRR7b20sibSleHrsgAKuml1p73uvGPeeqVJC0pzLYVnNdOW1JIJppgU_BitFm4b7c7cpH606c5E25v9RkxbY9PU-wFM6x13TnW6plKAVpaSUqNWjdOtFl1TWB8W1s3sRmh9eUeywxPo05PQ_zDbeGsoYwXJWSG8vSek-GuGPJmxzx6GwQaIczalGYpLWW5fpG8eF3uo8q8zRcAWgU8x5wTdg4QS8zcBZkmAKQkw-wQYXkx8MeUiDltIZhfnFEoH_uf6A9dZsis |
Cites_doi | 10.1109/ICAS49788.2021.9551177 10.3390/s19163464 10.1109/LCOMM.2020.2999904 10.3390/electronics10131513 10.1002/navi.421 10.1002/navi.435 10.1016/j.inffus.2019.10.009 10.3390/s22020550 10.1109/ICL-GNSS49876.2020.9115498 10.1109/ICCSPA.2013.6487304 10.1109/JSEN.2020.3026081 10.3390/rs13163328 10.3390/s22062347 10.1016/j.comcom.2021.10.031 10.3390/rs12020256 10.3390/app12115565 10.1109/IROS45743.2020.9341042 10.1007/s11277-021-08425-z 10.1109/TVT.2005.861207 10.1109/JSEN.2020.2998815 10.1007/s10291-023-01412-w 10.1016/j.oceaneng.2019.01.012 10.1007/s00190-022-01662-5 10.1109/WCNC.2007.296 10.3390/rs15010154 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1038/s41598-025-05501-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_dcb3bb6f97154e96a109c9768b9d94f8 PMC12215432 40594095 10_1038_s41598_025_05501_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Youth Foundation of China grantid: 62201598 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM PJZUB PPXIY PQGLB 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c466t-19cc5a5705b5b5c7c5ae1e98d9f9c9fcb2cac690de693954c2729a07524262543 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:23:12 EDT 2025 Thu Aug 21 18:33:26 EDT 2025 Tue Aug 26 08:58:34 EDT 2025 Mon Jul 21 06:03:37 EDT 2025 Thu Jul 03 08:21:01 EDT 2025 Wed Jul 02 02:43:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | UWB/INS integrated navigation system Attention mechanism LSTM Pseudo-observation NLOS |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-19cc5a5705b5b5c7c5ae1e98d9f9c9fcb2cac690de693954c2729a07524262543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-05501-3 |
PMID | 40594095 |
PQID | 3226355524 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dcb3bb6f97154e96a109c9768b9d94f8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12215432 proquest_miscellaneous_3226355524 pubmed_primary_40594095 crossref_primary_10_1038_s41598_025_05501_3 springer_journals_10_1038_s41598_025_05501_3 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | S Taghizadeh (5501_CR8) 2023; 27 M Liu (5501_CR19) 2021; 119 W Gao (5501_CR21) 2022; 96 5501_CR11 N Al Bitar (5501_CR15) 2021; 68 5501_CR12 5501_CR6 5501_CR5 5501_CR3 5501_CR2 5501_CR1 W Fang (5501_CR24) 2020; 12 V Barral (5501_CR4) 2019; 19 Q Meng (5501_CR16) 2020; 21 Y Wang (5501_CR27) 2022; 22 Y Xu (5501_CR26) 2022; 15 Y-T Chan (5501_CR7) 2006; 55 R Liu (5501_CR14) 2020; 56 Y Zhang (5501_CR28) 2020; 20 J Wang (5501_CR22) 2021; 13 K Guo (5501_CR25) 2022; 72 SA Aziez (5501_CR23) 2021; 10 B Li (5501_CR9) 2022; 12 W Wen (5501_CR10) 2021; 68 S Djosic (5501_CR18) 2022; 181 N Davari (5501_CR17) 2019; 174 C Jiang (5501_CR20) 2020; 24 A Ochoa-de Eribe-Landaberea (5501_CR13) 2022; 22 |
References_xml | – ident: 5501_CR1 doi: 10.1109/ICAS49788.2021.9551177 – volume: 19 start-page: 3464 year: 2019 ident: 5501_CR4 publication-title: Sensors doi: 10.3390/s19163464 – ident: 5501_CR12 – volume: 24 start-page: 2226 year: 2020 ident: 5501_CR20 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2020.2999904 – volume: 10 start-page: 1513 year: 2021 ident: 5501_CR23 publication-title: Electronics doi: 10.3390/electronics10131513 – volume: 68 start-page: 315 year: 2021 ident: 5501_CR10 publication-title: NAVIGATION J. Inst. Navig. doi: 10.1002/navi.421 – volume: 68 start-page: 521 year: 2021 ident: 5501_CR15 publication-title: Navigation doi: 10.1002/navi.435 – volume: 56 start-page: 93 year: 2020 ident: 5501_CR14 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.10.009 – volume: 22 start-page: 550 year: 2022 ident: 5501_CR27 publication-title: Sensors doi: 10.3390/s22020550 – ident: 5501_CR3 doi: 10.1109/ICL-GNSS49876.2020.9115498 – ident: 5501_CR5 doi: 10.1109/ICCSPA.2013.6487304 – volume: 21 start-page: 15469 year: 2020 ident: 5501_CR16 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3026081 – volume: 13 start-page: 3328 year: 2021 ident: 5501_CR22 publication-title: Remote Sens. doi: 10.3390/rs13163328 – volume: 22 start-page: 2347 year: 2022 ident: 5501_CR13 publication-title: Sensors doi: 10.3390/s22062347 – volume: 181 start-page: 365 year: 2022 ident: 5501_CR18 publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.10.031 – volume: 12 start-page: 256 year: 2020 ident: 5501_CR24 publication-title: Remote Sens. doi: 10.3390/rs12020256 – ident: 5501_CR11 – volume: 72 start-page: 1 year: 2022 ident: 5501_CR25 publication-title: IEEE Trans. Instrum. Meas. – volume: 12 start-page: 5565 year: 2022 ident: 5501_CR9 publication-title: Appl. Sci. doi: 10.3390/app12115565 – ident: 5501_CR2 doi: 10.1109/IROS45743.2020.9341042 – volume: 119 start-page: 3651 year: 2021 ident: 5501_CR19 publication-title: Wireless Pers. Commun. doi: 10.1007/s11277-021-08425-z – volume: 55 start-page: 17 year: 2006 ident: 5501_CR7 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2005.861207 – volume: 20 start-page: 14401 year: 2020 ident: 5501_CR28 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2998815 – volume: 27 start-page: 71 year: 2023 ident: 5501_CR8 publication-title: GPS Sol. doi: 10.1007/s10291-023-01412-w – volume: 174 start-page: 108 year: 2019 ident: 5501_CR17 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.01.012 – volume: 96 start-page: 71 year: 2022 ident: 5501_CR21 publication-title: J. Geodesy doi: 10.1007/s00190-022-01662-5 – ident: 5501_CR6 doi: 10.1109/WCNC.2007.296 – volume: 15 start-page: 154 year: 2022 ident: 5501_CR26 publication-title: Remote Sens. doi: 10.3390/rs15010154 |
SSID | ssj0000529419 |
Score | 2.4569335 |
Snippet | This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges... Abstract This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 21637 |
SubjectTerms | 639/166/984 639/166/987 Attention mechanism Humanities and Social Sciences LSTM multidisciplinary NLOS Pseudo-observation Science Science (multidisciplinary) UWB/INS integrated navigation system |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEFAe4VEZiRtYTWzHj2OLWlWoLYd2oTcrfkT0kq262QP_nrGdVLuA4FLllIcT-xs732d5ZgzwQYmaG6kEZU4LKrQzVPe1oFI51PdeMdmmeOezc3myEF-u2quNrb6ST1hJD1yA2w_ecedkbxSSfTSya2rjkUPxrcGIPof5IudtTKZKVm9mRGOmKJma6_0VMlWKJmMtrVGVN5RvMVFO2P83lfmns-RvK6aZiI6fwONJQZKDUvOn8CAOz-Bh2VPy5y58OxjH4sJIEkMFcnpxeUb62QeLoEglt0u3Xo1k8f2QdEMgOIEnc9qIVO56IOenXy_IZhDcc1gcH11-PqHT5gnUCylH2hjv265Vdevw8ApPYhONDqZH_HrvmO88To1DlIabVniGMrtDAZE4O0XIv4CdYTnEV0BQFfDQaAQdtUCjg8bSwfjOcB5V8KqCjzOQ9qbkyLB5bZtrW2C3CLvNsFtewWHC-u7JlN86X0Cr28nq9n9Wr-D9bCmL4yEtcnRDXK5XFn9QSUNhMyp4WSx39ymRktOgpqxAb9l0qy7bd4brHznndsMQBcFZBZ9m89tptK_-0djX99HYN_CI5X6bnITfws54u47vUAqNbi_3-l9k4AK2 priority: 102 providerName: Directory of Open Access Journals |
Title | Attention based LSTM framework for robust UWB and INS integration in NLOS environments |
URI | https://link.springer.com/article/10.1038/s41598-025-05501-3 https://www.ncbi.nlm.nih.gov/pubmed/40594095 https://www.proquest.com/docview/3226355524 https://pubmed.ncbi.nlm.nih.gov/PMC12215432 https://doaj.org/article/dcb3bb6f97154e96a109c9768b9d94f8 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG_CozISN7BIYsePY1vtalXtFkS30JsV28mylxS16YF_z9hJKgorJJRDlMRW7Bnb89me-QzwTvKUaSE5za3ilCurqapTToW0iO-dzEUR4p2v5uJiyWerYnUE-RALE532I6VlHKYH77CPWzQ0IRgsL2iKoDqj7BhOA3V7aNVTMd2vq4SdK57pPj4mZeqOrAc2KFL134Uv_3aT_GOvNJqg84fwoMeOZNyV9hEcVc1juNedJvnzCXwdt23nvEiCbfLkcnF9RerB-4ogPCWbtd1tW7L8NiFl4wlO3clAGBHy3TZkfvlpQX4Pf3sKy_Oz6-kF7Y9NoI4L0dJMO1eUhUwLi5eT-FBllVZe19rp2tnclQ4nxb4SmumCuxwBdonQIVjrEBv_DE6adVO9AIJ4gPlMIWRBFJAprzC3167UjFXSO5nA-0GQ5kfHjmHirjZTphO7QbGbKHbDEpgEWe9TBmbr-GK9uTG9po13llkrai0R3FValFmKpcZJkdVe81ol8HbQlMGeELY3yqZa77YGh6aAnrAaCTzvNLf_FQ-0NIgmE1AHOj0oy-GX5vZ7ZNvOcpQCZ3kCHwb1m76fb_9R2Zf_l_wV3M9jCw2OwK_hpN3sqjcId1o7gmO5kiM4HY9nixneJ2fzz19GsdWP4hLCL3Kl_Jg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tixBcEG_C00jcICKxHT-OuxWrAm05bAt7s-JHYC8patMD_56xk1QUVkgopyS2Ys_Yns-Zmc8AryUvmBaS59QqnnNlda6agudCWsT3TlJRxXzn-UJMV_zjRXVxBHTMhUlB-4nSMi3TY3TYuy0ampgMRqu8QFBd5uwaXEesLWIY10RM9v9VoueKl3rIjymYuqLqgQ1KVP1X4cu_wyT_8JUmE3R2B24P2JGc9K29C0ehvQc3-tMkf96HLydd1wcvkmibPJmdL-ekGaOvCMJTslnb3bYjq6-npG49wa07GQkjYr3Llixmn8_J7-lvD2B19n45mebDsQm540J0eamdq-pKFpXFy0m8CWXQyutGO904S13tcFPsg9BMV9xRBNg1QodorWNu_EM4btdteAwE8QDzpULIgiigVF5hba9drRkL0juZwZtRkOZHz45hklebKdOL3aDYTRK7YRmcRlnvS0Zm6_RgvflmBk0b7yyzVjRaIrgLWtRlga3GTZHVXvNGZfBq1JTBmRDdG3Ub1rutwaUpoifsRgaPes3tP8UjLQ2iyQzUgU4P2nL4pr38nti2S4pS4Ixm8HZUvxnm-fYfnX3yf8Vfws3pcj4zsw-LT0_hFk2jNQYFP4PjbrMLzxH6dPZFGuu_AOHM-oU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlAviDfhaSRuYJHEjh_HdmFVYLsgtQu9WfEj0Eu22s0e-PeMnWTFQoWEckpiK-MZ2_NN5mGAV5LnTAvJaWkVp1xZTVWTcyqkRXzvZCmqmO98MhfHC_7xvDrfAzHmwqSg_VTSMm3TY3TY2zUqmpgMVlY0R1BdUDQBfXMNriPezqPRNRGT7b-V6L3ihR5yZHKmrui-o4dSuf6rMObfoZJ_-EuTGprehlsDfiSHPcV3YC-0d-FGf6Lkz3vw9bDr-gBGEvWTJ7PTsxPSjBFYBCEqWS3tZt2RxbcjUreeoPlOxqIRsd9FS-azz6fk9xS4-7CYvj-bHNPh6ATquBAdLbRzVV3JvLJ4OYk3oQhaed1opxtnS1c7NIx9EJrpirsSQXaN8CFq7Jgf_wD222UbHgFBTMB8oRC2IBIolFfY22tXa8aC9E5m8HpkpLnsK2SY5NlmyvRsN8h2k9huWAZHkdfblrG6dXqwXH03g7SNd5ZZKxotEeAFLeoiR6rRMLLaa96oDF6OkjK4GqKLo27DcrM2uD1FBIXDyOBhL7ntp3gsTYOIMgO1I9MdWnbftBc_UsXtokQucFZm8GYUvxnW-vofg338f81fwM0v76Zm9mH-6QkclGmyxrjgp7DfrTbhGaKfzj5PU_0XeV_7jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+based+LSTM+framework+for+robust+UWB+and+INS+integration+in+NLOS+environments&rft.jtitle=Scientific+reports&rft.au=Ren%2C+Meilin&rft.au=Wei%2C+Junyu&rft.au=Qin%2C+Jiangyi&rft.au=Guo%2C+Xiaojun&rft.date=2025-07-01&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=21637&rft_id=info:doi/10.1038%2Fs41598-025-05501-3&rft_id=info%3Apmid%2F40594095&rft.externalDocID=40594095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |