Attention based LSTM framework for robust UWB and INS integration in NLOS environments

This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintai...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 21637 - 18
Main Authors Ren, Meilin, Wei, Junyu, Qin, Jiangyi, Guo, Xiaojun, Wang, Haowen, Li, Shiqi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization.
AbstractList This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization.
This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization.This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization.
Abstract This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges related to UWB signal degradation during non-line-of-sight (NLOS) propagation. The network is adopted to generate pseudo measurements to maintain Kalman filter measurement update during NLOS. LSTM networks are well-suited for modeling sequential data due to their ability to capture long-term dependencies, making them particularly effective in handling the temporal aspects of navigation data. By leveraging attention mechanisms, the proposed approach enhances temporal feature extraction and improves the accuracy of pseudo-UWB observations generation. Extensive experiments demonstrate that the attention-LSTM model significantly reduces positioning errors under both loosely and tightly coupled configurations in NLOS scenarios. This hybrid fusion of model-based and learning-based techniques ensures robust and precise UWB/INS localization.
ArticleNumber 21637
Author Wang, Haowen
Guo, Xiaojun
Ren, Meilin
Wei, Junyu
Li, Shiqi
Qin, Jiangyi
Author_xml – sequence: 1
  givenname: Meilin
  surname: Ren
  fullname: Ren, Meilin
  organization: CATARC Automotive Test Center (Tianjin) Co., Ltd
– sequence: 2
  givenname: Junyu
  surname: Wei
  fullname: Wei, Junyu
  email: yujy@nudt.edu.cn
  organization: College of Intelligence Science and Technoloy, National University of Defense Technology
– sequence: 3
  givenname: Jiangyi
  surname: Qin
  fullname: Qin, Jiangyi
  email: qjyacmilan@163.com
  organization: National Innovation Institute of Defense Technology, Academy of Military Science
– sequence: 4
  givenname: Xiaojun
  surname: Guo
  fullname: Guo, Xiaojun
  organization: College of Intelligence Science and Technoloy, National University of Defense Technology
– sequence: 5
  givenname: Haowen
  surname: Wang
  fullname: Wang, Haowen
  organization: College of Intelligence Science and Technoloy, National University of Defense Technology
– sequence: 6
  givenname: Shiqi
  surname: Li
  fullname: Li, Shiqi
  organization: College of Intelligence Science and Technoloy, National University of Defense Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40594095$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpH2CBvGQT8DvxCpUKykhDu5gWlpbt3AwZErvYSVH_PWZSqnZDvIgf53zX1j0v0UGIARB6Tck7SnjzPgsqdVMRJisiJaEVf4aOGBGyYpyxg0fzQ3SS846UTzItqH6BDgWRWhAtj9C302mCMPUxYGcztHi9ufqKu2RH-B3TT9zFhFN0c57w9feP2IYWry42uA8TbJPd-_qAL9aXGwzhtk8xjAWXX6HnnR0ynNz_j9H1509XZ1-q9eX56ux0XXmh1FRR7b20sibSleHrsgAKuml1p73uvGPeeqVJC0pzLYVnNdOW1JIJppgU_BitFm4b7c7cpH606c5E25v9RkxbY9PU-wFM6x13TnW6plKAVpaSUqNWjdOtFl1TWB8W1s3sRmh9eUeywxPo05PQ_zDbeGsoYwXJWSG8vSek-GuGPJmxzx6GwQaIczalGYpLWW5fpG8eF3uo8q8zRcAWgU8x5wTdg4QS8zcBZkmAKQkw-wQYXkx8MeUiDltIZhfnFEoH_uf6A9dZsis
Cites_doi 10.1109/ICAS49788.2021.9551177
10.3390/s19163464
10.1109/LCOMM.2020.2999904
10.3390/electronics10131513
10.1002/navi.421
10.1002/navi.435
10.1016/j.inffus.2019.10.009
10.3390/s22020550
10.1109/ICL-GNSS49876.2020.9115498
10.1109/ICCSPA.2013.6487304
10.1109/JSEN.2020.3026081
10.3390/rs13163328
10.3390/s22062347
10.1016/j.comcom.2021.10.031
10.3390/rs12020256
10.3390/app12115565
10.1109/IROS45743.2020.9341042
10.1007/s11277-021-08425-z
10.1109/TVT.2005.861207
10.1109/JSEN.2020.2998815
10.1007/s10291-023-01412-w
10.1016/j.oceaneng.2019.01.012
10.1007/s00190-022-01662-5
10.1109/WCNC.2007.296
10.3390/rs15010154
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-05501-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_dcb3bb6f97154e96a109c9768b9d94f8
PMC12215432
40594095
10_1038_s41598_025_05501_3
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Youth Foundation of China
  grantid: 62201598
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
PJZUB
PPXIY
PQGLB
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c466t-19cc5a5705b5b5c7c5ae1e98d9f9c9fcb2cac690de693954c2729a07524262543
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:23:12 EDT 2025
Thu Aug 21 18:33:26 EDT 2025
Tue Aug 26 08:58:34 EDT 2025
Mon Jul 21 06:03:37 EDT 2025
Thu Jul 03 08:21:01 EDT 2025
Wed Jul 02 02:43:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords UWB/INS integrated navigation system
Attention mechanism
LSTM
Pseudo-observation
NLOS
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-19cc5a5705b5b5c7c5ae1e98d9f9c9fcb2cac690de693954c2729a07524262543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-05501-3
PMID 40594095
PQID 3226355524
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_dcb3bb6f97154e96a109c9768b9d94f8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12215432
proquest_miscellaneous_3226355524
pubmed_primary_40594095
crossref_primary_10_1038_s41598_025_05501_3
springer_journals_10_1038_s41598_025_05501_3
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References S Taghizadeh (5501_CR8) 2023; 27
M Liu (5501_CR19) 2021; 119
W Gao (5501_CR21) 2022; 96
5501_CR11
N Al Bitar (5501_CR15) 2021; 68
5501_CR12
5501_CR6
5501_CR5
5501_CR3
5501_CR2
5501_CR1
W Fang (5501_CR24) 2020; 12
V Barral (5501_CR4) 2019; 19
Q Meng (5501_CR16) 2020; 21
Y Wang (5501_CR27) 2022; 22
Y Xu (5501_CR26) 2022; 15
Y-T Chan (5501_CR7) 2006; 55
R Liu (5501_CR14) 2020; 56
Y Zhang (5501_CR28) 2020; 20
J Wang (5501_CR22) 2021; 13
K Guo (5501_CR25) 2022; 72
SA Aziez (5501_CR23) 2021; 10
B Li (5501_CR9) 2022; 12
W Wen (5501_CR10) 2021; 68
S Djosic (5501_CR18) 2022; 181
N Davari (5501_CR17) 2019; 174
C Jiang (5501_CR20) 2020; 24
A Ochoa-de Eribe-Landaberea (5501_CR13) 2022; 22
References_xml – ident: 5501_CR1
  doi: 10.1109/ICAS49788.2021.9551177
– volume: 19
  start-page: 3464
  year: 2019
  ident: 5501_CR4
  publication-title: Sensors
  doi: 10.3390/s19163464
– ident: 5501_CR12
– volume: 24
  start-page: 2226
  year: 2020
  ident: 5501_CR20
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2020.2999904
– volume: 10
  start-page: 1513
  year: 2021
  ident: 5501_CR23
  publication-title: Electronics
  doi: 10.3390/electronics10131513
– volume: 68
  start-page: 315
  year: 2021
  ident: 5501_CR10
  publication-title: NAVIGATION J. Inst. Navig.
  doi: 10.1002/navi.421
– volume: 68
  start-page: 521
  year: 2021
  ident: 5501_CR15
  publication-title: Navigation
  doi: 10.1002/navi.435
– volume: 56
  start-page: 93
  year: 2020
  ident: 5501_CR14
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.10.009
– volume: 22
  start-page: 550
  year: 2022
  ident: 5501_CR27
  publication-title: Sensors
  doi: 10.3390/s22020550
– ident: 5501_CR3
  doi: 10.1109/ICL-GNSS49876.2020.9115498
– ident: 5501_CR5
  doi: 10.1109/ICCSPA.2013.6487304
– volume: 21
  start-page: 15469
  year: 2020
  ident: 5501_CR16
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3026081
– volume: 13
  start-page: 3328
  year: 2021
  ident: 5501_CR22
  publication-title: Remote Sens.
  doi: 10.3390/rs13163328
– volume: 22
  start-page: 2347
  year: 2022
  ident: 5501_CR13
  publication-title: Sensors
  doi: 10.3390/s22062347
– volume: 181
  start-page: 365
  year: 2022
  ident: 5501_CR18
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.10.031
– volume: 12
  start-page: 256
  year: 2020
  ident: 5501_CR24
  publication-title: Remote Sens.
  doi: 10.3390/rs12020256
– ident: 5501_CR11
– volume: 72
  start-page: 1
  year: 2022
  ident: 5501_CR25
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 12
  start-page: 5565
  year: 2022
  ident: 5501_CR9
  publication-title: Appl. Sci.
  doi: 10.3390/app12115565
– ident: 5501_CR2
  doi: 10.1109/IROS45743.2020.9341042
– volume: 119
  start-page: 3651
  year: 2021
  ident: 5501_CR19
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-021-08425-z
– volume: 55
  start-page: 17
  year: 2006
  ident: 5501_CR7
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2005.861207
– volume: 20
  start-page: 14401
  year: 2020
  ident: 5501_CR28
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2998815
– volume: 27
  start-page: 71
  year: 2023
  ident: 5501_CR8
  publication-title: GPS Sol.
  doi: 10.1007/s10291-023-01412-w
– volume: 174
  start-page: 108
  year: 2019
  ident: 5501_CR17
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.01.012
– volume: 96
  start-page: 71
  year: 2022
  ident: 5501_CR21
  publication-title: J. Geodesy
  doi: 10.1007/s00190-022-01662-5
– ident: 5501_CR6
  doi: 10.1109/WCNC.2007.296
– volume: 15
  start-page: 154
  year: 2022
  ident: 5501_CR26
  publication-title: Remote Sens.
  doi: 10.3390/rs15010154
SSID ssj0000529419
Score 2.4569335
Snippet This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address challenges...
Abstract This paper proposes a novel UWB/INS integration framework that utilizes attention-based Long Short-Term Memory (LSTM) neural networks to address...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 21637
SubjectTerms 639/166/984
639/166/987
Attention mechanism
Humanities and Social Sciences
LSTM
multidisciplinary
NLOS
Pseudo-observation
Science
Science (multidisciplinary)
UWB/INS integrated navigation system
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEFAe4VEZiRtYTWzHj2OLWlWoLYd2oTcrfkT0kq262QP_nrGdVLuA4FLllIcT-xs732d5ZgzwQYmaG6kEZU4LKrQzVPe1oFI51PdeMdmmeOezc3myEF-u2quNrb6ST1hJD1yA2w_ecedkbxSSfTSya2rjkUPxrcGIPof5IudtTKZKVm9mRGOmKJma6_0VMlWKJmMtrVGVN5RvMVFO2P83lfmns-RvK6aZiI6fwONJQZKDUvOn8CAOz-Bh2VPy5y58OxjH4sJIEkMFcnpxeUb62QeLoEglt0u3Xo1k8f2QdEMgOIEnc9qIVO56IOenXy_IZhDcc1gcH11-PqHT5gnUCylH2hjv265Vdevw8ApPYhONDqZH_HrvmO88To1DlIabVniGMrtDAZE4O0XIv4CdYTnEV0BQFfDQaAQdtUCjg8bSwfjOcB5V8KqCjzOQ9qbkyLB5bZtrW2C3CLvNsFtewWHC-u7JlN86X0Cr28nq9n9Wr-D9bCmL4yEtcnRDXK5XFn9QSUNhMyp4WSx39ymRktOgpqxAb9l0qy7bd4brHznndsMQBcFZBZ9m89tptK_-0djX99HYN_CI5X6bnITfws54u47vUAqNbi_3-l9k4AK2
  priority: 102
  providerName: Directory of Open Access Journals
Title Attention based LSTM framework for robust UWB and INS integration in NLOS environments
URI https://link.springer.com/article/10.1038/s41598-025-05501-3
https://www.ncbi.nlm.nih.gov/pubmed/40594095
https://www.proquest.com/docview/3226355524
https://pubmed.ncbi.nlm.nih.gov/PMC12215432
https://doaj.org/article/dcb3bb6f97154e96a109c9768b9d94f8
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG_CozISN7BIYsePY1vtalXtFkS30JsV28mylxS16YF_z9hJKgorJJRDlMRW7Bnb89me-QzwTvKUaSE5za3ilCurqapTToW0iO-dzEUR4p2v5uJiyWerYnUE-RALE532I6VlHKYH77CPWzQ0IRgsL2iKoDqj7BhOA3V7aNVTMd2vq4SdK57pPj4mZeqOrAc2KFL134Uv_3aT_GOvNJqg84fwoMeOZNyV9hEcVc1juNedJvnzCXwdt23nvEiCbfLkcnF9RerB-4ogPCWbtd1tW7L8NiFl4wlO3clAGBHy3TZkfvlpQX4Pf3sKy_Oz6-kF7Y9NoI4L0dJMO1eUhUwLi5eT-FBllVZe19rp2tnclQ4nxb4SmumCuxwBdonQIVjrEBv_DE6adVO9AIJ4gPlMIWRBFJAprzC3167UjFXSO5nA-0GQ5kfHjmHirjZTphO7QbGbKHbDEpgEWe9TBmbr-GK9uTG9po13llkrai0R3FValFmKpcZJkdVe81ol8HbQlMGeELY3yqZa77YGh6aAnrAaCTzvNLf_FQ-0NIgmE1AHOj0oy-GX5vZ7ZNvOcpQCZ3kCHwb1m76fb_9R2Zf_l_wV3M9jCw2OwK_hpN3sqjcId1o7gmO5kiM4HY9nixneJ2fzz19GsdWP4hLCL3Kl_Jg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tixBcEG_C00jcICKxHT-OuxWrAm05bAt7s-JHYC8patMD_56xk1QUVkgopyS2Ys_Yns-Zmc8AryUvmBaS59QqnnNlda6agudCWsT3TlJRxXzn-UJMV_zjRXVxBHTMhUlB-4nSMi3TY3TYuy0ampgMRqu8QFBd5uwaXEesLWIY10RM9v9VoueKl3rIjymYuqLqgQ1KVP1X4cu_wyT_8JUmE3R2B24P2JGc9K29C0ehvQc3-tMkf96HLydd1wcvkmibPJmdL-ekGaOvCMJTslnb3bYjq6-npG49wa07GQkjYr3Llixmn8_J7-lvD2B19n45mebDsQm540J0eamdq-pKFpXFy0m8CWXQyutGO904S13tcFPsg9BMV9xRBNg1QodorWNu_EM4btdteAwE8QDzpULIgiigVF5hba9drRkL0juZwZtRkOZHz45hklebKdOL3aDYTRK7YRmcRlnvS0Zm6_RgvflmBk0b7yyzVjRaIrgLWtRlga3GTZHVXvNGZfBq1JTBmRDdG3Ub1rutwaUpoifsRgaPes3tP8UjLQ2iyQzUgU4P2nL4pr38nti2S4pS4Ixm8HZUvxnm-fYfnX3yf8Vfws3pcj4zsw-LT0_hFk2jNQYFP4PjbrMLzxH6dPZFGuu_AOHM-oU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlAviDfhaSRuYJHEjh_HdmFVYLsgtQu9WfEj0Eu22s0e-PeMnWTFQoWEckpiK-MZ2_NN5mGAV5LnTAvJaWkVp1xZTVWTcyqkRXzvZCmqmO98MhfHC_7xvDrfAzHmwqSg_VTSMm3TY3TY2zUqmpgMVlY0R1BdUDQBfXMNriPezqPRNRGT7b-V6L3ihR5yZHKmrui-o4dSuf6rMObfoZJ_-EuTGprehlsDfiSHPcV3YC-0d-FGf6Lkz3vw9bDr-gBGEvWTJ7PTsxPSjBFYBCEqWS3tZt2RxbcjUreeoPlOxqIRsd9FS-azz6fk9xS4-7CYvj-bHNPh6ATquBAdLbRzVV3JvLJ4OYk3oQhaed1opxtnS1c7NIx9EJrpirsSQXaN8CFq7Jgf_wD222UbHgFBTMB8oRC2IBIolFfY22tXa8aC9E5m8HpkpLnsK2SY5NlmyvRsN8h2k9huWAZHkdfblrG6dXqwXH03g7SNd5ZZKxotEeAFLeoiR6rRMLLaa96oDF6OkjK4GqKLo27DcrM2uD1FBIXDyOBhL7ntp3gsTYOIMgO1I9MdWnbftBc_UsXtokQucFZm8GYUvxnW-vofg338f81fwM0v76Zm9mH-6QkclGmyxrjgp7DfrTbhGaKfzj5PU_0XeV_7jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+based+LSTM+framework+for+robust+UWB+and+INS+integration+in+NLOS+environments&rft.jtitle=Scientific+reports&rft.au=Ren%2C+Meilin&rft.au=Wei%2C+Junyu&rft.au=Qin%2C+Jiangyi&rft.au=Guo%2C+Xiaojun&rft.date=2025-07-01&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=21637&rft_id=info:doi/10.1038%2Fs41598-025-05501-3&rft_id=info%3Apmid%2F40594095&rft.externalDocID=40594095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon