Potential Unreliability of Uncommon ALK, ROS1, and RET Genomic Breakpoints in Predicting the Efficacy of Targeted Therapy in NSCLC
Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy. NSC...
Saved in:
Published in | Journal of thoracic oncology Vol. 16; no. 3; pp. 404 - 418 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-0864 1556-1380 1556-1380 |
DOI | 10.1016/j.jtho.2020.10.156 |
Cover
Loading…
Abstract | Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy.
NSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry.
In total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non–EML4-ALK, non–CD74/EZR/TPM3/SDC4-ROS1, and non–KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185).
Uncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions. |
---|---|
AbstractList | Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy.INTRODUCTIONVariable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy.NSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry.METHODSNSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry.In total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non-EML4-ALK, non-CD74/EZR/TPM3/SDC4-ROS1, and non-KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185).RESULTSIn total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non-EML4-ALK, non-CD74/EZR/TPM3/SDC4-ROS1, and non-KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185).Uncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions.CONCLUSIONSUncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions. Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy. NSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry. In total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non–EML4-ALK, non–CD74/EZR/TPM3/SDC4-ROS1, and non–KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185). Uncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions. |
Author | Yang, Lin Liu, Kaihua Dong, Lin Ying, Jianming Liu, Yutao Guo, Lei Li, Weihua Shao, Yang Chen, Li |
Author_xml | – sequence: 1 givenname: Weihua surname: Li fullname: Li, Weihua organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China – sequence: 2 givenname: Lei surname: Guo fullname: Guo, Lei organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China – sequence: 3 givenname: Yutao surname: Liu fullname: Liu, Yutao organization: Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China – sequence: 4 givenname: Lin surname: Dong fullname: Dong, Lin organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China – sequence: 5 givenname: Lin surname: Yang fullname: Yang, Lin organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China – sequence: 6 givenname: Li surname: Chen fullname: Chen, Li organization: HeliTec Biotechnologies, Shenzhen, Guangdong, People’s Republic of China – sequence: 7 givenname: Kaihua surname: Liu fullname: Liu, Kaihua organization: Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People’s Republic of China – sequence: 8 givenname: Yang surname: Shao fullname: Shao, Yang organization: Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People’s Republic of China – sequence: 9 givenname: Jianming surname: Ying fullname: Ying, Jianming email: jmying@cicams.ac.cn organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33248323$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vGyEUxFGVqPnTfoEeKo49xA7sAmalXlLLTatYTZQ4Z4ThEePuggu4kq_95N2NnUsOOb2n0W_mMHOGjkIMgNAnSsaUUHG5Hq_LKo4rUg3CmHLxDp1SzsWI1pIcHX4iBTtBZzmvCWGcMPkendR1xWRd1afo310sEIrXLX4MCVqvl771ZYej6wUTuy4GfDW_ucD3tw_0Autg8f1sga8hxM4b_C2B_r2JPpSMfcB3Caw3xYcnXFaAZ855o81z2kKnJyhg8WIFSW92A_7rYTqffkDHTrcZPh7uOXr8PltMf4zmt9c_p1fzkWFClBHlS0pMYwWttZOysY4LA85pOQHXaMKM5EI0QBpumSVyop0GXjFYTiY1OFufoy_73E2Kf7aQi-p8NtC2OkDcZlUxwRkTkvAe_XxAt8sOrNok3-m0Uy-99YDcAybFnBM4ZXzRxcdQkvatokQNE6m1GiZSw0TPGhe9tXplfUl_0_R1b4K-oL8eksrGQzB92wlMUTb6t-z_ASlmqhQ |
CitedBy_id | crossref_primary_10_2147_OTT_S474134 crossref_primary_10_1016_j_jtho_2021_09_016 crossref_primary_10_1038_s41598_023_29511_1 crossref_primary_10_1080_1061186X_2022_2085730 crossref_primary_10_3389_fonc_2021_724815 crossref_primary_10_1007_s44258_024_00033_3 crossref_primary_10_1097_MD_0000000000030316 crossref_primary_10_3389_fimmu_2024_1386561 crossref_primary_10_3390_jcm12041438 crossref_primary_10_1016_j_heliyon_2024_e24796 crossref_primary_10_1097_MD_0000000000030913 crossref_primary_10_1016_j_cllc_2024_10_009 crossref_primary_10_1080_14740338_2024_2392003 crossref_primary_10_1038_s41598_025_91640_6 crossref_primary_10_1093_ajcp_aqad078 crossref_primary_10_3390_curroncol30040302 crossref_primary_10_1111_1759_7714_14345 crossref_primary_10_1089_dna_2021_0900 crossref_primary_10_1186_s12916_022_02362_9 crossref_primary_10_1016_j_jtho_2023_12_009 crossref_primary_10_1016_j_jncc_2021_07_005 crossref_primary_10_1111_cas_15317 crossref_primary_10_3389_fonc_2024_1463341 crossref_primary_10_1016_j_critrevonc_2024_104401 crossref_primary_10_3390_biomedicines12020297 crossref_primary_10_1016_j_lungcan_2021_09_005 crossref_primary_10_3389_fonc_2023_1090757 crossref_primary_10_1002_cam4_7201 crossref_primary_10_1007_s11684_022_0946_x crossref_primary_10_3390_jpm14070670 crossref_primary_10_1016_j_humpath_2022_02_005 crossref_primary_10_1016_j_jmoldx_2023_04_007 crossref_primary_10_3389_fmed_2022_979032 crossref_primary_10_3390_cancers15143678 crossref_primary_10_1038_s41571_025_01011_3 crossref_primary_10_1007_s40291_025_00774_w crossref_primary_10_3389_fonc_2022_1019624 crossref_primary_10_1093_oncolo_oyae166 crossref_primary_10_1007_s12094_024_03481_w crossref_primary_10_1016_j_jtocrr_2021_100167 crossref_primary_10_1038_s41598_025_92590_9 crossref_primary_10_3389_fgene_2024_1455502 crossref_primary_10_1002_1878_0261_13509 crossref_primary_10_1186_s13000_023_01424_7 crossref_primary_10_3390_jmp2020015 crossref_primary_10_1186_s13000_022_01255_y crossref_primary_10_3389_fonc_2022_1033484 crossref_primary_10_1002_1878_0261_13348 crossref_primary_10_1002_1878_0261_13468 crossref_primary_10_3389_fonc_2023_1067849 crossref_primary_10_1016_j_cancergen_2022_06_004 crossref_primary_10_1038_s41467_022_33210_2 crossref_primary_10_2147_OTT_S327722 crossref_primary_10_1016_j_jtocrr_2025_100795 crossref_primary_10_1016_j_trecan_2021_11_003 crossref_primary_10_1016_j_jtho_2020_12_006 crossref_primary_10_1177_15330338221148802 crossref_primary_10_2147_OTT_S372134 crossref_primary_10_1002_gcc_23022 crossref_primary_10_1002_ijc_34522 crossref_primary_10_2147_OTT_S406234 crossref_primary_10_1007_s12672_024_00915_3 crossref_primary_10_1002_cam4_70191 crossref_primary_10_1016_j_jmoldx_2021_12_004 crossref_primary_10_1002_ijc_34361 crossref_primary_10_3390_curroncol29100618 crossref_primary_10_1097_CAD_0000000000001363 crossref_primary_10_1111_1759_7714_15105 crossref_primary_10_3389_fonc_2022_864666 crossref_primary_10_3389_fonc_2022_998545 crossref_primary_10_1111_cas_15181 crossref_primary_10_12677_HJBM_2022_121002 |
Cites_doi | 10.1038/nm.2658 10.1016/j.annonc.2020.09.015 10.1158/0008-5472.CAN-19-0372 10.1002/cam4.2043 10.2217/fon-2017-0619 10.1080/14656566.2020.1738387 10.1016/j.lungcan.2020.07.016 10.1016/j.canlet.2013.01.011 10.1200/JCO.2015.65.8732 10.1093/annonc/mdz131 10.1373/clinchem.2019.308833 10.1016/S1470-2045(12)70344-3 10.1016/j.jtho.2020.01.019 10.1016/j.jtho.2018.04.016 10.1016/j.jtho.2017.12.001 10.1016/j.jtho.2019.01.032 10.3322/caac.21560 10.1016/j.jtho.2020.02.023 10.1016/j.jtho.2016.08.145 10.1016/j.jtho.2020.02.007 10.1158/2159-8290.CD-18-0839 10.1056/NEJMoa2005651 10.1016/S1470-2045(19)30655-2 10.1038/modpathol.2017.181 10.1056/NEJMoa1704795 10.1016/j.lungcan.2018.01.026 10.1097/JTO.0000000000000467 10.1002/cam4.2984 10.1056/NEJMoa1810171 10.1186/gb-2009-10-3-r25 10.1093/bib/bbs017 10.1016/j.jtho.2017.11.134 10.1016/j.jtho.2018.09.020 10.1016/j.cllc.2019.09.003 10.1016/j.ejca.2008.10.026 10.1016/j.jtho.2020.01.021 10.1016/j.jtho.2018.08.2029 10.1200/JCO.2017.76.2294 10.1097/JTO.0000000000000311 10.1016/j.jtho.2018.05.041 10.1016/j.lungcan.2018.12.011 10.1016/S2213-2600(16)30322-8 10.1158/1078-0432.CCR-19-0225 |
ContentType | Journal Article |
Copyright | 2020 International Association for the Study of Lung Cancer Copyright © 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 International Association for the Study of Lung Cancer – notice: Copyright © 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jtho.2020.10.156 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1556-1380 |
EndPage | 418 |
ExternalDocumentID | 33248323 10_1016_j_jtho_2020_10_156 S1556086420310236 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 .XZ .Z2 0R~ 457 53G 5GY 5VS 6I. 9UZ AACTN AAEDW AAFTH AAIAV AAKAS AALRI AAWTL AAXUO ABBUW ABJNI ABMAC ABPMR ABVKL ACDDN ACGFS ACWDW ACWRI ADBBV ADBIZ ADEZE ADZCM AE3 AENEX AEXQZ AFTJW AFTRI AGHFR AHPSJ AITUG AIZYK ALMA_UNASSIGNED_HOLDINGS AMRAJ AWKKM BOYCO C45 CS3 DU5 E.X EBS EJD EX3 F5P FDB FL- HZ~ IN~ KD2 NCXOZ NTWIH O9- OFXIZ OGEVE OK1 OVD P2P ROL S4S SSZ TEORI V2I W3M WOQ WOW X7M AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFETI AFJKZ AFPUW AGCQF AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-15b10c9d613af889df56ceffa87ef9a04c85669e095d4d087afae524eb773efd3 |
ISSN | 1556-0864 1556-1380 |
IngestDate | Thu Sep 04 14:29:06 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Tue Jul 01 02:57:11 EDT 2025 Fri Feb 23 02:46:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Non–small cell lung cancer Targeted therapy Genomic breakpoint DNA sequencing Uncommon fusions |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-15b10c9d613af889df56ceffa87ef9a04c85669e095d4d087afae524eb773efd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1016/j.jtho.2020.10.156 |
PMID | 33248323 |
PQID | 2465446805 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2465446805 pubmed_primary_33248323 crossref_citationtrail_10_1016_j_jtho_2020_10_156 crossref_primary_10_1016_j_jtho_2020_10_156 elsevier_sciencedirect_doi_10_1016_j_jtho_2020_10_156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of thoracic oncology |
PublicationTitleAlternate | J Thorac Oncol |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kodama, Motoi, Ninomiya (bib33) 2014; 9 Shan, Jiang, Xu (bib16) 2015; 10 Li, Liu, Li, Chen, Ying (bib14) 2020; 15 Song, Zhang, Li (bib12) 2019; 8 Liu, Liu, Li, Wang, Pu, Lin (bib28) 2019; 129 Li, Zhang, Zhang (bib11) 2018; 118 Wirth, Sherman, Robinson (bib3) 2020; 383 Annala, Parker, Zhang, Nykter (bib21) 2013; 340 Indini, Rijavec, Ghidini (bib46) 2020; 21 Zhang, Zeng, Zhou (bib42) 2020; 15 Solomon, Hechtman (bib25) 2019; 79 Rosenbaum, Bloom, Forys (bib32) 2018; 31 Camidge, Bang, Kwak (bib5) 2012; 13 Xu, Zhang, Liang (bib13) 2020; 9 Li, Zhang, Guo, Chuai, Shan, Ying (bib15) 2017; 12 Lin, Liu, McCoach (bib7) 2020; 31 Camidge, Kim, Ahn (bib44) 2018; 379 Benayed, Offin, Mullaney (bib22) 2019; 25 Qin, Jiao, Liu, Wu, Zang (bib31) 2019; 14 Peters, Camidge, Shaw (bib43) 2017; 377 Peng, Zheng, Lv (bib30) 2019; 14 El-Deiry, Goldberg, Lenz (bib8) 2019; 69 Zhang, Yu, Yuan, Chen, Huang (bib29) 2020; 21 Yoh, Seto, Satouchi (bib41) 2017; 5 Lin, Zhu, Yoda (bib39) 2018; 36 Drilon, Fu, Patel (bib40) 2019; 9 Thorvaldsdottir, Robinson, Mesirov (bib19) 2013; 14 Ou, Zhu, Nagasaka (bib10) 2020; 1 Hu, Cui, Wang (bib27) 2019; 14 Kohsaka, Hayashi, Nagano (bib34) 2020; 15 Hu, Li, Peng, Feng, Zhang, Li (bib26) 2018; 13 Shaw, Solomon, Chiari (bib4) 2019; 20 Singhi, Horn (bib45) 2018; 14 Takeuchi, Soda, Togashi (bib1) 2012; 18 Song, Xu, He (bib17) 2020; 66 Shaw, Riely, Bang (bib2) 2019; 30 Eisenhauer, Therasse, Bogaerts (bib20) 2009; 45 Cohen, Hondelink, Solleveld-Westerink (bib23) 2020; 15 Li, Shen, Ding (bib37) 2018; 13 Ou, Zhu (bib36) 2020; 1 Langmead, Trapnell, Pop, Salzberg (bib18) 2009; 10 Davies, Le, Sheren (bib24) 2018; 13 Ou, Nagasaka (bib35) 2020; 1 Lindeman, Cagle, Aisner (bib9) 2018; 13 Zheng, Cao, Li (bib6) 2020; 147 Yoshida, Oya, Tanaka (bib38) 2016; 34 Indini (10.1016/j.jtho.2020.10.156_bib46) 2020; 21 Ou (10.1016/j.jtho.2020.10.156_bib35) 2020; 1 Takeuchi (10.1016/j.jtho.2020.10.156_bib1) 2012; 18 Lin (10.1016/j.jtho.2020.10.156_bib7) 2020; 31 Thorvaldsdottir (10.1016/j.jtho.2020.10.156_bib19) 2013; 14 Peters (10.1016/j.jtho.2020.10.156_bib43) 2017; 377 Li (10.1016/j.jtho.2020.10.156_bib11) 2018; 118 Langmead (10.1016/j.jtho.2020.10.156_bib18) 2009; 10 Benayed (10.1016/j.jtho.2020.10.156_bib22) 2019; 25 Li (10.1016/j.jtho.2020.10.156_bib37) 2018; 13 Cohen (10.1016/j.jtho.2020.10.156_bib23) 2020; 15 Rosenbaum (10.1016/j.jtho.2020.10.156_bib32) 2018; 31 El-Deiry (10.1016/j.jtho.2020.10.156_bib8) 2019; 69 Lin (10.1016/j.jtho.2020.10.156_bib39) 2018; 36 Wirth (10.1016/j.jtho.2020.10.156_bib3) 2020; 383 Zheng (10.1016/j.jtho.2020.10.156_bib6) 2020; 147 Shan (10.1016/j.jtho.2020.10.156_bib16) 2015; 10 Kohsaka (10.1016/j.jtho.2020.10.156_bib34) 2020; 15 Singhi (10.1016/j.jtho.2020.10.156_bib45) 2018; 14 Shaw (10.1016/j.jtho.2020.10.156_bib4) 2019; 20 Song (10.1016/j.jtho.2020.10.156_bib12) 2019; 8 Solomon (10.1016/j.jtho.2020.10.156_bib25) 2019; 79 Peng (10.1016/j.jtho.2020.10.156_bib30) 2019; 14 Qin (10.1016/j.jtho.2020.10.156_bib31) 2019; 14 Drilon (10.1016/j.jtho.2020.10.156_bib40) 2019; 9 Lindeman (10.1016/j.jtho.2020.10.156_bib9) 2018; 13 Camidge (10.1016/j.jtho.2020.10.156_bib5) 2012; 13 Li (10.1016/j.jtho.2020.10.156_bib14) 2020; 15 Ou (10.1016/j.jtho.2020.10.156_bib10) 2020; 1 Yoh (10.1016/j.jtho.2020.10.156_bib41) 2017; 5 Camidge (10.1016/j.jtho.2020.10.156_bib44) 2018; 379 Shaw (10.1016/j.jtho.2020.10.156_bib2) 2019; 30 Kodama (10.1016/j.jtho.2020.10.156_bib33) 2014; 9 Ou (10.1016/j.jtho.2020.10.156_bib36) 2020; 1 Hu (10.1016/j.jtho.2020.10.156_bib26) 2018; 13 Davies (10.1016/j.jtho.2020.10.156_bib24) 2018; 13 Li (10.1016/j.jtho.2020.10.156_bib15) 2017; 12 Xu (10.1016/j.jtho.2020.10.156_bib13) 2020; 9 Liu (10.1016/j.jtho.2020.10.156_bib28) 2019; 129 Eisenhauer (10.1016/j.jtho.2020.10.156_bib20) 2009; 45 Zhang (10.1016/j.jtho.2020.10.156_bib29) 2020; 21 Yoshida (10.1016/j.jtho.2020.10.156_bib38) 2016; 34 Hu (10.1016/j.jtho.2020.10.156_bib27) 2019; 14 Zhang (10.1016/j.jtho.2020.10.156_bib42) 2020; 15 Song (10.1016/j.jtho.2020.10.156_bib17) 2020; 66 Annala (10.1016/j.jtho.2020.10.156_bib21) 2013; 340 33641715 - J Thorac Oncol. 2021 Mar;16(3):344-348 |
References_xml | – volume: 18 start-page: 378 year: 2012 end-page: 381 ident: bib1 article-title: RET, ROS1 and ALK fusions in lung cancer publication-title: Nat Med – volume: 31 start-page: 791 year: 2018 end-page: 808 ident: bib32 article-title: Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer publication-title: Mod Pathol – volume: 9 start-page: 1638 year: 2014 end-page: 1646 ident: bib33 article-title: A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line publication-title: J Thorac Oncol – volume: 12 start-page: 94 year: 2017 end-page: 101 ident: bib15 article-title: Combinational analysis of FISH and immunohistochemistry reveals rare genomic events in ALK fusion patterns in NSCLC that responds to crizotinib treatment publication-title: J Thorac Oncol – volume: 21 start-page: e78 year: 2020 end-page: e83 ident: bib29 article-title: Identification of a novel RBPMS-ROS1 fusion in an adolescent patient with microsatellite-instable advanced lung adenocarcinoma sensitive to crizotinib: a case report publication-title: Clin Lung Cancer – volume: 13 start-page: 1011 year: 2012 end-page: 1019 ident: bib5 article-title: Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study publication-title: Lancet Oncol – volume: 20 start-page: 1691 year: 2019 end-page: 1701 ident: bib4 article-title: Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial publication-title: Lancet Oncol – volume: 147 start-page: 130 year: 2020 end-page: 136 ident: bib6 article-title: Effectiveness and prognostic factors of first-line crizotinib treatment in patients with ROS1-rearranged non-small cell lung cancer: a multicenter retrospective study publication-title: Lung Cancer – volume: 14 start-page: 178 year: 2013 end-page: 192 ident: bib19 article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration publication-title: Brief Bioinform – volume: 15 start-page: 1000 year: 2020 end-page: 1014 ident: bib23 article-title: Optimizing mutation and fusion detection in NSCLC by sequential DNA and RNA sequencing publication-title: J Thorac Oncol – volume: 13 start-page: 1474 year: 2018 end-page: 1482 ident: bib24 article-title: Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples publication-title: J Thorac Oncol – volume: 118 start-page: 128 year: 2018 end-page: 133 ident: bib11 article-title: Response to crizotinib in advanced ALK-rearranged non-small cell lung cancers with different ALK-fusion variants publication-title: Lung Cancer – volume: 8 start-page: 1551 year: 2019 end-page: 1557 ident: bib12 article-title: Concomitant TP53 mutations with response to crizotinib treatment in patients with ALK-rearranged non-small-cell lung cancer publication-title: Cancer Med – volume: 379 start-page: 2027 year: 2018 end-page: 2039 ident: bib44 article-title: Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer publication-title: N Engl J Med – volume: 31 start-page: 1725 year: 2020 end-page: 1733 ident: bib7 article-title: Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small cell lung cancer publication-title: Ann Oncol – volume: 340 start-page: 192 year: 2013 end-page: 200 ident: bib21 article-title: Fusion genes and their discovery using high throughput sequencing publication-title: Cancer Lett – volume: 25 start-page: 4712 year: 2019 end-page: 4722 ident: bib22 article-title: High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden publication-title: Clin Cancer Res – volume: 14 start-page: e115 year: 2019 end-page: e117 ident: bib31 article-title: Identification of a novel EML4-ALK, BCL11A-ALK double-fusion variant in lung adenocarcinoma using next-generation sequencing and response to crizotinib publication-title: J Thorac Oncol – volume: 9 start-page: 3328 year: 2020 end-page: 3336 ident: bib13 article-title: Crizotinib vs platinum-based chemotherapy as first-line treatment for advanced non-small cell lung cancer with different ROS1 fusion variants publication-title: Cancer Med – volume: 14 start-page: e7 year: 2019 end-page: e9 ident: bib30 article-title: TBC1D32-RET: a novel RET oncogenic fusion in lung adenocarcinoma publication-title: J Thorac Oncol – volume: 5 start-page: 42 year: 2017 end-page: 50 ident: bib41 article-title: Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial publication-title: Lancet Respir Med – volume: 69 start-page: 305 year: 2019 end-page: 343 ident: bib8 article-title: The current state of molecular testing in the treatment of patients with solid tumors, 2019 publication-title: CA Cancer J Clin – volume: 383 start-page: 825 year: 2020 end-page: 835 ident: bib3 article-title: Efficacy of selpercatinib in RET-altered thyroid cancers publication-title: N Engl J Med – volume: 10 start-page: R25 year: 2009 ident: bib18 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol – volume: 13 start-page: e72 year: 2018 end-page: e74 ident: bib26 article-title: VIT-ALK, a novel alectinib-sensitive fusion gene in lung adenocarcinoma publication-title: J Thorac Oncol – volume: 15 start-page: 1027 year: 2020 end-page: 1036 ident: bib42 article-title: Detection of nonreciprocal/reciprocal ALK translocation as poor predictive marker in patients with first-line crizotinib-treated ALK-rearranged NSCLC publication-title: J Thorac Oncol – volume: 30 start-page: 1121 year: 2019 end-page: 1126 ident: bib2 article-title: Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001 publication-title: Ann Oncol – volume: 377 start-page: 829 year: 2017 end-page: 838 ident: bib43 article-title: Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer publication-title: N Engl J Med – volume: 13 start-page: 323 year: 2018 end-page: 358 ident: bib9 article-title: Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology publication-title: J Thorac Oncol – volume: 10 start-page: e37 year: 2015 end-page: e39 ident: bib16 article-title: BIRC6-ALK, a novel fusion gene in ALK break-apart FISH-negative lung adenocarcinoma, responds to crizotinib publication-title: J Thorac Oncol – volume: 13 start-page: 987 year: 2018 end-page: 995 ident: bib37 article-title: Efficacy of crizotinib among different types of ROS1 fusion partners in patients with ROS1-rearranged non-small cell lung cancer publication-title: J Thorac Oncol – volume: 14 start-page: 1781 year: 2018 end-page: 1787 ident: bib45 article-title: Background and rationale of the eXalt3 trial investigating X-396 in the treatment of ALK+ non-small-cell lung cancer publication-title: Future Oncol – volume: 15 start-page: 948 year: 2020 end-page: 961 ident: bib34 article-title: Identification of novel CD74-NRG2α fusion from comprehensive profiling of lung adenocarcinoma in Japanese never or light smokers publication-title: J Thorac Oncol – volume: 9 start-page: 384 year: 2019 end-page: 395 ident: bib40 article-title: A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105 publication-title: Cancer Discov – volume: 79 start-page: 3163 year: 2019 end-page: 3168 ident: bib25 article-title: Detection of NTRK fusions: merits and limitations of current diagnostic platforms publication-title: Cancer Res – volume: 66 start-page: 178 year: 2020 end-page: 187 ident: bib17 article-title: Simultaneous detection of gene fusions and base mutations in cancer tissue biopsies by sequencing dual nucleic acid templates in unified reaction publication-title: Clin Chem – volume: 1 start-page: 100037 year: 2020 ident: bib36 article-title: Catalog of 5′ fusion partners in RET+ NSCLC circa 2020 publication-title: JTO Clin Res Rep – volume: 1 start-page: 100048 year: 2020 ident: bib35 article-title: A catalog of 5’ fusion partners in ROS1-positive NSCLC circa 2020 publication-title: JTO Clin Res Rep – volume: 34 start-page: 3383 year: 2016 end-page: 3389 ident: bib38 article-title: Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer publication-title: J Clin Oncol – volume: 36 start-page: 1199 year: 2018 end-page: 1206 ident: bib39 article-title: Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer publication-title: J Clin Oncol – volume: 21 start-page: 931 year: 2020 end-page: 940 ident: bib46 article-title: Pharmacotherapeutic advances with anaplastic lymphoma kinase inhibitors for the treatment of non-small cell lung cancer publication-title: Expert Opin Pharmacother – volume: 1 start-page: 100015 year: 2020 ident: bib10 article-title: Catalog of 5’ fusion partners in ALK-positive NSCLC circa 2020 publication-title: JTO Clin Res Rep – volume: 14 start-page: e11 year: 2019 end-page: e12 ident: bib27 article-title: A novel CAMKMT Exon3-ALK Exon20 fusion variant was identified in a primary pulmonary mucinous adenocarcinoma publication-title: J Thorac Oncol – volume: 15 start-page: 1223 year: 2020 end-page: 1231 ident: bib14 article-title: Intergenic breakpoints identified by DNA sequencing confound targetable kinase fusion detection in NSCLC publication-title: J Thorac Oncol – volume: 45 start-page: 228 year: 2009 end-page: 247 ident: bib20 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur J Cancer – volume: 129 start-page: 92 year: 2019 end-page: 94 ident: bib28 article-title: Identification of a novel WNK1-ROS1 fusion in a lung adenocarcinoma sensitive to crizotinib publication-title: Lung Cancer – volume: 18 start-page: 378 year: 2012 ident: 10.1016/j.jtho.2020.10.156_bib1 article-title: RET, ROS1 and ALK fusions in lung cancer publication-title: Nat Med doi: 10.1038/nm.2658 – volume: 31 start-page: 1725 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib7 article-title: Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small cell lung cancer publication-title: Ann Oncol doi: 10.1016/j.annonc.2020.09.015 – volume: 79 start-page: 3163 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib25 article-title: Detection of NTRK fusions: merits and limitations of current diagnostic platforms publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-19-0372 – volume: 8 start-page: 1551 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib12 article-title: Concomitant TP53 mutations with response to crizotinib treatment in patients with ALK-rearranged non-small-cell lung cancer publication-title: Cancer Med doi: 10.1002/cam4.2043 – volume: 14 start-page: 1781 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib45 article-title: Background and rationale of the eXalt3 trial investigating X-396 in the treatment of ALK+ non-small-cell lung cancer publication-title: Future Oncol doi: 10.2217/fon-2017-0619 – volume: 21 start-page: 931 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib46 article-title: Pharmacotherapeutic advances with anaplastic lymphoma kinase inhibitors for the treatment of non-small cell lung cancer publication-title: Expert Opin Pharmacother doi: 10.1080/14656566.2020.1738387 – volume: 147 start-page: 130 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib6 article-title: Effectiveness and prognostic factors of first-line crizotinib treatment in patients with ROS1-rearranged non-small cell lung cancer: a multicenter retrospective study publication-title: Lung Cancer doi: 10.1016/j.lungcan.2020.07.016 – volume: 340 start-page: 192 year: 2013 ident: 10.1016/j.jtho.2020.10.156_bib21 article-title: Fusion genes and their discovery using high throughput sequencing publication-title: Cancer Lett doi: 10.1016/j.canlet.2013.01.011 – volume: 1 start-page: 100037 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib36 article-title: Catalog of 5′ fusion partners in RET+ NSCLC circa 2020 publication-title: JTO Clin Res Rep – volume: 34 start-page: 3383 year: 2016 ident: 10.1016/j.jtho.2020.10.156_bib38 article-title: Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2015.65.8732 – volume: 30 start-page: 1121 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib2 article-title: Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001 publication-title: Ann Oncol doi: 10.1093/annonc/mdz131 – volume: 66 start-page: 178 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib17 article-title: Simultaneous detection of gene fusions and base mutations in cancer tissue biopsies by sequencing dual nucleic acid templates in unified reaction publication-title: Clin Chem doi: 10.1373/clinchem.2019.308833 – volume: 13 start-page: 1011 year: 2012 ident: 10.1016/j.jtho.2020.10.156_bib5 article-title: Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(12)70344-3 – volume: 15 start-page: 1000 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib23 article-title: Optimizing mutation and fusion detection in NSCLC by sequential DNA and RNA sequencing publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2020.01.019 – volume: 13 start-page: 987 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib37 article-title: Efficacy of crizotinib among different types of ROS1 fusion partners in patients with ROS1-rearranged non-small cell lung cancer publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2018.04.016 – volume: 13 start-page: 323 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib9 publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2017.12.001 – volume: 14 start-page: e115 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib31 article-title: Identification of a novel EML4-ALK, BCL11A-ALK double-fusion variant in lung adenocarcinoma using next-generation sequencing and response to crizotinib publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2019.01.032 – volume: 69 start-page: 305 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib8 article-title: The current state of molecular testing in the treatment of patients with solid tumors, 2019 publication-title: CA Cancer J Clin doi: 10.3322/caac.21560 – volume: 15 start-page: 1223 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib14 article-title: Intergenic breakpoints identified by DNA sequencing confound targetable kinase fusion detection in NSCLC publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2020.02.023 – volume: 12 start-page: 94 year: 2017 ident: 10.1016/j.jtho.2020.10.156_bib15 article-title: Combinational analysis of FISH and immunohistochemistry reveals rare genomic events in ALK fusion patterns in NSCLC that responds to crizotinib treatment publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2016.08.145 – volume: 15 start-page: 1027 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib42 article-title: Detection of nonreciprocal/reciprocal ALK translocation as poor predictive marker in patients with first-line crizotinib-treated ALK-rearranged NSCLC publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2020.02.007 – volume: 1 start-page: 100015 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib10 article-title: Catalog of 5’ fusion partners in ALK-positive NSCLC circa 2020 publication-title: JTO Clin Res Rep – volume: 9 start-page: 384 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib40 article-title: A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-0839 – volume: 1 start-page: 100048 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib35 article-title: A catalog of 5’ fusion partners in ROS1-positive NSCLC circa 2020 publication-title: JTO Clin Res Rep – volume: 383 start-page: 825 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib3 article-title: Efficacy of selpercatinib in RET-altered thyroid cancers publication-title: N Engl J Med doi: 10.1056/NEJMoa2005651 – volume: 20 start-page: 1691 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib4 article-title: Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30655-2 – volume: 31 start-page: 791 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib32 article-title: Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer publication-title: Mod Pathol doi: 10.1038/modpathol.2017.181 – volume: 377 start-page: 829 year: 2017 ident: 10.1016/j.jtho.2020.10.156_bib43 article-title: Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1704795 – volume: 118 start-page: 128 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib11 article-title: Response to crizotinib in advanced ALK-rearranged non-small cell lung cancers with different ALK-fusion variants publication-title: Lung Cancer doi: 10.1016/j.lungcan.2018.01.026 – volume: 10 start-page: e37 year: 2015 ident: 10.1016/j.jtho.2020.10.156_bib16 article-title: BIRC6-ALK, a novel fusion gene in ALK break-apart FISH-negative lung adenocarcinoma, responds to crizotinib publication-title: J Thorac Oncol doi: 10.1097/JTO.0000000000000467 – volume: 9 start-page: 3328 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib13 article-title: Crizotinib vs platinum-based chemotherapy as first-line treatment for advanced non-small cell lung cancer with different ROS1 fusion variants publication-title: Cancer Med doi: 10.1002/cam4.2984 – volume: 379 start-page: 2027 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib44 article-title: Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1810171 – volume: 10 start-page: R25 year: 2009 ident: 10.1016/j.jtho.2020.10.156_bib18 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 14 start-page: 178 year: 2013 ident: 10.1016/j.jtho.2020.10.156_bib19 article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration publication-title: Brief Bioinform doi: 10.1093/bib/bbs017 – volume: 13 start-page: e72 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib26 article-title: VIT-ALK, a novel alectinib-sensitive fusion gene in lung adenocarcinoma publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2017.11.134 – volume: 14 start-page: e11 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib27 article-title: A novel CAMKMT Exon3-ALK Exon20 fusion variant was identified in a primary pulmonary mucinous adenocarcinoma publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2018.09.020 – volume: 21 start-page: e78 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib29 article-title: Identification of a novel RBPMS-ROS1 fusion in an adolescent patient with microsatellite-instable advanced lung adenocarcinoma sensitive to crizotinib: a case report publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2019.09.003 – volume: 45 start-page: 228 year: 2009 ident: 10.1016/j.jtho.2020.10.156_bib20 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur J Cancer doi: 10.1016/j.ejca.2008.10.026 – volume: 15 start-page: 948 year: 2020 ident: 10.1016/j.jtho.2020.10.156_bib34 article-title: Identification of novel CD74-NRG2α fusion from comprehensive profiling of lung adenocarcinoma in Japanese never or light smokers publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2020.01.021 – volume: 14 start-page: e7 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib30 article-title: TBC1D32-RET: a novel RET oncogenic fusion in lung adenocarcinoma publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2018.08.2029 – volume: 36 start-page: 1199 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib39 article-title: Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2017.76.2294 – volume: 9 start-page: 1638 year: 2014 ident: 10.1016/j.jtho.2020.10.156_bib33 article-title: A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line publication-title: J Thorac Oncol doi: 10.1097/JTO.0000000000000311 – volume: 13 start-page: 1474 year: 2018 ident: 10.1016/j.jtho.2020.10.156_bib24 article-title: Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples publication-title: J Thorac Oncol doi: 10.1016/j.jtho.2018.05.041 – volume: 129 start-page: 92 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib28 article-title: Identification of a novel WNK1-ROS1 fusion in a lung adenocarcinoma sensitive to crizotinib publication-title: Lung Cancer doi: 10.1016/j.lungcan.2018.12.011 – volume: 5 start-page: 42 year: 2017 ident: 10.1016/j.jtho.2020.10.156_bib41 article-title: Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(16)30322-8 – volume: 25 start-page: 4712 year: 2019 ident: 10.1016/j.jtho.2020.10.156_bib22 article-title: High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-0225 – reference: 33641715 - J Thorac Oncol. 2021 Mar;16(3):344-348 |
SSID | ssj0045048 |
Score | 2.5874345 |
Snippet | Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 404 |
SubjectTerms | Anaplastic Lymphoma Kinase - genetics DNA sequencing Genomic breakpoint Genomics Humans Lung Neoplasms - drug therapy Lung Neoplasms - genetics Non–small cell lung cancer Oncogene Proteins, Fusion - genetics Protein-Tyrosine Kinases - genetics Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins c-ret - genetics Targeted therapy Uncommon fusions |
Title | Potential Unreliability of Uncommon ALK, ROS1, and RET Genomic Breakpoints in Predicting the Efficacy of Targeted Therapy in NSCLC |
URI | https://dx.doi.org/10.1016/j.jtho.2020.10.156 https://www.ncbi.nlm.nih.gov/pubmed/33248323 https://www.proquest.com/docview/2465446805 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXcBCh6KbrX6QIW6C1RoIXajkbgNqidtIhlJDdBEklYaSAFjXTpsX_SP-0MScly0gRtLoZBUKLM98wZUm9mCPnIXZt73MktyfLYYgHQOArzwor9OPNiR0ZFjIHCR8fB4ZJ9OfPPRqPfA9VS2-T7xc-_xpXcB1VoA1wxSvY_kO1vCg3wHfCFT0AYPv8J4291g2IfmOUl9Lgodc5t9c58WcGA8CC7k_lMTePXhdMpNU-mCaabxnhkwFZk3y_rEtUwZYWKDI5BIiaGaooJJrAgPNwxUZpx8E8TnYgAux8vDkzR4Zv-bbMCdhUwRF0VG2f3cyUgOBXlqu1twudWHdnORbnu1Srz0DZZ3XvbRj88N-nCzWmFO5Br6SO0LoxmQ-UJPk1gwd5KnyyIdZvj6TJP_VIdDCjpDdZdZrOBCWd6Sb9hHfRBxTlMyQrjPl1s2nf8a6m4lXFf4Pj4SC7mTnW94AHZdsMQlQDbk9nJ6awz98y3VYm2_jeYyCwtIrw-0m3ez227G-XlJE_IYwMfnWiuPSUjUT0jD4-MAOM5-dVTjm5QjtaSdpSjQLk9ioTbo0A3CnSjhm50QDdaVnRNNwp0ox3d8G4d3aihG3ZXdHtBlp-mycGhZcp4WAULgsZy_Nyxi5iD45jJKIq59INCSJlFoZBxZrMigj1FLMDZ54zbUZjJTPguE3kYekJy7yXZqupKvCY08CTuwDMes4jlsPfHorWSwxWRI4TDxsTppjctTI57LLVykXZixvMUIUkREtXmB2Oy219zqTO83Nnb71BLjY-qfc8USHbndR86iFNYwPGtXFaJur1KXcxoCIuk7Y_JK419_xwebHfA5Ho79xz1DXm0_hO-JVvNj1a8Aye6yd8bGv8BL6XFWg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Unreliability+of+Uncommon+ALK%2C+ROS1%2C+and+RET+Genomic+Breakpoints+in+Predicting+the+Efficacy+of+Targeted+Therapy+in+NSCLC&rft.jtitle=Journal+of+thoracic+oncology&rft.au=Li%2C+Weihua&rft.au=Guo%2C+Lei&rft.au=Liu%2C+Yutao&rft.au=Dong%2C+Lin&rft.date=2021-03-01&rft.pub=Elsevier+Inc&rft.issn=1556-0864&rft.eissn=1556-1380&rft.volume=16&rft.issue=3&rft.spage=404&rft.epage=418&rft_id=info:doi/10.1016%2Fj.jtho.2020.10.156&rft.externalDocID=S1556086420310236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-0864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-0864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-0864&client=summon |