Potential Unreliability of Uncommon ALK, ROS1, and RET Genomic Breakpoints in Predicting the Efficacy of Targeted Therapy in NSCLC

Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy. NSC...

Full description

Saved in:
Bibliographic Details
Published inJournal of thoracic oncology Vol. 16; no. 3; pp. 404 - 418
Main Authors Li, Weihua, Guo, Lei, Liu, Yutao, Dong, Lin, Yang, Lin, Chen, Li, Liu, Kaihua, Shao, Yang, Ying, Jianming
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2021
Subjects
Online AccessGet full text
ISSN1556-0864
1556-1380
1556-1380
DOI10.1016/j.jtho.2020.10.156

Cover

Loading…
Abstract Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy. NSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry. In total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non–EML4-ALK, non–CD74/EZR/TPM3/SDC4-ROS1, and non–KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185). Uncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions.
AbstractList Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy.INTRODUCTIONVariable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy.NSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry.METHODSNSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry.In total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non-EML4-ALK, non-CD74/EZR/TPM3/SDC4-ROS1, and non-KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185).RESULTSIn total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non-EML4-ALK, non-CD74/EZR/TPM3/SDC4-ROS1, and non-KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185).Uncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions.CONCLUSIONSUncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions.
Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion detection in NSCLC. We investigated whether ALK, ROS1, and RET genomic breakpoint location can predict matched targeted therapy efficacy. NSCLCs were analyzed by DNA NGS, target-specific RNA NGS, whole-transcriptome sequencing, and immunohistochemistry. In total, 3787 NSCLC samples were analyzed. DNA NGS detected ALK, ROS1, and RET fusions in 241, 59, and 76 cases, respectively. These fusions were divided into canonical (single EML4-ALK, CD74/EZR/TPM3/SDC4-ROS1, and KIF5B/CCDC6-RET fusions), noncanonical (single non–EML4-ALK, non–CD74/EZR/TPM3/SDC4-ROS1, and non–KIF5B/CCDC6-RET fusions), and primary/reciprocal (both primary and reciprocal rearrangements were detected) subtypes on the basis of genomic breakpoint position, and noncanonical and primary/reciprocal subtypes were defined as uncommon fusions. Further RNA sequencing and immunohistochemistry revealed that six of 47 (12.8%) uncommon fusions were actually nonproductive rearrangements that generated no aberrant transcripts or proteins. Moreover, genomic breakpoints of canonical ALK and RET, but not ROS1, fusions always predicted breakpoints at the transcript level, whereas 85.4% (35 of 41) of uncommon fusions actually produced canonical fusion transcripts. Patients with uncommon ALK fusion (n = 31) who received first-line crizotinib exhibited shorter median progression-free survival than those with canonical ALK fusion (n = 53, 8.4 mo versus 12.0 mo, p = 0.004). However, no difference in progression-free survival was observed when only ALK RNA or protein-positive cases were analyzed (p = 0.185). Uncommon ALK, ROS1, and RET genomic breakpoint is an unreliable predictor of matched targeted therapy efficacy. Functional validation by RNA or protein assay may add value for the accurate detection and interpretation of rare fusions.
Author Yang, Lin
Liu, Kaihua
Dong, Lin
Ying, Jianming
Liu, Yutao
Guo, Lei
Li, Weihua
Shao, Yang
Chen, Li
Author_xml – sequence: 1
  givenname: Weihua
  surname: Li
  fullname: Li, Weihua
  organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
– sequence: 2
  givenname: Lei
  surname: Guo
  fullname: Guo, Lei
  organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
– sequence: 3
  givenname: Yutao
  surname: Liu
  fullname: Liu, Yutao
  organization: Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
– sequence: 4
  givenname: Lin
  surname: Dong
  fullname: Dong, Lin
  organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
– sequence: 5
  givenname: Lin
  surname: Yang
  fullname: Yang, Lin
  organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
– sequence: 6
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  organization: HeliTec Biotechnologies, Shenzhen, Guangdong, People’s Republic of China
– sequence: 7
  givenname: Kaihua
  surname: Liu
  fullname: Liu, Kaihua
  organization: Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People’s Republic of China
– sequence: 8
  givenname: Yang
  surname: Shao
  fullname: Shao, Yang
  organization: Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People’s Republic of China
– sequence: 9
  givenname: Jianming
  surname: Ying
  fullname: Ying, Jianming
  email: jmying@cicams.ac.cn
  organization: Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33248323$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vGyEUxFGVqPnTfoEeKo49xA7sAmalXlLLTatYTZQ4Z4ThEePuggu4kq_95N2NnUsOOb2n0W_mMHOGjkIMgNAnSsaUUHG5Hq_LKo4rUg3CmHLxDp1SzsWI1pIcHX4iBTtBZzmvCWGcMPkendR1xWRd1afo310sEIrXLX4MCVqvl771ZYej6wUTuy4GfDW_ucD3tw_0Autg8f1sga8hxM4b_C2B_r2JPpSMfcB3Caw3xYcnXFaAZ855o81z2kKnJyhg8WIFSW92A_7rYTqffkDHTrcZPh7uOXr8PltMf4zmt9c_p1fzkWFClBHlS0pMYwWttZOysY4LA85pOQHXaMKM5EI0QBpumSVyop0GXjFYTiY1OFufoy_73E2Kf7aQi-p8NtC2OkDcZlUxwRkTkvAe_XxAt8sOrNok3-m0Uy-99YDcAybFnBM4ZXzRxcdQkvatokQNE6m1GiZSw0TPGhe9tXplfUl_0_R1b4K-oL8eksrGQzB92wlMUTb6t-z_ASlmqhQ
CitedBy_id crossref_primary_10_2147_OTT_S474134
crossref_primary_10_1016_j_jtho_2021_09_016
crossref_primary_10_1038_s41598_023_29511_1
crossref_primary_10_1080_1061186X_2022_2085730
crossref_primary_10_3389_fonc_2021_724815
crossref_primary_10_1007_s44258_024_00033_3
crossref_primary_10_1097_MD_0000000000030316
crossref_primary_10_3389_fimmu_2024_1386561
crossref_primary_10_3390_jcm12041438
crossref_primary_10_1016_j_heliyon_2024_e24796
crossref_primary_10_1097_MD_0000000000030913
crossref_primary_10_1016_j_cllc_2024_10_009
crossref_primary_10_1080_14740338_2024_2392003
crossref_primary_10_1038_s41598_025_91640_6
crossref_primary_10_1093_ajcp_aqad078
crossref_primary_10_3390_curroncol30040302
crossref_primary_10_1111_1759_7714_14345
crossref_primary_10_1089_dna_2021_0900
crossref_primary_10_1186_s12916_022_02362_9
crossref_primary_10_1016_j_jtho_2023_12_009
crossref_primary_10_1016_j_jncc_2021_07_005
crossref_primary_10_1111_cas_15317
crossref_primary_10_3389_fonc_2024_1463341
crossref_primary_10_1016_j_critrevonc_2024_104401
crossref_primary_10_3390_biomedicines12020297
crossref_primary_10_1016_j_lungcan_2021_09_005
crossref_primary_10_3389_fonc_2023_1090757
crossref_primary_10_1002_cam4_7201
crossref_primary_10_1007_s11684_022_0946_x
crossref_primary_10_3390_jpm14070670
crossref_primary_10_1016_j_humpath_2022_02_005
crossref_primary_10_1016_j_jmoldx_2023_04_007
crossref_primary_10_3389_fmed_2022_979032
crossref_primary_10_3390_cancers15143678
crossref_primary_10_1038_s41571_025_01011_3
crossref_primary_10_1007_s40291_025_00774_w
crossref_primary_10_3389_fonc_2022_1019624
crossref_primary_10_1093_oncolo_oyae166
crossref_primary_10_1007_s12094_024_03481_w
crossref_primary_10_1016_j_jtocrr_2021_100167
crossref_primary_10_1038_s41598_025_92590_9
crossref_primary_10_3389_fgene_2024_1455502
crossref_primary_10_1002_1878_0261_13509
crossref_primary_10_1186_s13000_023_01424_7
crossref_primary_10_3390_jmp2020015
crossref_primary_10_1186_s13000_022_01255_y
crossref_primary_10_3389_fonc_2022_1033484
crossref_primary_10_1002_1878_0261_13348
crossref_primary_10_1002_1878_0261_13468
crossref_primary_10_3389_fonc_2023_1067849
crossref_primary_10_1016_j_cancergen_2022_06_004
crossref_primary_10_1038_s41467_022_33210_2
crossref_primary_10_2147_OTT_S327722
crossref_primary_10_1016_j_jtocrr_2025_100795
crossref_primary_10_1016_j_trecan_2021_11_003
crossref_primary_10_1016_j_jtho_2020_12_006
crossref_primary_10_1177_15330338221148802
crossref_primary_10_2147_OTT_S372134
crossref_primary_10_1002_gcc_23022
crossref_primary_10_1002_ijc_34522
crossref_primary_10_2147_OTT_S406234
crossref_primary_10_1007_s12672_024_00915_3
crossref_primary_10_1002_cam4_70191
crossref_primary_10_1016_j_jmoldx_2021_12_004
crossref_primary_10_1002_ijc_34361
crossref_primary_10_3390_curroncol29100618
crossref_primary_10_1097_CAD_0000000000001363
crossref_primary_10_1111_1759_7714_15105
crossref_primary_10_3389_fonc_2022_864666
crossref_primary_10_3389_fonc_2022_998545
crossref_primary_10_1111_cas_15181
crossref_primary_10_12677_HJBM_2022_121002
Cites_doi 10.1038/nm.2658
10.1016/j.annonc.2020.09.015
10.1158/0008-5472.CAN-19-0372
10.1002/cam4.2043
10.2217/fon-2017-0619
10.1080/14656566.2020.1738387
10.1016/j.lungcan.2020.07.016
10.1016/j.canlet.2013.01.011
10.1200/JCO.2015.65.8732
10.1093/annonc/mdz131
10.1373/clinchem.2019.308833
10.1016/S1470-2045(12)70344-3
10.1016/j.jtho.2020.01.019
10.1016/j.jtho.2018.04.016
10.1016/j.jtho.2017.12.001
10.1016/j.jtho.2019.01.032
10.3322/caac.21560
10.1016/j.jtho.2020.02.023
10.1016/j.jtho.2016.08.145
10.1016/j.jtho.2020.02.007
10.1158/2159-8290.CD-18-0839
10.1056/NEJMoa2005651
10.1016/S1470-2045(19)30655-2
10.1038/modpathol.2017.181
10.1056/NEJMoa1704795
10.1016/j.lungcan.2018.01.026
10.1097/JTO.0000000000000467
10.1002/cam4.2984
10.1056/NEJMoa1810171
10.1186/gb-2009-10-3-r25
10.1093/bib/bbs017
10.1016/j.jtho.2017.11.134
10.1016/j.jtho.2018.09.020
10.1016/j.cllc.2019.09.003
10.1016/j.ejca.2008.10.026
10.1016/j.jtho.2020.01.021
10.1016/j.jtho.2018.08.2029
10.1200/JCO.2017.76.2294
10.1097/JTO.0000000000000311
10.1016/j.jtho.2018.05.041
10.1016/j.lungcan.2018.12.011
10.1016/S2213-2600(16)30322-8
10.1158/1078-0432.CCR-19-0225
ContentType Journal Article
Copyright 2020 International Association for the Study of Lung Cancer
Copyright © 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 International Association for the Study of Lung Cancer
– notice: Copyright © 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jtho.2020.10.156
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1556-1380
EndPage 418
ExternalDocumentID 33248323
10_1016_j_jtho_2020_10_156
S1556086420310236
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.XZ
.Z2
0R~
457
53G
5GY
5VS
6I.
9UZ
AACTN
AAEDW
AAFTH
AAIAV
AAKAS
AALRI
AAWTL
AAXUO
ABBUW
ABJNI
ABMAC
ABPMR
ABVKL
ACDDN
ACGFS
ACWDW
ACWRI
ADBBV
ADBIZ
ADEZE
ADZCM
AE3
AENEX
AEXQZ
AFTJW
AFTRI
AGHFR
AHPSJ
AITUG
AIZYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AWKKM
BOYCO
C45
CS3
DU5
E.X
EBS
EJD
EX3
F5P
FDB
FL-
HZ~
IN~
KD2
NCXOZ
NTWIH
O9-
OFXIZ
OGEVE
OK1
OVD
P2P
ROL
S4S
SSZ
TEORI
V2I
W3M
WOQ
WOW
X7M
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFETI
AFJKZ
AFPUW
AGCQF
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c466t-15b10c9d613af889df56ceffa87ef9a04c85669e095d4d087afae524eb773efd3
ISSN 1556-0864
1556-1380
IngestDate Thu Sep 04 14:29:06 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Jul 01 02:57:11 EDT 2025
Fri Feb 23 02:46:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Non–small cell lung cancer
Targeted therapy
Genomic breakpoint
DNA sequencing
Uncommon fusions
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-15b10c9d613af889df56ceffa87ef9a04c85669e095d4d087afae524eb773efd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.jtho.2020.10.156
PMID 33248323
PQID 2465446805
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2465446805
pubmed_primary_33248323
crossref_citationtrail_10_1016_j_jtho_2020_10_156
crossref_primary_10_1016_j_jtho_2020_10_156
elsevier_sciencedirect_doi_10_1016_j_jtho_2020_10_156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of thoracic oncology
PublicationTitleAlternate J Thorac Oncol
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kodama, Motoi, Ninomiya (bib33) 2014; 9
Shan, Jiang, Xu (bib16) 2015; 10
Li, Liu, Li, Chen, Ying (bib14) 2020; 15
Song, Zhang, Li (bib12) 2019; 8
Liu, Liu, Li, Wang, Pu, Lin (bib28) 2019; 129
Li, Zhang, Zhang (bib11) 2018; 118
Wirth, Sherman, Robinson (bib3) 2020; 383
Annala, Parker, Zhang, Nykter (bib21) 2013; 340
Indini, Rijavec, Ghidini (bib46) 2020; 21
Zhang, Zeng, Zhou (bib42) 2020; 15
Solomon, Hechtman (bib25) 2019; 79
Rosenbaum, Bloom, Forys (bib32) 2018; 31
Camidge, Bang, Kwak (bib5) 2012; 13
Xu, Zhang, Liang (bib13) 2020; 9
Li, Zhang, Guo, Chuai, Shan, Ying (bib15) 2017; 12
Lin, Liu, McCoach (bib7) 2020; 31
Camidge, Kim, Ahn (bib44) 2018; 379
Benayed, Offin, Mullaney (bib22) 2019; 25
Qin, Jiao, Liu, Wu, Zang (bib31) 2019; 14
Peters, Camidge, Shaw (bib43) 2017; 377
Peng, Zheng, Lv (bib30) 2019; 14
El-Deiry, Goldberg, Lenz (bib8) 2019; 69
Zhang, Yu, Yuan, Chen, Huang (bib29) 2020; 21
Yoh, Seto, Satouchi (bib41) 2017; 5
Lin, Zhu, Yoda (bib39) 2018; 36
Drilon, Fu, Patel (bib40) 2019; 9
Thorvaldsdottir, Robinson, Mesirov (bib19) 2013; 14
Ou, Zhu, Nagasaka (bib10) 2020; 1
Hu, Cui, Wang (bib27) 2019; 14
Kohsaka, Hayashi, Nagano (bib34) 2020; 15
Hu, Li, Peng, Feng, Zhang, Li (bib26) 2018; 13
Shaw, Solomon, Chiari (bib4) 2019; 20
Singhi, Horn (bib45) 2018; 14
Takeuchi, Soda, Togashi (bib1) 2012; 18
Song, Xu, He (bib17) 2020; 66
Shaw, Riely, Bang (bib2) 2019; 30
Eisenhauer, Therasse, Bogaerts (bib20) 2009; 45
Cohen, Hondelink, Solleveld-Westerink (bib23) 2020; 15
Li, Shen, Ding (bib37) 2018; 13
Ou, Zhu (bib36) 2020; 1
Langmead, Trapnell, Pop, Salzberg (bib18) 2009; 10
Davies, Le, Sheren (bib24) 2018; 13
Ou, Nagasaka (bib35) 2020; 1
Lindeman, Cagle, Aisner (bib9) 2018; 13
Zheng, Cao, Li (bib6) 2020; 147
Yoshida, Oya, Tanaka (bib38) 2016; 34
Indini (10.1016/j.jtho.2020.10.156_bib46) 2020; 21
Ou (10.1016/j.jtho.2020.10.156_bib35) 2020; 1
Takeuchi (10.1016/j.jtho.2020.10.156_bib1) 2012; 18
Lin (10.1016/j.jtho.2020.10.156_bib7) 2020; 31
Thorvaldsdottir (10.1016/j.jtho.2020.10.156_bib19) 2013; 14
Peters (10.1016/j.jtho.2020.10.156_bib43) 2017; 377
Li (10.1016/j.jtho.2020.10.156_bib11) 2018; 118
Langmead (10.1016/j.jtho.2020.10.156_bib18) 2009; 10
Benayed (10.1016/j.jtho.2020.10.156_bib22) 2019; 25
Li (10.1016/j.jtho.2020.10.156_bib37) 2018; 13
Cohen (10.1016/j.jtho.2020.10.156_bib23) 2020; 15
Rosenbaum (10.1016/j.jtho.2020.10.156_bib32) 2018; 31
El-Deiry (10.1016/j.jtho.2020.10.156_bib8) 2019; 69
Lin (10.1016/j.jtho.2020.10.156_bib39) 2018; 36
Wirth (10.1016/j.jtho.2020.10.156_bib3) 2020; 383
Zheng (10.1016/j.jtho.2020.10.156_bib6) 2020; 147
Shan (10.1016/j.jtho.2020.10.156_bib16) 2015; 10
Kohsaka (10.1016/j.jtho.2020.10.156_bib34) 2020; 15
Singhi (10.1016/j.jtho.2020.10.156_bib45) 2018; 14
Shaw (10.1016/j.jtho.2020.10.156_bib4) 2019; 20
Song (10.1016/j.jtho.2020.10.156_bib12) 2019; 8
Solomon (10.1016/j.jtho.2020.10.156_bib25) 2019; 79
Peng (10.1016/j.jtho.2020.10.156_bib30) 2019; 14
Qin (10.1016/j.jtho.2020.10.156_bib31) 2019; 14
Drilon (10.1016/j.jtho.2020.10.156_bib40) 2019; 9
Lindeman (10.1016/j.jtho.2020.10.156_bib9) 2018; 13
Camidge (10.1016/j.jtho.2020.10.156_bib5) 2012; 13
Li (10.1016/j.jtho.2020.10.156_bib14) 2020; 15
Ou (10.1016/j.jtho.2020.10.156_bib10) 2020; 1
Yoh (10.1016/j.jtho.2020.10.156_bib41) 2017; 5
Camidge (10.1016/j.jtho.2020.10.156_bib44) 2018; 379
Shaw (10.1016/j.jtho.2020.10.156_bib2) 2019; 30
Kodama (10.1016/j.jtho.2020.10.156_bib33) 2014; 9
Ou (10.1016/j.jtho.2020.10.156_bib36) 2020; 1
Hu (10.1016/j.jtho.2020.10.156_bib26) 2018; 13
Davies (10.1016/j.jtho.2020.10.156_bib24) 2018; 13
Li (10.1016/j.jtho.2020.10.156_bib15) 2017; 12
Xu (10.1016/j.jtho.2020.10.156_bib13) 2020; 9
Liu (10.1016/j.jtho.2020.10.156_bib28) 2019; 129
Eisenhauer (10.1016/j.jtho.2020.10.156_bib20) 2009; 45
Zhang (10.1016/j.jtho.2020.10.156_bib29) 2020; 21
Yoshida (10.1016/j.jtho.2020.10.156_bib38) 2016; 34
Hu (10.1016/j.jtho.2020.10.156_bib27) 2019; 14
Zhang (10.1016/j.jtho.2020.10.156_bib42) 2020; 15
Song (10.1016/j.jtho.2020.10.156_bib17) 2020; 66
Annala (10.1016/j.jtho.2020.10.156_bib21) 2013; 340
33641715 - J Thorac Oncol. 2021 Mar;16(3):344-348
References_xml – volume: 18
  start-page: 378
  year: 2012
  end-page: 381
  ident: bib1
  article-title: RET, ROS1 and ALK fusions in lung cancer
  publication-title: Nat Med
– volume: 31
  start-page: 791
  year: 2018
  end-page: 808
  ident: bib32
  article-title: Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer
  publication-title: Mod Pathol
– volume: 9
  start-page: 1638
  year: 2014
  end-page: 1646
  ident: bib33
  article-title: A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line
  publication-title: J Thorac Oncol
– volume: 12
  start-page: 94
  year: 2017
  end-page: 101
  ident: bib15
  article-title: Combinational analysis of FISH and immunohistochemistry reveals rare genomic events in ALK fusion patterns in NSCLC that responds to crizotinib treatment
  publication-title: J Thorac Oncol
– volume: 21
  start-page: e78
  year: 2020
  end-page: e83
  ident: bib29
  article-title: Identification of a novel RBPMS-ROS1 fusion in an adolescent patient with microsatellite-instable advanced lung adenocarcinoma sensitive to crizotinib: a case report
  publication-title: Clin Lung Cancer
– volume: 13
  start-page: 1011
  year: 2012
  end-page: 1019
  ident: bib5
  article-title: Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study
  publication-title: Lancet Oncol
– volume: 20
  start-page: 1691
  year: 2019
  end-page: 1701
  ident: bib4
  article-title: Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial
  publication-title: Lancet Oncol
– volume: 147
  start-page: 130
  year: 2020
  end-page: 136
  ident: bib6
  article-title: Effectiveness and prognostic factors of first-line crizotinib treatment in patients with ROS1-rearranged non-small cell lung cancer: a multicenter retrospective study
  publication-title: Lung Cancer
– volume: 14
  start-page: 178
  year: 2013
  end-page: 192
  ident: bib19
  article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
  publication-title: Brief Bioinform
– volume: 15
  start-page: 1000
  year: 2020
  end-page: 1014
  ident: bib23
  article-title: Optimizing mutation and fusion detection in NSCLC by sequential DNA and RNA sequencing
  publication-title: J Thorac Oncol
– volume: 13
  start-page: 1474
  year: 2018
  end-page: 1482
  ident: bib24
  article-title: Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples
  publication-title: J Thorac Oncol
– volume: 118
  start-page: 128
  year: 2018
  end-page: 133
  ident: bib11
  article-title: Response to crizotinib in advanced ALK-rearranged non-small cell lung cancers with different ALK-fusion variants
  publication-title: Lung Cancer
– volume: 8
  start-page: 1551
  year: 2019
  end-page: 1557
  ident: bib12
  article-title: Concomitant TP53 mutations with response to crizotinib treatment in patients with ALK-rearranged non-small-cell lung cancer
  publication-title: Cancer Med
– volume: 379
  start-page: 2027
  year: 2018
  end-page: 2039
  ident: bib44
  article-title: Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer
  publication-title: N Engl J Med
– volume: 31
  start-page: 1725
  year: 2020
  end-page: 1733
  ident: bib7
  article-title: Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small cell lung cancer
  publication-title: Ann Oncol
– volume: 340
  start-page: 192
  year: 2013
  end-page: 200
  ident: bib21
  article-title: Fusion genes and their discovery using high throughput sequencing
  publication-title: Cancer Lett
– volume: 25
  start-page: 4712
  year: 2019
  end-page: 4722
  ident: bib22
  article-title: High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden
  publication-title: Clin Cancer Res
– volume: 14
  start-page: e115
  year: 2019
  end-page: e117
  ident: bib31
  article-title: Identification of a novel EML4-ALK, BCL11A-ALK double-fusion variant in lung adenocarcinoma using next-generation sequencing and response to crizotinib
  publication-title: J Thorac Oncol
– volume: 9
  start-page: 3328
  year: 2020
  end-page: 3336
  ident: bib13
  article-title: Crizotinib vs platinum-based chemotherapy as first-line treatment for advanced non-small cell lung cancer with different ROS1 fusion variants
  publication-title: Cancer Med
– volume: 14
  start-page: e7
  year: 2019
  end-page: e9
  ident: bib30
  article-title: TBC1D32-RET: a novel RET oncogenic fusion in lung adenocarcinoma
  publication-title: J Thorac Oncol
– volume: 5
  start-page: 42
  year: 2017
  end-page: 50
  ident: bib41
  article-title: Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial
  publication-title: Lancet Respir Med
– volume: 69
  start-page: 305
  year: 2019
  end-page: 343
  ident: bib8
  article-title: The current state of molecular testing in the treatment of patients with solid tumors, 2019
  publication-title: CA Cancer J Clin
– volume: 383
  start-page: 825
  year: 2020
  end-page: 835
  ident: bib3
  article-title: Efficacy of selpercatinib in RET-altered thyroid cancers
  publication-title: N Engl J Med
– volume: 10
  start-page: R25
  year: 2009
  ident: bib18
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
– volume: 13
  start-page: e72
  year: 2018
  end-page: e74
  ident: bib26
  article-title: VIT-ALK, a novel alectinib-sensitive fusion gene in lung adenocarcinoma
  publication-title: J Thorac Oncol
– volume: 15
  start-page: 1027
  year: 2020
  end-page: 1036
  ident: bib42
  article-title: Detection of nonreciprocal/reciprocal ALK translocation as poor predictive marker in patients with first-line crizotinib-treated ALK-rearranged NSCLC
  publication-title: J Thorac Oncol
– volume: 30
  start-page: 1121
  year: 2019
  end-page: 1126
  ident: bib2
  article-title: Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001
  publication-title: Ann Oncol
– volume: 377
  start-page: 829
  year: 2017
  end-page: 838
  ident: bib43
  article-title: Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer
  publication-title: N Engl J Med
– volume: 13
  start-page: 323
  year: 2018
  end-page: 358
  ident: bib9
  article-title: Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology
  publication-title: J Thorac Oncol
– volume: 10
  start-page: e37
  year: 2015
  end-page: e39
  ident: bib16
  article-title: BIRC6-ALK, a novel fusion gene in ALK break-apart FISH-negative lung adenocarcinoma, responds to crizotinib
  publication-title: J Thorac Oncol
– volume: 13
  start-page: 987
  year: 2018
  end-page: 995
  ident: bib37
  article-title: Efficacy of crizotinib among different types of ROS1 fusion partners in patients with ROS1-rearranged non-small cell lung cancer
  publication-title: J Thorac Oncol
– volume: 14
  start-page: 1781
  year: 2018
  end-page: 1787
  ident: bib45
  article-title: Background and rationale of the eXalt3 trial investigating X-396 in the treatment of ALK+ non-small-cell lung cancer
  publication-title: Future Oncol
– volume: 15
  start-page: 948
  year: 2020
  end-page: 961
  ident: bib34
  article-title: Identification of novel CD74-NRG2α fusion from comprehensive profiling of lung adenocarcinoma in Japanese never or light smokers
  publication-title: J Thorac Oncol
– volume: 9
  start-page: 384
  year: 2019
  end-page: 395
  ident: bib40
  article-title: A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105
  publication-title: Cancer Discov
– volume: 79
  start-page: 3163
  year: 2019
  end-page: 3168
  ident: bib25
  article-title: Detection of NTRK fusions: merits and limitations of current diagnostic platforms
  publication-title: Cancer Res
– volume: 66
  start-page: 178
  year: 2020
  end-page: 187
  ident: bib17
  article-title: Simultaneous detection of gene fusions and base mutations in cancer tissue biopsies by sequencing dual nucleic acid templates in unified reaction
  publication-title: Clin Chem
– volume: 1
  start-page: 100037
  year: 2020
  ident: bib36
  article-title: Catalog of 5′ fusion partners in RET+ NSCLC circa 2020
  publication-title: JTO Clin Res Rep
– volume: 1
  start-page: 100048
  year: 2020
  ident: bib35
  article-title: A catalog of 5’ fusion partners in ROS1-positive NSCLC circa 2020
  publication-title: JTO Clin Res Rep
– volume: 34
  start-page: 3383
  year: 2016
  end-page: 3389
  ident: bib38
  article-title: Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer
  publication-title: J Clin Oncol
– volume: 36
  start-page: 1199
  year: 2018
  end-page: 1206
  ident: bib39
  article-title: Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer
  publication-title: J Clin Oncol
– volume: 21
  start-page: 931
  year: 2020
  end-page: 940
  ident: bib46
  article-title: Pharmacotherapeutic advances with anaplastic lymphoma kinase inhibitors for the treatment of non-small cell lung cancer
  publication-title: Expert Opin Pharmacother
– volume: 1
  start-page: 100015
  year: 2020
  ident: bib10
  article-title: Catalog of 5’ fusion partners in ALK-positive NSCLC circa 2020
  publication-title: JTO Clin Res Rep
– volume: 14
  start-page: e11
  year: 2019
  end-page: e12
  ident: bib27
  article-title: A novel CAMKMT Exon3-ALK Exon20 fusion variant was identified in a primary pulmonary mucinous adenocarcinoma
  publication-title: J Thorac Oncol
– volume: 15
  start-page: 1223
  year: 2020
  end-page: 1231
  ident: bib14
  article-title: Intergenic breakpoints identified by DNA sequencing confound targetable kinase fusion detection in NSCLC
  publication-title: J Thorac Oncol
– volume: 45
  start-page: 228
  year: 2009
  end-page: 247
  ident: bib20
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur J Cancer
– volume: 129
  start-page: 92
  year: 2019
  end-page: 94
  ident: bib28
  article-title: Identification of a novel WNK1-ROS1 fusion in a lung adenocarcinoma sensitive to crizotinib
  publication-title: Lung Cancer
– volume: 18
  start-page: 378
  year: 2012
  ident: 10.1016/j.jtho.2020.10.156_bib1
  article-title: RET, ROS1 and ALK fusions in lung cancer
  publication-title: Nat Med
  doi: 10.1038/nm.2658
– volume: 31
  start-page: 1725
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib7
  article-title: Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small cell lung cancer
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2020.09.015
– volume: 79
  start-page: 3163
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib25
  article-title: Detection of NTRK fusions: merits and limitations of current diagnostic platforms
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-19-0372
– volume: 8
  start-page: 1551
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib12
  article-title: Concomitant TP53 mutations with response to crizotinib treatment in patients with ALK-rearranged non-small-cell lung cancer
  publication-title: Cancer Med
  doi: 10.1002/cam4.2043
– volume: 14
  start-page: 1781
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib45
  article-title: Background and rationale of the eXalt3 trial investigating X-396 in the treatment of ALK+ non-small-cell lung cancer
  publication-title: Future Oncol
  doi: 10.2217/fon-2017-0619
– volume: 21
  start-page: 931
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib46
  article-title: Pharmacotherapeutic advances with anaplastic lymphoma kinase inhibitors for the treatment of non-small cell lung cancer
  publication-title: Expert Opin Pharmacother
  doi: 10.1080/14656566.2020.1738387
– volume: 147
  start-page: 130
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib6
  article-title: Effectiveness and prognostic factors of first-line crizotinib treatment in patients with ROS1-rearranged non-small cell lung cancer: a multicenter retrospective study
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2020.07.016
– volume: 340
  start-page: 192
  year: 2013
  ident: 10.1016/j.jtho.2020.10.156_bib21
  article-title: Fusion genes and their discovery using high throughput sequencing
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2013.01.011
– volume: 1
  start-page: 100037
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib36
  article-title: Catalog of 5′ fusion partners in RET+ NSCLC circa 2020
  publication-title: JTO Clin Res Rep
– volume: 34
  start-page: 3383
  year: 2016
  ident: 10.1016/j.jtho.2020.10.156_bib38
  article-title: Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2015.65.8732
– volume: 30
  start-page: 1121
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib2
  article-title: Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdz131
– volume: 66
  start-page: 178
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib17
  article-title: Simultaneous detection of gene fusions and base mutations in cancer tissue biopsies by sequencing dual nucleic acid templates in unified reaction
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2019.308833
– volume: 13
  start-page: 1011
  year: 2012
  ident: 10.1016/j.jtho.2020.10.156_bib5
  article-title: Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(12)70344-3
– volume: 15
  start-page: 1000
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib23
  article-title: Optimizing mutation and fusion detection in NSCLC by sequential DNA and RNA sequencing
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2020.01.019
– volume: 13
  start-page: 987
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib37
  article-title: Efficacy of crizotinib among different types of ROS1 fusion partners in patients with ROS1-rearranged non-small cell lung cancer
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2018.04.016
– volume: 13
  start-page: 323
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib9
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2017.12.001
– volume: 14
  start-page: e115
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib31
  article-title: Identification of a novel EML4-ALK, BCL11A-ALK double-fusion variant in lung adenocarcinoma using next-generation sequencing and response to crizotinib
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2019.01.032
– volume: 69
  start-page: 305
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib8
  article-title: The current state of molecular testing in the treatment of patients with solid tumors, 2019
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21560
– volume: 15
  start-page: 1223
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib14
  article-title: Intergenic breakpoints identified by DNA sequencing confound targetable kinase fusion detection in NSCLC
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2020.02.023
– volume: 12
  start-page: 94
  year: 2017
  ident: 10.1016/j.jtho.2020.10.156_bib15
  article-title: Combinational analysis of FISH and immunohistochemistry reveals rare genomic events in ALK fusion patterns in NSCLC that responds to crizotinib treatment
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2016.08.145
– volume: 15
  start-page: 1027
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib42
  article-title: Detection of nonreciprocal/reciprocal ALK translocation as poor predictive marker in patients with first-line crizotinib-treated ALK-rearranged NSCLC
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2020.02.007
– volume: 1
  start-page: 100015
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib10
  article-title: Catalog of 5’ fusion partners in ALK-positive NSCLC circa 2020
  publication-title: JTO Clin Res Rep
– volume: 9
  start-page: 384
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib40
  article-title: A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-0839
– volume: 1
  start-page: 100048
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib35
  article-title: A catalog of 5’ fusion partners in ROS1-positive NSCLC circa 2020
  publication-title: JTO Clin Res Rep
– volume: 383
  start-page: 825
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib3
  article-title: Efficacy of selpercatinib in RET-altered thyroid cancers
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2005651
– volume: 20
  start-page: 1691
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib4
  article-title: Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30655-2
– volume: 31
  start-page: 791
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib32
  article-title: Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2017.181
– volume: 377
  start-page: 829
  year: 2017
  ident: 10.1016/j.jtho.2020.10.156_bib43
  article-title: Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1704795
– volume: 118
  start-page: 128
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib11
  article-title: Response to crizotinib in advanced ALK-rearranged non-small cell lung cancers with different ALK-fusion variants
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2018.01.026
– volume: 10
  start-page: e37
  year: 2015
  ident: 10.1016/j.jtho.2020.10.156_bib16
  article-title: BIRC6-ALK, a novel fusion gene in ALK break-apart FISH-negative lung adenocarcinoma, responds to crizotinib
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0000000000000467
– volume: 9
  start-page: 3328
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib13
  article-title: Crizotinib vs platinum-based chemotherapy as first-line treatment for advanced non-small cell lung cancer with different ROS1 fusion variants
  publication-title: Cancer Med
  doi: 10.1002/cam4.2984
– volume: 379
  start-page: 2027
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib44
  article-title: Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1810171
– volume: 10
  start-page: R25
  year: 2009
  ident: 10.1016/j.jtho.2020.10.156_bib18
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 14
  start-page: 178
  year: 2013
  ident: 10.1016/j.jtho.2020.10.156_bib19
  article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs017
– volume: 13
  start-page: e72
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib26
  article-title: VIT-ALK, a novel alectinib-sensitive fusion gene in lung adenocarcinoma
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2017.11.134
– volume: 14
  start-page: e11
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib27
  article-title: A novel CAMKMT Exon3-ALK Exon20 fusion variant was identified in a primary pulmonary mucinous adenocarcinoma
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2018.09.020
– volume: 21
  start-page: e78
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib29
  article-title: Identification of a novel RBPMS-ROS1 fusion in an adolescent patient with microsatellite-instable advanced lung adenocarcinoma sensitive to crizotinib: a case report
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2019.09.003
– volume: 45
  start-page: 228
  year: 2009
  ident: 10.1016/j.jtho.2020.10.156_bib20
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2008.10.026
– volume: 15
  start-page: 948
  year: 2020
  ident: 10.1016/j.jtho.2020.10.156_bib34
  article-title: Identification of novel CD74-NRG2α fusion from comprehensive profiling of lung adenocarcinoma in Japanese never or light smokers
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2020.01.021
– volume: 14
  start-page: e7
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib30
  article-title: TBC1D32-RET: a novel RET oncogenic fusion in lung adenocarcinoma
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2018.08.2029
– volume: 36
  start-page: 1199
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib39
  article-title: Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2017.76.2294
– volume: 9
  start-page: 1638
  year: 2014
  ident: 10.1016/j.jtho.2020.10.156_bib33
  article-title: A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0000000000000311
– volume: 13
  start-page: 1474
  year: 2018
  ident: 10.1016/j.jtho.2020.10.156_bib24
  article-title: Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2018.05.041
– volume: 129
  start-page: 92
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib28
  article-title: Identification of a novel WNK1-ROS1 fusion in a lung adenocarcinoma sensitive to crizotinib
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2018.12.011
– volume: 5
  start-page: 42
  year: 2017
  ident: 10.1016/j.jtho.2020.10.156_bib41
  article-title: Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(16)30322-8
– volume: 25
  start-page: 4712
  year: 2019
  ident: 10.1016/j.jtho.2020.10.156_bib22
  article-title: High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-19-0225
– reference: 33641715 - J Thorac Oncol. 2021 Mar;16(3):344-348
SSID ssj0045048
Score 2.5874345
Snippet Variable genomic breakpoints have been identified through the application of target-capture DNA next-generation sequencing (NGS) for ALK, ROS1, and RET fusion...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 404
SubjectTerms Anaplastic Lymphoma Kinase - genetics
DNA sequencing
Genomic breakpoint
Genomics
Humans
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Non–small cell lung cancer
Oncogene Proteins, Fusion - genetics
Protein-Tyrosine Kinases - genetics
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins c-ret - genetics
Targeted therapy
Uncommon fusions
Title Potential Unreliability of Uncommon ALK, ROS1, and RET Genomic Breakpoints in Predicting the Efficacy of Targeted Therapy in NSCLC
URI https://dx.doi.org/10.1016/j.jtho.2020.10.156
https://www.ncbi.nlm.nih.gov/pubmed/33248323
https://www.proquest.com/docview/2465446805
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXcBCh6KbrX6QIW6C1RoIXajkbgNqidtIhlJDdBEklYaSAFjXTpsX_SP-0MScly0gRtLoZBUKLM98wZUm9mCPnIXZt73MktyfLYYgHQOArzwor9OPNiR0ZFjIHCR8fB4ZJ9OfPPRqPfA9VS2-T7xc-_xpXcB1VoA1wxSvY_kO1vCg3wHfCFT0AYPv8J4291g2IfmOUl9Lgodc5t9c58WcGA8CC7k_lMTePXhdMpNU-mCaabxnhkwFZk3y_rEtUwZYWKDI5BIiaGaooJJrAgPNwxUZpx8E8TnYgAux8vDkzR4Zv-bbMCdhUwRF0VG2f3cyUgOBXlqu1twudWHdnORbnu1Srz0DZZ3XvbRj88N-nCzWmFO5Br6SO0LoxmQ-UJPk1gwd5KnyyIdZvj6TJP_VIdDCjpDdZdZrOBCWd6Sb9hHfRBxTlMyQrjPl1s2nf8a6m4lXFf4Pj4SC7mTnW94AHZdsMQlQDbk9nJ6awz98y3VYm2_jeYyCwtIrw-0m3ez227G-XlJE_IYwMfnWiuPSUjUT0jD4-MAOM5-dVTjm5QjtaSdpSjQLk9ioTbo0A3CnSjhm50QDdaVnRNNwp0ox3d8G4d3aihG3ZXdHtBlp-mycGhZcp4WAULgsZy_Nyxi5iD45jJKIq59INCSJlFoZBxZrMigj1FLMDZ54zbUZjJTPguE3kYekJy7yXZqupKvCY08CTuwDMes4jlsPfHorWSwxWRI4TDxsTppjctTI57LLVykXZixvMUIUkREtXmB2Oy219zqTO83Nnb71BLjY-qfc8USHbndR86iFNYwPGtXFaJur1KXcxoCIuk7Y_JK419_xwebHfA5Ho79xz1DXm0_hO-JVvNj1a8Aye6yd8bGv8BL6XFWg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Unreliability+of+Uncommon+ALK%2C+ROS1%2C+and+RET+Genomic+Breakpoints+in+Predicting+the+Efficacy+of+Targeted+Therapy+in+NSCLC&rft.jtitle=Journal+of+thoracic+oncology&rft.au=Li%2C+Weihua&rft.au=Guo%2C+Lei&rft.au=Liu%2C+Yutao&rft.au=Dong%2C+Lin&rft.date=2021-03-01&rft.pub=Elsevier+Inc&rft.issn=1556-0864&rft.eissn=1556-1380&rft.volume=16&rft.issue=3&rft.spage=404&rft.epage=418&rft_id=info:doi/10.1016%2Fj.jtho.2020.10.156&rft.externalDocID=S1556086420310236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-0864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-0864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-0864&client=summon