A novel ST-GCN model based on homologous microstate for subject-independent seizure prediction

Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes homologous microstate dynamic attributes as a generalized, subject-independent seizure marker. Homologous microstate dynamic attributes were extracted us...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 22852 - 13
Main Authors Shi, Wei, Shi, Yi, Chen, Fangni, Zhang, Lei, Wan, Jian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.07.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes homologous microstate dynamic attributes as a generalized, subject-independent seizure marker. Homologous microstate dynamic attributes were extracted using a novel spatiotemporal graph convolutional network (ST-GCN) model for subject-independent seizure prediction. An online deployment stage was introduced to validate the model’s clinical applicability. The online deployment stage demonstrated that the model achieved sensitivities of 96.79% and 98.84% on the private dataset and Siena dataset, respectively. The ST-GCN model successfully predicts seizures in a subject-independent manner, demonstrating its potential as a generalized tool for seizure prediction in clinical settings. This study indicates that dynamics within homologous microstates can serve as a universal predictive biomarker for seizures, expanding microstate research beyond transition patterns. It also provides a practical template for clinical seizure prediction models.
AbstractList Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes homologous microstate dynamic attributes as a generalized, subject-independent seizure marker. Homologous microstate dynamic attributes were extracted using a novel spatiotemporal graph convolutional network (ST-GCN) model for subject-independent seizure prediction. An online deployment stage was introduced to validate the model's clinical applicability. The online deployment stage demonstrated that the model achieved sensitivities of 96.79% and 98.84% on the private dataset and Siena dataset, respectively. The ST-GCN model successfully predicts seizures in a subject-independent manner, demonstrating its potential as a generalized tool for seizure prediction in clinical settings. This study indicates that dynamics within homologous microstates can serve as a universal predictive biomarker for seizures, expanding microstate research beyond transition patterns. It also provides a practical template for clinical seizure prediction models.Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes homologous microstate dynamic attributes as a generalized, subject-independent seizure marker. Homologous microstate dynamic attributes were extracted using a novel spatiotemporal graph convolutional network (ST-GCN) model for subject-independent seizure prediction. An online deployment stage was introduced to validate the model's clinical applicability. The online deployment stage demonstrated that the model achieved sensitivities of 96.79% and 98.84% on the private dataset and Siena dataset, respectively. The ST-GCN model successfully predicts seizures in a subject-independent manner, demonstrating its potential as a generalized tool for seizure prediction in clinical settings. This study indicates that dynamics within homologous microstates can serve as a universal predictive biomarker for seizures, expanding microstate research beyond transition patterns. It also provides a practical template for clinical seizure prediction models.
Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes homologous microstate dynamic attributes as a generalized, subject-independent seizure marker. Homologous microstate dynamic attributes were extracted using a novel spatiotemporal graph convolutional network (ST-GCN) model for subject-independent seizure prediction. An online deployment stage was introduced to validate the model’s clinical applicability. The online deployment stage demonstrated that the model achieved sensitivities of 96.79% and 98.84% on the private dataset and Siena dataset, respectively. The ST-GCN model successfully predicts seizures in a subject-independent manner, demonstrating its potential as a generalized tool for seizure prediction in clinical settings. This study indicates that dynamics within homologous microstates can serve as a universal predictive biomarker for seizures, expanding microstate research beyond transition patterns. It also provides a practical template for clinical seizure prediction models.
Abstract Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes homologous microstate dynamic attributes as a generalized, subject-independent seizure marker. Homologous microstate dynamic attributes were extracted using a novel spatiotemporal graph convolutional network (ST-GCN) model for subject-independent seizure prediction. An online deployment stage was introduced to validate the model’s clinical applicability. The online deployment stage demonstrated that the model achieved sensitivities of 96.79% and 98.84% on the private dataset and Siena dataset, respectively. The ST-GCN model successfully predicts seizures in a subject-independent manner, demonstrating its potential as a generalized tool for seizure prediction in clinical settings. This study indicates that dynamics within homologous microstates can serve as a universal predictive biomarker for seizures, expanding microstate research beyond transition patterns. It also provides a practical template for clinical seizure prediction models.
ArticleNumber 22852
Author Chen, Fangni
Wan, Jian
Shi, Wei
Shi, Yi
Zhang, Lei
Author_xml – sequence: 1
  givenname: Wei
  surname: Shi
  fullname: Shi, Wei
  organization: The Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology and the College of Information and Electronic Engineering, Zhejiang University of Science and Technology
– sequence: 2
  givenname: Yi
  surname: Shi
  fullname: Shi, Yi
  organization: The International Institutes of Medicine, Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine
– sequence: 3
  givenname: Fangni
  surname: Chen
  fullname: Chen, Fangni
  email: chenfangni@zust.edu.cn
  organization: The Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology and the College of Information and Electronic Engineering, Zhejiang University of Science and Technology
– sequence: 4
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: The Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology and the College of Information and Electronic Engineering, Zhejiang University of Science and Technology
– sequence: 5
  givenname: Jian
  surname: Wan
  fullname: Wan, Jian
  organization: The Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology and the College of Information and Electronic Engineering, Zhejiang University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40596418$$D View this record in MEDLINE/PubMed
BookMark eNp9UkFvFSEQJqbG1to_4MFw9LIWWGDhZJqXWps09WC9SthleOVlF56w20R_vbRbm_YiBxhmvvkmM_O9RQcxRUDoPSWfKGnVaeFUaNUQJhoiKWsb8QodMcJFw1rGDp7Zh-iklB2pRzDNqX6DDjkRWnKqjtDPMxzTHYz4-01zsbnGU3L109sCDqeIb9OUxrRNS8FTGHIqs50B-5RxWfodDHMTooM91CvOuED4s2TA-wwuDHNI8R167e1Y4OTxPUY_vpzfbL42V98uLjdnV83ApZwbSq3kUjPadV5ypfpOKJDOe9lxRZgHCoQSx6H6qWNt1zOoAdBEAaUwtMfocuV1ye7MPofJ5t8m2WAeHClvjc1zGEYwSnrQLfS0J5pLofXAvOuJtMoz4TuoXJ9Xrv3ST-CG2lm24wvSl5EYbs023RnKagOq1ZXh4yNDTr8WKLOZQhlgHG2EOkpTlyJbIWtLFfrhebGnKv82VAFsBdxPv2TwTxBKzL0SzKoEU5VgHpRgRE1q16RSwXEL2ezSkmPdwP-y_gIMpbWk
Cites_doi 10.1111/desc.13231
10.1109/JBHI.2022.3221211
10.1109/TNSRE.2025.3534121
10.1109/TBCAS.2019.2929053
10.1016/S0013-4694(97)00022-2
10.3390/pr8070846
10.36227/techrxiv.20557074.v2
10.1006/nimg.2002.1070
10.1142/S0129065721500180
10.1038/s41531-023-00498-w
10.1016/j.neuroimage.2022.119851
10.1007/s00787-022-02068-6
10.1111/j.1528-1157.1982.tb05052.x
10.1016/j.neunet.2018.04.018
10.3115/v1/W14-4012
10.3389/fncom.2018.00070
10.1111/epi.17546
10.1109/JBHI.2021.3100297
10.1046/j.1528-1157.2002.26901.x
10.1016/j.cmpb.2021.106542
10.1109/TCDS.2019.2936441
10.1016/j.cmpb.2022.106950
10.1109/JTEHM.2023.3290036
10.1186/s10194-022-01414-y
10.1016/j.jneumeth.2003.10.009
10.1088/1741-2552/ac88f6
10.3390/bioengineering10030372
10.1016/S0140-6736(00)03591-1
10.1016/j.neuroimage.2019.03.029
10.1142/S0129065720500197
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-06123-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_86fe93eb1b0946599c2fdb06a8f25f7e
PMC12217839
40596418
10_1038_s41598_025_06123_5
Genre Journal Article
GrantInformation_xml – fundername: Joint Research and Development Program of the Yangtze River Delta Science and Technology Innovation
  grantid: 2023ZY1068
– fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China
  grantid: 61601409
  funderid: https://doi.org/10.13039/501100012659
– fundername: Joint Research and Development Program of the Yangtze River Delta Science and Technology Innovation Community
  grantid: 2022CSJGG1000
– fundername: the key projects of major health science and technology plan of Zhejiang Province
  grantid: WKJ-ZJ-2129
– fundername: Key Research and Development Project of Zhejiang Province
  grantid: 2022C03043; 2023C03195
– fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China
  grantid: 61601409
– fundername: Key Research and Development Project of Zhejiang Province
  grantid: 2022C03043
– fundername: Key Research and Development Project of Zhejiang Province
  grantid: 2023C03195
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c466t-11a64692177f6488b758e6dff674802fe1e010d4e7581d237b2e480e908e11ec3
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:22:40 EDT 2025
Thu Aug 21 18:33:12 EDT 2025
Fri Jul 11 17:04:46 EDT 2025
Sat Jul 05 01:30:32 EDT 2025
Thu Jul 03 08:22:18 EDT 2025
Wed Jul 02 02:43:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ST-GCN
Subject-independent seizure prediction
Online deployment stage
Homologous microstate dynamic attributes
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-11a64692177f6488b758e6dff674802fe1e010d4e7581d237b2e480e908e11ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-06123-5
PMID 40596418
PQID 3226356010
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_86fe93eb1b0946599c2fdb06a8f25f7e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12217839
proquest_miscellaneous_3226356010
pubmed_primary_40596418
crossref_primary_10_1038_s41598_025_06123_5
springer_journals_10_1038_s41598_025_06123_5
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References A Siegel (6123_CR23) 1982; 23
T Medani (6123_CR28) 2023; 267
Quyen M Le Van (6123_CR14) 2001; 357
Y Takarae (6123_CR12) 2022; 25
H Daoud (6123_CR3) 2019; 13
ND Truong (6123_CR30) 2018; 105
X Lu (6123_CR13) 2023; 11
G Peng (6123_CR25) 2021; 31
6123_CR33
Z Zhao (6123_CR8) 2022; 19
J Cao (6123_CR2) 2019; 12
6123_CR10
6123_CR32
6123_CR15
6123_CR19
RG Andrzejak (6123_CR6) 2023; 64
F Von Wegner (6123_CR21) 2018; 12
6123_CR18
T Koenig (6123_CR7) 2002; 16
DJ McFarland (6123_CR24) 1997; 103
K Raeisi (6123_CR16) 2022; 222
A Delorme (6123_CR20) 2004; 134
Y Li (6123_CR11) 2022; 23
Y Li (6123_CR1) 2020; 30
6123_CR26
N Luo (6123_CR9) 2023; 32
G Chiarion (6123_CR27) 2023; 10
Y Wang (6123_CR17) 2022; 27
T Dissanayake (6123_CR5) 2021; 26
6123_CR29
6123_CR4
S You (6123_CR31) 2022; 213
L Bréchet (6123_CR22) 2019; 194
References_xml – volume: 25
  issue: 4
  year: 2022
  ident: 6123_CR12
  publication-title: Developmental science
  doi: 10.1111/desc.13231
– volume: 27
  start-page: 900
  issue: 2
  year: 2022
  ident: 6123_CR17
  publication-title: IEEE J. Biomed. Health. Inform.
  doi: 10.1109/JBHI.2022.3221211
– ident: 6123_CR26
  doi: 10.1109/TNSRE.2025.3534121
– ident: 6123_CR32
– volume: 13
  start-page: 804
  issue: 5
  year: 2019
  ident: 6123_CR3
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2929053
– volume: 103
  start-page: 386
  issue: 3
  year: 1997
  ident: 6123_CR24
  publication-title: Electroencephalogr Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00022-2
– ident: 6123_CR19
  doi: 10.3390/pr8070846
– ident: 6123_CR4
  doi: 10.36227/techrxiv.20557074.v2
– volume: 16
  start-page: 41
  issue: 1
  year: 2002
  ident: 6123_CR7
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1070
– ident: 6123_CR18
– volume: 31
  start-page: 2150018
  issue: 08
  year: 2021
  ident: 6123_CR25
  publication-title: Int. J. Neural. Syst.
  doi: 10.1142/S0129065721500180
– ident: 6123_CR10
  doi: 10.1038/s41531-023-00498-w
– volume: 267
  year: 2023
  ident: 6123_CR28
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119851
– volume: 32
  start-page: 2223
  issue: 11
  year: 2023
  ident: 6123_CR9
  publication-title: European Child & Adolescent Psychiatry
  doi: 10.1007/s00787-022-02068-6
– ident: 6123_CR33
– volume: 23
  start-page: 47
  issue: 1
  year: 1982
  ident: 6123_CR23
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1982.tb05052.x
– volume: 105
  start-page: 104
  year: 2018
  ident: 6123_CR30
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.04.018
– ident: 6123_CR29
  doi: 10.3115/v1/W14-4012
– volume: 12
  start-page: 70
  year: 2018
  ident: 6123_CR21
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2018.00070
– volume: 64
  start-page: S62
  year: 2023
  ident: 6123_CR6
  publication-title: Epilepsia
  doi: 10.1111/epi.17546
– volume: 26
  start-page: 527
  issue: 2
  year: 2021
  ident: 6123_CR5
  publication-title: IEEE J. Biomed. Health. Inform.
  doi: 10.1109/JBHI.2021.3100297
– ident: 6123_CR15
  doi: 10.1046/j.1528-1157.2002.26901.x
– volume: 213
  year: 2022
  ident: 6123_CR31
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106542
– volume: 12
  start-page: 709
  issue: 4
  year: 2019
  ident: 6123_CR2
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2019.2936441
– volume: 222
  year: 2022
  ident: 6123_CR16
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2022.106950
– volume: 11
  start-page: 417
  year: 2023
  ident: 6123_CR13
  publication-title: IEEE Journal of Translational Engineering in Health and Medicine
  doi: 10.1109/JTEHM.2023.3290036
– volume: 23
  start-page: 45
  issue: 1
  year: 2022
  ident: 6123_CR11
  publication-title: The journal of headache and pain
  doi: 10.1186/s10194-022-01414-y
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 6123_CR20
  publication-title: J. Neurosci. Methods.
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 19
  issue: 5
  year: 2022
  ident: 6123_CR8
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac88f6
– volume: 10
  start-page: 372
  issue: 3
  year: 2023
  ident: 6123_CR27
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10030372
– volume: 357
  start-page: 183
  issue: 9251
  year: 2001
  ident: 6123_CR14
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(00)03591-1
– volume: 194
  start-page: 82
  year: 2019
  ident: 6123_CR22
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.029
– volume: 30
  start-page: 2050019
  issue: 04
  year: 2020
  ident: 6123_CR1
  publication-title: Int. J. Neural. Syst.
  doi: 10.1142/S0129065720500197
SSID ssj0000529419
Score 2.4514098
Snippet Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes homologous...
Abstract Due to the lack of validated universal seizure markers, population-level prediction methods often exhibit limited performance. This study proposes...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22852
SubjectTerms 692/699/375
692/699/375/178
Electroencephalography - methods
Homologous microstate dynamic attributes
Humanities and Social Sciences
Humans
multidisciplinary
Neural Networks, Computer
Online deployment stage
Science
Science (multidisciplinary)
Seizures - diagnosis
Seizures - physiopathology
ST-GCN
Subject-independent seizure prediction
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NqxMxEA9SELzIe-rT9YsI3nyhm2w2mz3WYi0eerGFngybzYQWXrelH4Lvr3eS3ZZWRS9ek8Amv5nJzOxMZgh5n0KeoxmsmC8KxaSSDkXKWlbLSqUOalG7mOU7UeOZ_DLP52etvkJOWFseuAWur5WHMsMbxaIjovKyrIV3NlWV9iL3BYTbF3XemTPVVvUWpeRl90omzXR_h5oqvCYTOYslR1h-oYliwf4_WZm_J0v-EjGNimh0RR53FiQdtDu_Jg-geUIetj0lfzwl3wa0WX-HO_p1yj4PJzS2uqFBWTm6buhivQoL0d-nq5CLFx8UUbRc6e5gwz8Ztjw1xt3THSzvD1ugm22I5wQaPiOz0afpcMy6JgoIt1J7xnml0AVGz6PwCqXVooMAynkfuoykwgMHdMmcBBznTmSFFYATUKYaOIc6uyG9Zt3AC0JdIVNUejaEMmWpQFdK15mqRFXUlbV5Qj4cATWbtlaGiTHuTJsWfoPwmwi_wdUfA-anlaHOdRxA6puO-uZf1E_IuyPFDMpFCHZUDSCGBi-qUHoPz5aQ5y0FT5-SoeeQ5Doh-oK2F3u5nGmWi1h7mwtEEo3KhNwe2cB0Ur_7y2Ff_o_DviKPROTfAtn4Nenttwd4gybR3r6N3P8TRJgHeA
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel ST-GCN model based on homologous microstate for subject-independent seizure prediction
URI https://link.springer.com/article/10.1038/s41598-025-06123-5
https://www.ncbi.nlm.nih.gov/pubmed/40596418
https://www.proquest.com/docview/3226356010
https://pubmed.ncbi.nlm.nih.gov/PMC12217839
https://doaj.org/article/86fe93eb1b0946599c2fdb06a8f25f7e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY99z1wUN9raJ2bIs2Y9paFfyEMbaQp4mLPu0Bla7JOmg_et7ku1AujLYk0GSsfW7k-5Od7oD-BRjlpEarLjTWnGpZE1LylpeyVLFNVaiqkOU70ydXsjpPJvvgBjuwoSg_ZDSMmzTQ3TY1xUJGn8ZTGQ8ZAzh2S7s-9TtnqsnarI5V_GeK5kU_f2YOM0feXVLBoVU_Y_pl3-HST7wlQYRdPIcnvW6Ixt3f_sCdrB5CU-6apK3r-DnmDXtH_zNzs75t8mMhSI3zIupmrUNu2yv_ECy9NmVj8ILV4kY6axsdWP9aQxfbErirtkKF3cED7teek-Op95ruDg5Pp-c8r58AgGt1JonSanI-CWbQztF69SSaYCqds7XF4mFwwTJGKslUntSi1RbgdSBRZxjkmCVvoG9pm3wHbBay5jEnfVOTFkozEuVV6kqRamr0tosgs8DoOa6y5Jhgnc7zU0HvyH4TYDf0Ogjj_lmpM9wHRra5S_TU9zkymGRkiSxZICqrCgq4WobqzJ3InMaI_g4UMzQivBujrJBwtDQFuWT7tHcInjbUXDzKemrDckkjyDfou3Wv2z3NIvLkHU7EYQkqZMRfBnYwPTrffWPyR783_D38FQETtXEsIewt17e4AdSe9Z2BLt6rkewPx5Pz6b0PDqeff8xCtw_CkcJ9-wqAR8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQXVN6BAkbiBhaJ4zjOsV21LFD2wlbqCSuOx3QlmlS7WyT49YydZKWFComr7cjON7ZnxvMCeJ1iUZAYrLgvS8Wlko6OlLW8kbVKHTaicdHLd6amp_LjWXG2A2KMhYlO-zGlZbymR--wdytiNCEYTBQ8ZgzhxQ24GSYJblwTNdm8qwTLlcyqIT4mzfU1n27xoJiq_zr58m83yT9spZEFHe_B3UF2ZAf9au_BDrb34VZfTfLnA_h6wNruB35nX-b8_WTGYpEbFtiUY13LzruLMJA0fXYRvPBiKBEjmZWtrmx4jeGLTUncNVvh4hfBwy6XwZITqPcQTo-P5pMpH8onENBKrXmW1YqUX9I5Sq_onFpSDVA570N9kVR4zJCUMSeR2jMn8tIKpA6sUo1Zhk3-CHbbrsUnwFwpU2J3NhgxZaVQ10o3uapFXTa1tUUCb0ZAzWWfJcNE63auTQ-_IfhNhN_Q6MOA-WZkyHAdG7rlNzNQ3GjlscqJk1hSQFVRVY3wzqaq1l4UvsQEXo0UM3QigpmjbpEwNHRFhaR79G8JPO4puJlKhmpDMtMJ6C3abq1lu6ddnMes25kgJEmcTODtuA3McN5X__jZp_83_CXcns4_n5iTD7NPz-COiLu2pM27D7vr5RU-JxFobV_EPf8bE_z-_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXxJuUl5G4QWjsOI5zLAtLeWiFRCv1hBXHY7pSm6x2t0jw6xk7yUoLFRJX25Gdb2zPjOcF8CLDoiAxWKW-LFUqlXR0pKxNG1mrzGEjGhe9fGfq8Fh-PClOdkCNsTDRaT-mtIzX9Ogdtr8iRhOCwUSRxowhafF64fwVuEoTZUHpmqjJ5m0lWK8kr4YYmSzXl3y-xYdiuv7LZMy_XSX_sJdGNjS9BTcH-ZEd9Cu-DTvY3oFrfUXJn3fh2wFrux94xr4epe8nMxYL3bDAqhzrWnbanYeBpO2z8-CJF8OJGMmtbHVhw4tMOt-UxV2zFc5_EURssQzWnEDBe3A8fXc0OUyHEgoEtlLrlPNakQJMekfpFZ1VS-oBKud9qDGSCY8cSSFzEqmdO5GXViB1YJVp5Byb_D7stl2LD4G5UmbE8mwwZMpKoa6VbnJVi7psamuLBF6OgJpFnynDRAt3rk0PvyH4TYTf0Og3AfPNyJDlOjZ0y-9moLrRymOVEzexpISqoqoa4Z3NVK29KHyJCTwfKWboVARTR90iYWjomgqJ9-jfEnjQU3AzlQwVhyTXCegt2m6tZbunnZ_GzNtcEJIkUibwatwGZjjzq3_87N7_DX8G17-8nZrPH2afHsENETdtSXv3Meyulxf4hKSgtX0at_xvtnUAFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+ST-GCN+model+based+on+homologous+microstate+for+subject-independent+seizure+prediction&rft.jtitle=Scientific+reports&rft.au=Shi%2C+Wei&rft.au=Shi%2C+Yi&rft.au=Chen%2C+Fangni&rft.au=Zhang%2C+Lei&rft.date=2025-07-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=22852&rft_id=info:doi/10.1038%2Fs41598-025-06123-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon