Electromembrane extraction in microfluidic formats
Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane...
Saved in:
Published in | Journal of separation science Vol. 45; no. 1; pp. 246 - 257 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1615-9306 1615-9314 1615-9314 |
DOI | 10.1002/jssc.202100603 |
Cover
Abstract | Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96‐well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli‐ and microfluidic formats. These are much more early‐stage activities, but applications among others related to organ‐on‐chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli‐ and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research. |
---|---|
AbstractList | Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96‐well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli‐ and microfluidic formats. These are much more early‐stage activities, but applications among others related to organ‐on‐chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli‐ and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research. Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96-well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli- and microfluidic formats. These are much more early-stage activities, but applications among others related to organ-on-chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli- and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research.Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96-well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli- and microfluidic formats. These are much more early-stage activities, but applications among others related to organ-on-chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli- and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research. |
Author | Pedersen‐Bjergaard, Stig Hansen, Frederik André Petersen, Nickolaj Jacob Kutter, Jörg P. |
Author_xml | – sequence: 1 givenname: Frederik André surname: Hansen fullname: Hansen, Frederik André organization: University of Oslo – sequence: 2 givenname: Nickolaj Jacob surname: Petersen fullname: Petersen, Nickolaj Jacob organization: University of Copenhagen – sequence: 3 givenname: Jörg P. surname: Kutter fullname: Kutter, Jörg P. organization: University of Copenhagen – sequence: 4 givenname: Stig orcidid: 0000-0002-1666-8043 surname: Pedersen‐Bjergaard fullname: Pedersen‐Bjergaard, Stig email: stig.pedersen-bjergaard@farmasi.uio.no organization: University of Copenhagen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34562339$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtPwzAQxi0E4lFYGVEkFpaWsy9-ZEQVTyExFGbLdRzJVRKDnQj63-MK6MDSxQ_p993dd98J2e9D7wg5pzCjAOx6lZKdMWD5IwD3yDEVlE8rpOX-9g3iiJyktAKgUlVwSI6w5IIhVseE3bbODjF0rltG07vCfQ3R2MGHvvB90XkbQ9OOvva2aELszJBOyUFj2uTOfu8Jebu7fZ0_TJ9f7h_nN89TWwqhprJGsIZWyjAjZCONEE5wTmuDAmVloRalBETDRaO4o1YhpY6VKI1RsGxwQoqfujb6NPhe9yEaTUFxlk-gimXk6gd5j-FjdGnQnU_WtW12EsakmUDBEZDCbpRLkVleYUYv_6GrMMY-e80FaV5cnmBT8OKXGpedq_V79J2Ja_232wzM_uYPKUXXbBEKGwNMb8LT2_CyoPwnsH4wmyhyJL7dKfv0rVvvaKKfFou5LFHhNz1HqQM |
CitedBy_id | crossref_primary_10_1016_j_aca_2023_341610 crossref_primary_10_1016_j_sampre_2025_100170 crossref_primary_10_1039_D3AY02172F crossref_primary_10_37349_eff_2024_00038 crossref_primary_10_1021_acs_analchem_4c04994 crossref_primary_10_1016_j_aca_2024_342362 crossref_primary_10_1016_j_aca_2023_341572 crossref_primary_10_1007_s00604_022_05581_2 crossref_primary_10_1016_j_sampre_2022_100011 crossref_primary_10_1016_j_chroma_2024_464909 crossref_primary_10_1002_ansa_202200065 crossref_primary_10_1007_s00216_024_05503_6 crossref_primary_10_1016_j_seppur_2024_126587 crossref_primary_10_1021_acs_analchem_3c01052 crossref_primary_10_3389_fphar_2023_1139229 crossref_primary_10_1016_j_chroma_2024_464900 crossref_primary_10_1016_j_trac_2024_117994 crossref_primary_10_1002_elps_202400102 crossref_primary_10_1016_j_tifs_2023_01_005 crossref_primary_10_1016_j_aca_2022_339986 crossref_primary_10_1016_j_trac_2022_116749 crossref_primary_10_1016_j_microc_2022_107751 crossref_primary_10_1016_j_microc_2023_109383 crossref_primary_10_1016_j_talanta_2024_125849 crossref_primary_10_1007_s00216_023_04807_3 crossref_primary_10_1007_s00216_025_05744_z crossref_primary_10_1021_acs_analchem_4c02139 crossref_primary_10_1002_pca_3418 crossref_primary_10_1016_j_biosx_2022_100194 crossref_primary_10_1016_j_trac_2024_117861 crossref_primary_10_1007_s00604_023_05752_9 |
Cites_doi | 10.1007/s10404-010-0603-6 10.1039/C9AY02328C 10.1016/j.aca.2020.01.024 10.1021/acs.analchem.8b01936 10.1021/acsami.9b22050 10.1039/C5AN02019K 10.1002/elps.201900024 10.1016/j.foodchem.2019.125876 10.1016/j.aca.2015.09.052 10.1016/j.jpha.2017.04.002 10.1016/j.chroma.2020.461270 10.1016/j.aca.2016.07.048 10.1016/j.chroma.2006.01.025 10.1016/j.chroma.2017.10.049 10.1016/j.trac.2018.06.010 10.1016/j.trac.2016.04.016 10.1021/acs.analchem.8b01224 10.1039/c2an35264h 10.1016/j.chroma.2008.12.079 10.1016/j.chroma.2007.08.057 10.1021/ac1027148 10.1016/j.chroma.2018.04.046 10.1016/j.talanta.2020.121864 10.1016/j.aca.2021.338448 10.1016/j.trac.2017.07.027 10.1021/acs.analchem.8b02292 10.1016/j.aca.2016.09.022 10.1039/C9NJ01104H 10.1016/j.trac.2018.10.024 10.1016/j.jchromb.2017.10.062 10.1016/j.talanta.2018.10.046 10.1039/C8AN01668B |
ContentType | Journal Article |
Copyright | 2021 The Authors. Journal of Separation Science published by Wiley‐VCH GmbH 2021 The Authors. Journal of Separation Science published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2021 The Authors. Journal of Separation Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Journal of Separation Science published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess |
DBID | 24P AAYXX CITATION NPM 7U5 8FD L7M 7X8 7S9 L.6 3HK |
DOI | 10.1002/jssc.202100603 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic NORA - Norwegian Open Research Archives |
DatabaseTitle | CrossRef PubMed Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1615-9314 |
EndPage | 257 |
ExternalDocumentID | 10852_100182 34562339 10_1002_jssc_202100603 JSSC7438 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TUS UB1 UPT VH1 W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WXSBR WYISQ XG1 XPP XV2 YQT ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 1OB 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M 7X8 7S9 L.6 3HK |
ID | FETCH-LOGICAL-c4668-7d30ca198a2a67f7a66e6551da36379c0d647033a56f85e1c8311e2437aa80bf3 |
IEDL.DBID | DR2 |
ISSN | 1615-9306 1615-9314 |
IngestDate | Tue May 06 06:43:32 EDT 2025 Fri Sep 05 17:22:39 EDT 2025 Fri Sep 05 12:36:39 EDT 2025 Wed Aug 13 05:52:27 EDT 2025 Wed Feb 19 02:27:58 EST 2025 Tue Jul 01 01:26:55 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Wed Jan 22 16:26:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | microextraction electromembrane extraction microfluidics sample preparation |
Language | English |
License | Attribution 2021 The Authors. Journal of Separation Science published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4668-7d30ca198a2a67f7a66e6551da36379c0d647033a56f85e1c8311e2437aa80bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1666-8043 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.202100603 |
PMID | 34562339 |
PQID | 2616238520 |
PQPubID | 105495 |
PageCount | 12 |
ParticipantIDs | cristin_nora_10852_100182 proquest_miscellaneous_2636530310 proquest_miscellaneous_2576653593 proquest_journals_2616238520 pubmed_primary_34562339 crossref_primary_10_1002_jssc_202100603 crossref_citationtrail_10_1002_jssc_202100603 wiley_primary_10_1002_jssc_202100603_JSSC7438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 2022-Jan 20220101 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Journal of separation science |
PublicationTitleAlternate | J Sep Sci |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2018; 1556 2021; 224 2016; 943 2006; 1109 2011; 83 2017; 1068 2020; 12 2017; 1527 2019; 144 2021; 1160 2016; 141 2017; 95 2009; 1216 2007; 1174 2019; 40 2019; 43 2016; 937 2019; 113 2018; 90 2020; 1625 2016; 80 2015; 898 2020; 311 2012; 137 2019; 194 2020; 1105 2019; 112 2010; 9 e_1_2_14_30_1 e_1_2_14_31_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_10_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_12_1 e_1_2_14_33_1 e_1_2_14_15_1 e_1_2_14_14_1 e_1_2_14_17_1 e_1_2_14_16_1 e_1_2_14_29_1 e_1_2_14_6_1 e_1_2_14_5_1 e_1_2_14_8_1 e_1_2_14_7_1 e_1_2_14_9_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_4_1 e_1_2_14_3_1 e_1_2_14_23_1 e_1_2_14_24_1 e_1_2_14_21_1 e_1_2_14_22_1 e_1_2_14_27_1 e_1_2_14_28_1 e_1_2_14_25_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_18_1 |
References_xml | – volume: 1068 start-page: 313 year: 2017 end-page: 21 article-title: Quantitative analysis of clonidine and ephedrine by a microfluidic system: On‐chip electromembrane extraction followed by high performance liquid chromatography publication-title: J. Chromatogr. B. – volume: 194 start-page: 298 year: 2019 end-page: 307 article-title: A promising design of microfluidic electromembrane extraction coupled with sensitive colorimetric detection for colorless compounds based on quantum dots fluorescence publication-title: Talanta – volume: 9 start-page: 881 year: 2010 end-page: 8 article-title: On‐chip electro membrane extraction publication-title: Microfluid. Nanofluid. – volume: 83 start-page: 44 year: 2011 end-page: 51 article-title: On‐chip electro membrane extraction with online ultraviolet and mass spectrometric detection publication-title: Anal. Chem. – volume: 90 start-page: 8478 year: 2018 end-page: 86 article-title: Approach for downscaling of electromembrane extraction as a lab on‐a‐chip device followed by sensitive red‐green‐blue detection publication-title: Anal. Chem. – volume: 12 start-page: 10080 year: 2020 end-page: 95 article-title: Thiol‐ene based polymers as versatile materials for microfluidic devices for life sciences applications publication-title: ACS App Mater Interfac – volume: 1109 start-page: 183 year: 2006 end-page: 90 article-title: Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids publication-title: J. Chromatogr. A. – volume: 1105 start-page: 95 year: 2020 end-page: 104 article-title: On‐disc electromembrane extraction‐dispersive liquid‐liquid microextraction: A fast and effective method for extraction and determination of ionic target analytes from complex biofluids by GC/MS publication-title: Anal. Chim. Acta. – volume: 224 year: 2021 article-title: Microfluidic‐enabled versatile hyphenation of electromembrane extraction and thin film solid phase microextraction publication-title: Talanta – volume: 1556 start-page: 21 year: 2018 end-page: 8 article-title: Electromembrane extraction of biogenic amines in food samples by a microfluidic‐chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis publication-title: J. Chromatogr. A. – volume: 90 start-page: 10417 year: 2018 end-page: 24 article-title: A new microchip design. A versatile combination of electromembrane extraction and liquid‐phase microextraction in a single chip device publication-title: Anal. Chem. – volume: 137 start-page: 3321 year: 2012 end-page: 7 article-title: On‐chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry publication-title: Analyst – volume: 7 start-page: 141 year: 2017 end-page: 7 article-title: Electromembrane extraction—Recent trends and where to go publication-title: J Pharmaceut Anal – volume: 80 start-page: 604 year: 2016 end-page: 11 article-title: The electric field— An emerging driver in sample preparation publication-title: Trends Anal. Chem. – volume: 43 start-page: 9689 year: 2019 end-page: 95 article-title: A new microfluidic‐chip device for selective and simultaneous extraction of drugs with various properties publication-title: New J. Chem. – volume: 898 start-page: 42 year: 2015 end-page: 9 article-title: A new effective on chip electromembrane extraction coupled with high performance liquid chromatography for enhancement of extraction efficiency publication-title: Anal. Chim. Acta. – volume: 1160 year: 2021 article-title: An efficient microfluidic device based on electromembrane extraction for the simultaneous extraction of acidic and basic drugs publication-title: Anal. Chim. Acta. – volume: 95 start-page: 47 year: 2017 end-page: 56 article-title: Electromembrane extraction publication-title: Trends Anal. Chem. – volume: 112 start-page: 264 year: 2019 end-page: 72 article-title: Liquid‐phase microextraction—The different principles and configurations publication-title: Trends Anal. Chem. – volume: 12 start-page: 483 year: 2020 end-page: 90 article-title: On‐chip electromembrane extraction followed by sensitive digital image‐based colorimetry for determination of trace amounts of Cr(vi) publication-title: Anal. Methods. – volume: 937 start-page: 61 year: 2016 end-page: 8 article-title: Simultaneous extraction of acidic and basic drugs via on‐chip electromembrane extraction publication-title: Anal. Chim. Acta. – volume: 40 start-page: 2514 year: 2019 end-page: 21 article-title: On‐chip electromembrane extraction of acidic drugs publication-title: Electrophoresis – volume: 1625 year: 2020 article-title: Impedance model for voltage optimization of parabens extraction in an electromembrane millifluidic device publication-title: J. Chromatogr. A. – volume: 1216 start-page: 1496 year: 2009 end-page: 502 article-title: Drop‐to‐drop microextraction across a supported liquid membrane by an electrical field under stagnant conditions publication-title: J. Chromatogr. A. – volume: 1174 start-page: 104 year: 2007 end-page: 11 article-title: Simulation of flux during electro‐membrane extraction based on the Nernst–Planck equation publication-title: J. Chromatogr. A. – volume: 141 start-page: 311 year: 2016 end-page: 8 article-title: A novel approach to the consecutive extraction of drugs with different properties via on chip electromembrane extraction publication-title: Analyst – volume: 311 year: 2020 article-title: Haas in grilled meat: Determination using an advanced lab‐on‐a‐chip flat electromembrane extraction coupled with on‐line HPLC publication-title: Food Chem – volume: 943 start-page: 64 year: 2016 end-page: 73 article-title: Micro‐electromembrane extraction using multiple free liquid membranes and acceptor solutions—Towards selective extractions of analytes based on their acid‐base strength publication-title: Anal. Chim. Acta. – volume: 1527 start-page: 1 year: 2017 end-page: 9 article-title: On‐chip pulsed electromembrane extraction as a new concept for analysis of biological fluids in a small device publication-title: J Chromatograph. A – volume: 144 start-page: 1159 year: 2019 end-page: 66 article-title: Simultaneous extraction of acidic and basic drugs: Via on‐chip electromembrane extraction using a single‐compartment microfluidic device publication-title: Analyst – volume: 113 start-page: 357 year: 2019 end-page: 63 article-title: Electromembrane extraction: Overview of the last decade publication-title: Trends Anal. Chem. – volume: 90 start-page: 9322 year: 2018 end-page: 9 article-title: Nanoliter‐scale electromembrane extraction and enrichment in a microfluidic chip publication-title: Anal. Chem. – ident: e_1_2_14_8_1 doi: 10.1007/s10404-010-0603-6 – ident: e_1_2_14_27_1 doi: 10.1039/C9AY02328C – ident: e_1_2_14_24_1 doi: 10.1016/j.aca.2020.01.024 – ident: e_1_2_14_32_1 doi: 10.1021/acs.analchem.8b01936 – ident: e_1_2_14_30_1 doi: 10.1021/acsami.9b22050 – ident: e_1_2_14_13_1 doi: 10.1039/C5AN02019K – ident: e_1_2_14_20_1 doi: 10.1002/elps.201900024 – ident: e_1_2_14_23_1 doi: 10.1016/j.foodchem.2019.125876 – ident: e_1_2_14_31_1 doi: 10.1016/j.aca.2015.09.052 – ident: e_1_2_14_6_1 doi: 10.1016/j.jpha.2017.04.002 – ident: e_1_2_14_33_1 doi: 10.1016/j.chroma.2020.461270 – ident: e_1_2_14_14_1 doi: 10.1016/j.aca.2016.07.048 – ident: e_1_2_14_2_1 doi: 10.1016/j.chroma.2006.01.025 – ident: e_1_2_14_19_1 doi: 10.1016/j.chroma.2017.10.049 – ident: e_1_2_14_3_1 doi: 10.1016/j.trac.2018.06.010 – ident: e_1_2_14_7_1 doi: 10.1016/j.trac.2016.04.016 – ident: e_1_2_14_26_1 doi: 10.1021/acs.analchem.8b01224 – ident: e_1_2_14_12_1 doi: 10.1039/c2an35264h – ident: e_1_2_14_9_1 doi: 10.1016/j.chroma.2008.12.079 – ident: e_1_2_14_10_1 doi: 10.1016/j.chroma.2007.08.057 – ident: e_1_2_14_11_1 doi: 10.1021/ac1027148 – ident: e_1_2_14_18_1 doi: 10.1016/j.aca.2015.09.052 – ident: e_1_2_14_22_1 doi: 10.1016/j.chroma.2018.04.046 – ident: e_1_2_14_25_1 doi: 10.1016/j.talanta.2020.121864 – ident: e_1_2_14_34_1 doi: 10.1016/j.aca.2021.338448 – ident: e_1_2_14_5_1 doi: 10.1016/j.trac.2017.07.027 – ident: e_1_2_14_17_1 doi: 10.1021/acs.analchem.8b02292 – ident: e_1_2_14_29_1 doi: 10.1016/j.aca.2016.09.022 – ident: e_1_2_14_15_1 doi: 10.1039/C9NJ01104H – ident: e_1_2_14_4_1 doi: 10.1016/j.trac.2018.10.024 – ident: e_1_2_14_21_1 doi: 10.1016/j.jchromb.2017.10.062 – ident: e_1_2_14_28_1 doi: 10.1016/j.talanta.2018.10.046 – ident: e_1_2_14_16_1 doi: 10.1039/C8AN01668B |
SSID | ssj0017890 |
Score | 2.472594 |
SecondaryResourceType | review_article |
Snippet | Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from... |
SourceID | cristin proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 246 |
SubjectTerms | Beverages chemical species electric field electromembrane extraction glass Liquid membranes microextraction Microfluidics mobile telephones sample preparation separation supported liquid membranes |
Title | Electromembrane extraction in microfluidic formats |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.202100603 https://www.ncbi.nlm.nih.gov/pubmed/34562339 https://www.proquest.com/docview/2616238520 https://www.proquest.com/docview/2576653593 https://www.proquest.com/docview/2636530310 http://hdl.handle.net/10852/100182 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-UwEB9cL7oHP3e1ftEFYU_VNknT9ChPRQRlWRW8lTRN4amvin3v4l_vTNNWn4sr4rlTkibz8Zs08xuA3ZgpK4XRiNwihQmKUEGuUxVIjO4FLwt0y3Sgf3YuT67E6XV8_aqK3_FD9AduZBmNvyYD13m9_0IaelPXREGIKUsoG7rPiEsizz_82_NHRVTlSRkXhu0gRXDcsTaGbH_6dUS_pjGqajo-_QM6pzFsE4SOF0F303d3T273JuN8zzy9YXb8yvctwUKLUP0Dp1LLMGOrFZgbdI3hVuD7Kw7DVWBHrpHOyI5wtMr66O0fXbWEP6z8EV34K-8mw2JofAeQ6x9wdXx0OTgJ2kYMgRFSqiApeGh0lCrNtEzKREtpJUKtQnPJk9SEhRToObiOZaliGxnFo8gS1aHWKsxL_hNmq_vKroOPfl6URULqEQuWJGma5BYxqeE8LItIeOC1G5FVaAPEXxozIlbGPMiDoNuazLQM5tRI4y5z3MssozXL-jXz4Hcv_-C4O96V3Op2OmttuM4wt0RsiMOHHvzqH-Na0y8VXM_7CcpguiZjHqf8PzKSowhRsHqw5rSonw6nBJTzFD-t0YUP5pmdXlwMEPOpjU_Kb8I8o7qN5uxoC2bHjxO7jWhqnO_ANyb-7DR28wwz4xS5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5ED-pBdH3VZwXBU7FN0jQ9yqKs6wNBBW8hm6awslvFdf-_M33pIiqeO6XpTCbzzSTzBeA4ZspJYQ0it0hhgiJUMDCpCiRG94znGS7LVNC_uZW9R9F_ipvThNQLU_FDtAU38oxyvSYHp4L06Sdr6PNkQhyEmLOEkvg-FwSCczrVx8Rdu5FAfZ6Uc2HgDlKExw1vY8hOZ99H_GtLtypmI9Q32DmLYsswdLEKKzV-9M8qg6_BnCs6sNhtrm3rwPIXhsF1YOfVNTdjN8Z_LZyPa_Fb1cvgDwt_TMfx8tF0mA2tX8HXyQY8Xpw_dHtBfU1CYIWUKkgyHloTpcowI5M8MVI6iUAoM1zyJLVhJgX6NTexzFXsIqt4FDkiIjRGhYOcb8J88VK4bfBxFRZ5lpDxYsGSJE2TgUPEaDkP8ywSHni1knSBM5TYRWNGtMeYpXgQNGrTtuYXp2suRrpiRmaaFK5bhXtw0sq_VswaP0ruNVbQtYdNNGZ-iNzw86EHR-1j1DVteKA-X6Yog8mUjHmc8l9kJEcRIkj1YKuycDscTukh5yn-WmnyP8ap-_f3XURkauef8oew2Hu4udbXl7dXu7DEqMOirPLswfz729TtI-55HxyUM_sD5Qn2CA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIlF64FEoDRRIpUqc0k1ix3GOaOmqFKiqPqTeLMd2pC3ddLWPC7-emTgJ3aKCEOdMZMeexzeO5xuAvSyVTnCjEbklEhMULqNSFzISGN0tqyy6ZTrQ_3YsDi_40WV2eauK3_ND9AduZBmNvyYDn9pq8Is09Go-JwpCTFliQXSfD7lAOEGw6LQnkEqozJNSLozbUYHouKNtjNPB6vsIf01jVfVqgPoNda6C2CYKjZ6C7ubvL598318uyn3z4w614_984DN40kLU8KPXqefwwNWbsD7sOsNtwsYtEsMXkB74TjoTN8HRaheiu5_5colwXIcTuvFXXS_HdmxCj5DnL-FidHA-PIzaTgyR4ULIKLcsNjoppE61yKtcC-EEYi2rmWB5YWIrOLoOpjNRycwlRrIkccR1qLWMy4ptwVp9U7ttCNHR88rmpB8ZT_O8KPLSISg1jMWVTXgAQbsRqkYjIALTLCVmZUyEAoi6rVGmpTCnThrXypMvp4rWTPVrFsCHXn7qyTvuldzpdlq1RjxXmFwiOMTh4wB2-8e41vRPBdfzZokymK-JjGUF-4OMYChCHKwBvPJa1E-HUQbKWIGf1ujCX-apjs7Ohgj65Ot_lH8Pj04-jdTXz8df3sDjlGo4mnOkHVhbzJbuLSKrRfmuMZ6foDYWsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromembrane+extraction+in+microfluidic+formats&rft.jtitle=Journal+of+separation+science&rft.au=Hansen%2C+Frederik+Andre&rft.au=Petersen%2C+Nickolaj+Jacob&rft.au=Kutter%2C+J%C3%B6rg+P&rft.au=Pedersen-Bjergaard%2C+Stig&rft.date=2022&rft.issn=1615-9306&rft_id=info:doi/10.1002%2Fjssc.202100603&rft.externalDBID=n%2Fa&rft.externalDocID=10852_100182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon |