Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of α-peaks on the electroencephalographic power spectrum

Background:  Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This stud...

Full description

Saved in:
Bibliographic Details
Published inActa anaesthesiologica Scandinavica Vol. 51; no. 4; pp. 472 - 481
Main Authors Tsuda, N., Hayashi, K., Hagihira, S., Sawa, T.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2007
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background:  Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence. Methods:  Anesthesia was induced with propofol using a target‐controlled infusion (TCI) system (3.5 μg/ml). Seventeen patients, scheduled for non‐cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI‐propofol alone (n= 8) and (ii) anesthesia was maintained with TCI‐propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined. Results:  Propofol alone caused the α‐peaks of the power spectra to occur at an average frequency of 10.4 ± 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 ± 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding α‐peaks disappeared. Conclusions:  Ketamine increased the frequencies of α‐spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia.
AbstractList Background:Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence.Methods:Anesthesia was induced with propofol using a target-controlled infusion (TCI) system (3.5 mu g/ml). Seventeen patients, scheduled for non-cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI-propofol alone (n = 8) and (ii) anesthesia was maintained with TCI-propofol and intravenously administered ketamine (n = 9). The EEG was continuously monitored and EEG indices and power spectra were determined.Results:Propofol alone caused the alpha -peaks of the power spectra to occur at an average frequency of 10.4 plus or minus 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 plus or minus 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding alpha -peaks disappeared.Conclusions:Ketamine increased the frequencies of alpha -spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia.
Background:  Ketamine, an N ‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence. Methods:  Anesthesia was induced with propofol using a target‐controlled infusion (TCI) system (3.5 μg/ml). Seventeen patients, scheduled for non‐cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI‐propofol alone ( n = 8) and (ii) anesthesia was maintained with TCI‐propofol and intravenously administered ketamine ( n = 9). The EEG was continuously monitored and EEG indices and power spectra were determined. Results:  Propofol alone caused the α‐peaks of the power spectra to occur at an average frequency of 10.4 ± 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 ± 1.4 Hz ( P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding α‐peaks disappeared. Conclusions:  Ketamine increased the frequencies of α‐spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia.
BACKGROUNDKetamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence.METHODSAnesthesia was induced with propofol using a target-controlled infusion (TCI) system (3.5 microg/ml). Seventeen patients, scheduled for non-cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI-propofol alone (n= 8) and (ii) anesthesia was maintained with TCI-propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined.RESULTSPropofol alone caused the alpha-peaks of the power spectra to occur at an average frequency of 10.4 +/- 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 +/- 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding alpha-peaks disappeared.CONCLUSIONSKetamine increased the frequencies of alpha-spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia.
Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence. Anesthesia was induced with propofol using a target-controlled infusion (TCI) system (3.5 microg/ml). Seventeen patients, scheduled for non-cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI-propofol alone (n= 8) and (ii) anesthesia was maintained with TCI-propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined. Propofol alone caused the alpha-peaks of the power spectra to occur at an average frequency of 10.4 +/- 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 +/- 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding alpha-peaks disappeared. Ketamine increased the frequencies of alpha-spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia.
Background:  Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence. Methods:  Anesthesia was induced with propofol using a target‐controlled infusion (TCI) system (3.5 μg/ml). Seventeen patients, scheduled for non‐cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI‐propofol alone (n= 8) and (ii) anesthesia was maintained with TCI‐propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined. Results:  Propofol alone caused the α‐peaks of the power spectra to occur at an average frequency of 10.4 ± 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 ± 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding α‐peaks disappeared. Conclusions:  Ketamine increased the frequencies of α‐spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia.
Author Hagihira, S.
Tsuda, N.
Hayashi, K.
Sawa, T.
Author_xml – sequence: 1
  givenname: N.
  surname: Tsuda
  fullname: Tsuda, N.
  organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan
– sequence: 2
  givenname: K.
  surname: Hayashi
  fullname: Hayashi, K.
  email: zukko@koto.kpu-m.ac.jp
  organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan
– sequence: 3
  givenname: S.
  surname: Hagihira
  fullname: Hagihira, S.
  organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan
– sequence: 4
  givenname: T.
  surname: Sawa
  fullname: Sawa, T.
  organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18588676$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17378787$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFV0C5wKlZ7DixnQOHZYGCKIsERZW4WBPvpJttYgc7q-4eeChehGfC6a7aI9gHjzXfPx7Pf0KOrLNISMLolMX1aj1lvCxTUUgxzSgVU8qyXEy3j8jkPnFEJpRSlhZMZsfkJIR1vPK8LJ-QYya5VHFPyK9POEDXWDxLwCaLz29nKdgBrp1twnCWNNZ4hIAhGVaYuGCatoXB-V1Se_y5QWuamHN18ud32iPcxNjeodiiGbyLAPYraN21h37VmKR3t-iT0I_ZTfeUPK6hDfjscJ6S7-_fXc4_pBdfzj_OZxepyYUQ6VIuFSAXQskSoVJLpVhuhCiqqqxyxmlNFaOCCgA0EawyrJiitZK1yvMC-Cl5ua_bexe7DoPummAw_sWi2wQtKadSCvlPMKM551IWEVR70HgXgsda977pwO80o3r0SK_1aIUerdCjR_rOI72N0ueHNzZVh8sH4cGUCLw4ABAMtLWHOObwwKlCKSFF5F7vudumxd1_N6Bns29jFPXpXh-txu29HvyNjqOQhb5anOs5X3x98-PqUmf8L60_wHY
CODEN AANEAB
CitedBy_id crossref_primary_10_3389_fphar_2020_562137
crossref_primary_10_15690_vramn1158
crossref_primary_10_1093_bja_aen403
crossref_primary_10_1111_ejn_15646
crossref_primary_10_1007_s00540_011_1224_2
crossref_primary_10_17816_humeco568123
crossref_primary_10_1186_1471_2202_14_S1_O22
crossref_primary_10_1016_j_brainresbull_2013_07_010
crossref_primary_10_1016_j_clinph_2009_12_016
crossref_primary_10_1111_pan_12510
crossref_primary_10_1097_ALN_0000000000001671
crossref_primary_10_1111_j_1460_9568_2012_08263_x
crossref_primary_10_1007_s11571_008_9063_z
crossref_primary_10_1093_bja_aem175
crossref_primary_10_1056_NEJMra0808281
crossref_primary_10_35366_110199
crossref_primary_10_3934_Neuroscience_2014_2_169
crossref_primary_10_1146_annurev_neuro_060909_153200
crossref_primary_10_1007_s40520_019_01378_1
crossref_primary_10_1097_ALN_0000000000000841
crossref_primary_10_1155_2016_8273716
crossref_primary_10_1016_j_neuroimage_2018_04_062
crossref_primary_10_1152_jn_00053_2018
crossref_primary_10_1097_ALN_0000000000002554
Cites_doi 10.1016/j.clinph.2005.09.011
10.1159/000079981
10.1046/j.1440-1819.2002.01023.x
10.1034/j.1399-6576.1999.430216.x
10.1111/j.1399-6576.2005.00814.x
10.1097/00004691-199805000-00005
10.1016/0013-4694(90)90001-Z
10.1093/bja/aef154
10.1152/jn.01105.2003
10.1523/JNEUROSCI.13-08-03284.1993
10.1097/00000542-200502000-00017
10.1097/00000542-200502000-00030
10.1111/j.1460-9568.2004.03843.x
10.1007/s001140100230
10.1097/00000542-200404000-00011
10.1111/j.1399-6576.1994.tb03984.x
10.1046/j.1467-2995.2003.00099.x
10.1093/bja/67.1.41
10.1097/00000542-199506000-00003
10.1097/00000542-200212000-00012
10.1111/j.1399-6576.2003.00330.x
10.1097/00000539-200110000-00032
10.1097/00000542-198704000-00007
10.1152/physrev.00012.2003
10.1126/science.8235588
10.1016/j.brainres.2004.01.084
10.1176/appi.neuropsych.15.1.27
ContentType Journal Article
Copyright 2007 Acta Anaesthesiol Scand
2007 INIST-CNRS
Copyright_xml – notice: 2007 Acta Anaesthesiol Scand
– notice: 2007 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1111/j.1399-6576.2006.01246.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1399-6576
EndPage 481
ExternalDocumentID 10_1111_j_1399_6576_2006_01246_x
17378787
18588676
AAS1246
ark_67375_WNG_C3NRBZWT_2
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23M
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUOVR
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
J5H
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V9Y
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
ZGI
ZXP
ZZTAW
~IA
~WT
08R
AAPBV
AAUGY
AAVGM
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c4666-d7d8ae366879eab8d8814c665bb9b4130f0810606aaecae3b2eb180f87f8445a3
IEDL.DBID DR2
ISSN 0001-5172
IngestDate Fri Aug 16 08:07:59 EDT 2024
Sat Aug 17 02:58:32 EDT 2024
Fri Aug 23 02:48:20 EDT 2024
Sat Sep 28 07:44:38 EDT 2024
Sun Oct 22 16:07:27 EDT 2023
Sat Aug 24 01:07:50 EDT 2024
Wed Oct 30 09:52:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Glutamate receptor
Spectral analysis
reticular thalamic nucleus
thalamocortical system
Ketamine
spindle wave
General anesthetic
NMDA
Anesthesia
N-methyl-D-aspartate
Antagonist
NMDA receptor
Power spectrum
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4666-d7d8ae366879eab8d8814c665bb9b4130f0810606aaecae3b2eb180f87f8445a3
Notes ark:/67375/WNG-C3NRBZWT-2
ArticleID:AAS1246
istex:3036EA60D764502D7153C9F3CDE4796ED7E6DC08
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-News-1
ObjectType-Feature-3
PMID 17378787
PQID 20433775
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_70307767
proquest_miscellaneous_20433775
crossref_primary_10_1111_j_1399_6576_2006_01246_x
pubmed_primary_17378787
pascalfrancis_primary_18588676
wiley_primary_10_1111_j_1399_6576_2006_01246_x_AAS1246
istex_primary_ark_67375_WNG_C3NRBZWT_2
PublicationCentury 2000
PublicationDate April 2007
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: April 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Acta anaesthesiologica Scandinavica
PublicationTitleAlternate Acta Anaesthesiol Scand
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Coetzee JF, Glen JB, Wium CA, Boshoff MB. Pharmacokinetic model selection for target controlled infusions of propofol: assessment of three parameter sets. Anesthesiology 1995; 82: 1328-45.
Steriade M, Gloor P, Llinas RR, Lopes de Silva FH, Mesulam MM. Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 1990; 76: 481-508.
Hagihira S, Takashina M, Mori T, Ueyama H, Mashimo T. Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia. Anesthesiology 2004; 100: 818-25.
Hagihira S, Takashina M, Mori T, Mashimo T, Yoshiya I. Changes of electroencephalographic bicoherence during isoflurane anesthesia combined with epidural anesthesia. Anesthesiology 2002; 97: 1409-15.
Krystal AD, Weiner RD, Dean MD et al. Comparison of seizure duration, ictal EEG, and cognitive effects of ketamine and methohexital anesthesia with ECT. J Neuropsychiatry Clin Neurosci 2003; 15: 27-34.
Hirota K, Kubota T, Ishihara H, Matsuki A. The effects of nitrous oxide and ketamine on the bispectral index and 95% spectral edge frequency during propofol-fentanyl anaesthesia. Eur J Anaesthesiol 1999; 16: 779-84.
Mackenzie L, Pope KJ, Willoughby JO. Physiological and pathological spindling phenomena have similar regional EEG power distributions. Brain Res 2004; 1008: 92-106.
Hering W, Geisslinger G, Kamp HD et al. Changes in the EEG power spectrum after midazolam anaesthesia combined with racemic or S-(+) ketamine. Acta Anaesthesiol Scand 1994; 38: 719-23.
Kurehara K, Asano N, Iwata T, Yamaguchi A, Kawano Y et al. The influence of ketamine on the bispectral index, the spectral edge frequency 90 and the frequency bands power during propofol anesthesia. Masui 1999; 48: 611-6.
Fingelkurts AIA, Fingelkurts AnA, Kaplan AY. Interictal EEG as a physiological adaptation. Part I. Composition of brain oscillation in interictal EEG. Clin Neurophysiol 2006; 117: 208-22.
Oga K, Kojima T, Matsuura M et al. Effect of low-dose ketamine on neuropathic pain: An electroencephalogram-electrooculogram/ behavioral study. Psychiatry Clin Neurosci 2002; 56: 355-63.
Levy WJ. Effect of epoch length on power spectrum analysis of EEG. Anesthesiology 1987; 66: 489-95.
Antkowiak B. In vitro networks: cortical mechanisms of anaesthetic action. Br J Anaesth 2002; 89: 102-11.
Sakai T, Singh H, Mi WD, Kudo T, Matsuki A. The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion. Acta Anaesthesiol Scand 1999; 43: 212-6.
Marsh B, White M, Morton N, Kenny GNC. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67: 41-8.
Drexler B, Roether CL, Jurd R, Rudolph U, Antkowiak B. Opposing actions of etomidate on cortical theta oscillations are mediated by different γ-aminobutyric acid type A receptor subtypes. Anesthesiology 2005; 102: 346-52.
Destexhe A, Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 2003; 83: 1401-53.
Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillation in the sleeping and aroused brain. Science 1993; 262: 679-85.
Hagihira S, Takashina M, Mori T, Mashimo T, Yoshiya I. Practical issues in bispectral analysis of electroencephalographic signals. Anesth Analg 2001; 93: 966-70.
Steriade M, Contreras D, Dossi C, Nunez A. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons. Scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 1993; 13: 3284-99.
Bell RF, Dahl JB, Moore RA, Kalso E. Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review (Cochrane review) Acta Anaesthesiol Scand 2005; 49: 1405-28.
Fuentealba P, Crochet S, Timofeev I, Steriade M. Synaptic Interactions between thalamic and cortical inputs onto cortical neurons in vivo. J Neurophysiol 2004; 91: 1990-8.
Antkowiak B. How do general anaesthetics work? Naturwissenschaften 2001; 88: 201-13.
Kopell N, Lemassontt G. Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture. Neurobiology 1994; 91: 10586-90.
John ER, Prichep LS. The anesthetic cascade. A theory of how anesthesia suppresses consciousness. Anesthesiology 2005; 102: 447-71.
Kvarnstrom A, Karlsten R, Quiding H, Gordh T. The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury. Acta Anaesthesiol Scand 2004; 48: 498-506.
Feshchenko VA, Veselis RA, Reinsel RA. Propofol-induced alpha rhythm. Neuropsychobiology 2004; 50: 257-66.
Sloan TB. Anesthetic effect on electrophysiologic recordings. J Clin Neurophysiol 1998; 15: 217-26.
Taylor JS, Vierck CJ. Effects of ketamine on electroencephalographic and autonomic arousal and segmental reflex responses in the cat. Vet Anaesth Analg 2003; 30: 237-49.
Hentschke H, Schwarz C, Antkowiak B. Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor-mediated inhibition. Eur J Neurosci 2005; 21: 93-102.
2004; 100
2001; 93
1990; 76
2002; 97
2002; 56
2004; 48
1999; 48
2003; 15
1993; 262
1999; 43
2005; 21
2001; 88
2005; 49
2004; 91
2006; 117
2003; 30
2004; 1008
1998; 15
1987; 66
1993; 13
2004; 50
1995; 82
1991; 67
2005; 102
2002; 89
1999; 16
1994; 38
2003; 83
1994; 91
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
Hirota K (e_1_2_6_24_2) 1999; 16
Kopell N (e_1_2_6_29_2) 1994; 91
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
Kurehara K (e_1_2_6_23_2) 1999; 48
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 43
  start-page: 212
  year: 1999
  end-page: 6
  article-title: The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion
  publication-title: Acta Anaesthesiol Scand
– volume: 66
  start-page: 489
  year: 1987
  end-page: 95
  article-title: Effect of epoch length on power spectrum analysis of EEG
  publication-title: Anesthesiology
– volume: 89
  start-page: 102
  year: 2002
  end-page: 11
  article-title: In vitro networks: cortical mechanisms of anaesthetic action
  publication-title: Br J Anaesth
– volume: 30
  start-page: 237
  year: 2003
  end-page: 49
  article-title: Effects of ketamine on electroencephalographic and autonomic arousal and segmental reflex responses in the cat
  publication-title: Vet Anaesth Analg
– volume: 82
  start-page: 1328
  year: 1995
  end-page: 45
  article-title: Pharmacokinetic model selection for target controlled infusions of propofol: assessment of three parameter sets
  publication-title: Anesthesiology
– volume: 91
  start-page: 10586
  year: 1994
  end-page: 90
  article-title: Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture
  publication-title: Neurobiology
– volume: 1008
  start-page: 92
  year: 2004
  end-page: 106
  article-title: Physiological and pathological spindling phenomena have similar regional EEG power distributions
  publication-title: Brain Res
– volume: 21
  start-page: 93
  year: 2005
  end-page: 102
  article-title: Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABA receptor‐mediated inhibition
  publication-title: Eur J Neurosci
– volume: 117
  start-page: 208
  year: 2006
  end-page: 22
  article-title: Interictal EEG as a physiological adaptation. Part I. Composition of brain oscillation in interictal EEG
  publication-title: Clin Neurophysiol
– volume: 67
  start-page: 41
  year: 1991
  end-page: 8
  article-title: Pharmacokinetic model driven infusion of propofol in children
  publication-title: Br J Anaesth
– volume: 100
  start-page: 818
  year: 2004
  end-page: 25
  article-title: Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia
  publication-title: Anesthesiology
– volume: 91
  start-page: 1990
  year: 2004
  end-page: 8
  article-title: Synaptic Interactions between thalamic and cortical inputs onto cortical neurons in vivo
  publication-title: J Neurophysiol
– volume: 13
  start-page: 3284
  year: 1993
  end-page: 99
  article-title: The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons. Scenario of sleep rhythm generation in interacting thalamic and neocortical networks
  publication-title: J Neurosci
– volume: 15
  start-page: 217
  year: 1998
  end-page: 26
  article-title: Anesthetic effect on electrophysiologic recordings
  publication-title: J Clin Neurophysiol
– volume: 97
  start-page: 1409
  year: 2002
  end-page: 15
  article-title: Changes of electroencephalographic bicoherence during isoflurane anesthesia combined with epidural anesthesia
  publication-title: Anesthesiology
– volume: 16
  start-page: 779
  year: 1999
  end-page: 84
  article-title: The effects of nitrous oxide and ketamine on the bispectral index and 95% spectral edge frequency during propofol–fentanyl anaesthesia
  publication-title: Eur J Anaesthesiol
– volume: 83
  start-page: 1401
  year: 2003
  end-page: 53
  article-title: Interactions between membrane conductances underlying thalamocortical slow‐wave oscillations
  publication-title: Physiol Rev
– volume: 88
  start-page: 201
  year: 2001
  end-page: 13
  article-title: How do general anaesthetics work?
  publication-title: Naturwissenschaften
– volume: 262
  start-page: 679
  year: 1993
  end-page: 85
  article-title: Thalamocortical oscillation in the sleeping and aroused brain
  publication-title: Science
– volume: 102
  start-page: 346
  year: 2005
  end-page: 52
  article-title: Opposing actions of etomidate on cortical theta oscillations are mediated by different γ‐aminobutyric acid type A receptor subtypes
  publication-title: Anesthesiology
– volume: 49
  start-page: 1405
  year: 2005
  end-page: 28
  article-title: Peri‐operative ketamine for acute post‐operative pain: a quantitative and qualitative systematic review (Cochrane review)
  publication-title: Acta Anaesthesiol Scand
– volume: 48
  start-page: 611
  year: 1999
  end-page: 6
  article-title: The influence of ketamine on the bispectral index, the spectral edge frequency 90 and the frequency bands power during propofol anesthesia
  publication-title: Masui
– volume: 102
  start-page: 447
  year: 2005
  end-page: 71
  article-title: The anesthetic cascade. A theory of how anesthesia suppresses consciousness
  publication-title: Anesthesiology
– volume: 15
  start-page: 27
  year: 2003
  end-page: 34
  article-title: Comparison of seizure duration, ictal EEG, and cognitive effects of ketamine and methohexital anesthesia with ECT
  publication-title: J Neuropsychiatry Clin Neurosci
– volume: 50
  start-page: 257
  year: 2004
  end-page: 66
  article-title: Propofol‐induced alpha rhythm
  publication-title: Neuropsychobiology
– volume: 48
  start-page: 498
  year: 2004
  end-page: 506
  article-title: The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury
  publication-title: Acta Anaesthesiol Scand
– volume: 38
  start-page: 719
  year: 1994
  end-page: 23
  article-title: Changes in the EEG power spectrum after midazolam anaesthesia combined with racemic or S‐(+) ketamine
  publication-title: Acta Anaesthesiol Scand
– volume: 76
  start-page: 481
  year: 1990
  end-page: 508
  article-title: Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 93
  start-page: 966
  year: 2001
  end-page: 70
  article-title: Practical issues in bispectral analysis of electroencephalographic signals
  publication-title: Anesth Analg
– volume: 56
  start-page: 355
  year: 2002
  end-page: 63
  article-title: Effect of low‐dose ketamine on neuropathic pain: An electroencephalogram–electrooculogram/ behavioral study
  publication-title: Psychiatry Clin Neurosci
– ident: e_1_2_6_16_2
  doi: 10.1016/j.clinph.2005.09.011
– ident: e_1_2_6_13_2
  doi: 10.1159/000079981
– ident: e_1_2_6_8_2
  doi: 10.1046/j.1440-1819.2002.01023.x
– ident: e_1_2_6_6_2
  doi: 10.1034/j.1399-6576.1999.430216.x
– ident: e_1_2_6_9_2
  doi: 10.1111/j.1399-6576.2005.00814.x
– ident: e_1_2_6_7_2
  doi: 10.1097/00004691-199805000-00005
– ident: e_1_2_6_14_2
  doi: 10.1016/0013-4694(90)90001-Z
– ident: e_1_2_6_2_2
  doi: 10.1093/bja/aef154
– ident: e_1_2_6_28_2
  doi: 10.1152/jn.01105.2003
– ident: e_1_2_6_30_2
  doi: 10.1523/JNEUROSCI.13-08-03284.1993
– ident: e_1_2_6_22_2
  doi: 10.1097/00000542-200502000-00017
– ident: e_1_2_6_3_2
  doi: 10.1097/00000542-200502000-00030
– ident: e_1_2_6_15_2
  doi: 10.1111/j.1460-9568.2004.03843.x
– volume: 48
  start-page: 611
  year: 1999
  ident: e_1_2_6_23_2
  article-title: The influence of ketamine on the bispectral index, the spectral edge frequency 90 and the frequency bands power during propofol anesthesia
  publication-title: Masui
  contributor:
    fullname: Kurehara K
– ident: e_1_2_6_4_2
  doi: 10.1007/s001140100230
– ident: e_1_2_6_19_2
  doi: 10.1097/00000542-200404000-00011
– ident: e_1_2_6_10_2
  doi: 10.1111/j.1399-6576.1994.tb03984.x
– ident: e_1_2_6_25_2
  doi: 10.1046/j.1467-2995.2003.00099.x
– ident: e_1_2_6_17_2
  doi: 10.1093/bja/67.1.41
– ident: e_1_2_6_31_2
  doi: 10.1097/00000542-199506000-00003
– ident: e_1_2_6_18_2
  doi: 10.1097/00000542-200212000-00012
– ident: e_1_2_6_11_2
  doi: 10.1111/j.1399-6576.2003.00330.x
– volume: 91
  start-page: 10586
  year: 1994
  ident: e_1_2_6_29_2
  article-title: Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture
  publication-title: Neurobiology
  contributor:
    fullname: Kopell N
– ident: e_1_2_6_20_2
  doi: 10.1097/00000539-200110000-00032
– ident: e_1_2_6_21_2
  doi: 10.1097/00000542-198704000-00007
– ident: e_1_2_6_26_2
  doi: 10.1152/physrev.00012.2003
– ident: e_1_2_6_27_2
  doi: 10.1126/science.8235588
– ident: e_1_2_6_12_2
  doi: 10.1016/j.brainres.2004.01.084
– ident: e_1_2_6_5_2
  doi: 10.1176/appi.neuropsych.15.1.27
– volume: 16
  start-page: 779
  year: 1999
  ident: e_1_2_6_24_2
  article-title: The effects of nitrous oxide and ketamine on the bispectral index and 95% spectral edge frequency during propofol–fentanyl anaesthesia
  publication-title: Eur J Anaesthesiol
  contributor:
    fullname: Hirota K
SSID ssj0003499
Score 1.9957345
Snippet Background:  Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle...
Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations...
Background:  Ketamine, an N ‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle...
Background:Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle...
BACKGROUNDKetamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 472
SubjectTerms Abdomen - surgery
Adult
Analgesics - pharmacology
Anesthesia
Anesthesia, Epidural - methods
Anesthesia, General - methods
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Anesthetics, Combined - pharmacology
Anesthetics, Intravenous - pharmacology
Biological and medical sciences
Elective Surgical Procedures - methods
Electroencephalography - drug effects
Female
Humans
Ketamine - pharmacology
Male
Medical sciences
Middle Aged
Monitoring, Intraoperative - methods
N-methyl-D-aspartate
Propofol - pharmacology
reticular thalamic nucleus
Spectral analysis
spindle wave
thalamocortical system
Title Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of α-peaks on the electroencephalographic power spectrum
URI https://api.istex.fr/ark:/67375/WNG-C3NRBZWT-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-6576.2006.01246.x
https://www.ncbi.nlm.nih.gov/pubmed/17378787
https://search.proquest.com/docview/20433775
https://search.proquest.com/docview/70307767
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQe-HCj_gLP8UHxKlZJbFjO8dtS6lA3UNp1YqLZTsOVKtmV5tdqeqpfYO-Ci_CQ_AkzDjZLkFFQgjlkki2E49nMp_tzzOEvCmK0poq43GRmSLmzCaxBdwaS9wjks76tMQDzvsjsXfEP5zkJx3_Cc_CtPEhbhbc0DLC_xoN3Nimb-TgXJG6Ibo9BXBVYoB4MmUS2V07B6tIUowXHRJO4xycdp_Uc2tDPU-1jkI_R-akaUB4VZv14jZY2ke5wU3t3ifjZQdbdsp4sJjbgbv4Lfbj_5HAA3KvQ7N02KrfQ3LH14_I1Uc_N2fQ-iY1NR3t7wx_XF7DAJovEwzTu0lPa4SqjW8ooE-K0TRBF3Gzn1azltkN03c6qej3b1Bz6s0YnupQuMvag7-j6VfTxds-dXSKyd5oODY6W5w9Jke77w639-Iu00PsOMyf4lKWyngmhJKFN1aVSqXcCZFbW1h0sxUglwTmWsZ4BwVtBi5GJZWSleI8N-wJWasntX9GqHUJFBGeOc54mUpjjUxkxTPOXCHLMiLpclT1tA3ooX-ZCIFANQoU03MKHQSqzyPyNgz_TQUzGyMhTub6ePReb7PRwdbn40OdRWSjpx-rN6hcKSFFRF4vFUaDHePmjKn9ZNFoPKPMpMz_XCKEbpNCRuRpq2mr1uFTFFwREUFf_rpjejj8hHfP_7XiC3K3XexGKtNLsgZj7F8BSpvbjWB_PwF4-zLP
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQu4AND_EKj9YLxKoZJbFjO8uhpQy0k0WZqhUby04cqIZmRvOQKlbwB_wKP8JH8CXc62Q6BBUJIZRNItlOfB-5x_Z9EPIsy0prqoSHWWKykDMbhRZwayjxjEgW1sUlBjgPczE45m9O09O2HBDGwjT5IS433FAz_P8aFRw3pLtaDtYVfTdEe6gAtkr0AFBugvYzrOOwd7TOJcV41mLhOEzBbHfdeq4cqWOrNpHsF-g7aeZAvqqpe3EVMO3iXG-o9m-Rj6spNv4p495yYXvFp9-yP_4nGtwmN1tAS_uNBN4h11x9l3w5cAtzDsPvUFPTfLjX__H5K_DQvJ9gpt4delYjWp27OQUASjGhJogjnvfTatY4d8MKnk4q-v0b9Jw6M4an2jduC_fgH2n6wbQpt88KOsV6b9RHjs6W5_fI8f7L0e4gbIs9hAWHJVRYylIZx4RQMnPGqlKpmBdCpNZmFi1tBeAlguWWMa6AhjYBK6OiSslKcZ4adp9s1JPaPSTUFhE0EY4VnPEylsYaGcmKJ5wVmSzLgMQrtuppk9ND_7IWAoJqJChW6BTaE1RfBOS55_9lBzMbo0-cTPVJ_krvsvzoxbuTkU4CstURkPUbVKqUkCIg2yuJ0aDKeD5jajdZzjWGKTMp0z-38NnbpJABedCI2np0-BQFV0CEF5i_npju99_i3aN_7bhNrg9Gw0N9-Do_eExuNHvf6Nn0hGwAv91TAG0Lu-WV8SeAXTbn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtQwGLZQKyEuLGILS-sD4tSMsji2cxxahkJphEqrVlwsbynVqJloFqniBG_Aq_AiPARPwv8nmQ5BRUII5ZJIthP_S_7P9r8Q8izPndFlwsI80XnIUhOFBnBrKPCMSFjjY4cBzvsF3z1ib06yk87_CWNh2vwQlxtuqBnN_xoVvHZlX8nBuKLrBu_OFMBU8QHgyXXGAQgjQDpYpZJKWd5B4TjMwGr3vXquHKlnqtaR6hfoOqlnQL2yLXtxFS7tw9zGTo1ukfFyhq17yniwmJuB_fRb8sf_Q4Lb5GYHZ-mwlb875Jqv7pIve36uz2H0LaorWuzvDH98_goc1KcTzNO7Rc8qxKozP6MAPymm0wRhxNN-Wk5b125Yv9NJSb9_g56112N4qprGXdke_B_VH3WXcPvM0hqrvdEmbnS6OL9HjkYvD7d3w67UQ2gZLKBCJ5zUPuVcitxrI52UMbOcZ8bkBu1sCdAlgsWW1t5CQ5OAjZFRKUUpGct0ep-sVZPKPyTU2AiacJ9aljIXC220iETJEpbaXDgXkHjJVVW3GT3ULyshIKhCgmJ9Tq4agqqLgDxv2H_ZQU_H6BEnMnVcvFLbaXHw4sPxoUoCstGTj9UbZCYlFzwgm0uBUaDIeDqjKz9ZzBQGKadCZH9u0eRuE1wE5EEraavR4VMkXAHhjbz89cTUcPge7x79a8dNcv3dzki9fV3sPSY32o1vdGt6QtaA3f4pILa52WhU8SeuXzWW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketamine%2C+an+NMDA%E2%80%90antagonist%2C+increases+the+oscillatory+frequencies+of+%CE%B1%E2%80%90peaks+on+the+electroencephalographic+power+spectrum&rft.jtitle=Acta+anaesthesiologica+Scandinavica&rft.au=Tsuda%2C+N.&rft.au=Hayashi%2C+K.&rft.au=Hagihira%2C+S.&rft.au=Sawa%2C+T.&rft.date=2007-04-01&rft.issn=0001-5172&rft.eissn=1399-6576&rft.volume=51&rft.issue=4&rft.spage=472&rft.epage=481&rft_id=info:doi/10.1111%2Fj.1399-6576.2006.01246.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1399_6576_2006_01246_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5172&client=summon