Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of α-peaks on the electroencephalographic power spectrum
Background: Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This stud...
Saved in:
Published in | Acta anaesthesiologica Scandinavica Vol. 51; no. 4; pp. 472 - 481 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2007
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence.
Methods: Anesthesia was induced with propofol using a target‐controlled infusion (TCI) system (3.5 μg/ml). Seventeen patients, scheduled for non‐cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI‐propofol alone (n= 8) and (ii) anesthesia was maintained with TCI‐propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined.
Results: Propofol alone caused the α‐peaks of the power spectra to occur at an average frequency of 10.4 ± 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 ± 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding α‐peaks disappeared.
Conclusions: Ketamine increased the frequencies of α‐spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia. |
---|---|
AbstractList | Background:Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence.Methods:Anesthesia was induced with propofol using a target-controlled infusion (TCI) system (3.5 mu g/ml). Seventeen patients, scheduled for non-cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI-propofol alone (n = 8) and (ii) anesthesia was maintained with TCI-propofol and intravenously administered ketamine (n = 9). The EEG was continuously monitored and EEG indices and power spectra were determined.Results:Propofol alone caused the alpha -peaks of the power spectra to occur at an average frequency of 10.4 plus or minus 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 plus or minus 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding alpha -peaks disappeared.Conclusions:Ketamine increased the frequencies of alpha -spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia. Background: Ketamine, an N ‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence. Methods: Anesthesia was induced with propofol using a target‐controlled infusion (TCI) system (3.5 μg/ml). Seventeen patients, scheduled for non‐cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI‐propofol alone ( n = 8) and (ii) anesthesia was maintained with TCI‐propofol and intravenously administered ketamine ( n = 9). The EEG was continuously monitored and EEG indices and power spectra were determined. Results: Propofol alone caused the α‐peaks of the power spectra to occur at an average frequency of 10.4 ± 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 ± 1.4 Hz ( P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding α‐peaks disappeared. Conclusions: Ketamine increased the frequencies of α‐spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia. BACKGROUNDKetamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence.METHODSAnesthesia was induced with propofol using a target-controlled infusion (TCI) system (3.5 microg/ml). Seventeen patients, scheduled for non-cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI-propofol alone (n= 8) and (ii) anesthesia was maintained with TCI-propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined.RESULTSPropofol alone caused the alpha-peaks of the power spectra to occur at an average frequency of 10.4 +/- 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 +/- 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding alpha-peaks disappeared.CONCLUSIONSKetamine increased the frequencies of alpha-spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia. Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence. Anesthesia was induced with propofol using a target-controlled infusion (TCI) system (3.5 microg/ml). Seventeen patients, scheduled for non-cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI-propofol alone (n= 8) and (ii) anesthesia was maintained with TCI-propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined. Propofol alone caused the alpha-peaks of the power spectra to occur at an average frequency of 10.4 +/- 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 +/- 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding alpha-peaks disappeared. Ketamine increased the frequencies of alpha-spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia. Background: Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations are known to be related to the sedative actions of the reticular thalamic nucleus with links to thalamocortical neurons. This study was designed to examine the effect of ketamine on the spindle oscillations to understand the simultaneous sedative effect and EEG activation that occurs with ketamine, by comparing the EEG in emergence. Methods: Anesthesia was induced with propofol using a target‐controlled infusion (TCI) system (3.5 μg/ml). Seventeen patients, scheduled for non‐cranial surgery under general anesthesia combined with epidural anesthesia, were randomly divided into two groups: (i) anesthesia was maintained with TCI‐propofol alone (n= 8) and (ii) anesthesia was maintained with TCI‐propofol and intravenously administered ketamine (n= 9). The EEG was continuously monitored and EEG indices and power spectra were determined. Results: Propofol alone caused the α‐peaks of the power spectra to occur at an average frequency of 10.4 ± 0.9 Hz; the addition of ketamine shifted the peaks to higher frequencies of 15.1 ± 1.4 Hz (P < 0.05). On the other hand, when the EEG was activated by discontinuation of propofol, the corresponding α‐peaks disappeared. Conclusions: Ketamine increased the frequencies of α‐spindle waves induced by propofol, but did not block their formations. The phenomena have the possibility to underlie the cooperative effect between propofol and ketamine concerning sedation and anesthesia. |
Author | Hagihira, S. Tsuda, N. Hayashi, K. Sawa, T. |
Author_xml | – sequence: 1 givenname: N. surname: Tsuda fullname: Tsuda, N. organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan – sequence: 2 givenname: K. surname: Hayashi fullname: Hayashi, K. email: zukko@koto.kpu-m.ac.jp organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan – sequence: 3 givenname: S. surname: Hagihira fullname: Hagihira, S. organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan – sequence: 4 givenname: T. surname: Sawa fullname: Sawa, T. organization: Departments of Anesthesiology, 1 Kyoto Prefectural University of Medicine, Kyoto , 2 Osaka University Graduate School of Medicine, Osaka and 3 Kyoto First Red Cross Hospital, Kyoto, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18588676$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17378787$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFV0C5wKlZ7DixnQOHZYGCKIsERZW4WBPvpJttYgc7q-4eeChehGfC6a7aI9gHjzXfPx7Pf0KOrLNISMLolMX1aj1lvCxTUUgxzSgVU8qyXEy3j8jkPnFEJpRSlhZMZsfkJIR1vPK8LJ-QYya5VHFPyK9POEDXWDxLwCaLz29nKdgBrp1twnCWNNZ4hIAhGVaYuGCatoXB-V1Se_y5QWuamHN18ud32iPcxNjeodiiGbyLAPYraN21h37VmKR3t-iT0I_ZTfeUPK6hDfjscJ6S7-_fXc4_pBdfzj_OZxepyYUQ6VIuFSAXQskSoVJLpVhuhCiqqqxyxmlNFaOCCgA0EawyrJiitZK1yvMC-Cl5ua_bexe7DoPummAw_sWi2wQtKadSCvlPMKM551IWEVR70HgXgsda977pwO80o3r0SK_1aIUerdCjR_rOI72N0ueHNzZVh8sH4cGUCLw4ABAMtLWHOObwwKlCKSFF5F7vudumxd1_N6Bns29jFPXpXh-txu29HvyNjqOQhb5anOs5X3x98-PqUmf8L60_wHY |
CODEN | AANEAB |
CitedBy_id | crossref_primary_10_3389_fphar_2020_562137 crossref_primary_10_15690_vramn1158 crossref_primary_10_1093_bja_aen403 crossref_primary_10_1111_ejn_15646 crossref_primary_10_1007_s00540_011_1224_2 crossref_primary_10_17816_humeco568123 crossref_primary_10_1186_1471_2202_14_S1_O22 crossref_primary_10_1016_j_brainresbull_2013_07_010 crossref_primary_10_1016_j_clinph_2009_12_016 crossref_primary_10_1111_pan_12510 crossref_primary_10_1097_ALN_0000000000001671 crossref_primary_10_1111_j_1460_9568_2012_08263_x crossref_primary_10_1007_s11571_008_9063_z crossref_primary_10_1093_bja_aem175 crossref_primary_10_1056_NEJMra0808281 crossref_primary_10_35366_110199 crossref_primary_10_3934_Neuroscience_2014_2_169 crossref_primary_10_1146_annurev_neuro_060909_153200 crossref_primary_10_1007_s40520_019_01378_1 crossref_primary_10_1097_ALN_0000000000000841 crossref_primary_10_1155_2016_8273716 crossref_primary_10_1016_j_neuroimage_2018_04_062 crossref_primary_10_1152_jn_00053_2018 crossref_primary_10_1097_ALN_0000000000002554 |
Cites_doi | 10.1016/j.clinph.2005.09.011 10.1159/000079981 10.1046/j.1440-1819.2002.01023.x 10.1034/j.1399-6576.1999.430216.x 10.1111/j.1399-6576.2005.00814.x 10.1097/00004691-199805000-00005 10.1016/0013-4694(90)90001-Z 10.1093/bja/aef154 10.1152/jn.01105.2003 10.1523/JNEUROSCI.13-08-03284.1993 10.1097/00000542-200502000-00017 10.1097/00000542-200502000-00030 10.1111/j.1460-9568.2004.03843.x 10.1007/s001140100230 10.1097/00000542-200404000-00011 10.1111/j.1399-6576.1994.tb03984.x 10.1046/j.1467-2995.2003.00099.x 10.1093/bja/67.1.41 10.1097/00000542-199506000-00003 10.1097/00000542-200212000-00012 10.1111/j.1399-6576.2003.00330.x 10.1097/00000539-200110000-00032 10.1097/00000542-198704000-00007 10.1152/physrev.00012.2003 10.1126/science.8235588 10.1016/j.brainres.2004.01.084 10.1176/appi.neuropsych.15.1.27 |
ContentType | Journal Article |
Copyright | 2007 Acta Anaesthesiol Scand 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 Acta Anaesthesiol Scand – notice: 2007 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
DOI | 10.1111/j.1399-6576.2006.01246.x |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1399-6576 |
EndPage | 481 |
ExternalDocumentID | 10_1111_j_1399_6576_2006_01246_x 17378787 18588676 AAS1246 ark_67375_WNG_C3NRBZWT_2 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23M 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUOVR AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M J5H K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V9Y W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 ZGI ZXP ZZTAW ~IA ~WT 08R AAPBV AAUGY AAVGM ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AGJLS IQODW ZA5 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
ID | FETCH-LOGICAL-c4666-d7d8ae366879eab8d8814c665bb9b4130f0810606aaecae3b2eb180f87f8445a3 |
IEDL.DBID | DR2 |
ISSN | 0001-5172 |
IngestDate | Fri Aug 16 08:07:59 EDT 2024 Sat Aug 17 02:58:32 EDT 2024 Fri Aug 23 02:48:20 EDT 2024 Sat Sep 28 07:44:38 EDT 2024 Sun Oct 22 16:07:27 EDT 2023 Sat Aug 24 01:07:50 EDT 2024 Wed Oct 30 09:52:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Glutamate receptor Spectral analysis reticular thalamic nucleus thalamocortical system Ketamine spindle wave General anesthetic NMDA Anesthesia N-methyl-D-aspartate Antagonist NMDA receptor Power spectrum |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4666-d7d8ae366879eab8d8814c665bb9b4130f0810606aaecae3b2eb180f87f8445a3 |
Notes | ark:/67375/WNG-C3NRBZWT-2 ArticleID:AAS1246 istex:3036EA60D764502D7153C9F3CDE4796ED7E6DC08 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-News-1 ObjectType-Feature-3 |
PMID | 17378787 |
PQID | 20433775 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_70307767 proquest_miscellaneous_20433775 crossref_primary_10_1111_j_1399_6576_2006_01246_x pubmed_primary_17378787 pascalfrancis_primary_18588676 wiley_primary_10_1111_j_1399_6576_2006_01246_x_AAS1246 istex_primary_ark_67375_WNG_C3NRBZWT_2 |
PublicationCentury | 2000 |
PublicationDate | April 2007 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: April 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Acta anaesthesiologica Scandinavica |
PublicationTitleAlternate | Acta Anaesthesiol Scand |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Coetzee JF, Glen JB, Wium CA, Boshoff MB. Pharmacokinetic model selection for target controlled infusions of propofol: assessment of three parameter sets. Anesthesiology 1995; 82: 1328-45. Steriade M, Gloor P, Llinas RR, Lopes de Silva FH, Mesulam MM. Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 1990; 76: 481-508. Hagihira S, Takashina M, Mori T, Ueyama H, Mashimo T. Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia. Anesthesiology 2004; 100: 818-25. Hagihira S, Takashina M, Mori T, Mashimo T, Yoshiya I. Changes of electroencephalographic bicoherence during isoflurane anesthesia combined with epidural anesthesia. Anesthesiology 2002; 97: 1409-15. Krystal AD, Weiner RD, Dean MD et al. Comparison of seizure duration, ictal EEG, and cognitive effects of ketamine and methohexital anesthesia with ECT. J Neuropsychiatry Clin Neurosci 2003; 15: 27-34. Hirota K, Kubota T, Ishihara H, Matsuki A. The effects of nitrous oxide and ketamine on the bispectral index and 95% spectral edge frequency during propofol-fentanyl anaesthesia. Eur J Anaesthesiol 1999; 16: 779-84. Mackenzie L, Pope KJ, Willoughby JO. Physiological and pathological spindling phenomena have similar regional EEG power distributions. Brain Res 2004; 1008: 92-106. Hering W, Geisslinger G, Kamp HD et al. Changes in the EEG power spectrum after midazolam anaesthesia combined with racemic or S-(+) ketamine. Acta Anaesthesiol Scand 1994; 38: 719-23. Kurehara K, Asano N, Iwata T, Yamaguchi A, Kawano Y et al. The influence of ketamine on the bispectral index, the spectral edge frequency 90 and the frequency bands power during propofol anesthesia. Masui 1999; 48: 611-6. Fingelkurts AIA, Fingelkurts AnA, Kaplan AY. Interictal EEG as a physiological adaptation. Part I. Composition of brain oscillation in interictal EEG. Clin Neurophysiol 2006; 117: 208-22. Oga K, Kojima T, Matsuura M et al. Effect of low-dose ketamine on neuropathic pain: An electroencephalogram-electrooculogram/ behavioral study. Psychiatry Clin Neurosci 2002; 56: 355-63. Levy WJ. Effect of epoch length on power spectrum analysis of EEG. Anesthesiology 1987; 66: 489-95. Antkowiak B. In vitro networks: cortical mechanisms of anaesthetic action. Br J Anaesth 2002; 89: 102-11. Sakai T, Singh H, Mi WD, Kudo T, Matsuki A. The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion. Acta Anaesthesiol Scand 1999; 43: 212-6. Marsh B, White M, Morton N, Kenny GNC. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67: 41-8. Drexler B, Roether CL, Jurd R, Rudolph U, Antkowiak B. Opposing actions of etomidate on cortical theta oscillations are mediated by different γ-aminobutyric acid type A receptor subtypes. Anesthesiology 2005; 102: 346-52. Destexhe A, Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 2003; 83: 1401-53. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillation in the sleeping and aroused brain. Science 1993; 262: 679-85. Hagihira S, Takashina M, Mori T, Mashimo T, Yoshiya I. Practical issues in bispectral analysis of electroencephalographic signals. Anesth Analg 2001; 93: 966-70. Steriade M, Contreras D, Dossi C, Nunez A. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons. Scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 1993; 13: 3284-99. Bell RF, Dahl JB, Moore RA, Kalso E. Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review (Cochrane review) Acta Anaesthesiol Scand 2005; 49: 1405-28. Fuentealba P, Crochet S, Timofeev I, Steriade M. Synaptic Interactions between thalamic and cortical inputs onto cortical neurons in vivo. J Neurophysiol 2004; 91: 1990-8. Antkowiak B. How do general anaesthetics work? Naturwissenschaften 2001; 88: 201-13. Kopell N, Lemassontt G. Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture. Neurobiology 1994; 91: 10586-90. John ER, Prichep LS. The anesthetic cascade. A theory of how anesthesia suppresses consciousness. Anesthesiology 2005; 102: 447-71. Kvarnstrom A, Karlsten R, Quiding H, Gordh T. The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury. Acta Anaesthesiol Scand 2004; 48: 498-506. Feshchenko VA, Veselis RA, Reinsel RA. Propofol-induced alpha rhythm. Neuropsychobiology 2004; 50: 257-66. Sloan TB. Anesthetic effect on electrophysiologic recordings. J Clin Neurophysiol 1998; 15: 217-26. Taylor JS, Vierck CJ. Effects of ketamine on electroencephalographic and autonomic arousal and segmental reflex responses in the cat. Vet Anaesth Analg 2003; 30: 237-49. Hentschke H, Schwarz C, Antkowiak B. Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor-mediated inhibition. Eur J Neurosci 2005; 21: 93-102. 2004; 100 2001; 93 1990; 76 2002; 97 2002; 56 2004; 48 1999; 48 2003; 15 1993; 262 1999; 43 2005; 21 2001; 88 2005; 49 2004; 91 2006; 117 2003; 30 2004; 1008 1998; 15 1987; 66 1993; 13 2004; 50 1995; 82 1991; 67 2005; 102 2002; 89 1999; 16 1994; 38 2003; 83 1994; 91 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 Hirota K (e_1_2_6_24_2) 1999; 16 Kopell N (e_1_2_6_29_2) 1994; 91 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 Kurehara K (e_1_2_6_23_2) 1999; 48 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – volume: 43 start-page: 212 year: 1999 end-page: 6 article-title: The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion publication-title: Acta Anaesthesiol Scand – volume: 66 start-page: 489 year: 1987 end-page: 95 article-title: Effect of epoch length on power spectrum analysis of EEG publication-title: Anesthesiology – volume: 89 start-page: 102 year: 2002 end-page: 11 article-title: In vitro networks: cortical mechanisms of anaesthetic action publication-title: Br J Anaesth – volume: 30 start-page: 237 year: 2003 end-page: 49 article-title: Effects of ketamine on electroencephalographic and autonomic arousal and segmental reflex responses in the cat publication-title: Vet Anaesth Analg – volume: 82 start-page: 1328 year: 1995 end-page: 45 article-title: Pharmacokinetic model selection for target controlled infusions of propofol: assessment of three parameter sets publication-title: Anesthesiology – volume: 91 start-page: 10586 year: 1994 end-page: 90 article-title: Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture publication-title: Neurobiology – volume: 1008 start-page: 92 year: 2004 end-page: 106 article-title: Physiological and pathological spindling phenomena have similar regional EEG power distributions publication-title: Brain Res – volume: 21 start-page: 93 year: 2005 end-page: 102 article-title: Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABA receptor‐mediated inhibition publication-title: Eur J Neurosci – volume: 117 start-page: 208 year: 2006 end-page: 22 article-title: Interictal EEG as a physiological adaptation. Part I. Composition of brain oscillation in interictal EEG publication-title: Clin Neurophysiol – volume: 67 start-page: 41 year: 1991 end-page: 8 article-title: Pharmacokinetic model driven infusion of propofol in children publication-title: Br J Anaesth – volume: 100 start-page: 818 year: 2004 end-page: 25 article-title: Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia publication-title: Anesthesiology – volume: 91 start-page: 1990 year: 2004 end-page: 8 article-title: Synaptic Interactions between thalamic and cortical inputs onto cortical neurons in vivo publication-title: J Neurophysiol – volume: 13 start-page: 3284 year: 1993 end-page: 99 article-title: The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons. Scenario of sleep rhythm generation in interacting thalamic and neocortical networks publication-title: J Neurosci – volume: 15 start-page: 217 year: 1998 end-page: 26 article-title: Anesthetic effect on electrophysiologic recordings publication-title: J Clin Neurophysiol – volume: 97 start-page: 1409 year: 2002 end-page: 15 article-title: Changes of electroencephalographic bicoherence during isoflurane anesthesia combined with epidural anesthesia publication-title: Anesthesiology – volume: 16 start-page: 779 year: 1999 end-page: 84 article-title: The effects of nitrous oxide and ketamine on the bispectral index and 95% spectral edge frequency during propofol–fentanyl anaesthesia publication-title: Eur J Anaesthesiol – volume: 83 start-page: 1401 year: 2003 end-page: 53 article-title: Interactions between membrane conductances underlying thalamocortical slow‐wave oscillations publication-title: Physiol Rev – volume: 88 start-page: 201 year: 2001 end-page: 13 article-title: How do general anaesthetics work? publication-title: Naturwissenschaften – volume: 262 start-page: 679 year: 1993 end-page: 85 article-title: Thalamocortical oscillation in the sleeping and aroused brain publication-title: Science – volume: 102 start-page: 346 year: 2005 end-page: 52 article-title: Opposing actions of etomidate on cortical theta oscillations are mediated by different γ‐aminobutyric acid type A receptor subtypes publication-title: Anesthesiology – volume: 49 start-page: 1405 year: 2005 end-page: 28 article-title: Peri‐operative ketamine for acute post‐operative pain: a quantitative and qualitative systematic review (Cochrane review) publication-title: Acta Anaesthesiol Scand – volume: 48 start-page: 611 year: 1999 end-page: 6 article-title: The influence of ketamine on the bispectral index, the spectral edge frequency 90 and the frequency bands power during propofol anesthesia publication-title: Masui – volume: 102 start-page: 447 year: 2005 end-page: 71 article-title: The anesthetic cascade. A theory of how anesthesia suppresses consciousness publication-title: Anesthesiology – volume: 15 start-page: 27 year: 2003 end-page: 34 article-title: Comparison of seizure duration, ictal EEG, and cognitive effects of ketamine and methohexital anesthesia with ECT publication-title: J Neuropsychiatry Clin Neurosci – volume: 50 start-page: 257 year: 2004 end-page: 66 article-title: Propofol‐induced alpha rhythm publication-title: Neuropsychobiology – volume: 48 start-page: 498 year: 2004 end-page: 506 article-title: The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury publication-title: Acta Anaesthesiol Scand – volume: 38 start-page: 719 year: 1994 end-page: 23 article-title: Changes in the EEG power spectrum after midazolam anaesthesia combined with racemic or S‐(+) ketamine publication-title: Acta Anaesthesiol Scand – volume: 76 start-page: 481 year: 1990 end-page: 508 article-title: Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities publication-title: Electroencephalogr Clin Neurophysiol – volume: 93 start-page: 966 year: 2001 end-page: 70 article-title: Practical issues in bispectral analysis of electroencephalographic signals publication-title: Anesth Analg – volume: 56 start-page: 355 year: 2002 end-page: 63 article-title: Effect of low‐dose ketamine on neuropathic pain: An electroencephalogram–electrooculogram/ behavioral study publication-title: Psychiatry Clin Neurosci – ident: e_1_2_6_16_2 doi: 10.1016/j.clinph.2005.09.011 – ident: e_1_2_6_13_2 doi: 10.1159/000079981 – ident: e_1_2_6_8_2 doi: 10.1046/j.1440-1819.2002.01023.x – ident: e_1_2_6_6_2 doi: 10.1034/j.1399-6576.1999.430216.x – ident: e_1_2_6_9_2 doi: 10.1111/j.1399-6576.2005.00814.x – ident: e_1_2_6_7_2 doi: 10.1097/00004691-199805000-00005 – ident: e_1_2_6_14_2 doi: 10.1016/0013-4694(90)90001-Z – ident: e_1_2_6_2_2 doi: 10.1093/bja/aef154 – ident: e_1_2_6_28_2 doi: 10.1152/jn.01105.2003 – ident: e_1_2_6_30_2 doi: 10.1523/JNEUROSCI.13-08-03284.1993 – ident: e_1_2_6_22_2 doi: 10.1097/00000542-200502000-00017 – ident: e_1_2_6_3_2 doi: 10.1097/00000542-200502000-00030 – ident: e_1_2_6_15_2 doi: 10.1111/j.1460-9568.2004.03843.x – volume: 48 start-page: 611 year: 1999 ident: e_1_2_6_23_2 article-title: The influence of ketamine on the bispectral index, the spectral edge frequency 90 and the frequency bands power during propofol anesthesia publication-title: Masui contributor: fullname: Kurehara K – ident: e_1_2_6_4_2 doi: 10.1007/s001140100230 – ident: e_1_2_6_19_2 doi: 10.1097/00000542-200404000-00011 – ident: e_1_2_6_10_2 doi: 10.1111/j.1399-6576.1994.tb03984.x – ident: e_1_2_6_25_2 doi: 10.1046/j.1467-2995.2003.00099.x – ident: e_1_2_6_17_2 doi: 10.1093/bja/67.1.41 – ident: e_1_2_6_31_2 doi: 10.1097/00000542-199506000-00003 – ident: e_1_2_6_18_2 doi: 10.1097/00000542-200212000-00012 – ident: e_1_2_6_11_2 doi: 10.1111/j.1399-6576.2003.00330.x – volume: 91 start-page: 10586 year: 1994 ident: e_1_2_6_29_2 article-title: Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture publication-title: Neurobiology contributor: fullname: Kopell N – ident: e_1_2_6_20_2 doi: 10.1097/00000539-200110000-00032 – ident: e_1_2_6_21_2 doi: 10.1097/00000542-198704000-00007 – ident: e_1_2_6_26_2 doi: 10.1152/physrev.00012.2003 – ident: e_1_2_6_27_2 doi: 10.1126/science.8235588 – ident: e_1_2_6_12_2 doi: 10.1016/j.brainres.2004.01.084 – ident: e_1_2_6_5_2 doi: 10.1176/appi.neuropsych.15.1.27 – volume: 16 start-page: 779 year: 1999 ident: e_1_2_6_24_2 article-title: The effects of nitrous oxide and ketamine on the bispectral index and 95% spectral edge frequency during propofol–fentanyl anaesthesia publication-title: Eur J Anaesthesiol contributor: fullname: Hirota K |
SSID | ssj0003499 |
Score | 1.9957345 |
Snippet | Background: Ketamine, an N‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle... Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle oscillations... Background: Ketamine, an N ‐methyl‐D‐aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle... Background:Ketamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle... BACKGROUNDKetamine, an N-methyl-D-aspartate (NMDA) antagonist, is known to activate the electroencephalogram (EEG), despite its sedative effects. Spindle... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 472 |
SubjectTerms | Abdomen - surgery Adult Analgesics - pharmacology Anesthesia Anesthesia, Epidural - methods Anesthesia, General - methods Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Anesthetics, Combined - pharmacology Anesthetics, Intravenous - pharmacology Biological and medical sciences Elective Surgical Procedures - methods Electroencephalography - drug effects Female Humans Ketamine - pharmacology Male Medical sciences Middle Aged Monitoring, Intraoperative - methods N-methyl-D-aspartate Propofol - pharmacology reticular thalamic nucleus Spectral analysis spindle wave thalamocortical system |
Title | Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of α-peaks on the electroencephalographic power spectrum |
URI | https://api.istex.fr/ark:/67375/WNG-C3NRBZWT-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-6576.2006.01246.x https://www.ncbi.nlm.nih.gov/pubmed/17378787 https://search.proquest.com/docview/20433775 https://search.proquest.com/docview/70307767 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQe-HCj_gLP8UHxKlZJbFjO8dtS6lA3UNp1YqLZTsOVKtmV5tdqeqpfYO-Ci_CQ_AkzDjZLkFFQgjlkki2E49nMp_tzzOEvCmK0poq43GRmSLmzCaxBdwaS9wjks76tMQDzvsjsXfEP5zkJx3_Cc_CtPEhbhbc0DLC_xoN3Nimb-TgXJG6Ibo9BXBVYoB4MmUS2V07B6tIUowXHRJO4xycdp_Uc2tDPU-1jkI_R-akaUB4VZv14jZY2ke5wU3t3ifjZQdbdsp4sJjbgbv4Lfbj_5HAA3KvQ7N02KrfQ3LH14_I1Uc_N2fQ-iY1NR3t7wx_XF7DAJovEwzTu0lPa4SqjW8ooE-K0TRBF3Gzn1azltkN03c6qej3b1Bz6s0YnupQuMvag7-j6VfTxds-dXSKyd5oODY6W5w9Jke77w639-Iu00PsOMyf4lKWyngmhJKFN1aVSqXcCZFbW1h0sxUglwTmWsZ4BwVtBi5GJZWSleI8N-wJWasntX9GqHUJFBGeOc54mUpjjUxkxTPOXCHLMiLpclT1tA3ooX-ZCIFANQoU03MKHQSqzyPyNgz_TQUzGyMhTub6ePReb7PRwdbn40OdRWSjpx-rN6hcKSFFRF4vFUaDHePmjKn9ZNFoPKPMpMz_XCKEbpNCRuRpq2mr1uFTFFwREUFf_rpjejj8hHfP_7XiC3K3XexGKtNLsgZj7F8BSpvbjWB_PwF4-zLP |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQu4AND_EKj9YLxKoZJbFjO8uhpQy0k0WZqhUby04cqIZmRvOQKlbwB_wKP8JH8CXc62Q6BBUJIZRNItlOfB-5x_Z9EPIsy0prqoSHWWKykDMbhRZwayjxjEgW1sUlBjgPczE45m9O09O2HBDGwjT5IS433FAz_P8aFRw3pLtaDtYVfTdEe6gAtkr0AFBugvYzrOOwd7TOJcV41mLhOEzBbHfdeq4cqWOrNpHsF-g7aeZAvqqpe3EVMO3iXG-o9m-Rj6spNv4p495yYXvFp9-yP_4nGtwmN1tAS_uNBN4h11x9l3w5cAtzDsPvUFPTfLjX__H5K_DQvJ9gpt4delYjWp27OQUASjGhJogjnvfTatY4d8MKnk4q-v0b9Jw6M4an2jduC_fgH2n6wbQpt88KOsV6b9RHjs6W5_fI8f7L0e4gbIs9hAWHJVRYylIZx4RQMnPGqlKpmBdCpNZmFi1tBeAlguWWMa6AhjYBK6OiSslKcZ4adp9s1JPaPSTUFhE0EY4VnPEylsYaGcmKJ5wVmSzLgMQrtuppk9ND_7IWAoJqJChW6BTaE1RfBOS55_9lBzMbo0-cTPVJ_krvsvzoxbuTkU4CstURkPUbVKqUkCIg2yuJ0aDKeD5jajdZzjWGKTMp0z-38NnbpJABedCI2np0-BQFV0CEF5i_npju99_i3aN_7bhNrg9Gw0N9-Do_eExuNHvf6Nn0hGwAv91TAG0Lu-WV8SeAXTbn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtQwGLZQKyEuLGILS-sD4tSMsji2cxxahkJphEqrVlwsbynVqJloFqniBG_Aq_AiPARPwv8nmQ5BRUII5ZJIthP_S_7P9r8Q8izPndFlwsI80XnIUhOFBnBrKPCMSFjjY4cBzvsF3z1ib06yk87_CWNh2vwQlxtuqBnN_xoVvHZlX8nBuKLrBu_OFMBU8QHgyXXGAQgjQDpYpZJKWd5B4TjMwGr3vXquHKlnqtaR6hfoOqlnQL2yLXtxFS7tw9zGTo1ukfFyhq17yniwmJuB_fRb8sf_Q4Lb5GYHZ-mwlb875Jqv7pIve36uz2H0LaorWuzvDH98_goc1KcTzNO7Rc8qxKozP6MAPymm0wRhxNN-Wk5b125Yv9NJSb9_g56112N4qprGXdke_B_VH3WXcPvM0hqrvdEmbnS6OL9HjkYvD7d3w67UQ2gZLKBCJ5zUPuVcitxrI52UMbOcZ8bkBu1sCdAlgsWW1t5CQ5OAjZFRKUUpGct0ep-sVZPKPyTU2AiacJ9aljIXC220iETJEpbaXDgXkHjJVVW3GT3ULyshIKhCgmJ9Tq4agqqLgDxv2H_ZQU_H6BEnMnVcvFLbaXHw4sPxoUoCstGTj9UbZCYlFzwgm0uBUaDIeDqjKz9ZzBQGKadCZH9u0eRuE1wE5EEraavR4VMkXAHhjbz89cTUcPge7x79a8dNcv3dzki9fV3sPSY32o1vdGt6QtaA3f4pILa52WhU8SeuXzWW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketamine%2C+an+NMDA%E2%80%90antagonist%2C+increases+the+oscillatory+frequencies+of+%CE%B1%E2%80%90peaks+on+the+electroencephalographic+power+spectrum&rft.jtitle=Acta+anaesthesiologica+Scandinavica&rft.au=Tsuda%2C+N.&rft.au=Hayashi%2C+K.&rft.au=Hagihira%2C+S.&rft.au=Sawa%2C+T.&rft.date=2007-04-01&rft.issn=0001-5172&rft.eissn=1399-6576&rft.volume=51&rft.issue=4&rft.spage=472&rft.epage=481&rft_id=info:doi/10.1111%2Fj.1399-6576.2006.01246.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1399_6576_2006_01246_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5172&client=summon |