Crosslinked P(VDF‐CTFE)/PS‐COOH nanocomposites for high‐energy‐density capacitor application

High‐capacity or high‐power‐density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The dielectric nanocomposite with a small loading of carboxylic polystyrene (PS‐COOH) nanoparticles in poly(vinylidene fluoride‐chlorotrifluoroethyl...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 54; no. 12; pp. 1160 - 1169
Main Authors Chen, Yingxin, Tang, Xin, Shu, Jie, Wang, Xiaoliang, Hu, Wenbing, Shen, Qun-Dong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley 15.06.2016
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐capacity or high‐power‐density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The dielectric nanocomposite with a small loading of carboxylic polystyrene (PS‐COOH) nanoparticles in poly(vinylidene fluoride‐chlorotrifluoroethylene) [P(VDF‐CTFE)] matrix, followed by chemical crosslinking has been described. Combination of these two methods significantly improved the capacity of electric energy storage at low electric field. Specially, the nanocomposite with 2 wt % nanoparticles and 15 wt % crosslinking agent achieved a dielectric constant of 17.2 and a discharged energy density of 17.5 J/cm³ (4.9 Wh/L) at an electric field as high as 324 MV/m, while corresponding values for pristine P(VDF‐CTFE) are 9.6 and 13.3 J/cm³ (3.7 Wh/L), respectively. Fundamental physics underlying the enhancement in the performance of the nanocomposites with respect to P(VDF‐CTFE) is illustrated by solid‐state ¹⁹F nuclear magnetic resonance of direct excitation or ¹⁹F{¹H} cross polarization. It revealed different dynamics behavior between crystalline/amorphous regions, and PS‐COOH nanoparticles favored the formation of polar γ‐form crystals. Small‐angle X‐ray scattering studies revealed the contribution of the interface to the extraordinary storage of electric energies in the nanocomposites. This approach provided a facile and straightforward way to design or understand PVDF‐based polymers for their practical applications in high‐energy‐density capacitors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1160–1169
AbstractList High-capacity or high-power-density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The dielectric nanocomposite with a small loading of carboxylic polystyrene (PS-COOH) nanoparticles in poly(vinylidene fluoride-chlorotrifluoroethylene) [P(VDF-CTFE)] matrix, followed by chemical crosslinking has been described. Combination of these two methods significantly improved the capacity of electric energy storage at low electric field. Specially, the nanocomposite with 2 wt % nanoparticles and 15 wt % crosslinking agent achieved a dielectric constant of 17.2 and a discharged energy density of 17.5 J/cm super(3) (4.9 Wh/L) at an electric field as high as 324 MV/m, while corresponding values for pristine P(VDF-CTFE) are 9.6 and 13.3 J/cm super(3) (3.7 Wh/L), respectively. Fundamental physics underlying the enhancement in the performance of the nanocomposites with respect to P(VDF-CTFE) is illustrated by solid-state super(19)F nuclear magnetic resonance of direct excitation or super(1)9{ super(1) H}cross polarization. It revealed different dynamics behavior between crystalline/amorphous regions, and PS-COOH nanoparticles favored the formation of polar gamma -form crystals. Small-angle X-ray scattering studies revealed the contribution of the interface to the extraordinary storage of electric energies in the nanocomposites. This approach provided a facile and straightforward way to design or understand PVDF-based polymers for their practical applications in high-energy-density capacitors. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1160-1169 Concurrent improvements in dielectric constant and energy density are attained in the crosslinked nanocomposite incorporated with the PS-COOH nanoparticles, and followed by chemical crosslinking. Fundamental physics underlying the enhancement in the performance of the nanocomposites with respect to P(VDF-CTFE) is illustrated by solid-state super(19)F nuclear magnetic resonance of direct excitation or super(1)9{ super(1) H}cross polarization.
High-capacity or high-power-density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The dielectric nanocomposite with a small loading of carboxylic polystyrene (PS-COOH) nanoparticles in poly(vinylidene fluoride-chlorotrifluoroethylene) [P(VDF-CTFE)] matrix, followed by chemical crosslinking has been described. Combination of these two methods significantly improved the capacity of electric energy storage at low electric field. Specially, the nanocomposite with 2 wt % nanoparticles and 15 wt % crosslinking agent achieved a dielectric constant of 17.2 and a discharged energy density of 17.5 J/cm3 (4.9 Wh/L) at an electric field as high as 324 MV/m, while corresponding values for pristine P(VDF-CTFE) are 9.6 and 13.3 J/cm3 (3.7 Wh/L), respectively. Fundamental physics underlying the enhancement in the performance of the nanocomposites with respect to P(VDF-CTFE) is illustrated by solid-state 19F nuclear magnetic resonance of direct excitation or 19F{1H} cross polarization. It revealed different dynamics behavior between crystalline/amorphous regions, and PS-COOH nanoparticles favored the formation of polar [gamma]-form crystals. Small-angle X-ray scattering studies revealed the contribution of the interface to the extraordinary storage of electric energies in the nanocomposites. This approach provided a facile and straightforward way to design or understand PVDF-based polymers for their practical applications in high-energy-density capacitors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1160-1169
ABSTRACT High‐capacity or high‐power‐density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The dielectric nanocomposite with a small loading of carboxylic polystyrene (PS‐COOH) nanoparticles in poly(vinylidene fluoride‐chlorotrifluoroethylene) [P(VDF‐CTFE)] matrix, followed by chemical crosslinking has been described. Combination of these two methods significantly improved the capacity of electric energy storage at low electric field. Specially, the nanocomposite with 2 wt % nanoparticles and 15 wt % crosslinking agent achieved a dielectric constant of 17.2 and a discharged energy density of 17.5 J/cm3 (4.9 Wh/L) at an electric field as high as 324 MV/m, while corresponding values for pristine P(VDF‐CTFE) are 9.6 and 13.3 J/cm3 (3.7 Wh/L), respectively. Fundamental physics underlying the enhancement in the performance of the nanocomposites with respect to P(VDF‐CTFE) is illustrated by solid‐state 19F nuclear magnetic resonance of direct excitation or 19F{1H} cross polarization. It revealed different dynamics behavior between crystalline/amorphous regions, and PS‐COOH nanoparticles favored the formation of polar γ‐form crystals. Small‐angle X‐ray scattering studies revealed the contribution of the interface to the extraordinary storage of electric energies in the nanocomposites. This approach provided a facile and straightforward way to design or understand PVDF‐based polymers for their practical applications in high‐energy‐density capacitors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1160–1169 Concurrent improvements in dielectric constant and energy density are attained in the crosslinked nanocomposite incorporated with the PS‐COOH nanoparticles, and followed by chemical crosslinking. Fundamental physics underlying the enhancement in the performance of the nanocomposites with respect to P(VDF‐CTFE) is illustrated by solid‐state 19F nuclear magnetic resonance of direct excitation or 19F{1H} cross polarization.
High‐capacity or high‐power‐density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The dielectric nanocomposite with a small loading of carboxylic polystyrene (PS‐COOH) nanoparticles in poly(vinylidene fluoride‐chlorotrifluoroethylene) [P(VDF‐CTFE)] matrix, followed by chemical crosslinking has been described. Combination of these two methods significantly improved the capacity of electric energy storage at low electric field. Specially, the nanocomposite with 2 wt % nanoparticles and 15 wt % crosslinking agent achieved a dielectric constant of 17.2 and a discharged energy density of 17.5 J/cm³ (4.9 Wh/L) at an electric field as high as 324 MV/m, while corresponding values for pristine P(VDF‐CTFE) are 9.6 and 13.3 J/cm³ (3.7 Wh/L), respectively. Fundamental physics underlying the enhancement in the performance of the nanocomposites with respect to P(VDF‐CTFE) is illustrated by solid‐state ¹⁹F nuclear magnetic resonance of direct excitation or ¹⁹F{¹H} cross polarization. It revealed different dynamics behavior between crystalline/amorphous regions, and PS‐COOH nanoparticles favored the formation of polar γ‐form crystals. Small‐angle X‐ray scattering studies revealed the contribution of the interface to the extraordinary storage of electric energies in the nanocomposites. This approach provided a facile and straightforward way to design or understand PVDF‐based polymers for their practical applications in high‐energy‐density capacitors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1160–1169
Author Hu, Wenbing
Tang, Xin
Shen, Qun-Dong
Shu, Jie
Chen, Yingxin
Wang, Xiaoliang
Author_xml – sequence: 1
  givenname: Yingxin
  surname: Chen
  fullname: Chen, Yingxin
  organization: Department of Polymer Science & Engineering, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
– sequence: 2
  givenname: Xin
  surname: Tang
  fullname: Tang, Xin
  organization: Department of Polymer Science & Engineering, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
– sequence: 3
  givenname: Jie
  surname: Shu
  fullname: Shu, Jie
  organization: Analysis and Testing Center, Soochow University, 215123, Suzhou, China
– sequence: 4
  givenname: Xiaoliang
  surname: Wang
  fullname: Wang, Xiaoliang
  organization: Department of Polymer Science & Engineering, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
– sequence: 5
  givenname: Wenbing
  surname: Hu
  fullname: Hu, Wenbing
  email: qdshen@nju.edu.cn
  organization: Department of Polymer Science & Engineering, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
– sequence: 6
  givenname: Qun-Dong
  surname: Shen
  fullname: Shen, Qun-Dong
  email: qdshen@nju.edu.cn
  organization: Department of Polymer Science & Engineering, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
BookMark eNp9kMFuEzEQhi1UJNLChRdgJS6l0rZj78b2HiE0LSiQlLbAzXJ2x6nbjb3YG5XceASekSfBYYEDB04e6f_-kefbJ3vOOyTkKYVjCsBOOt8uj1kJrHhARhSqKodSyj0yAilFzhnnj8h-jLcAKRtXI9JMgo-xte4Om2xx-PH19Me375Or6emLk8XlbpzPzzOnna_9uvPR9hgz40N2Y1c3KUaHYbVNQ4Muhdus1p2ubZ8I3XWtrXVvvXtMHhrdRnzy-z0g19PTq8l5PpufvZm8nOV1yXmRc20YSsZY2egCKjOmWEEBIERVNwJLUy3pUqCR0nAOjaF8OQYqOILWTQFYHJDDYW8X_JcNxl6tbayxbbVDv4mKSspBVlSKhD7_B731m-DS7xQVkgtWFhISdTRQ9c5SQKO6YNc6bBUFtROudsLVL-EJpgN8b1vc_odUi_ns1Z9OPnRs7PHr344Od4qLQozVp_dn6uLDBXv3ecrU28Q_G3ijvdKrYKO6vmSQzkoiSsrL4idj-aAR
CODEN JPBPEM
CitedBy_id crossref_primary_10_1002_ente_201900023
crossref_primary_10_1016_j_nanoen_2016_11_008
crossref_primary_10_1109_TDEI_2017_006276
crossref_primary_10_1016_j_compscitech_2020_108591
crossref_primary_10_1016_j_mtcomm_2020_101896
crossref_primary_10_1016_j_colsurfa_2021_126993
crossref_primary_10_1039_D0TC01576H
crossref_primary_10_1016_j_watres_2021_117884
crossref_primary_10_1039_C9CP03389K
crossref_primary_10_1039_C8SM01496E
crossref_primary_10_1002_polb_24382
crossref_primary_10_1080_15583724_2022_2129680
crossref_primary_10_1142_S2010135X22420024
crossref_primary_10_1049_iet_nde_2018_0003
crossref_primary_10_1002_polb_24537
crossref_primary_10_1021_acsaem_0c02396
crossref_primary_10_1002_adfm_201901884
crossref_primary_10_1039_C8TC04510K
crossref_primary_10_1049_iet_nde_2017_0007
crossref_primary_10_1007_s13233_020_8073_5
crossref_primary_10_1039_C6TC01304J
crossref_primary_10_1016_j_compscitech_2017_07_005
Cites_doi 10.1109/TMAG.2002.806413
10.1557/mrs2008.82
10.1002/marc.201000478
10.1063/1.3054163
10.1021/ma3013477
10.1063/1.2786839
10.1063/1.4866585
10.1126/science.220.4602.1115
10.1021/ma035402g
10.1021/ma0476700
10.1109/TDEI.2004.1349785
10.1039/c2jm30542a
10.1021/am4042096
10.1021/nn901078s
10.1002/adma.201402106
10.1126/science.280.5372.2101
10.1103/PhysRevB.66.052105
10.1016/S0032-3861(97)10257-9
10.1021/cm8021648
10.1039/C2TA00948J
10.1002/adma.201202183
10.1002/mrc.964
10.1016/j.jpowsour.2006.10.090
10.1063/1.4776740
10.1109/TPS.2002.805318
10.1111/jace.12338
10.1126/science.1127798
10.1007/s00396-013-2939-4
10.1021/ma047890d
10.1038/ncomms3845
10.1002/adfm.201002015
10.1007/b136245
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID FBQ
BSCLL
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/polb.24023
DatabaseName AGRIS
Istex
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
Materials Research Database


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1099-0488
EndPage 1169
ExternalDocumentID 4044301921
10_1002_polb_24023
POLB24023
ark_67375_WNG_QRQ2MXF2_J
US201600174164
Genre article
GrantInformation_xml – fundername: Program for Changjiang Scholars and Innovative Research Team in University
– fundername: National Natural Science Foundation of China
  funderid: 21274057; 21274061; 21303111
GroupedDBID -~X
.GA
.Y3
05W
10A
1L6
1OB
1OC
1ZS
31~
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
6TJ
7PT
8-1
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADDAD
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZFZN
BDRZF
BFHJK
BRXPI
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
FBQ
FEDTE
G-S
GNP
GODZA
GYXMG
HBH
HF~
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
M6T
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
P2P
P2W
P4D
QB0
QRW
RIWAO
RNS
ROL
RWB
RWI
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
VH1
W99
WH7
WIH
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c4663-6af2e82224da309f51e90300779cd7e4f9b1b7ef88f660df16b50176e0aad30e3
IEDL.DBID DR2
ISSN 0887-6266
IngestDate Sat Aug 17 04:16:15 EDT 2024
Thu Oct 10 18:27:53 EDT 2024
Fri Aug 23 03:27:03 EDT 2024
Sat Aug 24 01:00:07 EDT 2024
Wed Oct 30 09:48:54 EDT 2024
Wed Dec 27 19:14:30 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4663-6af2e82224da309f51e90300779cd7e4f9b1b7ef88f660df16b50176e0aad30e3
Notes http://dx.doi.org/10.1002/polb.24023
ArticleID:POLB24023
istex:2A41BA648DEF640B0E2AB736582C68C593C731BA
ark:/67375/WNG-QRQ2MXF2-J
National Natural Science Foundation of China - No. 21274057; No. 21274061; No. 21303111
Program for Changjiang Scholars and Innovative Research Team in University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1786724380
PQPubID 1016371
PageCount 10
ParticipantIDs proquest_miscellaneous_1816089187
proquest_journals_1786724380
crossref_primary_10_1002_polb_24023
wiley_primary_10_1002_polb_24023_POLB24023
istex_primary_ark_67375_WNG_QRQ2MXF2_J
fao_agris_US201600174164
PublicationCentury 2000
PublicationDate 15 June 2016
PublicationDateYYYYMMDD 2016-06-15
PublicationDate_xml – month: 06
  year: 2016
  text: 15 June 2016
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationTitleAlternate J. Polym. Sci. Part B: Polym. Phys
PublicationYear 2016
Publisher Wiley
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, A. Loidl, Phys. Rev. B 2002, 66, 052105.
S. H. Liu, J. W. Zhai, J. W. Wang, S. X. Xue, W. Q. Zhang, Acs Appl. Mater. Interfaces 2014, 6, 1533-1540.
J. J. Li, J. Claude, F. Norena, E. Luis, S. I. Seok, Q. Wang, Chem. Mater. 2008, 20, 6304-6306.
F. Guan, L. Yang, J. Wang, B. Guan, K. Han, Q. Wang, L. Zhu, Adv. Funct. Mater. 2011, 21, 3176-3188.
Q. Li, K. Han, M. R. Gadinski, G. Z. Zhang, Q. Wang, Adv. Mater. 2014, 26, 6244-6249.
C. Yang, P. C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 797-807.
L. A. Fredin, Z. Li, M. A. Ratner, M. T. Lanagan, T. J. Marks, Adv. Mater. 2012, 24, 5946-5953.
X. Z. Chen, Z. W. Li, Z. X. Cheng, J. Z. Zhang, Q. D. Shen, H. X. Ge, H. T. Li, Macromol. Rapid Commun. 2011, 32, 94-99.
T. Montina, P. Wormald, P. Hazendonk, Macromolecules 2012, 45, 6002-6007.
S. Ducharme, ACS Nano. 2009, 3, 2447-2450.
Q. M. Zhang, Science 1998, 280, 2101-2104.
K. Yu, H. Wang, Y. C. Zhou, Y. Y. Bai, Y. J. Niu, J. Appl. Phys. 2013, 113, 034105
M. N. Almadhoun, U. S. Bhansali, H. N. Alshareef, J. Mater. Chem. 2012, 22, 11196-11200.
E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, J. Power Sources 2007, 168, 2-11.
K. Yu, Y. Y. Bai, Y. C. Zhou, Y. Niu, H. Wang, Appl. Phys. Lett. 2014, 104, 082904.
B. J. Chu, M. R. Lin, B. Neese, X. Zhou, Q. Chen, Q. M. Zhang, Appl. Phys. Lett. 2007, 91, 122909
P. Holstein, U. Scheler, R. K. Harris, Polymer 1998, 39, 4937-4941.
A. Taguet, B. Ameduri, B. Boutevin, Adv. Polym. Sci. 2005, 184, 127-211.
S. T. Chen, K. Yao, F. E. H. Tay, L. L. S. Chew, J. Appl. Polym. Sci. 2010, 116, 3331-3337.
J. W. Wang, Q. D. Shen, H. M. Bao, C. Z. Yang, Q. M. Zhang, Macromolecules 2005, 38, 2247-2252.
M. Panda, V. Srinivas, A. K. Thakur, Appl. Phys. Lett. 2008, 93, 242908.
M. S. Whittingham, MRS Bull. 2008, 33, 411-419.
K. Yu, Y. J. Niu, Y. C. Zhou, Y. Y. Bai, H. Wang, C. Randall, J. Am. Ceram. Soc. 2013, 96, 2519-2524.
P. Khanchaitit, K. Han, M. R. Gadinski, Q. Li, Q. Wang, Nat. Commun. 2013, 4, 1-7.
B. J. Chu, X. Zhou, K. L. Ren, B. Neese, M. R. Lin, Q. Wang, F. Bauer, Q. M. Zhang, Science 2006, 313, 334-336.
P. Michalczyk, M. Bramoulle, IEEE Trans. Magn. 2003, 39, 362-365.
C. Hucher, F. Beaume, R. P. Eustache, P. Tekely, Macromolecules 2005, 38, 1789-1796.
A. J. Lovinger, Science 1983, 220, 1115-1121.
S. J. Ando, R. K. Harris, S. A. Reinsberg, Magn. Reson. Chem. 2002, 40, 97-106.
P. H. Hu, Y. Song, H. Y. Liu, Y. Shen, Y. H. Lin, C. W. Nan, J. Mater. Chem. A 2013, 1, 1688-1693.
M. Rabuffi, G. Picci, IEEE Trans. Plasma Sci. 2002, 30, 1939-1942.
J. W. Park, Y. A. Seo, I. Kim, C. S. Ha, K. Aimi, S. J. Ando, Macromolecules 2004, 37, 429-436.
X. Z. Chen, Z. X. Cheng, L. Liu, X. D. Yang, Q. D. Shen, W. B. Hu, H. T. Li, Colloid Polym. Sci. 2013, 291, 1989-1997.
2007; 168
1998; 280
2013; 4
2013; 1
2002; 30
2014; 26
2007; 91
2011; 32
2003; 39
2008; 33
2002
2006; 313
2008; 93
2004; 11
1998; 39
2005; 184
1983; 220
2010; 116
2002; 40
2004; 37
2013; 96
2002; 66
2011; 21
2013; 113
2008; 20
2009; 3
2013; 291
2012; 24
2005; 38
2012; 45
2012; 22
2014; 6
2014; 104
Fredin (10.1002/polb.24023-BIB0008|polb24023-cit-0008) 2012; 24
Whittingham (10.1002/polb.24023-BIB0002|polb24023-cit-0002) 2008; 33
Lovinger (10.1002/polb.24023-BIB0010|polb24023-cit-0010) 1983; 220
Chen (10.1002/polb.24023-BIB0021|polb24023-cit-0021) 2011; 32
Park (10.1002/polb.24023-BIB0029|polb24023-cit-0029) 2004; 37
Yu (10.1002/polb.24023-BIB0015|polb24023-cit-0015) 2013; 113
Yang (10.1002/polb.24023-BIB0006|polb24023-cit-0006) 2004; 11
Rabuffi (10.1002/polb.24023-BIB0007|polb24023-cit-0007) 2002; 30
Li (10.1002/polb.24023-BIB0011|polb24023-cit-0011) 2008; 20
Panda (10.1002/polb.24023-BIB0020|polb24023-cit-0020) 2008; 93
Li (10.1002/polb.24023-BIB0012|polb24023-cit-0012) 2014; 26
Wang (10.1002/polb.24023-BIB0013|polb24023-cit-0013) 2005; 38
Chu (10.1002/polb.24023-BIB0032|polb24023-cit-0032) 2007; 91
Chen (10.1002/polb.24023-BIB0018|polb24023-cit-0018) 2010; 116
Chu (10.1002/polb.24023-BIB0001|polb24023-cit-0001) 2006; 313
10.1002/polb.24023-BIB0024|polb24023-cit-0024
Holstein (10.1002/polb.24023-BIB0028|polb24023-cit-0028) 1998; 39
Taguet (10.1002/polb.24023-BIB0026|polb24023-cit-0026) 2005; 184
Yu (10.1002/polb.24023-BIB0014|polb24023-cit-0014) 2013; 96
Liu (10.1002/polb.24023-BIB0027|polb24023-cit-0027) 2014; 6
Chen (10.1002/polb.24023-BIB0033|polb24023-cit-0033) 2013; 291
Zhang (10.1002/polb.24023-BIB0023|polb24023-cit-0023) 1998; 280
Yu (10.1002/polb.24023-BIB0034|polb24023-cit-0034) 2014; 104
Hu (10.1002/polb.24023-BIB0016|polb24023-cit-0016) 2013; 1
Guan (10.1002/polb.24023-BIB0003|polb24023-cit-0003) 2011; 21
Khanchaitit (10.1002/polb.24023-BIB0022|polb24023-cit-0022) 2013; 4
Ando (10.1002/polb.24023-BIB0025|polb24023-cit-0025) 2002; 40
Hucher (10.1002/polb.24023-BIB0030|polb24023-cit-0030) 2005; 38
Almadhoun (10.1002/polb.24023-BIB0019|polb24023-cit-0019) 2012; 22
Lunkenheimer (10.1002/polb.24023-BIB0017|polb24023-cit-0017) 2002; 66
Karden (10.1002/polb.24023-BIB0004|polb24023-cit-0004) 2007; 168
Montina (10.1002/polb.24023-BIB0031|polb24023-cit-0031) 2012; 45
Michalczyk (10.1002/polb.24023-BIB0009|polb24023-cit-0009) 2003; 39
Ducharme (10.1002/polb.24023-BIB0005|polb24023-cit-0005) 2009; 3
References_xml – volume: 113
  start-page: 034105
  year: 2013
  publication-title: J. Appl. Phys.
– start-page: 181
  year: 2002
  end-page: 190
– volume: 104
  start-page: 082904
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 291
  start-page: 1989
  year: 2013
  end-page: 1997
  publication-title: Colloid Polym. Sci.
– volume: 22
  start-page: 11196
  year: 2012
  end-page: 11200
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 7
  publication-title: Nat. Commun.
– volume: 3
  start-page: 2447
  year: 2009
  end-page: 2450
  publication-title: ACS Nano.
– volume: 313
  start-page: 334
  year: 2006
  end-page: 336
  publication-title: Science
– volume: 39
  start-page: 362
  year: 2003
  end-page: 365
  publication-title: IEEE Trans. Magn.
– volume: 168
  start-page: 2
  year: 2007
  end-page: 11
  publication-title: J. Power Sources
– volume: 32
  start-page: 94
  year: 2011
  end-page: 99
  publication-title: Macromol. Rapid Commun.
– volume: 220
  start-page: 1115
  year: 1983
  end-page: 1121
  publication-title: Science
– volume: 184
  start-page: 127
  year: 2005
  end-page: 211
  publication-title: Adv. Polym. Sci.
– volume: 33
  start-page: 411
  year: 2008
  end-page: 419
  publication-title: MRS Bull.
– volume: 26
  start-page: 6244
  year: 2014
  end-page: 6249
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1533
  year: 2014
  end-page: 1540
  publication-title: Acs Appl. Mater. Interfaces
– volume: 93
  start-page: 242908
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 1789
  year: 2005
  end-page: 1796
  publication-title: Macromolecules
– volume: 1
  start-page: 1688
  year: 2013
  end-page: 1693
  publication-title: J. Mater. Chem. A
– volume: 280
  start-page: 2101
  year: 1998
  end-page: 2104
  publication-title: Science
– volume: 116
  start-page: 3331
  year: 2010
  end-page: 3337
  publication-title: J. Appl. Polym. Sci.
– volume: 40
  start-page: 97
  year: 2002
  end-page: 106
  publication-title: Magn. Reson. Chem.
– volume: 91
  start-page: 122909
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 30
  start-page: 1939
  year: 2002
  end-page: 1942
  publication-title: IEEE Trans. Plasma Sci.
– volume: 96
  start-page: 2519
  year: 2013
  end-page: 2524
  publication-title: J. Am. Ceram. Soc.
– volume: 66
  start-page: 052105
  year: 2002
  publication-title: Phys. Rev. B
– volume: 37
  start-page: 429
  year: 2004
  end-page: 436
  publication-title: Macromolecules
– volume: 20
  start-page: 6304
  year: 2008
  end-page: 6306
  publication-title: Chem. Mater.
– volume: 24
  start-page: 5946
  year: 2012
  end-page: 5953
  publication-title: Adv. Mater.
– volume: 45
  start-page: 6002
  year: 2012
  end-page: 6007
  publication-title: Macromolecules
– volume: 11
  start-page: 797
  year: 2004
  end-page: 807
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 38
  start-page: 2247
  year: 2005
  end-page: 2252
  publication-title: Macromolecules
– volume: 21
  start-page: 3176
  year: 2011
  end-page: 3188
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 4937
  year: 1998
  end-page: 4941
  publication-title: Polymer
– volume: 39
  start-page: 362
  year: 2003
  ident: 10.1002/polb.24023-BIB0009|polb24023-cit-0009
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2002.806413
  contributor:
    fullname: Michalczyk
– volume: 33
  start-page: 411
  year: 2008
  ident: 10.1002/polb.24023-BIB0002|polb24023-cit-0002
  publication-title: MRS Bull.
  doi: 10.1557/mrs2008.82
  contributor:
    fullname: Whittingham
– volume: 32
  start-page: 94
  year: 2011
  ident: 10.1002/polb.24023-BIB0021|polb24023-cit-0021
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201000478
  contributor:
    fullname: Chen
– volume: 93
  start-page: 242908
  year: 2008
  ident: 10.1002/polb.24023-BIB0020|polb24023-cit-0020
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3054163
  contributor:
    fullname: Panda
– volume: 45
  start-page: 6002
  year: 2012
  ident: 10.1002/polb.24023-BIB0031|polb24023-cit-0031
  publication-title: Macromolecules
  doi: 10.1021/ma3013477
  contributor:
    fullname: Montina
– volume: 91
  start-page: 122909
  year: 2007
  ident: 10.1002/polb.24023-BIB0032|polb24023-cit-0032
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2786839
  contributor:
    fullname: Chu
– volume: 104
  start-page: 082904
  year: 2014
  ident: 10.1002/polb.24023-BIB0034|polb24023-cit-0034
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4866585
  contributor:
    fullname: Yu
– volume: 220
  start-page: 1115
  year: 1983
  ident: 10.1002/polb.24023-BIB0010|polb24023-cit-0010
  publication-title: Science
  doi: 10.1126/science.220.4602.1115
  contributor:
    fullname: Lovinger
– volume: 37
  start-page: 429
  year: 2004
  ident: 10.1002/polb.24023-BIB0029|polb24023-cit-0029
  publication-title: Macromolecules
  doi: 10.1021/ma035402g
  contributor:
    fullname: Park
– volume: 38
  start-page: 1789
  year: 2005
  ident: 10.1002/polb.24023-BIB0030|polb24023-cit-0030
  publication-title: Macromolecules
  doi: 10.1021/ma0476700
  contributor:
    fullname: Hucher
– volume: 11
  start-page: 797
  year: 2004
  ident: 10.1002/polb.24023-BIB0006|polb24023-cit-0006
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2004.1349785
  contributor:
    fullname: Yang
– volume: 22
  start-page: 11196
  year: 2012
  ident: 10.1002/polb.24023-BIB0019|polb24023-cit-0019
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30542a
  contributor:
    fullname: Almadhoun
– ident: 10.1002/polb.24023-BIB0024|polb24023-cit-0024
– volume: 6
  start-page: 1533
  year: 2014
  ident: 10.1002/polb.24023-BIB0027|polb24023-cit-0027
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/am4042096
  contributor:
    fullname: Liu
– volume: 3
  start-page: 2447
  year: 2009
  ident: 10.1002/polb.24023-BIB0005|polb24023-cit-0005
  publication-title: ACS Nano.
  doi: 10.1021/nn901078s
  contributor:
    fullname: Ducharme
– volume: 26
  start-page: 6244
  year: 2014
  ident: 10.1002/polb.24023-BIB0012|polb24023-cit-0012
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402106
  contributor:
    fullname: Li
– volume: 280
  start-page: 2101
  year: 1998
  ident: 10.1002/polb.24023-BIB0023|polb24023-cit-0023
  publication-title: Science
  doi: 10.1126/science.280.5372.2101
  contributor:
    fullname: Zhang
– volume: 66
  start-page: 052105
  year: 2002
  ident: 10.1002/polb.24023-BIB0017|polb24023-cit-0017
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.052105
  contributor:
    fullname: Lunkenheimer
– volume: 39
  start-page: 4937
  year: 1998
  ident: 10.1002/polb.24023-BIB0028|polb24023-cit-0028
  publication-title: Polymer
  doi: 10.1016/S0032-3861(97)10257-9
  contributor:
    fullname: Holstein
– volume: 20
  start-page: 6304
  year: 2008
  ident: 10.1002/polb.24023-BIB0011|polb24023-cit-0011
  publication-title: Chem. Mater.
  doi: 10.1021/cm8021648
  contributor:
    fullname: Li
– volume: 1
  start-page: 1688
  year: 2013
  ident: 10.1002/polb.24023-BIB0016|polb24023-cit-0016
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA00948J
  contributor:
    fullname: Hu
– volume: 24
  start-page: 5946
  year: 2012
  ident: 10.1002/polb.24023-BIB0008|polb24023-cit-0008
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202183
  contributor:
    fullname: Fredin
– volume: 40
  start-page: 97
  year: 2002
  ident: 10.1002/polb.24023-BIB0025|polb24023-cit-0025
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.964
  contributor:
    fullname: Ando
– volume: 168
  start-page: 2
  year: 2007
  ident: 10.1002/polb.24023-BIB0004|polb24023-cit-0004
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.090
  contributor:
    fullname: Karden
– volume: 113
  start-page: 034105
  year: 2013
  ident: 10.1002/polb.24023-BIB0015|polb24023-cit-0015
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4776740
  contributor:
    fullname: Yu
– volume: 30
  start-page: 1939
  year: 2002
  ident: 10.1002/polb.24023-BIB0007|polb24023-cit-0007
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2002.805318
  contributor:
    fullname: Rabuffi
– volume: 96
  start-page: 2519
  year: 2013
  ident: 10.1002/polb.24023-BIB0014|polb24023-cit-0014
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12338
  contributor:
    fullname: Yu
– volume: 313
  start-page: 334
  year: 2006
  ident: 10.1002/polb.24023-BIB0001|polb24023-cit-0001
  publication-title: Science
  doi: 10.1126/science.1127798
  contributor:
    fullname: Chu
– volume: 291
  start-page: 1989
  year: 2013
  ident: 10.1002/polb.24023-BIB0033|polb24023-cit-0033
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-013-2939-4
  contributor:
    fullname: Chen
– volume: 38
  start-page: 2247
  year: 2005
  ident: 10.1002/polb.24023-BIB0013|polb24023-cit-0013
  publication-title: Macromolecules
  doi: 10.1021/ma047890d
  contributor:
    fullname: Wang
– volume: 4
  start-page: 1
  year: 2013
  ident: 10.1002/polb.24023-BIB0022|polb24023-cit-0022
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3845
  contributor:
    fullname: Khanchaitit
– volume: 21
  start-page: 3176
  year: 2011
  ident: 10.1002/polb.24023-BIB0003|polb24023-cit-0003
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002015
  contributor:
    fullname: Guan
– volume: 116
  start-page: 3331
  year: 2010
  ident: 10.1002/polb.24023-BIB0018|polb24023-cit-0018
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Chen
– volume: 184
  start-page: 127
  year: 2005
  ident: 10.1002/polb.24023-BIB0026|polb24023-cit-0026
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/b136245
  contributor:
    fullname: Taguet
SSID ssj0009959
Score 2.338012
Snippet High‐capacity or high‐power‐density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The...
ABSTRACT High‐capacity or high‐power‐density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power...
High-capacity or high-power-density capacitors are being actively investigated for portable electronics, electric vehicles, and electric power systems. The...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Publisher
StartPage 1160
SubjectTerms Capacitors
carboxylic polystyrene nanoparticles
Cross polarization
crosslinked nanocomposites
Crosslinking
dielectric permittivity
Electric fields
Energy density
Excitation
high-power-density capacitor
Nanocomposites
Nanoparticles
poly(vinylidene fluoride-chlorotrifluoroethylene)
Title Crosslinked P(VDF‐CTFE)/PS‐COOH nanocomposites for high‐energy‐density capacitor application
URI https://api.istex.fr/ark:/67375/WNG-QRQ2MXF2-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.24023
https://www.proquest.com/docview/1786724380
https://search.proquest.com/docview/1816089187
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSgguPAqogYKCQAiQspun7UhcYNtlVdHu9rFlL8iyE5tDUVLtQwJO_AR-I7-EGWez23JAgpsl2_JjPDNfMuPPAM_RiyiVsjRwWpiyIguEZTYodajSJBQ2VHTB-eCQDcbp_iSbbMCb9i5Mww-x-uFGmuHsNSm40rPumjT0ov6iOxQbIKrPKOGUz7V7vOaOIiKtluYTUTtbcZPG3XXXK97omlU1YlTa3q9XAOdl2Or8Tv82fGpn3KSbnHcWc90pvv9B5vi_S7oDt5aA1H_bnKC7sGGqLbjRa9-B24LrLkm0mN2DskeLoJCvKf3Ry7Pd_q8fP3un_b1X3dEJFYfDgV-pqqY8dUoGMzMfMbFPlMhYbdw1QyyUlDQ__-YX6KgLtChT_1IY_T6M-3unvUGwfKUhKFKEKwFTNjYEM9JSJWFus8jkaDlCzvOi5Ca1uY40N1bgGWBhaSOmMzQDzIRKlUlokgewWdWV2QZfFwLNhdU8VvjhYnKV5Rbhls5EHouwKD141kpLXjRkHLKhXY4l7Z10e-fBNgpSqs9oJeX4JCYOPRwQkWfqwQsn3VVvNT2nzDaeyY-H7-XR8VF8MOnHct-DnVb8cqnUMxlxwXhMFP0ePF1VozQoxqIqUy-wjcDRRB4J7sFrJ-u_zFSOhh_eudLDf2n8CG7SoihhLcp2YHM-XZjHCI3m-olTgd8QigoL
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIlQuPAqogQJBIASVspun4xxh27CUfbXdhb1ZdmJzKEqqfUjAiZ_Ab-SXMON9tRyQ4GbJthx7PDNf7PE3AC_Qi0gZs9izWhizIvG4YcYrlS_jyOfGl_TAudtj7VF8PE7Gy9gceguz4IdYH7iRZlh7TQpOB9LNDWvoRf1FNehyINqC6zhSRJkbDk837FFEpbUi-kTcztbspGFz0_eKP9oyskaUSgv89QrkvAxcrefJby_Sq04tYSEFnJw35jPVKL7_Qef435O6A7eWmNR9s9hEd-GarnZhp7VKBbcLN2ycaDG9B2WLZkG3vrp0B68-Hua_fvxsDfOj183BGRX7_bZbyaqmUHWKB9NTF2GxS6zIWK3tS0MslBQ3P_vmFuirCzQqE_fSTfp9GOVHw1bbWyZq8IoYEYvHpAk1IY24lJGfmSTQGRoPP02zokx1bDIVqFQbjtuA-aUJmErQEjDtS1lGvo4ewHZVV3oPXFVwtBhGpaHEfxedySQziLhUwrOQ-0XpwPOVuMTFgo9DLJiXQ0FrJ-zaObCHkhTyMxpKMToLiUYPB0TwGTvw0op33VtOzim4LU3Ep947cXJ6EnbHeSiOHdhfyV8s9XoqgpSzNCSWfgeeratRGnTNIitdz7ENx9F4FvDUgQMr7L98qRj0O29t6eG_NH4KO-1htyM673sfHsFNmiDFrwXJPmzPJnP9GJHSTD2x-vAblUQOIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RTwuPApVAwWCQAiQspun40hcYNuwlHZ3-1i6F2TZic2hKFntQwJO_AR-I7-EmWSz23JAgpsl2_JjPDNfMuPPAM_Qi0gZstCptDBkWeRww4yTK1eGgcuNK-mC82GPdYfh_igarcHr5i5MzQ-x_OFGmlHZa1LwcW7aK9LQcflFtSg2EKzDlZAh9CVIdLwijyImrYbnE2E7W5KT-u1V30vuaN3IEkEq7e_XS4jzIm6tHE96Cz41U67zTc5b85lqZd__YHP83zXdhpsLRGq_qY_QHVjTxSZc7zQPwW3C1SpLNJvehbxDi6CYr87twYuPu-mvHz87p-ney_bghIr9ftcuZFFSojplg-mpjaDYJk5krNbVPUMs5JQ1P_tmZ-ipMzQpE_tCHP0eDNO9007XWTzT4GQh4hWHSeNrwhlhLgM3MZGnEzQdbhwnWR7r0CTKU7E2HA8Bc3PjMRWhHWDalTIPXB1swUZRFnobbJVxtBdGxb7ELxedyCgxiLdUxBOfu1luwdNGWmJcs3GImnfZF7R3oto7C7ZRkEJ-RjMphic-kejhgAg9QwueV9Jd9paTc0ptiyNx1nsnjo6P_MNR6ot9C3Ya8YuFVk-FF3MW-8TRb8GTZTVKg4IsstDlHNtwHI0nHo8teFXJ-i8zFYP-wduqdP9fGj-Ga4PdVBy87314ADdofZS85kU7sDGbzPVDhEkz9ajSht9m1wzS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosslinked+P%28VDF%E2%80%90CTFE%29%2FPS%E2%80%90COOH+nanocomposites+for+high%E2%80%90energy%E2%80%90density+capacitor+application&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.date=2016-06-15&rft.pub=Wiley&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=54&rft.issue=12&rft.spage=1160&rft.epage=1169&rft_id=info:doi/10.1002%2Fpolb.24023&rft.externalDocID=US201600174164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon