Enhancing the Infrared Photoresponse of Silicon by Controlling the Fermi Level Location within an Impurity Band

Strong absorption of sub‐band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However, despite the enhanced absorption in this material, the transformation of infrared radiation into an electrical signal via extrinsic photoconduct...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 24; no. 19; pp. 2852 - 2858
Main Authors Simmons, Christie B., Akey, Austin J., Mailoa, Jonathan P., Recht, Daniel, Aziz, Michael J., Buonassisi, Tonio
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Strong absorption of sub‐band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However, despite the enhanced absorption in this material, the transformation of infrared radiation into an electrical signal via extrinsic photoconductivity—the critical performance requirement for many optoelectronic applications—has only been reported at low temperature because thermal impurity ionization overwhelms photoionization at room temperature. Here, dopant compensation is used to manipulate the optical and electronic properties and thereby improve the room‐temperature infrared photoresponse. Silicon co‐doped with boron and sulfur is fabricated using ion implantation and nanosecond pulsed laser melting to achieve supersaturated sulfur concentrations and a matched boron distribution. The location of the Fermi level within the sulfur‐induced impurity band is controlled by tuning the acceptor‐to‐donor ratio, and through this dopant compensation, three orders of magnitude improvement in infrared detection at 1550 nm is demonstrated. Silicon doped with sulfur to supersaturated concentrations exhibits strong sub‐band gap extrinsic absorption from a dopant induced impurity band. By tuning the Fermi level using dopant compensation, it is possible to tailor the infrared photoresponse, demonstrating, for the first time, room‐temperature extrinsic photoconductivity in this material using photon energies below the silicon band gap.
AbstractList Strong absorption of sub‐band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However, despite the enhanced absorption in this material, the transformation of infrared radiation into an electrical signal via extrinsic photoconductivity—the critical performance requirement for many optoelectronic applications—has only been reported at low temperature because thermal impurity ionization overwhelms photoionization at room temperature. Here, dopant compensation is used to manipulate the optical and electronic properties and thereby improve the room‐temperature infrared photoresponse. Silicon co‐doped with boron and sulfur is fabricated using ion implantation and nanosecond pulsed laser melting to achieve supersaturated sulfur concentrations and a matched boron distribution. The location of the Fermi level within the sulfur‐induced impurity band is controlled by tuning the acceptor‐to‐donor ratio, and through this dopant compensation, three orders of magnitude improvement in infrared detection at 1550 nm is demonstrated. Silicon doped with sulfur to supersaturated concentrations exhibits strong sub‐band gap extrinsic absorption from a dopant induced impurity band. By tuning the Fermi level using dopant compensation, it is possible to tailor the infrared photoresponse, demonstrating, for the first time, room‐temperature extrinsic photoconductivity in this material using photon energies below the silicon band gap.
Strong absorption of sub-band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However, despite the enhanced absorption in this material, the transformation of infrared radiation into an electrical signal via extrinsic photoconductivity-the critical performance requirement for many optoelectronic applications-has only been reported at low temperature because thermal impurity ionization overwhelms photoionization at room temperature. Here, dopant compensation is used to manipulate the optical and electronic properties and thereby improve the room-temperature infrared photoresponse. Silicon co-doped with boron and sulfur is fabricated using ion implantation and nanosecond pulsed laser melting to achieve supersaturated sulfur concentrations and a matched boron distribution. The location of the Fermi level within the sulfur-induced impurity band is controlled by tuning the acceptor-to-donor ratio, and through this dopant compensation, three orders of magnitude improvement in infrared detection at 1550 nm is demonstrated. Silicon doped with sulfur to supersaturated concentrations exhibits strong sub-band gap extrinsic absorption from a dopant induced impurity band. By tuning the Fermi level using dopant compensation, it is possible to tailor the infrared photoresponse, demonstrating, for the first time, room-temperature extrinsic photoconductivity in this material using photon energies below the silicon band gap.
Strong absorption of sub‐band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However, despite the enhanced absorption in this material, the transformation of infrared radiation into an electrical signal via extrinsic photoconductivity—the critical performance requirement for many optoelectronic applications—has only been reported at low temperature because thermal impurity ionization overwhelms photoionization at room temperature. Here, dopant compensation is used to manipulate the optical and electronic properties and thereby improve the room‐temperature infrared photoresponse. Silicon co‐doped with boron and sulfur is fabricated using ion implantation and nanosecond pulsed laser melting to achieve supersaturated sulfur concentrations and a matched boron distribution. The location of the Fermi level within the sulfur‐induced impurity band is controlled by tuning the acceptor‐to‐donor ratio, and through this dopant compensation, three orders of magnitude improvement in infrared detection at 1550 nm is demonstrated.
Author Simmons, Christie B.
Akey, Austin J.
Recht, Daniel
Mailoa, Jonathan P.
Buonassisi, Tonio
Aziz, Michael J.
Author_xml – sequence: 1
  givenname: Christie B.
  surname: Simmons
  fullname: Simmons, Christie B.
  email: Christie.simmons@gmail.com
  organization: Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
– sequence: 2
  givenname: Austin J.
  surname: Akey
  fullname: Akey, Austin J.
  organization: Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
– sequence: 3
  givenname: Jonathan P.
  surname: Mailoa
  fullname: Mailoa, Jonathan P.
  organization: Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
– sequence: 4
  givenname: Daniel
  surname: Recht
  fullname: Recht, Daniel
  organization: Harvard School of Engineering and Applied Sciences, MA, 02138, Cambridge, USA
– sequence: 5
  givenname: Michael J.
  surname: Aziz
  fullname: Aziz, Michael J.
  organization: Harvard School of Engineering and Applied Sciences, MA, 02138, Cambridge, USA
– sequence: 6
  givenname: Tonio
  surname: Buonassisi
  fullname: Buonassisi, Tonio
  organization: Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
BookMark eNqFkE1PGzEQQK0KpELgytnHXja144_dHCFlIdK2ID4EN8v2jhuXXTu1N6T59w1Kibj1MjOH9-bwjtFBiAEQOqNkTAmZfNWt68cTQhlh1YR8QkdUUlkwMqkO9jd9_oyOc_5FCC1Lxo9QvAwLHawPP_GwADwPLukELb5dxCEmyMsYMuDo8L3vvI0Bmw2exTCk2HXvUg2p97iBV-hwE60e_JZb-2HhA9YBz_vlKvlhgy90aE_QodNdhtN_e4Qe68uH2XXR3FzNZ-dNYbmUpHBGc0GFZOVUt8wQQux28FZokNRxVhEQ1DhpWsG50VNjtLOCVVJyXklr2Ah92f1dpvh7BXlQvc8Wuk4HiKusqOCUE1ZW5RYd71CbYs4JnFom3-u0UZSot7Lqrazal90K052w9h1s_kOr82_1949usXN9HuDP3tXpRcmSlUI9_bhSF7OnOyrqRgn2F3qHjug
CitedBy_id crossref_primary_10_1039_D2QM00491G
crossref_primary_10_1088_1361_6528_ad143d
crossref_primary_10_1016_j_jallcom_2021_160765
crossref_primary_10_1103_PhysRevMaterials_8_054601
crossref_primary_10_1364_OE_491398
crossref_primary_10_1080_09506608_2017_1389547
crossref_primary_10_1063_1_5015984
crossref_primary_10_1088_1674_4926_43_9_093101
crossref_primary_10_1063_1_4937149
crossref_primary_10_1016_j_mtelec_2022_100011
crossref_primary_10_1016_j_optlastec_2021_107415
crossref_primary_10_1109_JPHOTOV_2014_2363560
crossref_primary_10_1002_adom_201700638
crossref_primary_10_1063_1_4892357
crossref_primary_10_1063_1_4879851
crossref_primary_10_1088_0022_3727_49_5_055103
crossref_primary_10_1063_1_4948986
crossref_primary_10_1016_j_carbon_2022_01_048
crossref_primary_10_1016_j_commatsci_2017_05_005
crossref_primary_10_3390_micro2010001
crossref_primary_10_1063_1_5091661
crossref_primary_10_1016_j_apsusc_2019_01_074
crossref_primary_10_1186_s11671_016_1281_4
crossref_primary_10_1088_1361_6641_ac9fec
crossref_primary_10_1002_adpr_202300281
crossref_primary_10_1063_5_0092774
crossref_primary_10_1002_adom_202001546
crossref_primary_10_1002_adfm_202109891
crossref_primary_10_1515_nanoph_2017_0085
crossref_primary_10_1063_5_0126461
crossref_primary_10_1103_PhysRevApplied_14_064051
crossref_primary_10_1002_pssa_202000260
crossref_primary_10_3390_nano10050861
crossref_primary_10_1007_s11433_022_1906_y
crossref_primary_10_1002_adom_201901808
crossref_primary_10_1103_PhysRevMaterials_5_114607
crossref_primary_10_1038_srep16588
crossref_primary_10_1038_srep43688
crossref_primary_10_1002_adfm_202005521
crossref_primary_10_1016_j_mssp_2016_11_005
crossref_primary_10_1021_acsenergylett_7b00033
crossref_primary_10_1002_smll_202006765
crossref_primary_10_1063_1_5023110
crossref_primary_10_1002_pssr_201900187
crossref_primary_10_7567_APEX_11_061301
crossref_primary_10_7567_1347_4065_aaf56e
crossref_primary_10_1002_pssa_202000550
crossref_primary_10_1039_D1TC05863K
crossref_primary_10_1088_1361_6641_acb16b
crossref_primary_10_1088_2040_8978_18_7_074010
crossref_primary_10_1016_j_optlastec_2022_108291
crossref_primary_10_1088_1361_6528_ab7c44
crossref_primary_10_1088_1361_648X_abd524
crossref_primary_10_1364_PRJ_7_000351
crossref_primary_10_1063_1_4960752
crossref_primary_10_1016_j_solener_2022_12_020
crossref_primary_10_1103_PhysRevApplied_10_024054
crossref_primary_10_1016_j_apsusc_2021_150755
Cites_doi 10.1139/p67-013
10.1103/PhysRevLett.106.178701
10.1063/1.3695171
10.1016/0022-3697(69)90211-X
10.1103/PhysRev.101.1264
10.1016/0020-0891(77)90098-7
10.1116/1.2167975
10.1063/1.4804935
10.1002/pip.4670030303
10.1364/OE.15.016886
10.1063/1.1658260
10.3390/s101210571
10.7567/APEX.6.085801
10.1080/00018736900101367
10.1103/PhysRevLett.56.2489
10.1038/ncomms4011
10.1016/0020-0891(78)90014-3
10.1063/1.3415544
10.1063/1.4820454
10.1063/1.3567759
10.1016/S0079-6727(02)00024-1
10.1007/978-1-4615-5247-5
10.1063/1.1735282
10.1063/1.3609871
10.1103/PhysRevLett.108.026401
10.1021/j150509a021
10.1103/PhysRevB.29.1907
10.1016/0079-6727(84)90001-6
10.1063/1.4813823
10.1103/PhysRevB.58.189
10.1063/1.1728792
10.1007/978-3-7091-0597-9
10.1063/1.1947379
10.1103/PhysRevB.67.075201
10.1116/1.2796184
10.1063/1.2212051
10.1103/PhysRevB.82.165201
10.1364/OE.18.015303
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201303820
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 2858
ExternalDocumentID 10_1002_adfm_201303820
ADFM201303820
ark_67375_WNG_BCWR15FL_5
Genre article
GrantInformation_xml – fundername: MIT‐KFUPM Center for Clean Water and Energy
– fundername: National Science Foundation (NSF)
– fundername: U.S. Army Research Office
  funderid: W911NF‐12–1–0196
– fundername: Department of Energy (DOE)
  funderid: EEC‐1041895
– fundername: National Science Foundation grant for Energy, Power, and Adaptive Systems
  funderid: ECCS‐1102050
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4660-fba45156379ad3b000cb004d5ae61f4380e51bf6bd544ba9bbafc538664486cb3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Aug 17 02:38:12 EDT 2024
Fri Aug 23 00:33:26 EDT 2024
Sat Aug 24 00:49:38 EDT 2024
Wed Jan 17 05:00:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4660-fba45156379ad3b000cb004d5ae61f4380e51bf6bd544ba9bbafc538664486cb3
Notes MIT-KFUPM Center for Clean Water and Energy
U.S. Army Research Office - No. W911NF-12-1-0196
ark:/67375/WNG-BCWR15FL-5
ArticleID:ADFM201303820
National Science Foundation grant for Energy, Power, and Adaptive Systems - No. ECCS-1102050
National Science Foundation (NSF)
Department of Energy (DOE) - No. EEC-1041895
istex:1DDFB1449E7EE5EB04E8A4768B1BEF9651FBE3AD
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dash.harvard.edu/bitstream/1/12992314/1/mja246-manuscript.pdf
PQID 1541403787
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1541403787
crossref_primary_10_1002_adfm_201303820
wiley_primary_10_1002_adfm_201303820_ADFM201303820
istex_primary_ark_67375_WNG_BCWR15FL_5
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References S. Whelan, A. La Magna, V. Privitera, G. Mannino, M. Italia, C. Bongiorno, G. Fortunato, L. Mariucci, Phys. Rev. B 2003, 67, 075201.
A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, M. J. Aziz, Appl. Phys. Lett. 2011, 99, 073503.
W. Kaiser, P. Keck, C. Lange, Phys. Rev. 1956, 101, 1264.
J. S. Blakemore, Semiconductor Statistics, Dover Publications, Mineola, NY 2002.
E. Janzen, R. Stedman, G. Grossmann, H. G. Grimmeiss, Phys. Rev. B 1984, 29, 1907.
R. C. Newman, R. S. Smith, J. Phys. Chem. Solids 1969, 30, 1493.
S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Nishi, H. Shinojima, S.-I. Itabashi, Opt. Express 2010, 18, 15303.
N. Sclar, Infrared Phys. 1977, 17, 71.
R. C. Newman, Adv. Phys. 1969, 18, 545.
E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, J. C. Grossman, Phys. Rev. Lett. 2012, 108, 026401.
R. Baron, J. Appl. Phys. 1969, 40, 3702.
J. Basinski, R. Olivier, Can. J. Phys. 1967, 45, 119.
M. Aziz, J. Y. Tsao, M. O. Thompson, P. S. Peercy, C. W. White, Phys. Rev. Lett. 1986, 56, 2489.
D. Recht, J. T. Sullivan, R. Reedy, T. Buonassisi, M. J. Aziz, Appl. Phys. Lett. 2012, 100, 112112.
M. T. Winkler, D. Recht, M.-J. Sher, A. J. Said, E. Mazur, M. J. Aziz, Phys. Rev. Lett. 2011, 106, 178701.
M. A. Green, M. J. Keevers, Prog. Photovoltaics: Res. Appl. 1995, 3, 189.
E. Garcia-Hemme, R. Garcia-Hernansanz, J. Olea, D. Pastor, A. Del Prado, I. Mártil, G. Gonzalez-Diaz, Appl. Phys. Lett. 2013, 103, 032101.
M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, Sensors 2010, 10, 10571.
M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, T. M. Lyszczarz, Opt. Express 2007, 15, 16886.
P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon, (Ed: S. Selberherr); Springer Verlag, New York 2004.
T. G. Kim, J. M. Warrender, M. J. Aziz, Appl. Phys. Lett. 2006, 88, 241902.
S. Fischler, J. Appl. Phys. 1962, 33, 1615.
S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors, Kluwer Academic Publisher, Norwell 1999.
O. V. Emelianenko, T. S. Lagunova, D. N. Nasledov, G. N. Talalakin, Soviet Phys. Solid State 1965, 7, 1063.
S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz, Appl. Phys. Lett. 2011, 98, 121913.
J. D. B. Bradley, P. E. Jessop, A. P. Knights, Appl. Phys. Lett. 2005, 86, 241103.
N. Sclar, Prog. Quantum Electron. 1984, 9, 149.
J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, T. Buonassisi, Nat. Commun. 2014, 5, 3011.
C. T. Elliott, P. Migliorato, A. W. Vere, Infrared Phys. 1978, 18, 65.
H. Shao, C. Liang, Z. Zhu, B.-Y. Ning, X. Dong, X.-J. Ning, L. Zhao, J. Zhuang, Appl. Phys. Express. 2013, 6, 085801.
R. N. Hall, J. Phys. Chem. 1953, 57, 836.
D. Hoglund, M. Thompson, M. Aziz, Phys. Rev. B 1998, 58, 189.
I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, M. J. Aziz, J. Appl. Phys. 2013, 113, 213501.
A. P. Knights, J. D. B. Bradley, S. H. Gou, P. E. Jessop, J. Vac. Sci. Technol. A: Vac. Surf. Films 2006, 24, 783.
M. Tabbal, T. Kim, J. M. Warrender, M. J. Aziz, B. L. Cardozo, R. S. Goldman, J. Vac. Sci. Technol. B 2007, 25, 1847.
J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, T. Buonassisi, J. Appl. Phys. 2013, 114, 103701.
H. Y. Fan, A. K. Ramdas, J. Appl. Phys. 1959, 30, 1127.
B. P. Bob, A. Kohno, S. Charnvanichborikarn, J. M. Warrender, I. Umezu, M. Tabbal, J. S. Williams, M. J. Aziz, J. Appl. Phys. 2010, 107, 123506.
K. Sanchez, I. Aguilera, P. Palacios, P. Wahnon, Phys. Rev. B 2010, 82, 165201.
A. Rogalski, Prog. Quantum Electron. 2003, 27, 59.
R. Hull, Properties of Crystalline Silicon, INSPEC, London 1999.
2010; 10
2012; 100
2010; 107
2010; 18
1967; 45
1986; 56
1969; 30
2005; 86
2013; 103
2011; 99
1978; 18
2011; 98
1984; 29
2004
1969; 18
1962; 33
2002
1953; 57
1995; 3
2013; 6
2012; 108
2007; 15
1999
2010; 82
1959; 30
2014; 5
2011; 106
2006; 24
1977; 17
2006; 88
1965; 7
1969; 40
2013; 114
2003; 27
1984; 9
2013; 113
2007; 25
1998; 58
1956; 101
2003; 67
e_1_2_8_28_1
Blakemore J. S. (e_1_2_8_36_1) 2002
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Hull R. (e_1_2_8_10_1) 1999
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
Emelianenko O. V. (e_1_2_8_40_1) 1965; 7
References_xml – volume: 7
  start-page: 1063
  year: 1965
  publication-title: Soviet Phys. Solid State
– volume: 107
  start-page: 123506
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 65
  year: 1978
  publication-title: Infrared Phys.
– volume: 33
  start-page: 1615
  year: 1962
  publication-title: J. Appl. Phys.
– volume: 86
  start-page: 241103
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 45
  start-page: 119
  year: 1967
  publication-title: Can. J. Phys.
– volume: 114
  start-page: 103701
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 085801
  year: 2013
  publication-title: Appl. Phys. Express.
– volume: 108
  start-page: 026401
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 783
  year: 2006
  publication-title: J. Vac. Sci. Technol. A: Vac. Surf. Films
– volume: 17
  start-page: 71
  year: 1977
  publication-title: Infrared Phys.
– volume: 58
  start-page: 189
  year: 1998
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 3011
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  start-page: 189
  year: 1995
  publication-title: Prog. Photovoltaics: Res. Appl.
– volume: 101
  start-page: 1264
  year: 1956
  publication-title: Phys. Rev.
– volume: 100
  start-page: 112112
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 15303
  year: 2010
  publication-title: Opt. Express
– volume: 113
  start-page: 213501
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 56
  start-page: 2489
  year: 1986
  publication-title: Phys. Rev. Lett.
– volume: 88
  start-page: 241902
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 57
  start-page: 836
  year: 1953
  publication-title: J. Phys. Chem.
– volume: 30
  start-page: 1127
  year: 1959
  publication-title: J. Appl. Phys.
– volume: 82
  start-page: 165201
  year: 2010
  publication-title: Phys. Rev. B
– volume: 25
  start-page: 1847
  year: 2007
  publication-title: J. Vac. Sci. Technol. B
– volume: 10
  start-page: 10571
  year: 2010
  publication-title: Sensors
– year: 2002
– year: 2004
– volume: 29
  start-page: 1907
  year: 1984
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 149
  year: 1984
  publication-title: Prog. Quantum Electron.
– volume: 18
  start-page: 545
  year: 1969
  publication-title: Adv. Phys.
– volume: 98
  start-page: 121913
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 99
  start-page: 073503
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 59
  year: 2003
  publication-title: Prog. Quantum Electron.
– volume: 67
  start-page: 075201
  year: 2003
  publication-title: Phys. Rev. B
– volume: 106
  start-page: 178701
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 1493
  year: 1969
  publication-title: J. Phys. Chem. Solids
– volume: 40
  start-page: 3702
  year: 1969
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 16886
  year: 2007
  publication-title: Opt. Express
– year: 1999
– volume: 103
  start-page: 032101
  year: 2013
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_41_1
  doi: 10.1139/p67-013
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevLett.106.178701
– ident: e_1_2_8_32_1
  doi: 10.1063/1.3695171
– ident: e_1_2_8_39_1
  doi: 10.1016/0022-3697(69)90211-X
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRev.101.1264
– ident: e_1_2_8_9_1
  doi: 10.1016/0020-0891(77)90098-7
– ident: e_1_2_8_6_1
  doi: 10.1116/1.2167975
– ident: e_1_2_8_15_1
  doi: 10.1063/1.4804935
– ident: e_1_2_8_17_1
  doi: 10.1002/pip.4670030303
– ident: e_1_2_8_7_1
  doi: 10.1364/OE.15.016886
– ident: e_1_2_8_34_1
  doi: 10.1063/1.1658260
– ident: e_1_2_8_2_1
  doi: 10.3390/s101210571
– ident: e_1_2_8_21_1
  doi: 10.7567/APEX.6.085801
– ident: e_1_2_8_38_1
  doi: 10.1080/00018736900101367
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevLett.56.2489
– volume-title: Semiconductor Statistics
  year: 2002
  ident: e_1_2_8_36_1
  contributor:
    fullname: Blakemore J. S.
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms4011
– ident: e_1_2_8_22_1
  doi: 10.1016/0020-0891(78)90014-3
– ident: e_1_2_8_13_1
  doi: 10.1063/1.3415544
– ident: e_1_2_8_14_1
  doi: 10.1063/1.4820454
– ident: e_1_2_8_27_1
  doi: 10.1063/1.3567759
– volume: 7
  start-page: 1063
  year: 1965
  ident: e_1_2_8_40_1
  publication-title: Soviet Phys. Solid State
  contributor:
    fullname: Emelianenko O. V.
– ident: e_1_2_8_1_1
  doi: 10.1016/S0079-6727(02)00024-1
– ident: e_1_2_8_16_1
  doi: 10.1007/978-1-4615-5247-5
– ident: e_1_2_8_4_1
  doi: 10.1063/1.1735282
– volume-title: Properties of Crystalline Silicon
  year: 1999
  ident: e_1_2_8_10_1
  contributor:
    fullname: Hull R.
– ident: e_1_2_8_18_1
  doi: 10.1063/1.3609871
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.108.026401
– ident: e_1_2_8_31_1
  doi: 10.1021/j150509a021
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevB.29.1907
– ident: e_1_2_8_3_1
  doi: 10.1016/0079-6727(84)90001-6
– ident: e_1_2_8_11_1
  doi: 10.1063/1.4813823
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevB.58.189
– ident: e_1_2_8_30_1
  doi: 10.1063/1.1728792
– ident: e_1_2_8_23_1
  doi: 10.1007/978-3-7091-0597-9
– ident: e_1_2_8_5_1
  doi: 10.1063/1.1947379
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevB.67.075201
– ident: e_1_2_8_26_1
  doi: 10.1116/1.2796184
– ident: e_1_2_8_25_1
  doi: 10.1063/1.2212051
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRevB.82.165201
– ident: e_1_2_8_8_1
  doi: 10.1364/OE.18.015303
SSID ssj0017734
Score 2.4380014
Snippet Strong absorption of sub‐band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However,...
Strong absorption of sub-band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 2852
SubjectTerms compensated semiconductors
Compensation
defect engineering
Dopants
extrinsic photoconductivity
Fermi level
Fermi surfaces
Impurities
impurity band
Infrared
pulsed laser melting
Silicon
Sulfur
Title Enhancing the Infrared Photoresponse of Silicon by Controlling the Fermi Level Location within an Impurity Band
URI https://api.istex.fr/ark:/67375/WNG-BCWR15FL-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201303820
https://search.proquest.com/docview/1541403787
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwHA6iFz34FueLCKKnzqVNU3vUaX2wiUzF3ULSJipqKnMD9a83v2atmxdBby00tP298iX58gWhnSwUBzqVxAskDTyaKZtSgVAeVVGcRjKSsqD8ty_Z2S296IbdkV38Th-imnCDzCjqNSS4kG_736KhItOwkxxqsO3FbBEGNT1ARZ1KP4pEkVtWZgQIXqRbqjY2_P3x5mO90hQY-H0Mco4C16LnSeaQKL_ZEU6e6oO-rKefP-Qc__NT82h2CEvxoYujBTShzCKaGRErXEL5iXkAcQ5zjy1oxOdG94C8jq8ecjtud1RbhXONrx-fbXgZLD9w0xHhn8tGCVBvcAuISriVu9lCDFPBjwYLg89fXovD9PCRMNkyuk1Obppn3vC4Bi-ljDU8LQW16IgFUSyyANBFCjXBRoNiRIOyvQqJ1ExmIaVSxFIKndp6y2CIyFIZrKBJkxu1inBGDwItNM2oRQ9pIxYEkKTv69gHiUNaQ3ulu_irU-XgTn_Z52BCXpmwhnYLb1aPid4TcNmikN9dnvKj5l2HhEmLhzW0Xbqb2wyDZRNhVD544wROSm8EtrLVkF8475d38sPjpF3drf2l0TqattfUMSs30GS_N1CbFv305VYR4V--__vM
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4acBgc2A9AFNjmSdM4BerEccgROrJ2S6uJgeBm2YkNCHBQaSW2vx6_mGR0F6TtmChWEr8f_vz8-TPApzKWe6ZQNIgUiwJWahdSkdQB00laJCpRqqb8D0e8f8K-ncUNmxD3wnh9iLbghpFR52sMcCxI7_5RDZWlwa3kmITdMDYHCy7m43pWddQqSNEk8QvLnCLFi541uo3dcHe2_cy4tIBdfD8DOp9C13rsyV6Bar7aU06udqYTtVP8_kvQ8b9-6zUsPyJTsu9d6Q280PYtLD3RK1yB6tBeoD6HPScON5KBNWPkr5MfF5Wbunu2rSaVIT8vr52HWaJ-kZ7nwl83jTJk35AcuUokr3zBkGA1-NISacng5rY-T48cSFuuwkl2eNzrB48nNgQF47wbGCWZA0g8SlJZRggwCkwLziE0pwbF7XVMleGqjBlTMlVKmsKlXI6zRF6oaA3mbWX1OpCS7UVGGlYyByCKbiopgskwNGmIKoesA9uNvcStF-YQXoI5FNiFou3CDnyuzdk-JsdXSGdLYnE6-ioOeqdHNM5yEXfgY2Nv4YIMV06k1dX0TlA8LL0bueTWgbC23jPvFPtfsmF7tfEvjT7Ay_7xMBf5YPR9ExbdfeaJllswPxlP9TsHhibqfe3uD5bn_-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwGP0Em4TggftEuRoJwVO2Onac5XFrF1boqmkwrW-WHdts2nCq0krAr8dfvISWFyR4TBQryXfzsX18DPDGZGrXVZomTHOWcGNDSjFlE27zosp1rnVD-T-aiMNT_mGaTVd28Ud9iG7CDTOjqdeY4DPjdn6LhirjcCc51uDQi92ETS5YinE9POkEpGiex3VlQZHhRaetbGM_3Vlvv9YtbaKFv69hzlXk2nQ95T1Q7UdHxsnl9nKht6uff-g5_s9f3Ye717iU7MVAegA3rH8Id1bUCh9BfeDPUZ3DfyEBNZKRd3Nkr5Pj8zoM3CPX1pLakU8XVyG-PNE_yCAy4a_aRiVyb8gYmUpkXMfpQoJzwReeKE9GX2fNaXpkX3nzGE7Lg8-Dw-T6vIak4kL0E6cVD_BIsLxQhiG8qLAohHCwgjqUtrcZ1U5ok3GuVaG1clUouALHiKLSbAs2fO3tEyCG7zKnHDc8wIeqXyiKUDJNXZGixiHvwbvWXXIWZTlkFGBOJZpQdibswdvGm91jan6JZLY8k2eT93J_cHZCs3Issx68bt0tQ4rhuonytl5-kxSPSu-zUNp6kDbO-8s75d6wPOqunv5Lo1dw63hYyvFo8vEZ3A63eWRZPoeNxXxpXwQktNAvm2D_BZFp_p0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Infrared+Photoresponse+of+Silicon+by+Controlling+the+Fermi+Level+Location+within+an+Impurity+Band&rft.jtitle=Advanced+functional+materials&rft.au=Simmons%2C+Christie+B&rft.au=Akey%2C+Austin+J&rft.au=Mailoa%2C+Jonathan+P&rft.au=Recht%2C+Daniel&rft.date=2014-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=19&rft.spage=2852&rft.epage=2858&rft_id=info:doi/10.1002%2Fadfm.201303820&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon