Development and initial performance of a miniature axial flow blood pump using magnetic fluid shaft seal

In this study, we developed a new catheter-mounted micro-axial flow blood pump (MFBP) using a new miniature magnetic fluid shaft seal (MFSS). The prototype of the catheter-mounted MFBP had a maximum diameter of 8 mm and a length of 50 mm. The new MFSS composed a neodymium magnet ring, an iron ring,...

Full description

Saved in:
Bibliographic Details
Published inJournal of artificial organs Vol. 26; no. 1; pp. 12 - 16
Main Authors Okamoto, Eiji, Yano, Tetsuya, Sekine, Kazumitsu, Inoue, Yusuke, Shiraishi, Yasuyuki, Yambe, Tomoyuki, Mitamura, Yoshinori
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we developed a new catheter-mounted micro-axial flow blood pump (MFBP) using a new miniature magnetic fluid shaft seal (MFSS). The prototype of the catheter-mounted MFBP had a maximum diameter of 8 mm and a length of 50 mm. The new MFSS composed a neodymium magnet ring, an iron ring, and a magnetic fluid particularly designed for the MFSS. The new MFSS had outer and inner diameters of 4.0 mm and 2.6 mm, respectively, and a length of 3.0 mm. The sealing pressure of the MFSS was calculated to be 432 mmHg using FEM (Finite Element Method) result; therefore, the MFSS had sufficient sealing pressure for the catheter-mounted MFBP. The friction loss of the MFSS included the friction owing to the viscosity of the magnetic fluid and the magnetic force between the iron ring and ring magnet. The total friction loss of the MFSS was 0.08–0.09 W in the pump operational speed range from 22,000 to 35,000 rpm. From the in vitro experimental results, the catheter-mounted MFBP using the MFSS had a pump output of 3 L/min. against a differential pressure of 60 mmHg, and the pump characteristics of the MFBP were almost the same as those of Impella 5.0.
AbstractList In this study, we developed a new catheter-mounted micro-axial flow blood pump (MFBP) using a new miniature magnetic fluid shaft seal (MFSS). The prototype of the catheter-mounted MFBP had a maximum diameter of 8 mm and a length of 50 mm. The new MFSS composed a neodymium magnet ring, an iron ring, and a magnetic fluid particularly designed for the MFSS. The new MFSS had outer and inner diameters of 4.0 mm and 2.6 mm, respectively, and a length of 3.0 mm. The sealing pressure of the MFSS was calculated to be 432 mmHg using FEM (Finite Element Method) result; therefore, the MFSS had sufficient sealing pressure for the catheter-mounted MFBP. The friction loss of the MFSS included the friction owing to the viscosity of the magnetic fluid and the magnetic force between the iron ring and ring magnet. The total friction loss of the MFSS was 0.08–0.09 W in the pump operational speed range from 22,000 to 35,000 rpm. From the in vitro experimental results, the catheter-mounted MFBP using the MFSS had a pump output of 3 L/min. against a differential pressure of 60 mmHg, and the pump characteristics of the MFBP were almost the same as those of Impella 5.0.
In this study, we developed a new catheter-mounted micro-axial flow blood pump (MFBP) using a new miniature magnetic fluid shaft seal (MFSS). The prototype of the catheter-mounted MFBP had a maximum diameter of 8 mm and a length of 50 mm. The new MFSS composed a neodymium magnet ring, an iron ring, and a magnetic fluid particularly designed for the MFSS. The new MFSS had outer and inner diameters of 4.0 mm and 2.6 mm, respectively, and a length of 3.0 mm. The sealing pressure of the MFSS was calculated to be 432 mmHg using FEM (Finite Element Method) result; therefore, the MFSS had sufficient sealing pressure for the catheter-mounted MFBP. The friction loss of the MFSS included the friction owing to the viscosity of the magnetic fluid and the magnetic force between the iron ring and ring magnet. The total friction loss of the MFSS was 0.08-0.09 W in the pump operational speed range from 22,000 to 35,000 rpm. From the in vitro experimental results, the catheter-mounted MFBP using the MFSS had a pump output of 3 L/min. against a differential pressure of 60 mmHg, and the pump characteristics of the MFBP were almost the same as those of Impella 5.0.In this study, we developed a new catheter-mounted micro-axial flow blood pump (MFBP) using a new miniature magnetic fluid shaft seal (MFSS). The prototype of the catheter-mounted MFBP had a maximum diameter of 8 mm and a length of 50 mm. The new MFSS composed a neodymium magnet ring, an iron ring, and a magnetic fluid particularly designed for the MFSS. The new MFSS had outer and inner diameters of 4.0 mm and 2.6 mm, respectively, and a length of 3.0 mm. The sealing pressure of the MFSS was calculated to be 432 mmHg using FEM (Finite Element Method) result; therefore, the MFSS had sufficient sealing pressure for the catheter-mounted MFBP. The friction loss of the MFSS included the friction owing to the viscosity of the magnetic fluid and the magnetic force between the iron ring and ring magnet. The total friction loss of the MFSS was 0.08-0.09 W in the pump operational speed range from 22,000 to 35,000 rpm. From the in vitro experimental results, the catheter-mounted MFBP using the MFSS had a pump output of 3 L/min. against a differential pressure of 60 mmHg, and the pump characteristics of the MFBP were almost the same as those of Impella 5.0.
In this study, we developed a new catheter-mounted micro-axial flow blood pump (MFBP) using a new miniature magnetic fluid shaft seal (MFSS). The prototype of the catheter-mounted MFBP had a maximum diameter of 8 mm and a length of 50 mm. The new MFSS composed a neodymium magnet ring, an iron ring, and a magnetic fluid particularly designed for the MFSS. The new MFSS had outer and inner diameters of 4.0 mm and 2.6 mm, respectively, and a length of 3.0 mm. The sealing pressure of the MFSS was calculated to be 432 mmHg using FEM (Finite Element Method) result; therefore, the MFSS had sufficient sealing pressure for the catheter-mounted MFBP. The friction loss of the MFSS included the friction owing to the viscosity of the magnetic fluid and the magnetic force between the iron ring and ring magnet. The total friction loss of the MFSS was 0.08–0.09 W in the pump operational speed range from 22,000 to 35,000 rpm. From the in vitro experimental results, the catheter-mounted MFBP using the MFSS had a pump output of 3 L/min. against a differential pressure of 60 mmHg, and the pump characteristics of the MFBP were almost the same as those of Impella 5.0.
Author Yano, Tetsuya
Okamoto, Eiji
Sekine, Kazumitsu
Inoue, Yusuke
Shiraishi, Yasuyuki
Yambe, Tomoyuki
Mitamura, Yoshinori
Author_xml – sequence: 1
  givenname: Eiji
  orcidid: 0000-0003-4382-0343
  surname: Okamoto
  fullname: Okamoto, Eiji
  email: okamoto29@tsc.u-tokai.ac.jp
  organization: Graduate School of Biology, Tokai University
– sequence: 2
  givenname: Tetsuya
  surname: Yano
  fullname: Yano, Tetsuya
  organization: Graduate School of Science and Engineering, Hirosaki University
– sequence: 3
  givenname: Kazumitsu
  surname: Sekine
  fullname: Sekine, Kazumitsu
  organization: Research Division of Medical & Dental & Pharmacy, Tokushima University
– sequence: 4
  givenname: Yusuke
  surname: Inoue
  fullname: Inoue, Yusuke
  organization: Advanced Biomedical Research Center, Asahikawa Medical University, Institute of Development Aging and Cancer, Tohoku University
– sequence: 5
  givenname: Yasuyuki
  surname: Shiraishi
  fullname: Shiraishi, Yasuyuki
  organization: Institute of Development Aging and Cancer, Tohoku University
– sequence: 6
  givenname: Tomoyuki
  surname: Yambe
  fullname: Yambe, Tomoyuki
  organization: Institute of Development Aging and Cancer, Tohoku University
– sequence: 7
  givenname: Yoshinori
  surname: Mitamura
  fullname: Mitamura, Yoshinori
  organization: Emeritus Professor, Hokkaido University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35426584$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB_wB1ggS2zYBDyJHSdLVJ5SJTbdW772-NaVYwfbgfLv8eW2QuqiG4-l-c5ozpxzchJTREJeA3sPjMkPpb1cdqzvOwbDwDr5jJzBCHPHZsZP2p8PvJN9P5-S81JuGQMpJHtBTgfB-1FM_IzcfMJfGNK6YKxUR0t99NXrQFfMLuVFR4M0Oarp0jq6bhmpvjsALqTfdBdSsnTdlpVuxcc9XfQ-YvWmtTdvabnRrtKCOrwkz50OBV_d1wty_eXz9eW37urH1--XH686w0dROwc7aBZwGGcn5SytRQaTGJwAPDgBLflorAE7AoAZnbFi1JMA43aT7YcL8u44ds3p54alqsUXgyHoiGkrqtmGcW53gIa-fYTepi3Htpzq5cSAA4ipUW_uqW23oFVr9ovOf9TDCRswHQGTUykZnTK-6upTrFn7oICpQ1rqmJZqaal_aSnZpP0j6cP0J0XDUVQaHPeY_6_9hOovf3emRQ
CitedBy_id crossref_primary_10_3389_fphys_2023_1169905
crossref_primary_10_1063_5_0161693
crossref_primary_10_1063_5_0231122
crossref_primary_10_1016_j_jmmm_2024_172232
crossref_primary_10_1016_j_jmmm_2025_172893
crossref_primary_10_1007_s10047_024_01433_3
crossref_primary_10_1016_j_triboint_2023_109054
crossref_primary_10_1063_5_0196412
crossref_primary_10_1063_5_0203779
Cites_doi 10.1111/j.1525-1594.2009.00899.x
10.4283/JMAG.2017.22.2.286
10.1097/00002480-200107000-00018
10.1097/MAT.0000000000001194
10.1007/s10047-010-0526-8
10.1016/j.jmmm.2016.09.032
10.1016/j.athoracsur.2013.07.053
10.1016/j.carrev.2019.03.010
10.1161/CIRCHEARTFAILURE.112.967224
10.1046/j.1525-1594.2001.025005414.x
10.1016/j.athoracsur.2019.08.041
10.1016/j.jmmm.2019.166293
10.1046/j.1525-1594.2003.00035.x
ContentType Journal Article
Copyright The Japanese Society for Artificial Organs 2022
2022. The Japanese Society for Artificial Organs.
The Japanese Society for Artificial Organs 2022.
Copyright_xml – notice: The Japanese Society for Artificial Organs 2022
– notice: 2022. The Japanese Society for Artificial Organs.
– notice: The Japanese Society for Artificial Organs 2022.
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1007/s10047-022-01330-7
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1619-0904
EndPage 16
ExternalDocumentID 35426584
10_1007_s10047_022_01330_7
Genre Journal Article
GrantInformation_xml – fundername: KAKENHI
  grantid: 19K12792
– fundername: Institute of Development, Aging and Cancer, Tohoku University
  grantid: .2021_23
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
X7M
YLTOR
Z45
Z7U
Z87
ZJWQK
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QO
8FD
ABRTQ
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c465t-f1b1161e369f7797dde01853f51e72291a746cdc1d6111c6fcd56a851cfb8d23
IEDL.DBID U2A
ISSN 1434-7229
1619-0904
IngestDate Fri Jul 11 12:24:41 EDT 2025
Fri Jul 25 11:14:58 EDT 2025
Thu Apr 03 07:01:54 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Tue Jul 01 03:28:22 EDT 2025
Fri Feb 21 02:44:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Impella
Catheter mounted
Magnetic fluid shaft seal
Axial flow blood pump
Magnetic fluid
Language English
License 2022. The Japanese Society for Artificial Organs.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-f1b1161e369f7797dde01853f51e72291a746cdc1d6111c6fcd56a851cfb8d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4382-0343
PMID 35426584
PQID 2780141158
PQPubID 1456335
PageCount 5
ParticipantIDs proquest_miscellaneous_2651691751
proquest_journals_2780141158
pubmed_primary_35426584
crossref_citationtrail_10_1007_s10047_022_01330_7
crossref_primary_10_1007_s10047_022_01330_7
springer_journals_10_1007_s10047_022_01330_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Tokyo
PublicationSubtitle The Official Journal of the Japanese Society for Artificial Organs
PublicationTitle Journal of artificial organs
PublicationTitleAbbrev J Artif Organs
PublicationTitleAlternate J Artif Organs
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Mitamura, Sekine, Okamoto (CR13) 2020; 500
Lemaire, Anderson, Lee, Scholz, Prendergast, Goodman, Lozano, Spotnitz, Batsides (CR5) 2014; 97
Sekine, Mitamura (CR18) 2020; 41
CR4
CR3
Ramzy, Soltesz, Anderson (CR14) 2020; 66
Mitamura, Takahashi, Amari, Okamoto, Murabayashi, Nishimura (CR11) 2011; 14
Sekine, Mitamura, Murabayashi, Nishimura, Yozu, Kim (CR9) 2003; 27
Mitamura, Durst (CR12) 2017; 431
Siess, Nix, Menzler (CR15) 2001; 25
Berkovsky, Medvedev, Krakov (CR16) 1993
Mitamura, Sekine, Asakawa, Yozu, kawada, Okamoto (CR8) 2001; 47
Jianhui, Meng, Lu, Jibin, Li (CR17) 2017; 22
Chung, Emerson, Ramzy, Akhmerov, Megna, Esmailian, Kobashiwaga, Cole, Moriguch, Trento (CR7) 2020; 109
Khalid, Rogers, Shlofmitz, Chen, Musallam, Khan, Iantorno, Gajanana, Hahim, Torguson, Bernardo, Waksman (CR6) 2019; 20
Ramzy, Soltesz, Anderson (CR2) 2020; 66
Mitamura, Takahashi, Kano, Okamoto, Murabayashi, Nishimura, Higuchi (CR10) 2009; 33
Lauten, Engstrom, Jung, Empen, Erne, Cook, Windecker, Bergmann, Klingenberg, Luscher, Haude, Rulands, Butter, Ullman, Hellgren, Modena, Pedrazzini, Henriques, Figulla, Ferrari (CR1) 2013; 6
K Sekine (1330_CR9) 2003; 27
D Ramzy (1330_CR14) 2020; 66
JS Chung (1330_CR7) 2020; 109
Y Mitamura (1330_CR13) 2020; 500
A Lauten (1330_CR1) 2013; 6
1330_CR4
1330_CR3
A Lemaire (1330_CR5) 2014; 97
D Ramzy (1330_CR2) 2020; 66
BM Berkovsky (1330_CR16) 1993
Y Mitamura (1330_CR8) 2001; 47
T Siess (1330_CR15) 2001; 25
Y Mitamura (1330_CR10) 2009; 33
K Sekine (1330_CR18) 2020; 41
Y Mitamura (1330_CR12) 2017; 431
H Jianhui (1330_CR17) 2017; 22
N Khalid (1330_CR6) 2019; 20
Y Mitamura (1330_CR11) 2011; 14
References_xml – volume: 33
  start-page: 770
  year: 2009
  end-page: 773
  ident: CR10
  article-title: Sealing performance of a magnetic fluid seal for rotary blood pumps
  publication-title: Artifi Organs
  doi: 10.1111/j.1525-1594.2009.00899.x
– start-page: 137
  year: 1993
  ident: CR16
  publication-title: Magnetic fluids: engineering applications
– volume: 22
  start-page: 286
  year: 2017
  end-page: 290
  ident: CR17
  article-title: Loss of torque on magnetic fluid seals with rotating–shafts
  publication-title: J Magn
  doi: 10.4283/JMAG.2017.22.2.286
– volume: 47
  start-page: 392
  year: 2001
  end-page: 396
  ident: CR8
  article-title: A durable, non power consumptive, simple seal for rotary blood pumps
  publication-title: ASAIO J
  doi: 10.1097/00002480-200107000-00018
– volume: 66
  start-page: 746
  year: 2020
  end-page: 752
  ident: CR2
  article-title: New surgical circulatory support system outcomes
  publication-title: ASAIO J
  doi: 10.1097/MAT.0000000000001194
– volume: 66
  start-page: 746
  year: 2020
  end-page: 752
  ident: CR14
  article-title: New surgical circulatory support system outcome
  publication-title: ASAIO J
  doi: 10.1097/MAT.0000000000001194
– ident: CR3
– ident: CR4
– volume: 14
  start-page: 23
  year: 2011
  end-page: 30
  ident: CR11
  article-title: A magnetic fluid seal for rotary blood pumps: effects of seal structure on long-term performance in liquid
  publication-title: J Artifi Organs
  doi: 10.1007/s10047-010-0526-8
– volume: 431
  start-page: 285
  year: 2017
  end-page: 288
  ident: CR12
  article-title: Miniature magnetic fluid seal working in liquid environments
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2016.09.032
– volume: 97
  start-page: 133
  year: 2014
  end-page: 138
  ident: CR5
  article-title: The impella device for acute mechanical circulatory support in patients in cardiogenic shock
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2013.07.053
– volume: 20
  start-page: 503
  year: 2019
  end-page: 506
  ident: CR6
  article-title: Adverse events and modes of failure related to Impella RP: Insights form the manufacture and user facility device experience (MAUDE) database
  publication-title: Cardio REevascular Med
  doi: 10.1016/j.carrev.2019.03.010
– volume: 6
  start-page: 23
  year: 2013
  end-page: 30
  ident: CR1
  article-title: Percutaneous left-ventricular support with the Impella-2.5 assist device in acute cardiogenic shock—results of the Impella Euroshock Registry
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.112.967224
– volume: 25
  start-page: 414
  year: 2001
  end-page: 421
  ident: CR15
  article-title: From a lab type to a product: a retrospective view on Impella’s assist technology
  publication-title: Artif Organs
  doi: 10.1046/j.1525-1594.2001.025005414.x
– volume: 41
  start-page: 647
  year: 2020
  end-page: 652
  ident: CR18
  article-title: Evaluation of the cytotoxicity of oil-based magnetic fluid based on cell proliferation study
  publication-title: J Chin Soc Mech Eng
– volume: 109
  start-page: 1370
  year: 2020
  end-page: 1377
  ident: CR7
  article-title: A new paradigm in mechanical circulatory support:100-patient experience
  publication-title: Ann Thorac Srug
  doi: 10.1016/j.athoracsur.2019.08.041
– volume: 500
  start-page: 1
  year: 2020
  end-page: 5
  ident: CR13
  article-title: Magnetic fluid seals working in liquid environments: Factor limiting their life and solution methods
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2019.166293
– volume: 27
  start-page: 892
  year: 2003
  end-page: 896
  ident: CR9
  article-title: Development of a magnetic fluid seal for an axial flow blood pump
  publication-title: Artifi Organs
  doi: 10.1046/j.1525-1594.2003.00035.x
– volume: 500
  start-page: 1
  year: 2020
  ident: 1330_CR13
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2019.166293
– volume: 66
  start-page: 746
  year: 2020
  ident: 1330_CR14
  publication-title: ASAIO J
  doi: 10.1097/MAT.0000000000001194
– volume: 431
  start-page: 285
  year: 2017
  ident: 1330_CR12
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2016.09.032
– ident: 1330_CR3
– ident: 1330_CR4
– volume: 25
  start-page: 414
  year: 2001
  ident: 1330_CR15
  publication-title: Artif Organs
  doi: 10.1046/j.1525-1594.2001.025005414.x
– volume: 22
  start-page: 286
  year: 2017
  ident: 1330_CR17
  publication-title: J Magn
  doi: 10.4283/JMAG.2017.22.2.286
– volume: 109
  start-page: 1370
  year: 2020
  ident: 1330_CR7
  publication-title: Ann Thorac Srug
  doi: 10.1016/j.athoracsur.2019.08.041
– volume: 20
  start-page: 503
  year: 2019
  ident: 1330_CR6
  publication-title: Cardio REevascular Med
  doi: 10.1016/j.carrev.2019.03.010
– volume: 66
  start-page: 746
  year: 2020
  ident: 1330_CR2
  publication-title: ASAIO J
  doi: 10.1097/MAT.0000000000001194
– volume: 41
  start-page: 647
  year: 2020
  ident: 1330_CR18
  publication-title: J Chin Soc Mech Eng
– volume: 47
  start-page: 392
  year: 2001
  ident: 1330_CR8
  publication-title: ASAIO J
  doi: 10.1097/00002480-200107000-00018
– volume: 33
  start-page: 770
  year: 2009
  ident: 1330_CR10
  publication-title: Artifi Organs
  doi: 10.1111/j.1525-1594.2009.00899.x
– volume: 14
  start-page: 23
  year: 2011
  ident: 1330_CR11
  publication-title: J Artifi Organs
  doi: 10.1007/s10047-010-0526-8
– volume: 6
  start-page: 23
  year: 2013
  ident: 1330_CR1
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.112.967224
– volume: 27
  start-page: 892
  year: 2003
  ident: 1330_CR9
  publication-title: Artifi Organs
  doi: 10.1046/j.1525-1594.2003.00035.x
– volume: 97
  start-page: 133
  year: 2014
  ident: 1330_CR5
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2013.07.053
– start-page: 137
  volume-title: Magnetic fluids: engineering applications
  year: 1993
  ident: 1330_CR16
SSID ssj0017570
Score 2.3727686
Snippet In this study, we developed a new catheter-mounted micro-axial flow blood pump (MFBP) using a new miniature magnetic fluid shaft seal (MFSS). The prototype of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12
SubjectTerms Axial flow
Axial flow pumps
Biomedical Engineering and Bioengineering
Blood pumps
Cardiac Surgery
Catheters
Differential pressure
Finite element method
Friction
Friction loss
Iron
Magnetic fields
Magnetic fluids
Medical instruments
Medicine
Medicine & Public Health
Neodymium
Nephrology
Original Article
Permanent magnets
Pressure
Sealing
Title Development and initial performance of a miniature axial flow blood pump using magnetic fluid shaft seal
URI https://link.springer.com/article/10.1007/s10047-022-01330-7
https://www.ncbi.nlm.nih.gov/pubmed/35426584
https://www.proquest.com/docview/2780141158
https://www.proquest.com/docview/2651691751
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gngR38ZHWcGbLjSv3eZYRC1KPbWgp7CPrBZqWmyL_nxn0qRVqoLnnWzCzO7Ot5lvZgDOG5FqWt9prgOTcMLoXLtQcjQ3XpoVunxNP_Q7D6Ldi-4e48cyKWxcsd2rkGRxUn9JdqOqAsQ-R9gSNrhchbUY7-5E5OoFrXnsQMZFizgEAhGXQZCUqTI_z_HdHS1hzKX4aOF2brZgs8SLrDUz8DasZPkOrHfKiPguvHxh_TCVW9YnNhA-MVpkBLChY4pREZGiiidTHyTgBsN3VvDW2QhtyogB_8xe1XNOeY04PO1bNn5RbsKIJLYH3Zvr7lWbl90TuIlEPOHO1z7CuSwUiZMykXiONcg5u9jPSC2-kpEw1vhW4HlnhDM2FgoBmHG6aYNwH2r5MM8OgQmVGdzaLrQyipx0OjaR0UmIdx2bGRt64Fc6TE1ZWZwaXAzSRU1k0nuKek8LvafSg4v5M6NZXY0_pU8q06TlHhungaTKN4homx6czYdxd1DIQ-XZcIoyguKAuCR8Dw5mJp2_LoxxaSL-8uCysvFi8t-_5eh_4sewQR3qZ7S1E6hN3qbZKeKYia7DWuv26f66XizfT3kP6Ho
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hkIAL4lFgKW2N1J7AUvZlZw8cUCkKj3AKEjfLT0CCTUQS0f6e_lFmNrsJiLZSD5z9WGse9uedb8YAX1uZbrs4GG4SW3DC6NyEVHJUN16aNR75hn7ody9F5yo7u86v5-B3kwtTsd2bkGS1U79IdqOqAsQ-R9iStrisqZTn_tcTXtSGh6fHqNVvSXLyo_e9w-u3BLjNRD7iITYxghufiiJIWUj06hYdVSGPvUySItYyE9bZ2An0fiuCdbnQCEdsMG1H1Q1wn19A7NEm17lKjqahCplXL9Ih7sg4zVRn5vx5ya9PvzeQ9k04tjrlTlZhpYan7GhiT2sw58t1WOzWAfgNuH1BMmK6dOyOyEc4YjBLQGD9wDSjmiVV0VCmf1KHcN9_YhVNng3QhBgR7m_Yg74pKY0Sm8d3jg1vdRgx4qR9gN57CHgT5st-6beBCe0t7iQhdTLLggwmt5k1RYpXK-etSyOIGxkqWxcyp_c07tWsBDPJXaHcVSV3JSPYn44ZTMp4_LP3bqMaVbv0UCWSCu0ggG5HsDdtRmekCIsufX-MfQSFHdEk4gi2Jiqdfi7N0RMQ7kVw0Oh4Nvnf17Lzf92_wFKn171QF6eX5x9hOUFINmHM7cL86HHsPyGEGpnPlQkzUO_sMs8f2yMC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKqFeqj5om5YWVyqn1mKTOPbm0AMqrHgU1ANI3Cw_AYlmV92saH9V_2Jn8tilAipx4Gw7iWY89ufMN58BPg6EGfo0Wm4zV3LC6NzGXHF0Nx6aDW75ln7oHx7J3ROxf1qcLsGfvhamYbv3Kcm2poFUmqp6c-Lj5rXCN1IYICY6Qph8wFVHqzwIv6_w0Db9sreNHt7IstHO8ddd3t0rwJ2QRc1jalMEOiGXZVSqVBjhA9q2YpEGlWVlapSQzrvUS1wJnIzOF9IgNHHRDj0pHeCa_0hQ8TEG0Em2NU9bqKK5nQ4xiOD0pK5K5_ZP_ncnvAFvb6Rmmx1v9BSedFCVbbVz6xksheo5rBx2yfgXcH6NcMRM5dkFEZFwxGRRjMDGkRlG-iWNgCgzv6hDvBxfsYYyzyY4nRiR78_YD3NWUUklNs8uPJuem1gz4qetwvFDGPglLFfjKrwGJk1wuKrE3Cshooq2cMLZMsdjlg_O5wmkvQ2160TN6W6NS72QYya7a7S7buyuVQKf5mMmraTHf3uv9a7RXXhPdaZIdAfB9DCBD_NmDEzKtpgqjGfYR1IKEqdEmsCr1qXz1-UFRgVCvwQ-9z5ePPzub3lzv-7rsPJ9e6S_7R0dvIXHGaKzljy3Bsv1z1l4h2iqtu-bGcxAP3DE_AUmUCc1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+initial+performance+of+a+miniature+axial+flow+blood+pump+using+magnetic+fluid+shaft+seal&rft.jtitle=Journal+of+artificial+organs&rft.au=Okamoto%2C+Eiji&rft.au=Yano%2C+Tetsuya&rft.au=Sekine%2C+Kazumitsu&rft.au=Inoue%2C+Yusuke&rft.date=2023-03-01&rft.issn=1619-0904&rft.eissn=1619-0904&rft.volume=26&rft.issue=1&rft.spage=12&rft_id=info:doi/10.1007%2Fs10047-022-01330-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-7229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-7229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-7229&client=summon