Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizure...
Saved in:
Published in | Journal of neuroscience methods Vol. 191; no. 1; pp. 101 - 109 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.08.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2010.05.020 |
Cover
Loading…
Abstract | About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method. |
---|---|
AbstractList | About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method. About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method. |
Author | Dorado, Julián Rivero, Daniel Rabuñal, Juan R. Pazos, Alejandro Guo, Ling |
Author_xml | – sequence: 1 givenname: Ling surname: Guo fullname: Guo, Ling email: lguo@udc.es – sequence: 2 givenname: Daniel surname: Rivero fullname: Rivero, Daniel – sequence: 3 givenname: Julián surname: Dorado fullname: Dorado, Julián – sequence: 4 givenname: Juan R. surname: Rabuñal fullname: Rabuñal, Juan R. – sequence: 5 givenname: Alejandro surname: Pazos fullname: Pazos, Alejandro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20595035$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFr1D5xinL2PGfROJAVS0FqRIXkLhZjjOmXhJnsR0QfHoStnvhsqexRr_3PHrvilzEKSIhNwy2DJh6s9_uI84jlscth2UJcgscnpENazSvlG6-XpDNAsoKuIZLcpXzHgBEC-oFueQgWwm13JBwO5dptCU4iocw4GF9ZQx_5oS0x4KuhCnSEOlud59pZzP2dFkMISIdMH4rj9SjLStuY09tKsEHF-xAl_vSv1F-Tel7fkmeeztkfPU0r8mX97vPdx-qh0_3H-9uHyonlCwVdlo4jY1wne2UBuk6ZduGK-0BalS94Fr5FlrhOfOu673yjjU1a13LvYD6mrw--h7S9GPGXMwYssNhsBGnORsthVQ1ADtPiqblrZar580TOXcj9uaQwmjTb3PKcQHeHgGXppwTeuNCsWt0JdkwGAZmrc3szak2s9ZmQJqltkWu_pOffjgrfHcU4pLoz4DJZBcwOuxDWqoz_RTOWfwF2hW3Lg |
CitedBy_id | crossref_primary_10_3233_IDT_190043 crossref_primary_10_1016_j_compbiomed_2014_11_013 crossref_primary_10_1109_ACCESS_2019_2904949 crossref_primary_10_4218_etrij_2018_0118 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_1016_j_eplepsyres_2014_09_002 crossref_primary_10_1371_journal_pone_0062013 crossref_primary_10_2174_1574362413666181030103616 crossref_primary_10_1016_j_iot_2019_03_002 crossref_primary_10_1109_ACCESS_2019_2915609 crossref_primary_10_1080_03772063_2021_1912650 crossref_primary_10_1111_acer_13144 crossref_primary_10_1016_j_eswa_2015_01_036 crossref_primary_10_1186_s13638_020_01810_5 crossref_primary_10_1007_s40846_016_0214_0 crossref_primary_10_1097_MD_0000000000006879 crossref_primary_10_1016_j_chaos_2022_112528 crossref_primary_10_1016_j_compmedimag_2016_09_002 crossref_primary_10_1109_ACCESS_2018_2867008 crossref_primary_10_1111_exsy_12338 crossref_primary_10_1007_s11042_019_7359_0 crossref_primary_10_3389_fneur_2020_00701 crossref_primary_10_1088_1742_6596_1381_1_012037 crossref_primary_10_1016_j_socl_2021_100026 crossref_primary_10_1111_exsy_12211 crossref_primary_10_1007_s00521_021_05779_0 crossref_primary_10_1007_s00034_021_01686_w crossref_primary_10_1016_j_bspc_2021_102916 crossref_primary_10_1142_S021946782450044X crossref_primary_10_1109_TNSRE_2020_2998778 crossref_primary_10_1155_2022_7751263 crossref_primary_10_1016_j_bbe_2017_08_003 crossref_primary_10_1007_s13534_012_0066_7 crossref_primary_10_1186_s12911_021_01631_6 crossref_primary_10_1109_TNSRE_2015_2441737 crossref_primary_10_1049_el_2020_2701 crossref_primary_10_3390_app7040385 crossref_primary_10_1016_j_cmpb_2015_10_001 crossref_primary_10_1177_0954411918757812 crossref_primary_10_1007_s13246_018_0669_0 crossref_primary_10_1016_j_compbiomed_2020_104033 crossref_primary_10_1016_j_knosys_2016_11_024 crossref_primary_10_3390_brainsci11050668 crossref_primary_10_1007_s00034_022_02223_z crossref_primary_10_1007_s11760_022_02318_9 crossref_primary_10_1109_TNSRE_2013_2267543 crossref_primary_10_3390_computers8040084 crossref_primary_10_9719_EEG_2024_57_3_329 crossref_primary_10_1016_j_bspc_2023_104644 crossref_primary_10_1016_j_bspc_2022_103645 crossref_primary_10_1007_s41870_023_01657_1 crossref_primary_10_1109_TNSRE_2012_2210246 crossref_primary_10_7305_automatika_2016_10_1427 crossref_primary_10_1016_j_nicl_2016_02_015 crossref_primary_10_29252_nirp_bcn_8_6_479 crossref_primary_10_1016_j_nec_2011_07_010 crossref_primary_10_1155_2013_984864 crossref_primary_10_7763_IJAPM_2013_V3_235 crossref_primary_10_1515_bmt_2017_0233 crossref_primary_10_1016_j_neucom_2019_12_010 crossref_primary_10_1016_j_compbiomed_2018_04_025 crossref_primary_10_1109_TBME_2019_2957392 crossref_primary_10_1016_j_engappai_2021_104426 crossref_primary_10_3390_s151129015 crossref_primary_10_1016_j_eswa_2017_07_020 crossref_primary_10_1016_j_bbe_2018_01_002 crossref_primary_10_1016_j_bspc_2013_06_004 crossref_primary_10_1007_s11517_019_02039_1 crossref_primary_10_1016_j_compbiomed_2021_104708 crossref_primary_10_1007_s12530_019_09319_z crossref_primary_10_1016_j_asoc_2016_12_009 crossref_primary_10_1109_JBHI_2024_3366341 crossref_primary_10_1140_epjs_s11734_022_00714_3 crossref_primary_10_3390_s20164639 crossref_primary_10_3390_diagnostics12112879 crossref_primary_10_1109_TNNLS_2020_3048385 crossref_primary_10_1515_bmt_2018_0246 crossref_primary_10_4236_jbise_2014_712093 crossref_primary_10_1016_j_bspc_2019_101569 crossref_primary_10_1016_j_asoc_2018_11_012 crossref_primary_10_32604_cmc_2021_015524 crossref_primary_10_1109_JSEN_2020_2966766 crossref_primary_10_1016_j_ijinfomgt_2019_02_003 crossref_primary_10_1109_JBHI_2014_2387795 crossref_primary_10_1109_JSEN_2021_3111102 crossref_primary_10_2139_ssrn_3987849 crossref_primary_10_1016_j_compbiomed_2015_04_034 crossref_primary_10_1109_ACCESS_2019_2929266 crossref_primary_10_1142_S0219519417400036 crossref_primary_10_18100_ijamec_988691 crossref_primary_10_1016_j_celrep_2024_114189 crossref_primary_10_1109_TCBB_2020_3006699 crossref_primary_10_1523_JNEUROSCI_4105_14_2015 crossref_primary_10_1007_s10044_017_0642_7 crossref_primary_10_1016_j_jns_2019_06_024 crossref_primary_10_1016_j_procs_2012_09_016 crossref_primary_10_1038_srep01483 crossref_primary_10_1186_s13634_019_0606_8 crossref_primary_10_1007_s10827_017_0636_x crossref_primary_10_1016_j_jneumeth_2012_07_003 crossref_primary_10_1142_S0129065715500239 crossref_primary_10_1145_3458927 crossref_primary_10_1016_j_eswa_2018_04_021 crossref_primary_10_1007_s11042_022_12296_2 crossref_primary_10_5339_connect_2014_1 crossref_primary_10_1016_j_cogsys_2018_08_018 crossref_primary_10_1088_2057_1976_aa5199 crossref_primary_10_1016_j_jneumeth_2019_108347 crossref_primary_10_1109_TMC_2018_2883451 crossref_primary_10_1111_epi_17525 crossref_primary_10_3390_jpm12050763 crossref_primary_10_1016_j_cmpb_2016_05_002 crossref_primary_10_1016_j_dsp_2017_07_015 crossref_primary_10_1007_s00521_020_05675_z crossref_primary_10_1016_j_bspc_2019_101702 crossref_primary_10_1177_09727531211072423 crossref_primary_10_1155_2017_7949507 crossref_primary_10_1155_2020_6633242 crossref_primary_10_3233_XST_17258 crossref_primary_10_3390_s21196343 crossref_primary_10_1016_j_patrec_2017_03_023 crossref_primary_10_3389_fnins_2020_00606 crossref_primary_10_1007_s11277_020_07742_z crossref_primary_10_1016_j_engappai_2015_01_001 crossref_primary_10_17482_uumfd_754577 crossref_primary_10_1007_s00034_015_0225_z crossref_primary_10_1007_s41870_024_02078_4 crossref_primary_10_1016_j_sigpro_2016_12_019 crossref_primary_10_1109_TBME_2020_2973934 crossref_primary_10_1016_j_knosys_2019_105333 crossref_primary_10_1111_exsy_13260 crossref_primary_10_1016_j_bspc_2020_102141 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1080_02522667_2020_1715564 crossref_primary_10_1080_1061186X_2024_2448711 crossref_primary_10_1002_cta_2860 crossref_primary_10_1155_2013_498754 crossref_primary_10_1007_s11517_018_1881_5 crossref_primary_10_1016_j_bspc_2022_103908 crossref_primary_10_1016_j_seizure_2015_01_012 crossref_primary_10_1016_j_knosys_2013_02_014 crossref_primary_10_1142_S0129065715500185 crossref_primary_10_1016_j_neunet_2016_03_004 crossref_primary_10_1109_TNSRE_2022_3156931 crossref_primary_10_3390_app14135783 crossref_primary_10_3390_jsan13050048 crossref_primary_10_1155_2015_576437 crossref_primary_10_1080_08839514_2021_2008612 crossref_primary_10_3390_biomedicines11030816 crossref_primary_10_1002_cpe_6675 crossref_primary_10_1016_j_brainresbull_2016_03_021 crossref_primary_10_1016_j_procs_2014_09_027 crossref_primary_10_1049_sil2_12019 crossref_primary_10_1016_j_jneumeth_2013_03_008 crossref_primary_10_1016_j_patrec_2020_03_009 crossref_primary_10_1371_journal_pone_0173138 crossref_primary_10_1109_ACCESS_2020_3011877 crossref_primary_10_1080_03772063_2023_2234854 crossref_primary_10_1109_ACCESS_2018_2867078 crossref_primary_10_1515_bmt_2018_0012 crossref_primary_10_20965_jaciii_2015_p0447 crossref_primary_10_1016_j_yebeh_2011_08_041 crossref_primary_10_4236_jbise_2011_412097 crossref_primary_10_1016_j_amc_2014_05_128 crossref_primary_10_1016_j_bspc_2018_05_004 crossref_primary_10_1155_2013_358108 crossref_primary_10_1109_TITB_2011_2181403 crossref_primary_10_1007_s13369_019_04197_8 crossref_primary_10_1016_j_neuroscience_2020_12_001 crossref_primary_10_1016_j_imu_2020_100444 crossref_primary_10_3390_brainsci12101275 crossref_primary_10_1109_ACCESS_2017_2731784 crossref_primary_10_1186_1687_6180_2014_59 crossref_primary_10_1080_03091902_2018_1513576 crossref_primary_10_1097_WNP_0b013e318246af3e crossref_primary_10_3390_s22239233 crossref_primary_10_1016_j_procs_2013_10_012 crossref_primary_10_1016_j_clinph_2020_09_016 crossref_primary_10_1016_j_bspc_2022_103664 crossref_primary_10_1016_j_bspc_2020_102322 crossref_primary_10_2174_1874120701509010151 crossref_primary_10_1016_j_jneumeth_2022_109483 crossref_primary_10_1007_s11517_015_1351_2 crossref_primary_10_1109_TBCAS_2017_2694638 crossref_primary_10_3389_fnins_2020_00870 crossref_primary_10_1186_s40708_020_00105_1 crossref_primary_10_1016_j_neucom_2015_10_070 crossref_primary_10_1016_j_bspc_2020_101921 crossref_primary_10_1016_j_knosys_2018_07_019 crossref_primary_10_1142_S0219519419400074 crossref_primary_10_2339_politeknik_1055549 crossref_primary_10_1016_j_bspc_2016_01_002 crossref_primary_10_1016_j_eplepsyres_2020_106475 crossref_primary_10_1080_03091902_2017_1382585 crossref_primary_10_1155_2021_1972662 crossref_primary_10_1093_brain_awy116 crossref_primary_10_7555_JBR_34_20190043 crossref_primary_10_1016_j_bbe_2018_03_007 crossref_primary_10_3389_fnhum_2019_00052 crossref_primary_10_1007_s11760_012_0362_9 crossref_primary_10_1016_j_bspc_2015_04_007 crossref_primary_10_1007_s11045_016_0419_y crossref_primary_10_3389_fnhum_2021_746499 crossref_primary_10_1007_s12652_020_02185_7 crossref_primary_10_1007_s00521_014_1802_y crossref_primary_10_3390_app142411616 crossref_primary_10_1088_1741_2552_ab2409 crossref_primary_10_1109_ACCESS_2020_3031447 crossref_primary_10_1109_LCOMM_2020_3041722 crossref_primary_10_1088_1674_4926_44_12_121401 crossref_primary_10_1142_S0129065723500612 crossref_primary_10_1007_s11910_019_0998_8 crossref_primary_10_3390_s19020219 crossref_primary_10_1109_JBHI_2016_2589971 crossref_primary_10_1016_j_dsp_2021_103349 crossref_primary_10_1007_s11517_019_01951_w crossref_primary_10_1016_j_medengphy_2012_05_005 crossref_primary_10_1109_TNSRE_2018_2818123 crossref_primary_10_7555_JBR_36_20210124 crossref_primary_10_1016_j_eswa_2021_115551 crossref_primary_10_18100_ijamec_475090 crossref_primary_10_1155_2022_6486570 crossref_primary_10_1155_2022_9579422 crossref_primary_10_1080_03091902_2019_1572236 crossref_primary_10_1016_j_jneumeth_2020_108826 |
Cites_doi | 10.1016/j.eswa.2005.09.027 10.1016/0167-2789(96)00085-1 10.1016/j.compbiomed.2007.06.002 10.1016/S0165-0270(02)00340-0 10.1103/PhysRevE.64.061907 10.1016/j.cmpb.2005.06.012 10.1016/j.cmpb.2005.04.006 10.1016/j.eswa.2005.04.007 10.1016/j.eswa.2004.12.027 10.1109/51.376754 10.1016/j.cmpb.2005.06.005 10.1162/neco.1992.4.3.448 10.1179/016164104773026534 10.1016/j.eswa.2007.12.065 10.1016/j.eswa.2005.04.011 10.1109/34.192463 10.1109/10.250582 10.1016/0013-4694(91)90128-Q 10.1109/TNSRE.2003.814441 10.1109/10.855931 10.1016/j.patrec.2006.10.004 10.1007/s10916-005-6133-1 10.1016/S0167-7012(00)00201-3 10.1016/j.jneumeth.2005.04.013 10.1016/j.amc.2006.09.022 10.1016/j.eswa.2006.02.005 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. (c) 2010 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: (c) 2010 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1016/j.jneumeth.2010.05.020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 109 |
ExternalDocumentID | 20595035 10_1016_j_jneumeth_2010_05_020 S0165027010002803 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K WUQ X7M ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7TK EFKBS |
ID | FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403 |
IEDL.DBID | AIKHN |
ISSN | 0165-0270 1872-678X |
IngestDate | Tue Aug 05 09:52:11 EDT 2025 Fri Jul 11 02:02:03 EDT 2025 Thu Apr 03 07:09:34 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Tue Jul 01 00:48:01 EDT 2025 Fri Feb 23 02:33:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Discrete wavelet transform (DWT) Line length feature Artificial neural network (ANN) Electroencephalogram (EEG) Epileptic seizure detection |
Language | English |
License | (c) 2010 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20595035 |
PQID | 748929750 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_754563001 proquest_miscellaneous_748929750 pubmed_primary_20595035 crossref_citationtrail_10_1016_j_jneumeth_2010_05_020 crossref_primary_10_1016_j_jneumeth_2010_05_020 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2010_05_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-15 |
PublicationDateYYYYMMDD | 2010-08-15 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2010 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Murro, King, Smith, Gallagher, Flanigin, Meador (bib24) 1991; 79 Kalayci, Ozdamar (bib15) 1995; 14 Tzallas, Tsipouras, Fotiadis (bib37) 2007 Blankertz, Curio, Müller (bib4) 2002 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib2) 2001; 64 Tzallas, Karvelis, Katsis, Fotiadis, Giannopoulos, Konitsiotis (bib36) 2007; 26 Nigam, Graupe (bib25) 2004; 26 Subasi (bib32) 2005; 29 Kandel, Schwartz, Jessell (bib16) 2000 Übeyli (bib39) 2006; 16 Mohseni, Maghsoudi, Kadbi, Hashemi, Ashourvan (bib23) 2006 Päivinen, Lammi, Pitkäanen, Nissinen, Penttonen, Grönfors (bib27) 2005; 79 Übeyli (bib41) 2008; 38 Jahankhani, Kodogiannis, Revett (bib14) 2006 Sun, Sclabassi (bib35) 2000; 47 Basheer, Hajmeer (bib3) 2000; 43 Subasi (bib31) 2005; 28 Ocak (bib26) 2009; 36 Güler, Übeyli, Güler (bib12) 2005; 29 Dingle, Jones, Carroll, Fright (bib6) 1993; 40 Garrett, Peterson, Anderson, Thaut (bib10) 2003; 11 MacKay (bib20) 1992; 4 Guo, Rivero, Seoane, Pazos (bib13) 2009 Übeyli, Güler (bib42) 2007; 28 Mathworks. MATLAB V.6.5.0 Help files; 2002. Kannathal, Acharya, Lim, Sadasivan (bib17) 2005; 80 Subasi (bib33) 2006; 31 Sadati, Mohseni, Maghsoudi (bib29) 2006 Esteller, Echauz, Tcheng, Litt, Pless (bib8) 2001 Polat, Güneş (bib28) 2007; 187 Chui (bib5) 1992 Subasi (bib34) 2007; 32 Adeli, Zhou, Dadmehr (bib1) 2003; 123 Lerner (bib19) 1996; 97 Übeyli (bib40) 2006; 16 Fukunaga (bib9) 1990 Güler, Übeyli (bib11) 2005; 148 Kannathal, Choo, Acharya, Sadasivan (bib18) 2005; 80 Mallat (bib21) 1989; 11 Srinivasan, Eswaran, Sriraam (bib30) 2005; 29 Esteller, Echauz, Tcheng (bib7) 2004 Übeyli (10.1016/j.jneumeth.2010.05.020_bib40) 2006; 16 Übeyli (10.1016/j.jneumeth.2010.05.020_bib41) 2008; 38 Esteller (10.1016/j.jneumeth.2010.05.020_bib8) 2001 Lerner (10.1016/j.jneumeth.2010.05.020_bib19) 1996; 97 Güler (10.1016/j.jneumeth.2010.05.020_bib11) 2005; 148 Güler (10.1016/j.jneumeth.2010.05.020_bib12) 2005; 29 Mohseni (10.1016/j.jneumeth.2010.05.020_bib23) 2006 Murro (10.1016/j.jneumeth.2010.05.020_bib24) 1991; 79 Basheer (10.1016/j.jneumeth.2010.05.020_bib3) 2000; 43 Tzallas (10.1016/j.jneumeth.2010.05.020_bib36) 2007; 26 Tzallas (10.1016/j.jneumeth.2010.05.020_bib37) 2007 Fukunaga (10.1016/j.jneumeth.2010.05.020_bib9) 1990 Kalayci (10.1016/j.jneumeth.2010.05.020_bib15) 1995; 14 Sadati (10.1016/j.jneumeth.2010.05.020_bib29) 2006 Kannathal (10.1016/j.jneumeth.2010.05.020_bib17) 2005; 80 MacKay (10.1016/j.jneumeth.2010.05.020_bib20) 1992; 4 Sun (10.1016/j.jneumeth.2010.05.020_bib35) 2000; 47 Chui (10.1016/j.jneumeth.2010.05.020_bib5) 1992 Subasi (10.1016/j.jneumeth.2010.05.020_bib34) 2007; 32 Garrett (10.1016/j.jneumeth.2010.05.020_bib10) 2003; 11 Mallat (10.1016/j.jneumeth.2010.05.020_bib21) 1989; 11 Blankertz (10.1016/j.jneumeth.2010.05.020_bib4) 2002 Kannathal (10.1016/j.jneumeth.2010.05.020_bib18) 2005; 80 Andrzejak (10.1016/j.jneumeth.2010.05.020_bib2) 2001; 64 Subasi (10.1016/j.jneumeth.2010.05.020_bib32) 2005; 29 10.1016/j.jneumeth.2010.05.020_bib22 Srinivasan (10.1016/j.jneumeth.2010.05.020_bib30) 2005; 29 Esteller (10.1016/j.jneumeth.2010.05.020_bib7) 2004 Ocak (10.1016/j.jneumeth.2010.05.020_bib26) 2009; 36 Jahankhani (10.1016/j.jneumeth.2010.05.020_bib14) 2006 Kandel (10.1016/j.jneumeth.2010.05.020_bib16) 2000 Übeyli (10.1016/j.jneumeth.2010.05.020_bib39) 2006; 16 Übeyli (10.1016/j.jneumeth.2010.05.020_bib42) 2007; 28 Nigam (10.1016/j.jneumeth.2010.05.020_bib25) 2004; 26 Subasi (10.1016/j.jneumeth.2010.05.020_bib33) 2006; 31 Adeli (10.1016/j.jneumeth.2010.05.020_bib1) 2003; 123 Guo (10.1016/j.jneumeth.2010.05.020_bib13) 2009 Dingle (10.1016/j.jneumeth.2010.05.020_bib6) 1993; 40 Päivinen (10.1016/j.jneumeth.2010.05.020_bib27) 2005; 79 Subasi (10.1016/j.jneumeth.2010.05.020_bib31) 2005; 28 Polat (10.1016/j.jneumeth.2010.05.020_bib28) 2007; 187 |
References_xml | – volume: 80 start-page: 187 year: 2005 end-page: 194 ident: bib18 article-title: Entropies for detection of epilepsy in EEG publication-title: Computer Methods and Programs in Biomedicine – volume: 4 start-page: 448 year: 1992 end-page: 472 ident: bib20 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Computation – volume: 79 start-page: 151 year: 2005 end-page: 159 ident: bib27 article-title: Epileptic seizure detection: A nonlinear viewpoint publication-title: Computer methods and programs in biomedicine – volume: 31 start-page: 320 year: 2006 end-page: 328 ident: bib33 article-title: Automatic detection of epileptic seizure using dynamic fuzzy neural networks publication-title: Expert Systems with Applications – start-page: 13 year: 2007 ident: bib37 article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks publication-title: Computational Intelligence and Neuroscience – year: 1990 ident: bib9 article-title: Introduction to Statistical Pattern Recognition – year: 2001 ident: bib8 article-title: Line length: An efficient feature for seizure onset detection publication-title: 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 29 start-page: 506 year: 2005 end-page: 514 ident: bib12 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Systems with Applications – volume: 29 start-page: 343 year: 2005 end-page: 355 ident: bib32 article-title: Epileptic seizure detection using dynamic wavelet network publication-title: Expert Systems with Applications – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: bib21 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2006 ident: bib29 article-title: Epileptic seizure detection using neural fuzzy networks publication-title: IEEE International Conference on Fuzzy Systems – volume: 26 start-page: 965 year: 2007 end-page: 968 ident: bib36 article-title: A method for classification of transient events in EEG recordings: application to epilepsy diagnosis publication-title: Nervenheilkunde – volume: 28 start-page: 592 year: 2007 end-page: 603 ident: bib42 article-title: Features extracted by eigenvector methods for detecting variability of EEG signals publication-title: Pattern Recognition Letters – volume: 28 start-page: 701 year: 2005 end-page: 711 ident: bib31 article-title: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients publication-title: Expert Systems with Applications – year: 2006 ident: bib23 article-title: Automatic detection of epileptic seizure using time–frequency distributions publication-title: IET 3rd International Conference on Advances in Medical, Signal and Information Processing, MEDSIP – volume: 29 start-page: 647 year: 2005 end-page: 660 ident: bib30 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: Journal of Medical Systems – reference: Mathworks. MATLAB V.6.5.0 Help files; 2002. – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: bib1 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: Journal of Neuroscience Methods – volume: 11 start-page: 141 year: 2003 end-page: 144 ident: bib10 article-title: Comparison of linear and nonlinear methods for EEG signal classification publication-title: IEEE Transactions on Neural Systems and Rehabilitative Engineering – volume: 64 start-page: 061907-1 year: 2001 end-page: 061907-8 ident: bib2 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state publication-title: Physical Review E – volume: 14 start-page: 160 year: 1995 end-page: 166 ident: bib15 article-title: Wavelet preprocessing for automated neural network detection of EEG spikes publication-title: IEEE Engineering in Medicine and Biology Magazine – volume: 26 start-page: 55 year: 2004 end-page: 60 ident: bib25 article-title: A neural-network-based detection of epilepsy publication-title: Neurological Research – volume: 40 start-page: 1260 year: 1993 end-page: 1268 ident: bib6 article-title: A multistage system to detect epileptiform activity in the EEG publication-title: IEEE Transactions on Biomedical Engineering – year: 1992 ident: bib5 article-title: An Introduction to Wavelets – year: 2004 ident: bib7 article-title: Comparison of line length feature before and after brain electrical stimulation in epileptic patients publication-title: Engineering in Medicine and Biology Society. IEMBS’04. 26th Annual International Conference of the IEEE, vol. 2 – year: 2009 ident: bib13 article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks publication-title: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation – volume: 16 start-page: 421 year: 2006 end-page: 431 ident: bib40 article-title: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals publication-title: Neural Network World – year: 2000 ident: bib16 article-title: Principles of Neural Science – volume: 187 start-page: 1017 year: 2007 end-page: 1026 ident: bib28 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Applied Mathematics and Computation – volume: 79 start-page: 330 year: 1991 end-page: 333 ident: bib24 article-title: Computerized seizure detection of complex partial seizures publication-title: Electroencephalography and Clinical Neurophysiology – volume: 80 start-page: 17 year: 2005 end-page: 23 ident: bib17 article-title: Characterization of EEG—A comparative study publication-title: Computer methods and Programs in Biomedicine – volume: 43 start-page: 3 year: 2000 end-page: 31 ident: bib3 article-title: Artificial neural networks: Fundamentals, computing, design, and application publication-title: Journal of Microbiological Methods – volume: 32 start-page: 1084 year: 2007 end-page: 1093 ident: bib34 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Systems with Applications – volume: 38 start-page: 14 year: 2008 end-page: 22 ident: bib41 article-title: Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines publication-title: Computers in Biology and Medicine – volume: 97 start-page: 563 year: 1996 end-page: 576 ident: bib19 article-title: Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure publication-title: Physica D: Nonlinear Phenomena – year: 2006 ident: bib14 article-title: EEG signal classification using wavelet feature extraction and neural networks publication-title: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06) – volume: 16 start-page: 257 year: 2006 end-page: 273 ident: bib39 article-title: Analysis of EEG signals using Lyapunov exponents publication-title: Neural Network World – year: 2002 ident: bib4 article-title: Classifying single trial EEG: Towards brain computer interfacing publication-title: Advances in Neural Information Processing Systems: Proceedings of the Conference – volume: 36 start-page: 2027 year: 2009 end-page: 2036 ident: bib26 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Systems with Applications – volume: 148 start-page: 113 year: 2005 end-page: 121 ident: bib11 article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients publication-title: Journal of Neuroscience Methods – volume: 47 start-page: 1044 year: 2000 end-page: 1050 ident: bib35 article-title: The forward EEG solutions can be computed using artificial neural networks publication-title: IEEE Transactions on Biomedical Engineering – volume: 31 start-page: 320 issue: 2 year: 2006 ident: 10.1016/j.jneumeth.2010.05.020_bib33 article-title: Automatic detection of epileptic seizure using dynamic fuzzy neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.027 – year: 2002 ident: 10.1016/j.jneumeth.2010.05.020_bib4 article-title: Classifying single trial EEG: Towards brain computer interfacing – year: 2004 ident: 10.1016/j.jneumeth.2010.05.020_bib7 article-title: Comparison of line length feature before and after brain electrical stimulation in epileptic patients – volume: 26 start-page: 965 issue: 11 year: 2007 ident: 10.1016/j.jneumeth.2010.05.020_bib36 article-title: A method for classification of transient events in EEG recordings: application to epilepsy diagnosis publication-title: Nervenheilkunde – year: 2006 ident: 10.1016/j.jneumeth.2010.05.020_bib14 article-title: EEG signal classification using wavelet feature extraction and neural networks – year: 2006 ident: 10.1016/j.jneumeth.2010.05.020_bib29 article-title: Epileptic seizure detection using neural fuzzy networks – volume: 97 start-page: 563 issue: 4 year: 1996 ident: 10.1016/j.jneumeth.2010.05.020_bib19 article-title: Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(96)00085-1 – volume: 38 start-page: 14 issue: 1 year: 2008 ident: 10.1016/j.jneumeth.2010.05.020_bib41 article-title: Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2007.06.002 – year: 2006 ident: 10.1016/j.jneumeth.2010.05.020_bib23 article-title: Automatic detection of epileptic seizure using time–frequency distributions – start-page: 13 year: 2007 ident: 10.1016/j.jneumeth.2010.05.020_bib37 article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks publication-title: Computational Intelligence and Neuroscience – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.jneumeth.2010.05.020_bib1 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: Journal of Neuroscience Methods doi: 10.1016/S0165-0270(02)00340-0 – volume: 64 start-page: 061907-1 issue: 6 year: 2001 ident: 10.1016/j.jneumeth.2010.05.020_bib2 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state publication-title: Physical Review E doi: 10.1103/PhysRevE.64.061907 – volume: 80 start-page: 187 issue: 3 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib18 article-title: Entropies for detection of epilepsy in EEG publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2005.06.012 – volume: 79 start-page: 151 issue: 2 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib27 article-title: Epileptic seizure detection: A nonlinear viewpoint publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2005.04.006 – year: 2001 ident: 10.1016/j.jneumeth.2010.05.020_bib8 article-title: Line length: An efficient feature for seizure onset detection – year: 1990 ident: 10.1016/j.jneumeth.2010.05.020_bib9 – volume: 16 start-page: 421 issue: 5 year: 2006 ident: 10.1016/j.jneumeth.2010.05.020_bib40 article-title: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals publication-title: Neural Network World – volume: 29 start-page: 343 issue: 2 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib32 article-title: Epileptic seizure detection using dynamic wavelet network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.04.007 – volume: 16 start-page: 257 issue: 3 year: 2006 ident: 10.1016/j.jneumeth.2010.05.020_bib39 article-title: Analysis of EEG signals using Lyapunov exponents publication-title: Neural Network World – volume: 28 start-page: 701 issue: 4 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib31 article-title: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2004.12.027 – year: 2009 ident: 10.1016/j.jneumeth.2010.05.020_bib13 article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks – volume: 14 start-page: 160 issue: 2 year: 1995 ident: 10.1016/j.jneumeth.2010.05.020_bib15 article-title: Wavelet preprocessing for automated neural network detection of EEG spikes publication-title: IEEE Engineering in Medicine and Biology Magazine doi: 10.1109/51.376754 – volume: 80 start-page: 17 issue: 1 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib17 article-title: Characterization of EEG—A comparative study publication-title: Computer methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2005.06.005 – volume: 4 start-page: 448 issue: 3 year: 1992 ident: 10.1016/j.jneumeth.2010.05.020_bib20 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Computation doi: 10.1162/neco.1992.4.3.448 – volume: 26 start-page: 55 issue: 1 year: 2004 ident: 10.1016/j.jneumeth.2010.05.020_bib25 article-title: A neural-network-based detection of epilepsy publication-title: Neurological Research doi: 10.1179/016164104773026534 – volume: 36 start-page: 2027 issue: 2 year: 2009 ident: 10.1016/j.jneumeth.2010.05.020_bib26 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.12.065 – volume: 29 start-page: 506 issue: 3 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib12 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.04.011 – volume: 11 start-page: 674 issue: 7 year: 1989 ident: 10.1016/j.jneumeth.2010.05.020_bib21 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.192463 – volume: 40 start-page: 1260 issue: 12 year: 1993 ident: 10.1016/j.jneumeth.2010.05.020_bib6 article-title: A multistage system to detect epileptiform activity in the EEG publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.250582 – volume: 79 start-page: 330 issue: 4 year: 1991 ident: 10.1016/j.jneumeth.2010.05.020_bib24 article-title: Computerized seizure detection of complex partial seizures publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(91)90128-Q – volume: 11 start-page: 141 issue: 2 year: 2003 ident: 10.1016/j.jneumeth.2010.05.020_bib10 article-title: Comparison of linear and nonlinear methods for EEG signal classification publication-title: IEEE Transactions on Neural Systems and Rehabilitative Engineering doi: 10.1109/TNSRE.2003.814441 – volume: 47 start-page: 1044 issue: 8 year: 2000 ident: 10.1016/j.jneumeth.2010.05.020_bib35 article-title: The forward EEG solutions can be computed using artificial neural networks publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.855931 – volume: 28 start-page: 592 issue: 5 year: 2007 ident: 10.1016/j.jneumeth.2010.05.020_bib42 article-title: Features extracted by eigenvector methods for detecting variability of EEG signals publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2006.10.004 – volume: 29 start-page: 647 issue: 6 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib30 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: Journal of Medical Systems doi: 10.1007/s10916-005-6133-1 – year: 1992 ident: 10.1016/j.jneumeth.2010.05.020_bib5 – ident: 10.1016/j.jneumeth.2010.05.020_bib22 – volume: 43 start-page: 3 issue: 1 year: 2000 ident: 10.1016/j.jneumeth.2010.05.020_bib3 article-title: Artificial neural networks: Fundamentals, computing, design, and application publication-title: Journal of Microbiological Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 148 start-page: 113 issue: 2 year: 2005 ident: 10.1016/j.jneumeth.2010.05.020_bib11 article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2005.04.013 – volume: 187 start-page: 1017 issue: 2 year: 2007 ident: 10.1016/j.jneumeth.2010.05.020_bib28 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.09.022 – year: 2000 ident: 10.1016/j.jneumeth.2010.05.020_bib16 – volume: 32 start-page: 1084 issue: 4 year: 2007 ident: 10.1016/j.jneumeth.2010.05.020_bib34 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.02.005 |
SSID | ssj0004906 |
Score | 2.4670112 |
Snippet | About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101 |
SubjectTerms | Algorithms Artificial Intelligence Artificial neural network (ANN) Databases as Topic - classification Databases as Topic - standards Discrete wavelet transform (DWT) Electroencephalogram (EEG) Electroencephalography - classification Electroencephalography - methods Epilepsy - classification Epilepsy - diagnosis Epilepsy - physiopathology Epileptic seizure detection Evoked Potentials - physiology Fourier Analysis Humans Line length feature Neural Networks (Computer) Pattern Recognition, Automated - classification Pattern Recognition, Automated - methods Predictive Value of Tests Signal Processing, Computer-Assisted Software - classification Software - standards Time Factors |
Title | Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks |
URI | https://dx.doi.org/10.1016/j.jneumeth.2010.05.020 https://www.ncbi.nlm.nih.gov/pubmed/20595035 https://www.proquest.com/docview/748929750 https://www.proquest.com/docview/754563001 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkJcEG15bKGVD4hbdhM_4-Oq2nYBtReo1JsVO7bICtJVNznAob8dj-OUIgE9cEpk2ZLlsWe-sWe-QeitL6kjxImMMUWzgMBdVpa8ymheM1NJWbEa7jvOL8Tqkn244lc76GTMhYGwyqT7B50etXVqmafVnG-aZv4JEnGCU5UX8YoIGD93CVWinKDdxfuPq4tf6ZEqltiE_vBkmd9LFF7P1q3roVhzivLisxxKf__ZRv0Ng0ZbdPoMPU0gEi-Gee6hHdfuo4NFGxzob9_xOxzDOuN9-T56fJ5ezw9Qs-hDB6BoxW4TtMEG_rau-dHfOFy7LkZltbhp8XJ5tsVg4GocGgCJYqi40n3B3kUmUFy1NYZ1GggoMNBixk8MKt8-R5eny88nqyyVWsgsE7zLnJHMSlcyayojZM6tEZUKrof04dg7UTMihVfBF_Sk8NbUXngbtEGhrCKe5fQFmrTXrXuFsCfEeykhKZgxo6SxYPOEYIUvjKJ0ivi4uNomHnIoh_FVjwFnaz0KRYNQdM51EMoUze_GbQYmjgdHqFF2-rc9pYO5eHAsHoWtw4GDV5Sqddf9VgNdD6Qj_6sLwFIaAMAUvRz2yd2MSYCzPKf88D_m9ho9GWIYgv_P36BJd9O7owCNOnOMHs1ui-N0AH4CkdUOFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VWwm4IGh5LE8fELd08_AjPq6qLVva3Qut1JsVO7bICtxVNznAr8fjJAUkoAdOiSxbsjz2zDf2zDcA71xZ2Dy3PKFUFklA4DYpS1YlRVpTXQlR0RrvO1ZrvrykH6_Y1R4cj7kwGFY56P5ep0dtPbTMhtWcbZtm9gkTcYJTlWbxiggZP_eRnYpOYH9-erZc_0yPlLHEJvbHJ8v0l0ThzdHG2w6LNQ9RXuwoxdLff7ZRf8Og0RadPIKHA4gk836ej2HP-gM4nPvgQH_9Rt6TGNYZ78sP4N5qeD0_hGbehQ5I0UrsNmiDLf7tbPO9u7Gktm2MyvKk8WSx-LAjaOBqEhoQiRKsuNJ-Js5GJlBS-ZrgOvUEFARpMeMnBpXvnsDlyeLieJkMpRYSQzlrE6sFNcKW1OhKc5Eyo3klg-shXDj2ltc0F9zJ4Au6PHNG1447E7RBJo3MHU2LpzDx194-B-Ly3DkhMCmYUi2FNmjzOKeZy7QsiimwcXGVGXjIsRzGFzUGnG3UKBSFQlEpU0EoU5jdjtv2TBx3jpCj7NRve0oFc3HnWDIKW4UDh68olbfX3U4hXQ-mI_-rC8LSIgCAKTzr98ntjPMAZ1lasBf_Mbe3cH95sTpX56frs5fwoI9nKJOMvYJJe9PZ1wEmtfrNcAx-APLZD_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+epileptic+seizure+detection+in+EEGs+based+on+line+length+feature+and+artificial+neural+networks&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Guo%2C+Ling&rft.au=Rivero%2C+Daniel&rft.au=Dorado%2C+Juli%C3%A1n&rft.au=Rabu%C3%B1al%2C+Juan+R&rft.date=2010-08-15&rft.eissn=1872-678X&rft.volume=191&rft.issue=1&rft.spage=101&rft_id=info:doi/10.1016%2Fj.jneumeth.2010.05.020&rft_id=info%3Apmid%2F20595035&rft.externalDocID=20595035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |