Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks

About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizure...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 191; no. 1; pp. 101 - 109
Main Authors Guo, Ling, Rivero, Daniel, Dorado, Julián, Rabuñal, Juan R., Pazos, Alejandro
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.08.2010
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2010.05.020

Cover

Loading…
Abstract About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.
AbstractList About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.
About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.
Author Dorado, Julián
Rivero, Daniel
Rabuñal, Juan R.
Pazos, Alejandro
Guo, Ling
Author_xml – sequence: 1
  givenname: Ling
  surname: Guo
  fullname: Guo, Ling
  email: lguo@udc.es
– sequence: 2
  givenname: Daniel
  surname: Rivero
  fullname: Rivero, Daniel
– sequence: 3
  givenname: Julián
  surname: Dorado
  fullname: Dorado, Julián
– sequence: 4
  givenname: Juan R.
  surname: Rabuñal
  fullname: Rabuñal, Juan R.
– sequence: 5
  givenname: Alejandro
  surname: Pazos
  fullname: Pazos, Alejandro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20595035$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFr1D5xinL2PGfROJAVS0FqRIXkLhZjjOmXhJnsR0QfHoStnvhsqexRr_3PHrvilzEKSIhNwy2DJh6s9_uI84jlscth2UJcgscnpENazSvlG6-XpDNAsoKuIZLcpXzHgBEC-oFueQgWwm13JBwO5dptCU4iocw4GF9ZQx_5oS0x4KuhCnSEOlud59pZzP2dFkMISIdMH4rj9SjLStuY09tKsEHF-xAl_vSv1F-Tel7fkmeeztkfPU0r8mX97vPdx-qh0_3H-9uHyonlCwVdlo4jY1wne2UBuk6ZduGK-0BalS94Fr5FlrhOfOu673yjjU1a13LvYD6mrw--h7S9GPGXMwYssNhsBGnORsthVQ1ADtPiqblrZar580TOXcj9uaQwmjTb3PKcQHeHgGXppwTeuNCsWt0JdkwGAZmrc3szak2s9ZmQJqltkWu_pOffjgrfHcU4pLoz4DJZBcwOuxDWqoz_RTOWfwF2hW3Lg
CitedBy_id crossref_primary_10_3233_IDT_190043
crossref_primary_10_1016_j_compbiomed_2014_11_013
crossref_primary_10_1109_ACCESS_2019_2904949
crossref_primary_10_4218_etrij_2018_0118
crossref_primary_10_1109_ACCESS_2023_3251105
crossref_primary_10_1016_j_eplepsyres_2014_09_002
crossref_primary_10_1371_journal_pone_0062013
crossref_primary_10_2174_1574362413666181030103616
crossref_primary_10_1016_j_iot_2019_03_002
crossref_primary_10_1109_ACCESS_2019_2915609
crossref_primary_10_1080_03772063_2021_1912650
crossref_primary_10_1111_acer_13144
crossref_primary_10_1016_j_eswa_2015_01_036
crossref_primary_10_1186_s13638_020_01810_5
crossref_primary_10_1007_s40846_016_0214_0
crossref_primary_10_1097_MD_0000000000006879
crossref_primary_10_1016_j_chaos_2022_112528
crossref_primary_10_1016_j_compmedimag_2016_09_002
crossref_primary_10_1109_ACCESS_2018_2867008
crossref_primary_10_1111_exsy_12338
crossref_primary_10_1007_s11042_019_7359_0
crossref_primary_10_3389_fneur_2020_00701
crossref_primary_10_1088_1742_6596_1381_1_012037
crossref_primary_10_1016_j_socl_2021_100026
crossref_primary_10_1111_exsy_12211
crossref_primary_10_1007_s00521_021_05779_0
crossref_primary_10_1007_s00034_021_01686_w
crossref_primary_10_1016_j_bspc_2021_102916
crossref_primary_10_1142_S021946782450044X
crossref_primary_10_1109_TNSRE_2020_2998778
crossref_primary_10_1155_2022_7751263
crossref_primary_10_1016_j_bbe_2017_08_003
crossref_primary_10_1007_s13534_012_0066_7
crossref_primary_10_1186_s12911_021_01631_6
crossref_primary_10_1109_TNSRE_2015_2441737
crossref_primary_10_1049_el_2020_2701
crossref_primary_10_3390_app7040385
crossref_primary_10_1016_j_cmpb_2015_10_001
crossref_primary_10_1177_0954411918757812
crossref_primary_10_1007_s13246_018_0669_0
crossref_primary_10_1016_j_compbiomed_2020_104033
crossref_primary_10_1016_j_knosys_2016_11_024
crossref_primary_10_3390_brainsci11050668
crossref_primary_10_1007_s00034_022_02223_z
crossref_primary_10_1007_s11760_022_02318_9
crossref_primary_10_1109_TNSRE_2013_2267543
crossref_primary_10_3390_computers8040084
crossref_primary_10_9719_EEG_2024_57_3_329
crossref_primary_10_1016_j_bspc_2023_104644
crossref_primary_10_1016_j_bspc_2022_103645
crossref_primary_10_1007_s41870_023_01657_1
crossref_primary_10_1109_TNSRE_2012_2210246
crossref_primary_10_7305_automatika_2016_10_1427
crossref_primary_10_1016_j_nicl_2016_02_015
crossref_primary_10_29252_nirp_bcn_8_6_479
crossref_primary_10_1016_j_nec_2011_07_010
crossref_primary_10_1155_2013_984864
crossref_primary_10_7763_IJAPM_2013_V3_235
crossref_primary_10_1515_bmt_2017_0233
crossref_primary_10_1016_j_neucom_2019_12_010
crossref_primary_10_1016_j_compbiomed_2018_04_025
crossref_primary_10_1109_TBME_2019_2957392
crossref_primary_10_1016_j_engappai_2021_104426
crossref_primary_10_3390_s151129015
crossref_primary_10_1016_j_eswa_2017_07_020
crossref_primary_10_1016_j_bbe_2018_01_002
crossref_primary_10_1016_j_bspc_2013_06_004
crossref_primary_10_1007_s11517_019_02039_1
crossref_primary_10_1016_j_compbiomed_2021_104708
crossref_primary_10_1007_s12530_019_09319_z
crossref_primary_10_1016_j_asoc_2016_12_009
crossref_primary_10_1109_JBHI_2024_3366341
crossref_primary_10_1140_epjs_s11734_022_00714_3
crossref_primary_10_3390_s20164639
crossref_primary_10_3390_diagnostics12112879
crossref_primary_10_1109_TNNLS_2020_3048385
crossref_primary_10_1515_bmt_2018_0246
crossref_primary_10_4236_jbise_2014_712093
crossref_primary_10_1016_j_bspc_2019_101569
crossref_primary_10_1016_j_asoc_2018_11_012
crossref_primary_10_32604_cmc_2021_015524
crossref_primary_10_1109_JSEN_2020_2966766
crossref_primary_10_1016_j_ijinfomgt_2019_02_003
crossref_primary_10_1109_JBHI_2014_2387795
crossref_primary_10_1109_JSEN_2021_3111102
crossref_primary_10_2139_ssrn_3987849
crossref_primary_10_1016_j_compbiomed_2015_04_034
crossref_primary_10_1109_ACCESS_2019_2929266
crossref_primary_10_1142_S0219519417400036
crossref_primary_10_18100_ijamec_988691
crossref_primary_10_1016_j_celrep_2024_114189
crossref_primary_10_1109_TCBB_2020_3006699
crossref_primary_10_1523_JNEUROSCI_4105_14_2015
crossref_primary_10_1007_s10044_017_0642_7
crossref_primary_10_1016_j_jns_2019_06_024
crossref_primary_10_1016_j_procs_2012_09_016
crossref_primary_10_1038_srep01483
crossref_primary_10_1186_s13634_019_0606_8
crossref_primary_10_1007_s10827_017_0636_x
crossref_primary_10_1016_j_jneumeth_2012_07_003
crossref_primary_10_1142_S0129065715500239
crossref_primary_10_1145_3458927
crossref_primary_10_1016_j_eswa_2018_04_021
crossref_primary_10_1007_s11042_022_12296_2
crossref_primary_10_5339_connect_2014_1
crossref_primary_10_1016_j_cogsys_2018_08_018
crossref_primary_10_1088_2057_1976_aa5199
crossref_primary_10_1016_j_jneumeth_2019_108347
crossref_primary_10_1109_TMC_2018_2883451
crossref_primary_10_1111_epi_17525
crossref_primary_10_3390_jpm12050763
crossref_primary_10_1016_j_cmpb_2016_05_002
crossref_primary_10_1016_j_dsp_2017_07_015
crossref_primary_10_1007_s00521_020_05675_z
crossref_primary_10_1016_j_bspc_2019_101702
crossref_primary_10_1177_09727531211072423
crossref_primary_10_1155_2017_7949507
crossref_primary_10_1155_2020_6633242
crossref_primary_10_3233_XST_17258
crossref_primary_10_3390_s21196343
crossref_primary_10_1016_j_patrec_2017_03_023
crossref_primary_10_3389_fnins_2020_00606
crossref_primary_10_1007_s11277_020_07742_z
crossref_primary_10_1016_j_engappai_2015_01_001
crossref_primary_10_17482_uumfd_754577
crossref_primary_10_1007_s00034_015_0225_z
crossref_primary_10_1007_s41870_024_02078_4
crossref_primary_10_1016_j_sigpro_2016_12_019
crossref_primary_10_1109_TBME_2020_2973934
crossref_primary_10_1016_j_knosys_2019_105333
crossref_primary_10_1111_exsy_13260
crossref_primary_10_1016_j_bspc_2020_102141
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1080_02522667_2020_1715564
crossref_primary_10_1080_1061186X_2024_2448711
crossref_primary_10_1002_cta_2860
crossref_primary_10_1155_2013_498754
crossref_primary_10_1007_s11517_018_1881_5
crossref_primary_10_1016_j_bspc_2022_103908
crossref_primary_10_1016_j_seizure_2015_01_012
crossref_primary_10_1016_j_knosys_2013_02_014
crossref_primary_10_1142_S0129065715500185
crossref_primary_10_1016_j_neunet_2016_03_004
crossref_primary_10_1109_TNSRE_2022_3156931
crossref_primary_10_3390_app14135783
crossref_primary_10_3390_jsan13050048
crossref_primary_10_1155_2015_576437
crossref_primary_10_1080_08839514_2021_2008612
crossref_primary_10_3390_biomedicines11030816
crossref_primary_10_1002_cpe_6675
crossref_primary_10_1016_j_brainresbull_2016_03_021
crossref_primary_10_1016_j_procs_2014_09_027
crossref_primary_10_1049_sil2_12019
crossref_primary_10_1016_j_jneumeth_2013_03_008
crossref_primary_10_1016_j_patrec_2020_03_009
crossref_primary_10_1371_journal_pone_0173138
crossref_primary_10_1109_ACCESS_2020_3011877
crossref_primary_10_1080_03772063_2023_2234854
crossref_primary_10_1109_ACCESS_2018_2867078
crossref_primary_10_1515_bmt_2018_0012
crossref_primary_10_20965_jaciii_2015_p0447
crossref_primary_10_1016_j_yebeh_2011_08_041
crossref_primary_10_4236_jbise_2011_412097
crossref_primary_10_1016_j_amc_2014_05_128
crossref_primary_10_1016_j_bspc_2018_05_004
crossref_primary_10_1155_2013_358108
crossref_primary_10_1109_TITB_2011_2181403
crossref_primary_10_1007_s13369_019_04197_8
crossref_primary_10_1016_j_neuroscience_2020_12_001
crossref_primary_10_1016_j_imu_2020_100444
crossref_primary_10_3390_brainsci12101275
crossref_primary_10_1109_ACCESS_2017_2731784
crossref_primary_10_1186_1687_6180_2014_59
crossref_primary_10_1080_03091902_2018_1513576
crossref_primary_10_1097_WNP_0b013e318246af3e
crossref_primary_10_3390_s22239233
crossref_primary_10_1016_j_procs_2013_10_012
crossref_primary_10_1016_j_clinph_2020_09_016
crossref_primary_10_1016_j_bspc_2022_103664
crossref_primary_10_1016_j_bspc_2020_102322
crossref_primary_10_2174_1874120701509010151
crossref_primary_10_1016_j_jneumeth_2022_109483
crossref_primary_10_1007_s11517_015_1351_2
crossref_primary_10_1109_TBCAS_2017_2694638
crossref_primary_10_3389_fnins_2020_00870
crossref_primary_10_1186_s40708_020_00105_1
crossref_primary_10_1016_j_neucom_2015_10_070
crossref_primary_10_1016_j_bspc_2020_101921
crossref_primary_10_1016_j_knosys_2018_07_019
crossref_primary_10_1142_S0219519419400074
crossref_primary_10_2339_politeknik_1055549
crossref_primary_10_1016_j_bspc_2016_01_002
crossref_primary_10_1016_j_eplepsyres_2020_106475
crossref_primary_10_1080_03091902_2017_1382585
crossref_primary_10_1155_2021_1972662
crossref_primary_10_1093_brain_awy116
crossref_primary_10_7555_JBR_34_20190043
crossref_primary_10_1016_j_bbe_2018_03_007
crossref_primary_10_3389_fnhum_2019_00052
crossref_primary_10_1007_s11760_012_0362_9
crossref_primary_10_1016_j_bspc_2015_04_007
crossref_primary_10_1007_s11045_016_0419_y
crossref_primary_10_3389_fnhum_2021_746499
crossref_primary_10_1007_s12652_020_02185_7
crossref_primary_10_1007_s00521_014_1802_y
crossref_primary_10_3390_app142411616
crossref_primary_10_1088_1741_2552_ab2409
crossref_primary_10_1109_ACCESS_2020_3031447
crossref_primary_10_1109_LCOMM_2020_3041722
crossref_primary_10_1088_1674_4926_44_12_121401
crossref_primary_10_1142_S0129065723500612
crossref_primary_10_1007_s11910_019_0998_8
crossref_primary_10_3390_s19020219
crossref_primary_10_1109_JBHI_2016_2589971
crossref_primary_10_1016_j_dsp_2021_103349
crossref_primary_10_1007_s11517_019_01951_w
crossref_primary_10_1016_j_medengphy_2012_05_005
crossref_primary_10_1109_TNSRE_2018_2818123
crossref_primary_10_7555_JBR_36_20210124
crossref_primary_10_1016_j_eswa_2021_115551
crossref_primary_10_18100_ijamec_475090
crossref_primary_10_1155_2022_6486570
crossref_primary_10_1155_2022_9579422
crossref_primary_10_1080_03091902_2019_1572236
crossref_primary_10_1016_j_jneumeth_2020_108826
Cites_doi 10.1016/j.eswa.2005.09.027
10.1016/0167-2789(96)00085-1
10.1016/j.compbiomed.2007.06.002
10.1016/S0165-0270(02)00340-0
10.1103/PhysRevE.64.061907
10.1016/j.cmpb.2005.06.012
10.1016/j.cmpb.2005.04.006
10.1016/j.eswa.2005.04.007
10.1016/j.eswa.2004.12.027
10.1109/51.376754
10.1016/j.cmpb.2005.06.005
10.1162/neco.1992.4.3.448
10.1179/016164104773026534
10.1016/j.eswa.2007.12.065
10.1016/j.eswa.2005.04.011
10.1109/34.192463
10.1109/10.250582
10.1016/0013-4694(91)90128-Q
10.1109/TNSRE.2003.814441
10.1109/10.855931
10.1016/j.patrec.2006.10.004
10.1007/s10916-005-6133-1
10.1016/S0167-7012(00)00201-3
10.1016/j.jneumeth.2005.04.013
10.1016/j.amc.2006.09.022
10.1016/j.eswa.2006.02.005
ContentType Journal Article
Copyright 2010 Elsevier B.V.
(c) 2010 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: (c) 2010 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.jneumeth.2010.05.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 109
ExternalDocumentID 20595035
10_1016_j_jneumeth_2010_05_020
S0165027010002803
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
WUQ
X7M
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
EFKBS
ID FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403
IEDL.DBID AIKHN
ISSN 0165-0270
1872-678X
IngestDate Tue Aug 05 09:52:11 EDT 2025
Fri Jul 11 02:02:03 EDT 2025
Thu Apr 03 07:09:34 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 00:48:01 EDT 2025
Fri Feb 23 02:33:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Discrete wavelet transform (DWT)
Line length feature
Artificial neural network (ANN)
Electroencephalogram (EEG)
Epileptic seizure detection
Language English
License (c) 2010 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20595035
PQID 748929750
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_754563001
proquest_miscellaneous_748929750
pubmed_primary_20595035
crossref_citationtrail_10_1016_j_jneumeth_2010_05_020
crossref_primary_10_1016_j_jneumeth_2010_05_020
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2010_05_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-15
PublicationDateYYYYMMDD 2010-08-15
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2010
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Murro, King, Smith, Gallagher, Flanigin, Meador (bib24) 1991; 79
Kalayci, Ozdamar (bib15) 1995; 14
Tzallas, Tsipouras, Fotiadis (bib37) 2007
Blankertz, Curio, Müller (bib4) 2002
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib2) 2001; 64
Tzallas, Karvelis, Katsis, Fotiadis, Giannopoulos, Konitsiotis (bib36) 2007; 26
Nigam, Graupe (bib25) 2004; 26
Subasi (bib32) 2005; 29
Kandel, Schwartz, Jessell (bib16) 2000
Übeyli (bib39) 2006; 16
Mohseni, Maghsoudi, Kadbi, Hashemi, Ashourvan (bib23) 2006
Päivinen, Lammi, Pitkäanen, Nissinen, Penttonen, Grönfors (bib27) 2005; 79
Übeyli (bib41) 2008; 38
Jahankhani, Kodogiannis, Revett (bib14) 2006
Sun, Sclabassi (bib35) 2000; 47
Basheer, Hajmeer (bib3) 2000; 43
Subasi (bib31) 2005; 28
Ocak (bib26) 2009; 36
Güler, Übeyli, Güler (bib12) 2005; 29
Dingle, Jones, Carroll, Fright (bib6) 1993; 40
Garrett, Peterson, Anderson, Thaut (bib10) 2003; 11
MacKay (bib20) 1992; 4
Guo, Rivero, Seoane, Pazos (bib13) 2009
Übeyli, Güler (bib42) 2007; 28
Mathworks. MATLAB V.6.5.0 Help files; 2002.
Kannathal, Acharya, Lim, Sadasivan (bib17) 2005; 80
Subasi (bib33) 2006; 31
Sadati, Mohseni, Maghsoudi (bib29) 2006
Esteller, Echauz, Tcheng, Litt, Pless (bib8) 2001
Polat, Güneş (bib28) 2007; 187
Chui (bib5) 1992
Subasi (bib34) 2007; 32
Adeli, Zhou, Dadmehr (bib1) 2003; 123
Lerner (bib19) 1996; 97
Übeyli (bib40) 2006; 16
Fukunaga (bib9) 1990
Güler, Übeyli (bib11) 2005; 148
Kannathal, Choo, Acharya, Sadasivan (bib18) 2005; 80
Mallat (bib21) 1989; 11
Srinivasan, Eswaran, Sriraam (bib30) 2005; 29
Esteller, Echauz, Tcheng (bib7) 2004
Übeyli (10.1016/j.jneumeth.2010.05.020_bib40) 2006; 16
Übeyli (10.1016/j.jneumeth.2010.05.020_bib41) 2008; 38
Esteller (10.1016/j.jneumeth.2010.05.020_bib8) 2001
Lerner (10.1016/j.jneumeth.2010.05.020_bib19) 1996; 97
Güler (10.1016/j.jneumeth.2010.05.020_bib11) 2005; 148
Güler (10.1016/j.jneumeth.2010.05.020_bib12) 2005; 29
Mohseni (10.1016/j.jneumeth.2010.05.020_bib23) 2006
Murro (10.1016/j.jneumeth.2010.05.020_bib24) 1991; 79
Basheer (10.1016/j.jneumeth.2010.05.020_bib3) 2000; 43
Tzallas (10.1016/j.jneumeth.2010.05.020_bib36) 2007; 26
Tzallas (10.1016/j.jneumeth.2010.05.020_bib37) 2007
Fukunaga (10.1016/j.jneumeth.2010.05.020_bib9) 1990
Kalayci (10.1016/j.jneumeth.2010.05.020_bib15) 1995; 14
Sadati (10.1016/j.jneumeth.2010.05.020_bib29) 2006
Kannathal (10.1016/j.jneumeth.2010.05.020_bib17) 2005; 80
MacKay (10.1016/j.jneumeth.2010.05.020_bib20) 1992; 4
Sun (10.1016/j.jneumeth.2010.05.020_bib35) 2000; 47
Chui (10.1016/j.jneumeth.2010.05.020_bib5) 1992
Subasi (10.1016/j.jneumeth.2010.05.020_bib34) 2007; 32
Garrett (10.1016/j.jneumeth.2010.05.020_bib10) 2003; 11
Mallat (10.1016/j.jneumeth.2010.05.020_bib21) 1989; 11
Blankertz (10.1016/j.jneumeth.2010.05.020_bib4) 2002
Kannathal (10.1016/j.jneumeth.2010.05.020_bib18) 2005; 80
Andrzejak (10.1016/j.jneumeth.2010.05.020_bib2) 2001; 64
Subasi (10.1016/j.jneumeth.2010.05.020_bib32) 2005; 29
10.1016/j.jneumeth.2010.05.020_bib22
Srinivasan (10.1016/j.jneumeth.2010.05.020_bib30) 2005; 29
Esteller (10.1016/j.jneumeth.2010.05.020_bib7) 2004
Ocak (10.1016/j.jneumeth.2010.05.020_bib26) 2009; 36
Jahankhani (10.1016/j.jneumeth.2010.05.020_bib14) 2006
Kandel (10.1016/j.jneumeth.2010.05.020_bib16) 2000
Übeyli (10.1016/j.jneumeth.2010.05.020_bib39) 2006; 16
Übeyli (10.1016/j.jneumeth.2010.05.020_bib42) 2007; 28
Nigam (10.1016/j.jneumeth.2010.05.020_bib25) 2004; 26
Subasi (10.1016/j.jneumeth.2010.05.020_bib33) 2006; 31
Adeli (10.1016/j.jneumeth.2010.05.020_bib1) 2003; 123
Guo (10.1016/j.jneumeth.2010.05.020_bib13) 2009
Dingle (10.1016/j.jneumeth.2010.05.020_bib6) 1993; 40
Päivinen (10.1016/j.jneumeth.2010.05.020_bib27) 2005; 79
Subasi (10.1016/j.jneumeth.2010.05.020_bib31) 2005; 28
Polat (10.1016/j.jneumeth.2010.05.020_bib28) 2007; 187
References_xml – volume: 80
  start-page: 187
  year: 2005
  end-page: 194
  ident: bib18
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  ident: bib20
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Computation
– volume: 79
  start-page: 151
  year: 2005
  end-page: 159
  ident: bib27
  article-title: Epileptic seizure detection: A nonlinear viewpoint
  publication-title: Computer methods and programs in biomedicine
– volume: 31
  start-page: 320
  year: 2006
  end-page: 328
  ident: bib33
  article-title: Automatic detection of epileptic seizure using dynamic fuzzy neural networks
  publication-title: Expert Systems with Applications
– start-page: 13
  year: 2007
  ident: bib37
  article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks
  publication-title: Computational Intelligence and Neuroscience
– year: 1990
  ident: bib9
  article-title: Introduction to Statistical Pattern Recognition
– year: 2001
  ident: bib8
  article-title: Line length: An efficient feature for seizure onset detection
  publication-title: 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 29
  start-page: 506
  year: 2005
  end-page: 514
  ident: bib12
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 343
  year: 2005
  end-page: 355
  ident: bib32
  article-title: Epileptic seizure detection using dynamic wavelet network
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: bib21
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2006
  ident: bib29
  article-title: Epileptic seizure detection using neural fuzzy networks
  publication-title: IEEE International Conference on Fuzzy Systems
– volume: 26
  start-page: 965
  year: 2007
  end-page: 968
  ident: bib36
  article-title: A method for classification of transient events in EEG recordings: application to epilepsy diagnosis
  publication-title: Nervenheilkunde
– volume: 28
  start-page: 592
  year: 2007
  end-page: 603
  ident: bib42
  article-title: Features extracted by eigenvector methods for detecting variability of EEG signals
  publication-title: Pattern Recognition Letters
– volume: 28
  start-page: 701
  year: 2005
  end-page: 711
  ident: bib31
  article-title: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
  publication-title: Expert Systems with Applications
– year: 2006
  ident: bib23
  article-title: Automatic detection of epileptic seizure using time–frequency distributions
  publication-title: IET 3rd International Conference on Advances in Medical, Signal and Information Processing, MEDSIP
– volume: 29
  start-page: 647
  year: 2005
  end-page: 660
  ident: bib30
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: Journal of Medical Systems
– reference: Mathworks. MATLAB V.6.5.0 Help files; 2002.
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: bib1
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: Journal of Neuroscience Methods
– volume: 11
  start-page: 141
  year: 2003
  end-page: 144
  ident: bib10
  article-title: Comparison of linear and nonlinear methods for EEG signal classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitative Engineering
– volume: 64
  start-page: 061907-1
  year: 2001
  end-page: 061907-8
  ident: bib2
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
  publication-title: Physical Review E
– volume: 14
  start-page: 160
  year: 1995
  end-page: 166
  ident: bib15
  article-title: Wavelet preprocessing for automated neural network detection of EEG spikes
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– volume: 26
  start-page: 55
  year: 2004
  end-page: 60
  ident: bib25
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurological Research
– volume: 40
  start-page: 1260
  year: 1993
  end-page: 1268
  ident: bib6
  article-title: A multistage system to detect epileptiform activity in the EEG
  publication-title: IEEE Transactions on Biomedical Engineering
– year: 1992
  ident: bib5
  article-title: An Introduction to Wavelets
– year: 2004
  ident: bib7
  article-title: Comparison of line length feature before and after brain electrical stimulation in epileptic patients
  publication-title: Engineering in Medicine and Biology Society. IEMBS’04. 26th Annual International Conference of the IEEE, vol. 2
– year: 2009
  ident: bib13
  article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks
  publication-title: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation
– volume: 16
  start-page: 421
  year: 2006
  end-page: 431
  ident: bib40
  article-title: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals
  publication-title: Neural Network World
– year: 2000
  ident: bib16
  article-title: Principles of Neural Science
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  ident: bib28
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Applied Mathematics and Computation
– volume: 79
  start-page: 330
  year: 1991
  end-page: 333
  ident: bib24
  article-title: Computerized seizure detection of complex partial seizures
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 80
  start-page: 17
  year: 2005
  end-page: 23
  ident: bib17
  article-title: Characterization of EEG—A comparative study
  publication-title: Computer methods and Programs in Biomedicine
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: bib3
  article-title: Artificial neural networks: Fundamentals, computing, design, and application
  publication-title: Journal of Microbiological Methods
– volume: 32
  start-page: 1084
  year: 2007
  end-page: 1093
  ident: bib34
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 14
  year: 2008
  end-page: 22
  ident: bib41
  article-title: Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
  publication-title: Computers in Biology and Medicine
– volume: 97
  start-page: 563
  year: 1996
  end-page: 576
  ident: bib19
  article-title: Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure
  publication-title: Physica D: Nonlinear Phenomena
– year: 2006
  ident: bib14
  article-title: EEG signal classification using wavelet feature extraction and neural networks
  publication-title: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06)
– volume: 16
  start-page: 257
  year: 2006
  end-page: 273
  ident: bib39
  article-title: Analysis of EEG signals using Lyapunov exponents
  publication-title: Neural Network World
– year: 2002
  ident: bib4
  article-title: Classifying single trial EEG: Towards brain computer interfacing
  publication-title: Advances in Neural Information Processing Systems: Proceedings of the Conference
– volume: 36
  start-page: 2027
  year: 2009
  end-page: 2036
  ident: bib26
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Systems with Applications
– volume: 148
  start-page: 113
  year: 2005
  end-page: 121
  ident: bib11
  article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
  publication-title: Journal of Neuroscience Methods
– volume: 47
  start-page: 1044
  year: 2000
  end-page: 1050
  ident: bib35
  article-title: The forward EEG solutions can be computed using artificial neural networks
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 31
  start-page: 320
  issue: 2
  year: 2006
  ident: 10.1016/j.jneumeth.2010.05.020_bib33
  article-title: Automatic detection of epileptic seizure using dynamic fuzzy neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.027
– year: 2002
  ident: 10.1016/j.jneumeth.2010.05.020_bib4
  article-title: Classifying single trial EEG: Towards brain computer interfacing
– year: 2004
  ident: 10.1016/j.jneumeth.2010.05.020_bib7
  article-title: Comparison of line length feature before and after brain electrical stimulation in epileptic patients
– volume: 26
  start-page: 965
  issue: 11
  year: 2007
  ident: 10.1016/j.jneumeth.2010.05.020_bib36
  article-title: A method for classification of transient events in EEG recordings: application to epilepsy diagnosis
  publication-title: Nervenheilkunde
– year: 2006
  ident: 10.1016/j.jneumeth.2010.05.020_bib14
  article-title: EEG signal classification using wavelet feature extraction and neural networks
– year: 2006
  ident: 10.1016/j.jneumeth.2010.05.020_bib29
  article-title: Epileptic seizure detection using neural fuzzy networks
– volume: 97
  start-page: 563
  issue: 4
  year: 1996
  ident: 10.1016/j.jneumeth.2010.05.020_bib19
  article-title: Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(96)00085-1
– volume: 38
  start-page: 14
  issue: 1
  year: 2008
  ident: 10.1016/j.jneumeth.2010.05.020_bib41
  article-title: Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2007.06.002
– year: 2006
  ident: 10.1016/j.jneumeth.2010.05.020_bib23
  article-title: Automatic detection of epileptic seizure using time–frequency distributions
– start-page: 13
  year: 2007
  ident: 10.1016/j.jneumeth.2010.05.020_bib37
  article-title: Automatic seizure detection based on time–frequency analysis and artificial neural networks
  publication-title: Computational Intelligence and Neuroscience
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 10.1016/j.jneumeth.2010.05.020_bib1
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/S0165-0270(02)00340-0
– volume: 64
  start-page: 061907-1
  issue: 6
  year: 2001
  ident: 10.1016/j.jneumeth.2010.05.020_bib2
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.64.061907
– volume: 80
  start-page: 187
  issue: 3
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib18
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2005.06.012
– volume: 79
  start-page: 151
  issue: 2
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib27
  article-title: Epileptic seizure detection: A nonlinear viewpoint
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2005.04.006
– year: 2001
  ident: 10.1016/j.jneumeth.2010.05.020_bib8
  article-title: Line length: An efficient feature for seizure onset detection
– year: 1990
  ident: 10.1016/j.jneumeth.2010.05.020_bib9
– volume: 16
  start-page: 421
  issue: 5
  year: 2006
  ident: 10.1016/j.jneumeth.2010.05.020_bib40
  article-title: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals
  publication-title: Neural Network World
– volume: 29
  start-page: 343
  issue: 2
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib32
  article-title: Epileptic seizure detection using dynamic wavelet network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.04.007
– volume: 16
  start-page: 257
  issue: 3
  year: 2006
  ident: 10.1016/j.jneumeth.2010.05.020_bib39
  article-title: Analysis of EEG signals using Lyapunov exponents
  publication-title: Neural Network World
– volume: 28
  start-page: 701
  issue: 4
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib31
  article-title: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2004.12.027
– year: 2009
  ident: 10.1016/j.jneumeth.2010.05.020_bib13
  article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks
– volume: 14
  start-page: 160
  issue: 2
  year: 1995
  ident: 10.1016/j.jneumeth.2010.05.020_bib15
  article-title: Wavelet preprocessing for automated neural network detection of EEG spikes
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.376754
– volume: 80
  start-page: 17
  issue: 1
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib17
  article-title: Characterization of EEG—A comparative study
  publication-title: Computer methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2005.06.005
– volume: 4
  start-page: 448
  issue: 3
  year: 1992
  ident: 10.1016/j.jneumeth.2010.05.020_bib20
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.3.448
– volume: 26
  start-page: 55
  issue: 1
  year: 2004
  ident: 10.1016/j.jneumeth.2010.05.020_bib25
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurological Research
  doi: 10.1179/016164104773026534
– volume: 36
  start-page: 2027
  issue: 2
  year: 2009
  ident: 10.1016/j.jneumeth.2010.05.020_bib26
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.12.065
– volume: 29
  start-page: 506
  issue: 3
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib12
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.04.011
– volume: 11
  start-page: 674
  issue: 7
  year: 1989
  ident: 10.1016/j.jneumeth.2010.05.020_bib21
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.192463
– volume: 40
  start-page: 1260
  issue: 12
  year: 1993
  ident: 10.1016/j.jneumeth.2010.05.020_bib6
  article-title: A multistage system to detect epileptiform activity in the EEG
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.250582
– volume: 79
  start-page: 330
  issue: 4
  year: 1991
  ident: 10.1016/j.jneumeth.2010.05.020_bib24
  article-title: Computerized seizure detection of complex partial seizures
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(91)90128-Q
– volume: 11
  start-page: 141
  issue: 2
  year: 2003
  ident: 10.1016/j.jneumeth.2010.05.020_bib10
  article-title: Comparison of linear and nonlinear methods for EEG signal classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitative Engineering
  doi: 10.1109/TNSRE.2003.814441
– volume: 47
  start-page: 1044
  issue: 8
  year: 2000
  ident: 10.1016/j.jneumeth.2010.05.020_bib35
  article-title: The forward EEG solutions can be computed using artificial neural networks
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.855931
– volume: 28
  start-page: 592
  issue: 5
  year: 2007
  ident: 10.1016/j.jneumeth.2010.05.020_bib42
  article-title: Features extracted by eigenvector methods for detecting variability of EEG signals
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.10.004
– volume: 29
  start-page: 647
  issue: 6
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib30
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-005-6133-1
– year: 1992
  ident: 10.1016/j.jneumeth.2010.05.020_bib5
– ident: 10.1016/j.jneumeth.2010.05.020_bib22
– volume: 43
  start-page: 3
  issue: 1
  year: 2000
  ident: 10.1016/j.jneumeth.2010.05.020_bib3
  article-title: Artificial neural networks: Fundamentals, computing, design, and application
  publication-title: Journal of Microbiological Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 148
  start-page: 113
  issue: 2
  year: 2005
  ident: 10.1016/j.jneumeth.2010.05.020_bib11
  article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2005.04.013
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  ident: 10.1016/j.jneumeth.2010.05.020_bib28
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.09.022
– year: 2000
  ident: 10.1016/j.jneumeth.2010.05.020_bib16
– volume: 32
  start-page: 1084
  issue: 4
  year: 2007
  ident: 10.1016/j.jneumeth.2010.05.020_bib34
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.02.005
SSID ssj0004906
Score 2.4670112
Snippet About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural network (ANN)
Databases as Topic - classification
Databases as Topic - standards
Discrete wavelet transform (DWT)
Electroencephalogram (EEG)
Electroencephalography - classification
Electroencephalography - methods
Epilepsy - classification
Epilepsy - diagnosis
Epilepsy - physiopathology
Epileptic seizure detection
Evoked Potentials - physiology
Fourier Analysis
Humans
Line length feature
Neural Networks (Computer)
Pattern Recognition, Automated - classification
Pattern Recognition, Automated - methods
Predictive Value of Tests
Signal Processing, Computer-Assisted
Software - classification
Software - standards
Time Factors
Title Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
URI https://dx.doi.org/10.1016/j.jneumeth.2010.05.020
https://www.ncbi.nlm.nih.gov/pubmed/20595035
https://www.proquest.com/docview/748929750
https://www.proquest.com/docview/754563001
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkJcEG15bKGVD4hbdhM_4-Oq2nYBtReo1JsVO7bICtJVNznAob8dj-OUIgE9cEpk2ZLlsWe-sWe-QeitL6kjxImMMUWzgMBdVpa8ymheM1NJWbEa7jvOL8Tqkn244lc76GTMhYGwyqT7B50etXVqmafVnG-aZv4JEnGCU5UX8YoIGD93CVWinKDdxfuPq4tf6ZEqltiE_vBkmd9LFF7P1q3roVhzivLisxxKf__ZRv0Ng0ZbdPoMPU0gEi-Gee6hHdfuo4NFGxzob9_xOxzDOuN9-T56fJ5ezw9Qs-hDB6BoxW4TtMEG_rau-dHfOFy7LkZltbhp8XJ5tsVg4GocGgCJYqi40n3B3kUmUFy1NYZ1GggoMNBixk8MKt8-R5eny88nqyyVWsgsE7zLnJHMSlcyayojZM6tEZUKrof04dg7UTMihVfBF_Sk8NbUXngbtEGhrCKe5fQFmrTXrXuFsCfEeykhKZgxo6SxYPOEYIUvjKJ0ivi4uNomHnIoh_FVjwFnaz0KRYNQdM51EMoUze_GbQYmjgdHqFF2-rc9pYO5eHAsHoWtw4GDV5Sqddf9VgNdD6Qj_6sLwFIaAMAUvRz2yd2MSYCzPKf88D_m9ho9GWIYgv_P36BJd9O7owCNOnOMHs1ui-N0AH4CkdUOFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VWwm4IGh5LE8fELd08_AjPq6qLVva3Qut1JsVO7bICtxVNznAr8fjJAUkoAdOiSxbsjz2zDf2zDcA71xZ2Dy3PKFUFklA4DYpS1YlRVpTXQlR0RrvO1ZrvrykH6_Y1R4cj7kwGFY56P5ep0dtPbTMhtWcbZtm9gkTcYJTlWbxiggZP_eRnYpOYH9-erZc_0yPlLHEJvbHJ8v0l0ThzdHG2w6LNQ9RXuwoxdLff7ZRf8Og0RadPIKHA4gk836ej2HP-gM4nPvgQH_9Rt6TGNYZ78sP4N5qeD0_hGbehQ5I0UrsNmiDLf7tbPO9u7Gktm2MyvKk8WSx-LAjaOBqEhoQiRKsuNJ-Js5GJlBS-ZrgOvUEFARpMeMnBpXvnsDlyeLieJkMpRYSQzlrE6sFNcKW1OhKc5Eyo3klg-shXDj2ltc0F9zJ4Au6PHNG1447E7RBJo3MHU2LpzDx194-B-Ly3DkhMCmYUi2FNmjzOKeZy7QsiimwcXGVGXjIsRzGFzUGnG3UKBSFQlEpU0EoU5jdjtv2TBx3jpCj7NRve0oFc3HnWDIKW4UDh68olbfX3U4hXQ-mI_-rC8LSIgCAKTzr98ntjPMAZ1lasBf_Mbe3cH95sTpX56frs5fwoI9nKJOMvYJJe9PZ1wEmtfrNcAx-APLZD_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+epileptic+seizure+detection+in+EEGs+based+on+line+length+feature+and+artificial+neural+networks&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Guo%2C+Ling&rft.au=Rivero%2C+Daniel&rft.au=Dorado%2C+Juli%C3%A1n&rft.au=Rabu%C3%B1al%2C+Juan+R&rft.date=2010-08-15&rft.eissn=1872-678X&rft.volume=191&rft.issue=1&rft.spage=101&rft_id=info:doi/10.1016%2Fj.jneumeth.2010.05.020&rft_id=info%3Apmid%2F20595035&rft.externalDocID=20595035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon