UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane
Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer sig...
Saved in:
Published in | Frontiers in plant science Vol. 14; p. 1114852 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
26.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area
unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products. |
---|---|
AbstractList | Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products. Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products. Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products. |
Author | de Oliveira, Romário Porto da Silva, Rouverson Pereira Barbosa Júnior, Marcelo Rodrigues Moreira, Bruno Rafael de Almeida Shiratsuchi, Luciano Shozo |
AuthorAffiliation | 1 Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp) , São Paulo , Brazil 2 AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University , Baton Rouge, LA , United States |
AuthorAffiliation_xml | – name: 1 Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp) , São Paulo , Brazil – name: 2 AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University , Baton Rouge, LA , United States |
Author_xml | – sequence: 1 givenname: Marcelo Rodrigues surname: Barbosa Júnior fullname: Barbosa Júnior, Marcelo Rodrigues organization: AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, United States – sequence: 2 givenname: Bruno Rafael de Almeida surname: Moreira fullname: Moreira, Bruno Rafael de Almeida organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), São Paulo, Brazil – sequence: 3 givenname: Romário Porto surname: de Oliveira fullname: de Oliveira, Romário Porto organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), São Paulo, Brazil – sequence: 4 givenname: Luciano Shozo surname: Shiratsuchi fullname: Shiratsuchi, Luciano Shozo organization: AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, United States – sequence: 5 givenname: Rouverson Pereira surname: da Silva fullname: da Silva, Rouverson Pereira organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), São Paulo, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36818852$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtvGyEUhUdVqiZN8wO6qVh2Y5f3QBeVrKiPSJG6aaruEAOXCdGYsWHGkv99cOxGCRuuLud8Fzjvm7M0JmiajwQvGVP6S9gMZUkxZUtCCFeCvmkuiJR8wSX9d_aiPm-uSnnAdQmMtW7fNedMKqKq5aLZ3q3-ori2PeQ98nayyCaP1tbdxwRoAJtTTP1XtEI-x10t0RpyFaMwZrTJ4KOb4g6qyw77EgsaA9rOdoiTfervIwwexYTK3NvsbIIPzdtghwJXp_2yufvx_c_1r8Xt758316vbheNSTAuQTHWCc2Iph4AVU1yGthWKY0mddiBBAYQOvApBtgoTAC6tUF5jGRhml83NketH-2A2uT4y781oo3lqjLk3Nk_RDWCUdsF6ITglgneEWK1xhztCvSfOSaisb0fWZu7W4B2kKdvhFfT1SYr3ph93RmuqtWAV8PkEyON2hjKZdSwOhqF-yDgXQ9tWM0645lVKjlKXx1IyhOcxBJtD8uaQvDkkb07JV8-nl_d7dvzPmT0C0d6uQg |
CitedBy_id | crossref_primary_10_1016_j_indcrop_2024_118627 crossref_primary_10_3390_agronomy14030476 crossref_primary_10_1007_s12355_024_01399_9 |
Cites_doi | 10.1016/S0034-4257(96)00072-7 10.1016/S0034-4257(00)00197-8 10.1002/ppj2.20005 10.1007/s12355-020-00802-5 10.1016/j.jag.2020.102177 10.1080/19479832.2022.2055157 10.1080/10106040108542184 10.1007/s12524-022-01560-5 10.1078/0176-1617-00887 10.1016/j.compag.2020.105903 10.1007/s12524-021-01448-w 10.1016/S0034-4257(01)00289-9 10.1007/s12524-021-01444-0 10.1016/j.rse.2005.09.002 10.1016/j.infrared.2018.01.027 10.1007/s13197-018-3350-4 10.3390/agriculture12091313 10.3390/rs14051140 10.3390/agronomy11071273 10.1007/s12355-020-00910-2 10.1016/j.compag.2020.105956 10.1007/s11694-018-9811-7 10.1080/01431160903349057 10.1371/journal.pone.0264990 10.1017/CBO9780511801389 10.1016/j.indcrop.2022.115278 10.1590/1807-1929/agriambi.v23n7p552-557 10.1016/j.scitotenv.2020.141795 10.1007/s00344-022-10778-z 10.1016/j.rsase.2022.100718 10.3390/agronomy12061350 10.3390/drones6050112 10.1057/s41267-022-00549-z 10.1007/978-1-4939-1447-0_2 10.3389/fpls.2022.928953 10.1117/1.JRS.14.044505 10.2307/2346786 10.1023/A:1010933404324 10.3390/polym11050751 10.3390/agronomy12030661 10.1080/15481603.2014.912875 10.1034/j.1399-3054.1999.106119.x 10.3390/agronomy12091992 10.3390/rs14194944 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva. Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva |
Copyright_xml | – notice: Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva. – notice: Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2023.1114852 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
EndPage | 1114852 |
ExternalDocumentID | oai_doaj_org_article_89cfad5542154b11a990b0b12dd1cc6e 10_3389_fpls_2023_1114852 36818852 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBD ECGQY GROUPED_DOAJ GX1 HYE IAO IEA IGS IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RNS RPM AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c465t-e638b5441a24ef083846f77584062c9ce6e8eefbed8ff67801ee46a58d906f303 |
IEDL.DBID | RPM |
ISSN | 1664-462X |
IngestDate | Tue Oct 22 15:15:30 EDT 2024 Tue Sep 17 21:33:57 EDT 2024 Sat Oct 05 05:07:59 EDT 2024 Thu Sep 26 17:01:56 EDT 2024 Wed Oct 16 00:40:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | brix Saccharum spp remote sensing sucrose ripening smart harvest |
Language | English |
License | Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-e638b5441a24ef083846f77584062c9ce6e8eefbed8ff67801ee46a58d906f303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Salvador Gutiérrez, University of Granada, Spain; José Emilio Guerrero Ginel, University of Cordoba, Spain These authors have contributed equally to this work and share first authorship This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science Edited by: Vanessa Martos Núñez, University of Granada, Spain |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929953/ |
PMID | 36818852 |
PQID | 2779341494 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_89cfad5542154b11a990b0b12dd1cc6e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9929953 proquest_miscellaneous_2779341494 crossref_primary_10_3389_fpls_2023_1114852 pubmed_primary_36818852 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-26 |
PublicationDateYYYYMMDD | 2023-01-26 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Oliveira (B33) 2022; 12 Breiman (B6) 2001; 45 Rong-En (B38) 2005; 6 Yuan (B51) 2022; 13 Abebe (B1) 2022 Neter (B31) 1996 (B11) 2006 Chea (B9) 2022; 26 Martins (B25) 2021; 23 Todd (B45) 2021; 11 Morais (B29) 2015 Chea (B10) 2020; 22 Wang (B47) 2022; 14 Breiman (B7) 1984 Nihar (B32) 2022; 50 Louhaichi (B24) 2001; 16 Broge (B8) 2001; 76 Misra (B28) 2022 Rodrigues (B37) 2020; 14 Cristianini (B12) 2000 Krupavathi (B22) 2022; 50 Wilkinson (B48) 1973; 22 Rouse (B39) 1974 Lindner (B23) 2022; 53 Pereira (B34) 2022; 12 Yang (B49) 2019; 11 Yang (B50) 2021; 752 Hithamani (B18) 2018; 55 Gitelson (B17) 2002; 80 Shendryk (B40) 2020; 92 Silva Junior (B41) 2018; 89 Gitelson (B16) 1996; 58 Merzlyak (B27) 1999; 106 Bégué (B5) 2010; 31 Gitelson (B15) 2003; 160 Poltroniere (B35) 2021; 184 Sreedevi (B42) 2018; 12 Barbosa Júnior (B3) 2022; 12 B13 Barbosa Júnior (B4) 2022; 6 Matias (B26) 2020; 3 Stein (B43) 2014; 51 Ghosh (B14) 2022; 50 Jensen (B19) 2009 Todd (B46) 2022; 12 Kataoka (B20) 2003 Zarco-Tejada (B52) 2005; 99 Banchi (B2) 2019; 23 Sumesh (B44) 2021; 180 Rodrigues (B36) 2022; 186 Narmilan (B30) 2022; 14 Khan (B21) 2022; 17 Zhao (B53) 2010; 30 |
References_xml | – volume: 58 start-page: 289 year: 1996 ident: B16 article-title: Use of a green channel in remote sensing of global vegetation from EOS- MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 contributor: fullname: Gitelson – volume-title: Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation year: 1974 ident: B39 contributor: fullname: Rouse – volume: 76 start-page: 156 year: 2001 ident: B8 article-title: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00197-8 contributor: fullname: Broge – volume: 3 start-page: 1 year: 2020 ident: B26 article-title: FIELDimageR: An r package to analyze orthomosaic images from agricultural field trials publication-title: Plant Phenome J. doi: 10.1002/ppj2.20005 contributor: fullname: Matias – volume: 22 start-page: 605 year: 2020 ident: B10 article-title: Sugar yield parameters and fiber prediction in sugarcane fields using a multispectral camera mounted on a small unmanned aerial system (UAS) publication-title: Sugar Tech doi: 10.1007/s12355-020-00802-5 contributor: fullname: Chea – volume: 92 year: 2020 ident: B40 article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2020.102177 contributor: fullname: Shendryk – volume-title: Classification and regression trees year: 1984 ident: B7 contributor: fullname: Breiman – start-page: 1 year: 2022 ident: B1 article-title: Estimating leaf area index and biomass of sugarcane based on Gaussian process regression using landsat 8 and sentinel 1A observations publication-title: Int. J. Image Data Fusion doi: 10.1080/19479832.2022.2055157 contributor: fullname: Abebe – volume: 16 start-page: 65 year: 2001 ident: B24 article-title: Spatially located platform and aerial photography for documentation of grazing impacts on wheat publication-title: Geocarto Int. doi: 10.1080/10106040108542184 contributor: fullname: Louhaichi – volume: 50 start-page: 1725 year: 2022 ident: B14 article-title: Integration of RS-GIS with frequency ratio, fuzzy logic, logistic regression and decision tree models for flood susceptibility prediction in lower gangetic plain: A study on malda district of West Bengal, India publication-title: J. Indian Soc Remote Sens. doi: 10.1007/s12524-022-01560-5 contributor: fullname: Ghosh – volume: 160 start-page: 271 year: 2003 ident: B15 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 contributor: fullname: Gitelson – volume: 180 year: 2021 ident: B44 article-title: Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105903 contributor: fullname: Sumesh – start-page: b1079 year: 2003 ident: B20 article-title: Crop growth estimation system using machine vision contributor: fullname: Kataoka – volume: 50 start-page: 299 year: 2022 ident: B22 article-title: Field-scale estimation and comparison of the sugarcane yield from remote sensing data: A machine learning approach publication-title: J. Indian Soc Remote Sens. doi: 10.1007/s12524-021-01448-w contributor: fullname: Krupavathi – volume: 80 start-page: 76 year: 2002 ident: B17 article-title: Novel algorithms for remote estimation of vegetation fraction publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00289-9 contributor: fullname: Gitelson – volume: 50 start-page: 217 year: 2022 ident: B32 article-title: Sugarcane crop type discrimination and area mapping at field scale using sentinel images and machine learning methods publication-title: J. Indian Soc Remote Sens. doi: 10.1007/s12524-021-01444-0 contributor: fullname: Nihar – ident: B13 – volume: 99 start-page: 271 year: 2005 ident: B52 article-title: Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.09.002 contributor: fullname: Zarco-Tejada – volume: 6 start-page: 1889 year: 2005 ident: B38 article-title: Working set selection using second order information for training support vector machines publication-title: J. Mach. Learn. Res. contributor: fullname: Rong-En – volume: 89 start-page: 338 year: 2018 ident: B41 article-title: Soybean varieties discrimination using non-imaging hyperspectral sensor publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2018.01.027 contributor: fullname: Silva Junior – volume: 55 start-page: 4356 year: 2018 ident: B18 article-title: Effect of adsorbent and acidulants on enzymatic browning of sugarcane juice publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-018-3350-4 contributor: fullname: Hithamani – volume: 12 year: 2022 ident: B46 article-title: Identification of selection preferences and predicting yield related traits in sugarcane seedling families using RGB spectral indices publication-title: Agriculture doi: 10.3390/agriculture12091313 contributor: fullname: Todd – volume: 14 year: 2022 ident: B30 article-title: Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery publication-title: Remote Sens. doi: 10.3390/rs14051140 contributor: fullname: Narmilan – volume: 11 year: 2021 ident: B45 article-title: Prediction of ratoon sugarcane family yield and selection using remote imagery publication-title: Agronomy doi: 10.3390/agronomy11071273 contributor: fullname: Todd – volume: 23 start-page: 428 year: 2021 ident: B25 article-title: Economic efficiency of mechanized harvesting of sugarcane at different operating speeds publication-title: Sugar Tech doi: 10.1007/s12355-020-00910-2 contributor: fullname: Martins – volume: 184 year: 2021 ident: B35 article-title: Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105956 contributor: fullname: Poltroniere – volume: 12 start-page: 1962 year: 2018 ident: B42 article-title: Browning and bioactive composition of sugarcane juice (Saccharum officinarum) as affected by high hydrostatic pressure processing publication-title: J. Food Meas. Charact. doi: 10.1007/s11694-018-9811-7 contributor: fullname: Sreedevi – volume: 31 start-page: 5391 year: 2010 ident: B5 article-title: Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903349057 contributor: fullname: Bégué – volume: 17 year: 2022 ident: B21 article-title: Morphological, agronomical, physiological and molecular characterization of a high sugar mutant of sugarcane in comparison to mother variety publication-title: PloS One doi: 10.1371/journal.pone.0264990 contributor: fullname: Khan – volume-title: An introduction to support vector machines and other kernel-based learning methods year: 2000 ident: B12 doi: 10.1017/CBO9780511801389 contributor: fullname: Cristianini – volume: 186 year: 2022 ident: B36 article-title: Estimating technological parameters and stem productivity of sugarcane treated with rock powder using a proximal spectroradiometer vis-NIR-SWIR publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.115278 contributor: fullname: Rodrigues – start-page: 112 volume-title: Manual de Instruções: Conselho dos Produtores de Cana-de-Açúcar, Açúcar e Álcool do Estado de São Paulo. Piracicaba - SP year: 2006 ident: B11 – volume: 23 start-page: 552 year: 2019 ident: B2 article-title: Operating cost of sugarcane harvester in function of agricultural productivity and harvester age publication-title: Rev. Bras. Eng. Agrícola e Ambient. doi: 10.1590/1807-1929/agriambi.v23n7p552-557 contributor: fullname: Banchi – volume: 752 year: 2021 ident: B50 article-title: Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141795 contributor: fullname: Yang – year: 2022 ident: B28 article-title: Sugar transporters, sugar-metabolizing enzymes, and their interaction with phytohormones in sugarcane publication-title: J. Plant Growth Regul doi: 10.1007/s00344-022-10778-z contributor: fullname: Misra – volume: 26 year: 2022 ident: B9 article-title: Optimal models under multiple resource types for brix content prediction in sugarcane fields using machine learning publication-title: Remote Sens. Appl. Soc Environ. doi: 10.1016/j.rsase.2022.100718 contributor: fullname: Chea – volume: 12 year: 2022 ident: B34 article-title: Smart-map: An open-source QGIS plugin for digital mapping using machine learning techniques and ordinary kriging publication-title: Agronomy doi: 10.3390/agronomy12061350 contributor: fullname: Pereira – volume: 6 start-page: 1 year: 2022 ident: B4 article-title: The time of day is key to discriminate cultivars of sugarcane upon imagery data from unmanned aerial vehicle publication-title: Drones doi: 10.3390/drones6050112 contributor: fullname: Barbosa Júnior – volume: 53 start-page: 1307 year: 2022 ident: B23 article-title: Beyond addressing multicollinearity: Robust quantitative analysis and machine learning in international business research publication-title: J. Int. Bus. Stud. doi: 10.1057/s41267-022-00549-z contributor: fullname: Lindner – start-page: 29 volume-title: Industrial crops: Breeding for BioEnergy and bioproducts year: 2015 ident: B29 article-title: Breeding of sugarcane doi: 10.1007/978-1-4939-1447-0_2 contributor: fullname: Morais – volume: 13 year: 2022 ident: B51 article-title: Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating hopea hainanensis SPAD values under different shade conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.928953 contributor: fullname: Yuan – volume: 14 start-page: 1 year: 2020 ident: B37 article-title: Vis–NIR spectroscopy: From leaf dry mass production estimate to the prediction of macro- and micronutrients in soybean crops publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.14.044505 contributor: fullname: Rodrigues – volume: 22 start-page: 392 year: 1973 ident: B48 article-title: Symbolic description of factorial models for analysis of variance publication-title: Appl. Stat. doi: 10.2307/2346786 contributor: fullname: Wilkinson – volume: 45 start-page: 5 year: 2001 ident: B6 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 11 start-page: 1 year: 2019 ident: B49 article-title: Applications of lignocellulosic fibers and lignin in bioplastics: A review publication-title: Polymers (Basel). doi: 10.3390/polym11050751 contributor: fullname: Yang – volume: 12 year: 2022 ident: B3 article-title: UAVs to monitor and manage sugarcane: Integrative review publication-title: Agronomy doi: 10.3390/agronomy12030661 contributor: fullname: Barbosa Júnior – start-page: 518 volume-title: Pearson Education year: 2009 ident: B19 article-title: Remote sensing of the environment: An earth resource perspective 2/e contributor: fullname: Jensen – volume: 51 start-page: 269 year: 2014 ident: B43 article-title: Predicting macronutrient concentrations from loblolly pine leaf reflectance across local and regional scales publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2014.912875 contributor: fullname: Stein – volume: 30 start-page: 37 year: 2010 ident: B53 article-title: Precision of sugarcane biomass estimates in pot studies using fresh and dry weights publication-title: Am. Soc Sugar Cane Technol. contributor: fullname: Zhao – volume: 106 start-page: 135 year: 1999 ident: B27 article-title: Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening publication-title: Physiol. Plant doi: 10.1034/j.1399-3054.1999.106119.x contributor: fullname: Merzlyak – volume: 12 year: 2022 ident: B33 article-title: Predicting sugarcane biometric parameters by UAV multispectral images and machine learning publication-title: Agronomy doi: 10.3390/agronomy12091992 contributor: fullname: Oliveira – volume: 14 year: 2022 ident: B47 article-title: Sugarcane biomass prediction with multi-mode remote sensing data using deep archetypal analysis and integrated learning publication-title: Remote Sens. doi: 10.3390/rs14194944 contributor: fullname: Wang – start-page: 318 volume-title: Applied linear statistical models year: 1996 ident: B31 contributor: fullname: Neter |
SSID | ssj0000500997 |
Score | 2.3980436 |
Snippet | Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1114852 |
SubjectTerms | brix Plant Science remote sensing ripening Saccharum spp smart harvest sucrose |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9JBLSdo0dV5MoaeCia2VJTu3TekSCu2pG3IzkiWlhqy92ewe9t9nRnLCbijk0qsfaJgZzXwjjT4x9tU5bwzPXCqVlanQtsQ4mKnUapF57W0pPJ1G_vVbXk_Fz9viduOqL-oJi_TAUXEXZdV4bTHpYW4SJs81hk-TmZxbmzeNdCH6ZtVGMRVZvQn6qLiNiVVYdeHn98TOzUcUJERZ8K1EFPj6_wUyX_dKbiSfyT57P6BGGEdpD9iO6z6wd1c9Irv1R_YwHd9AOyM2ijVQyyfozsIstEk6GO6FuLuEMdhFSwsIEM5cLgABK8wXtFVDQQ__igQl0HuIhy0DKzisqcsN2g4eV3c4L3TnDtl08uPP9-t0uEohbYQslqnDaWboujHNhfMIuxB2eIW1AuZz3lSNk64kszlbeo_5K8udE1IXpa0y6THNfWK7Xd-5zwxyJXNpFNZVVgmfN1pnvPGIu7TWpjQ8Yd-e9VrPI2NGjZUGGaEmI9RkhHowQsKuSPMvHxLZdXiALlAPLlC_5QIJ-_JstxonB-14oCb6FQ6lMPwILAJFwo6iHV-GGknEKkEEtWXhLVm233Tt30DAXSGmrIrR8f8Q_oTtkUJoVYfLU7a7XKzcGeKcpTkPLv0EUxr-aQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELZQ4YEXxNiAwkA3aU-TAonr2MkkhNppCCFtTyvqW2THdqkESQmtRP_97pK0oqiPvCaxYt2X830Xn79j7Ltz3hgeukAqKwOhbYLrYKgCq0XotbeJ8HQa-c9feTsUd6N4tMWW7a1aA75sTO2on9Swerx4fV5co8NfUcaJ8fbSTx9JeJv3yP9FEuOKvM0FJupUydey_Ubqm_iQavY2N49ci061iP8m5vm-gPJNRLrZZ3stlYR-g_0ntuWKA7YzKJHuLT6z52H_HiZPJFGxAKoDBV1YeKprJx20zSLGP6EPtprQXwWoD2JWgCwWphXt39BKiKMa1RIoPTQnMGupcFhQ6RtMCniZj9FZdOG-sOHN73-_boO2v0KQCxnPAoe-Z6gHmebCeeRiyEW8wgQCgzzP09xJlxCWzibeY1ALI-eE1HFi01B6jH2HrFOUhTtmECkZSaMw2bJK-CjXOuS5RzKmtTaJ4V32Y2nXbNrIaGSYfhAIGYGQEQhZC0KXDcjyqwdJAbu-UFbjrHWoLElzry2SIeQswkSRxrBqQhNxa6M8l67Lvi1xy9BjaBsELVHO8VUK1ySBmaHosqMGx9WrehIJTD0FtYbw2lzW7xSTh1qVO0Wimca9k4-Y_CnbJYPQrx4uv7LOrJq7MyQ_M3Nef9L_AQK4BnM priority: 102 providerName: Scholars Portal |
Title | UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36818852 https://search.proquest.com/docview/2779341494 https://pubmed.ncbi.nlm.nih.gov/PMC9929953 https://doaj.org/article/89cfad5542154b11a990b0b12dd1cc6e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2iQMXxG_KYDISJ6SssevYDrduYkxIRRwo6i3yzxJpTbqsPfS_5z0nnVbEiUsOSSxb77P9vmc_fybkYwjRWp6HTCovM2G8hnkwV5k3Io8mei0inkaefZfXc_FtUSyOSLE_C5OS9p2tz5ub1XlT_065leuVG-_zxMY_Zpcl-PSymIyPyTF00Achei_ojaxH9TuYEICV47i-QWFuPsH5QeiCH_igJNX_L375d5rkA79z9ZQ8GQgjnfYNe0aOQvOcPLpogdTtXpDb-fQXrVcoRLGjmO1JTePpKmVIBjpcCbH8TKfUdzWuHdB03LKjwFXpusNdGpzvoFSvTULbSPtzlkkQnO4wwY3WDb3bLmFImCa8JPOrLz8vr7PhFoXMCVlssgAjzOJNY4aLEIFxAeOICsIEcOXclS7IoBGx4HWM4LpyFoKQptC-zGUED_eKnDRtE94QypRk0ioIqbwSkTljcu4iUC5jjNWWj8invV2rdS-WUUGQgSBUCEKFIFQDCCNygZa__xF1rtOLtltWA9qVLl00HigPMBNhGTPgPG1uGfeeOSfDiHzY41bBuMDNDrBEu4WqFMw8AuI_MSKvexzvq5pIoCmpCeoA4YO2HH6Brpi0t4eu9_a_S56Sx2gFXMXh8h052XTb8B54zcaepfUAeH5dMHjOhD5LPfsPzkL_rg |
link.rule.ids | 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VggQX3oXwXCROSE5sZ722uaUVVYCm4tBUvVn7DBaNHUxyCL-embVdNRUXuNpe7XpnZueb3ZlvAd5b65SKQxuI1IiAS5PhOhimgZE8dNKZjDuqRp6diumcf7lILvYg6WthfNK-VuWwulwOq_K7z61cLfWozxMbfZsd5ejT82Q8ugW30V5Dfi1Ibym9Cfek7RkmhmD5yK0uiZo7HtMKwbMk3vFCnqz_bwjzZqLkNc9z_ADO-zG3CSc_hpu1GurfN-gc__mnHsL9DouySfv6EezZ6jHcOawRL26fwM_55JyVS-K42DJKJGWyMmzpky8t626bWHxkE2aakrYlmK_kbBjCYLZq6ACIllJs1dKesNqxtoTTc42zLeXOsbJivzYLtDZZ2acwP_50djQNugsaAs1Fsg4sGq-iS8xkzK1DMIdgxqUYgSBKiHWurbAZKYM1mXPoFcPIWi5kkpk8FA6d5wHsV3VlnwOLUhEJlWK0ZlLuIi1lGGuHaE5KqTIVD-BDL7Bi1fJwFBi_kHQLkm5B0i066Q7gkER69SFRaPsHdbMoujkvslw7aRBNIejhKook-mUVqig2JtJa2AG86xWiQJOjcxSciXqDXaW4qHEMLfkAnrUKctXVWCAC8kNId1RnZyy7b1AhPK13pwAv_rvlW7g7PZudFCefT7--hHs0I7RZFItXsL9uNvY1wqe1euON5Q-P4h8B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagINQL5dku5WEkTkjZPNZxEm7bwqo8WvXAooqL5ecStZuEsHtYfj0zTrbarTj1msSy45nxfGOPvyHknbVOqSSyAc8MD5g0OayDURYYySInncmZw9vIp2f8ZMq-XKQXG6W-fNK-VuWwupoPq_KXz61s5jpc54mF56fHBfj0Ih2FjXHhXXIPbDbiG4F6R-uN2CfrzjEhDCtC11whPXcywlWC5Wmy5Yk8Yf__UObNZMkN7zPZIz_X4-6STi6Hy4Ua6r83KB1v9WOPyMMek9Jx98ljcsdWT8j9oxpw4-op-T0d_6DlHLkuVhQTSqmsDJ37JExL-6oTsw90TE1b4vYE9Tc6WwpwmDYtHgThkgqtOvoTWjvaXeX0nON0hTl0tKzon-UMrE5W9hmZTj59Pz4J-kINgWY8XQQWjFhhMTOZMOsA1AGocRlEIoAWEl1oy22OSmFN7hx4xyi2lnGZ5qaIuAMn-pzsVHVlDwiNMx5zlUHUZjLmYi1llGgHqE5KqXKVDMj7tdBE0_FxCIhjUMICJSxQwqKX8IAcoVivP0Qqbf-gbmein3eRF9pJA6gKwA9TcSzBP6tIxYkxsdbcDsjbtVIIMD08T4GZqJfQVQaLG4MQkw3Ifqck112NOCAhP4RsS322xrL9BpTC03v3SvDi1i3fkAfnHyfi2-ezr4dkFycE94wS_pLsLNqlfQUoaqFee3v5B3GeIYE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV+imagery+data+and+machine+learning%3A+A+driving+merger+for+predictive+analysis+of+qualitative+yield+in+sugarcane&rft.jtitle=Frontiers+in+plant+science&rft.au=Marcelo+Rodrigues+Barbosa+J%C3%BAnior&rft.au=Marcelo+Rodrigues+Barbosa+J%C3%BAnior&rft.au=Bruno+Rafael+de+Almeida+Moreira&rft.au=Rom%C3%A1rio+Porto+de+Oliveira&rft.date=2023-01-26&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=14&rft_id=info:doi/10.3389%2Ffpls.2023.1114852&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_89cfad5542154b11a990b0b12dd1cc6e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |