UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane

Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer sig...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 14; p. 1114852
Main Authors Barbosa Júnior, Marcelo Rodrigues, Moreira, Bruno Rafael de Almeida, de Oliveira, Romário Porto, Shiratsuchi, Luciano Shozo, da Silva, Rouverson Pereira
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 26.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.
AbstractList Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.
Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.
Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.
Author de Oliveira, Romário Porto
da Silva, Rouverson Pereira
Barbosa Júnior, Marcelo Rodrigues
Moreira, Bruno Rafael de Almeida
Shiratsuchi, Luciano Shozo
AuthorAffiliation 1 Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp) , São Paulo , Brazil
2 AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University , Baton Rouge, LA , United States
AuthorAffiliation_xml – name: 1 Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp) , São Paulo , Brazil
– name: 2 AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University , Baton Rouge, LA , United States
Author_xml – sequence: 1
  givenname: Marcelo Rodrigues
  surname: Barbosa Júnior
  fullname: Barbosa Júnior, Marcelo Rodrigues
  organization: AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, United States
– sequence: 2
  givenname: Bruno Rafael de Almeida
  surname: Moreira
  fullname: Moreira, Bruno Rafael de Almeida
  organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), São Paulo, Brazil
– sequence: 3
  givenname: Romário Porto
  surname: de Oliveira
  fullname: de Oliveira, Romário Porto
  organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), São Paulo, Brazil
– sequence: 4
  givenname: Luciano Shozo
  surname: Shiratsuchi
  fullname: Shiratsuchi, Luciano Shozo
  organization: AgCenter, School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, United States
– sequence: 5
  givenname: Rouverson Pereira
  surname: da Silva
  fullname: da Silva, Rouverson Pereira
  organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), São Paulo, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36818852$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtvGyEUhUdVqiZN8wO6qVh2Y5f3QBeVrKiPSJG6aaruEAOXCdGYsWHGkv99cOxGCRuuLud8Fzjvm7M0JmiajwQvGVP6S9gMZUkxZUtCCFeCvmkuiJR8wSX9d_aiPm-uSnnAdQmMtW7fNedMKqKq5aLZ3q3-ori2PeQ98nayyCaP1tbdxwRoAJtTTP1XtEI-x10t0RpyFaMwZrTJ4KOb4g6qyw77EgsaA9rOdoiTfervIwwexYTK3NvsbIIPzdtghwJXp_2yufvx_c_1r8Xt758316vbheNSTAuQTHWCc2Iph4AVU1yGthWKY0mddiBBAYQOvApBtgoTAC6tUF5jGRhml83NketH-2A2uT4y781oo3lqjLk3Nk_RDWCUdsF6ITglgneEWK1xhztCvSfOSaisb0fWZu7W4B2kKdvhFfT1SYr3ph93RmuqtWAV8PkEyON2hjKZdSwOhqF-yDgXQ9tWM0645lVKjlKXx1IyhOcxBJtD8uaQvDkkb07JV8-nl_d7dvzPmT0C0d6uQg
CitedBy_id crossref_primary_10_1016_j_indcrop_2024_118627
crossref_primary_10_3390_agronomy14030476
crossref_primary_10_1007_s12355_024_01399_9
Cites_doi 10.1016/S0034-4257(96)00072-7
10.1016/S0034-4257(00)00197-8
10.1002/ppj2.20005
10.1007/s12355-020-00802-5
10.1016/j.jag.2020.102177
10.1080/19479832.2022.2055157
10.1080/10106040108542184
10.1007/s12524-022-01560-5
10.1078/0176-1617-00887
10.1016/j.compag.2020.105903
10.1007/s12524-021-01448-w
10.1016/S0034-4257(01)00289-9
10.1007/s12524-021-01444-0
10.1016/j.rse.2005.09.002
10.1016/j.infrared.2018.01.027
10.1007/s13197-018-3350-4
10.3390/agriculture12091313
10.3390/rs14051140
10.3390/agronomy11071273
10.1007/s12355-020-00910-2
10.1016/j.compag.2020.105956
10.1007/s11694-018-9811-7
10.1080/01431160903349057
10.1371/journal.pone.0264990
10.1017/CBO9780511801389
10.1016/j.indcrop.2022.115278
10.1590/1807-1929/agriambi.v23n7p552-557
10.1016/j.scitotenv.2020.141795
10.1007/s00344-022-10778-z
10.1016/j.rsase.2022.100718
10.3390/agronomy12061350
10.3390/drones6050112
10.1057/s41267-022-00549-z
10.1007/978-1-4939-1447-0_2
10.3389/fpls.2022.928953
10.1117/1.JRS.14.044505
10.2307/2346786
10.1023/A:1010933404324
10.3390/polym11050751
10.3390/agronomy12030661
10.1080/15481603.2014.912875
10.1034/j.1399-3054.1999.106119.x
10.3390/agronomy12091992
10.3390/rs14194944
ContentType Journal Article
Copyright Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva.
Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva
Copyright_xml – notice: Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva.
– notice: Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2023.1114852
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
EndPage 1114852
ExternalDocumentID oai_doaj_org_article_89cfad5542154b11a990b0b12dd1cc6e
10_3389_fpls_2023_1114852
36818852
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IGS
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RNS
RPM
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c465t-e638b5441a24ef083846f77584062c9ce6e8eefbed8ff67801ee46a58d906f303
IEDL.DBID RPM
ISSN 1664-462X
IngestDate Tue Oct 22 15:15:30 EDT 2024
Tue Sep 17 21:33:57 EDT 2024
Sat Oct 05 05:07:59 EDT 2024
Thu Sep 26 17:01:56 EDT 2024
Wed Oct 16 00:40:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brix
Saccharum spp
remote sensing
sucrose
ripening
smart harvest
Language English
License Copyright © 2023 Barbosa Júnior, Moreira, de Oliveira, Shiratsuchi and da Silva.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-e638b5441a24ef083846f77584062c9ce6e8eefbed8ff67801ee46a58d906f303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Salvador Gutiérrez, University of Granada, Spain; José Emilio Guerrero Ginel, University of Cordoba, Spain
These authors have contributed equally to this work and share first authorship
This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science
Edited by: Vanessa Martos Núñez, University of Granada, Spain
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929953/
PMID 36818852
PQID 2779341494
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_89cfad5542154b11a990b0b12dd1cc6e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9929953
proquest_miscellaneous_2779341494
crossref_primary_10_3389_fpls_2023_1114852
pubmed_primary_36818852
PublicationCentury 2000
PublicationDate 2023-01-26
PublicationDateYYYYMMDD 2023-01-26
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Oliveira (B33) 2022; 12
Breiman (B6) 2001; 45
Rong-En (B38) 2005; 6
Yuan (B51) 2022; 13
Abebe (B1) 2022
Neter (B31) 1996
(B11) 2006
Chea (B9) 2022; 26
Martins (B25) 2021; 23
Todd (B45) 2021; 11
Morais (B29) 2015
Chea (B10) 2020; 22
Wang (B47) 2022; 14
Breiman (B7) 1984
Nihar (B32) 2022; 50
Louhaichi (B24) 2001; 16
Broge (B8) 2001; 76
Misra (B28) 2022
Rodrigues (B37) 2020; 14
Cristianini (B12) 2000
Krupavathi (B22) 2022; 50
Wilkinson (B48) 1973; 22
Rouse (B39) 1974
Lindner (B23) 2022; 53
Pereira (B34) 2022; 12
Yang (B49) 2019; 11
Yang (B50) 2021; 752
Hithamani (B18) 2018; 55
Gitelson (B17) 2002; 80
Shendryk (B40) 2020; 92
Silva Junior (B41) 2018; 89
Gitelson (B16) 1996; 58
Merzlyak (B27) 1999; 106
Bégué (B5) 2010; 31
Gitelson (B15) 2003; 160
Poltroniere (B35) 2021; 184
Sreedevi (B42) 2018; 12
Barbosa Júnior (B3) 2022; 12
B13
Barbosa Júnior (B4) 2022; 6
Matias (B26) 2020; 3
Stein (B43) 2014; 51
Ghosh (B14) 2022; 50
Jensen (B19) 2009
Todd (B46) 2022; 12
Kataoka (B20) 2003
Zarco-Tejada (B52) 2005; 99
Banchi (B2) 2019; 23
Sumesh (B44) 2021; 180
Rodrigues (B36) 2022; 186
Narmilan (B30) 2022; 14
Khan (B21) 2022; 17
Zhao (B53) 2010; 30
References_xml – volume: 58
  start-page: 289
  year: 1996
  ident: B16
  article-title: Use of a green channel in remote sensing of global vegetation from EOS- MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
  contributor:
    fullname: Gitelson
– volume-title: Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation
  year: 1974
  ident: B39
  contributor:
    fullname: Rouse
– volume: 76
  start-page: 156
  year: 2001
  ident: B8
  article-title: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00197-8
  contributor:
    fullname: Broge
– volume: 3
  start-page: 1
  year: 2020
  ident: B26
  article-title: FIELDimageR: An r package to analyze orthomosaic images from agricultural field trials
  publication-title: Plant Phenome J.
  doi: 10.1002/ppj2.20005
  contributor:
    fullname: Matias
– volume: 22
  start-page: 605
  year: 2020
  ident: B10
  article-title: Sugar yield parameters and fiber prediction in sugarcane fields using a multispectral camera mounted on a small unmanned aerial system (UAS)
  publication-title: Sugar Tech
  doi: 10.1007/s12355-020-00802-5
  contributor:
    fullname: Chea
– volume: 92
  year: 2020
  ident: B40
  article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2020.102177
  contributor:
    fullname: Shendryk
– volume-title: Classification and regression trees
  year: 1984
  ident: B7
  contributor:
    fullname: Breiman
– start-page: 1
  year: 2022
  ident: B1
  article-title: Estimating leaf area index and biomass of sugarcane based on Gaussian process regression using landsat 8 and sentinel 1A observations
  publication-title: Int. J. Image Data Fusion
  doi: 10.1080/19479832.2022.2055157
  contributor:
    fullname: Abebe
– volume: 16
  start-page: 65
  year: 2001
  ident: B24
  article-title: Spatially located platform and aerial photography for documentation of grazing impacts on wheat
  publication-title: Geocarto Int.
  doi: 10.1080/10106040108542184
  contributor:
    fullname: Louhaichi
– volume: 50
  start-page: 1725
  year: 2022
  ident: B14
  article-title: Integration of RS-GIS with frequency ratio, fuzzy logic, logistic regression and decision tree models for flood susceptibility prediction in lower gangetic plain: A study on malda district of West Bengal, India
  publication-title: J. Indian Soc Remote Sens.
  doi: 10.1007/s12524-022-01560-5
  contributor:
    fullname: Ghosh
– volume: 160
  start-page: 271
  year: 2003
  ident: B15
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00887
  contributor:
    fullname: Gitelson
– volume: 180
  year: 2021
  ident: B44
  article-title: Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105903
  contributor:
    fullname: Sumesh
– start-page: b1079
  year: 2003
  ident: B20
  article-title: Crop growth estimation system using machine vision
  contributor:
    fullname: Kataoka
– volume: 50
  start-page: 299
  year: 2022
  ident: B22
  article-title: Field-scale estimation and comparison of the sugarcane yield from remote sensing data: A machine learning approach
  publication-title: J. Indian Soc Remote Sens.
  doi: 10.1007/s12524-021-01448-w
  contributor:
    fullname: Krupavathi
– volume: 80
  start-page: 76
  year: 2002
  ident: B17
  article-title: Novel algorithms for remote estimation of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00289-9
  contributor:
    fullname: Gitelson
– volume: 50
  start-page: 217
  year: 2022
  ident: B32
  article-title: Sugarcane crop type discrimination and area mapping at field scale using sentinel images and machine learning methods
  publication-title: J. Indian Soc Remote Sens.
  doi: 10.1007/s12524-021-01444-0
  contributor:
    fullname: Nihar
– ident: B13
– volume: 99
  start-page: 271
  year: 2005
  ident: B52
  article-title: Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.09.002
  contributor:
    fullname: Zarco-Tejada
– volume: 6
  start-page: 1889
  year: 2005
  ident: B38
  article-title: Working set selection using second order information for training support vector machines
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Rong-En
– volume: 89
  start-page: 338
  year: 2018
  ident: B41
  article-title: Soybean varieties discrimination using non-imaging hyperspectral sensor
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.01.027
  contributor:
    fullname: Silva Junior
– volume: 55
  start-page: 4356
  year: 2018
  ident: B18
  article-title: Effect of adsorbent and acidulants on enzymatic browning of sugarcane juice
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-018-3350-4
  contributor:
    fullname: Hithamani
– volume: 12
  year: 2022
  ident: B46
  article-title: Identification of selection preferences and predicting yield related traits in sugarcane seedling families using RGB spectral indices
  publication-title: Agriculture
  doi: 10.3390/agriculture12091313
  contributor:
    fullname: Todd
– volume: 14
  year: 2022
  ident: B30
  article-title: Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs14051140
  contributor:
    fullname: Narmilan
– volume: 11
  year: 2021
  ident: B45
  article-title: Prediction of ratoon sugarcane family yield and selection using remote imagery
  publication-title: Agronomy
  doi: 10.3390/agronomy11071273
  contributor:
    fullname: Todd
– volume: 23
  start-page: 428
  year: 2021
  ident: B25
  article-title: Economic efficiency of mechanized harvesting of sugarcane at different operating speeds
  publication-title: Sugar Tech
  doi: 10.1007/s12355-020-00910-2
  contributor:
    fullname: Martins
– volume: 184
  year: 2021
  ident: B35
  article-title: Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105956
  contributor:
    fullname: Poltroniere
– volume: 12
  start-page: 1962
  year: 2018
  ident: B42
  article-title: Browning and bioactive composition of sugarcane juice (Saccharum officinarum) as affected by high hydrostatic pressure processing
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-018-9811-7
  contributor:
    fullname: Sreedevi
– volume: 31
  start-page: 5391
  year: 2010
  ident: B5
  article-title: Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903349057
  contributor:
    fullname: Bégué
– volume: 17
  year: 2022
  ident: B21
  article-title: Morphological, agronomical, physiological and molecular characterization of a high sugar mutant of sugarcane in comparison to mother variety
  publication-title: PloS One
  doi: 10.1371/journal.pone.0264990
  contributor:
    fullname: Khan
– volume-title: An introduction to support vector machines and other kernel-based learning methods
  year: 2000
  ident: B12
  doi: 10.1017/CBO9780511801389
  contributor:
    fullname: Cristianini
– volume: 186
  year: 2022
  ident: B36
  article-title: Estimating technological parameters and stem productivity of sugarcane treated with rock powder using a proximal spectroradiometer vis-NIR-SWIR
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2022.115278
  contributor:
    fullname: Rodrigues
– start-page: 112
  volume-title: Manual de Instruções: Conselho dos Produtores de Cana-de-Açúcar, Açúcar e Álcool do Estado de São Paulo. Piracicaba - SP
  year: 2006
  ident: B11
– volume: 23
  start-page: 552
  year: 2019
  ident: B2
  article-title: Operating cost of sugarcane harvester in function of agricultural productivity and harvester age
  publication-title: Rev. Bras. Eng. Agrícola e Ambient.
  doi: 10.1590/1807-1929/agriambi.v23n7p552-557
  contributor:
    fullname: Banchi
– volume: 752
  year: 2021
  ident: B50
  article-title: Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141795
  contributor:
    fullname: Yang
– year: 2022
  ident: B28
  article-title: Sugar transporters, sugar-metabolizing enzymes, and their interaction with phytohormones in sugarcane
  publication-title: J. Plant Growth Regul
  doi: 10.1007/s00344-022-10778-z
  contributor:
    fullname: Misra
– volume: 26
  year: 2022
  ident: B9
  article-title: Optimal models under multiple resource types for brix content prediction in sugarcane fields using machine learning
  publication-title: Remote Sens. Appl. Soc Environ.
  doi: 10.1016/j.rsase.2022.100718
  contributor:
    fullname: Chea
– volume: 12
  year: 2022
  ident: B34
  article-title: Smart-map: An open-source QGIS plugin for digital mapping using machine learning techniques and ordinary kriging
  publication-title: Agronomy
  doi: 10.3390/agronomy12061350
  contributor:
    fullname: Pereira
– volume: 6
  start-page: 1
  year: 2022
  ident: B4
  article-title: The time of day is key to discriminate cultivars of sugarcane upon imagery data from unmanned aerial vehicle
  publication-title: Drones
  doi: 10.3390/drones6050112
  contributor:
    fullname: Barbosa Júnior
– volume: 53
  start-page: 1307
  year: 2022
  ident: B23
  article-title: Beyond addressing multicollinearity: Robust quantitative analysis and machine learning in international business research
  publication-title: J. Int. Bus. Stud.
  doi: 10.1057/s41267-022-00549-z
  contributor:
    fullname: Lindner
– start-page: 29
  volume-title: Industrial crops: Breeding for BioEnergy and bioproducts
  year: 2015
  ident: B29
  article-title: Breeding of sugarcane
  doi: 10.1007/978-1-4939-1447-0_2
  contributor:
    fullname: Morais
– volume: 13
  year: 2022
  ident: B51
  article-title: Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating hopea hainanensis SPAD values under different shade conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.928953
  contributor:
    fullname: Yuan
– volume: 14
  start-page: 1
  year: 2020
  ident: B37
  article-title: Vis–NIR spectroscopy: From leaf dry mass production estimate to the prediction of macro- and micronutrients in soybean crops
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.044505
  contributor:
    fullname: Rodrigues
– volume: 22
  start-page: 392
  year: 1973
  ident: B48
  article-title: Symbolic description of factorial models for analysis of variance
  publication-title: Appl. Stat.
  doi: 10.2307/2346786
  contributor:
    fullname: Wilkinson
– volume: 45
  start-page: 5
  year: 2001
  ident: B6
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 11
  start-page: 1
  year: 2019
  ident: B49
  article-title: Applications of lignocellulosic fibers and lignin in bioplastics: A review
  publication-title: Polymers (Basel).
  doi: 10.3390/polym11050751
  contributor:
    fullname: Yang
– volume: 12
  year: 2022
  ident: B3
  article-title: UAVs to monitor and manage sugarcane: Integrative review
  publication-title: Agronomy
  doi: 10.3390/agronomy12030661
  contributor:
    fullname: Barbosa Júnior
– start-page: 518
  volume-title: Pearson Education
  year: 2009
  ident: B19
  article-title: Remote sensing of the environment: An earth resource perspective 2/e
  contributor:
    fullname: Jensen
– volume: 51
  start-page: 269
  year: 2014
  ident: B43
  article-title: Predicting macronutrient concentrations from loblolly pine leaf reflectance across local and regional scales
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2014.912875
  contributor:
    fullname: Stein
– volume: 30
  start-page: 37
  year: 2010
  ident: B53
  article-title: Precision of sugarcane biomass estimates in pot studies using fresh and dry weights
  publication-title: Am. Soc Sugar Cane Technol.
  contributor:
    fullname: Zhao
– volume: 106
  start-page: 135
  year: 1999
  ident: B27
  article-title: Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening
  publication-title: Physiol. Plant
  doi: 10.1034/j.1399-3054.1999.106119.x
  contributor:
    fullname: Merzlyak
– volume: 12
  year: 2022
  ident: B33
  article-title: Predicting sugarcane biometric parameters by UAV multispectral images and machine learning
  publication-title: Agronomy
  doi: 10.3390/agronomy12091992
  contributor:
    fullname: Oliveira
– volume: 14
  year: 2022
  ident: B47
  article-title: Sugarcane biomass prediction with multi-mode remote sensing data using deep archetypal analysis and integrated learning
  publication-title: Remote Sens.
  doi: 10.3390/rs14194944
  contributor:
    fullname: Wang
– start-page: 318
  volume-title: Applied linear statistical models
  year: 1996
  ident: B31
  contributor:
    fullname: Neter
SSID ssj0000500997
Score 2.3980436
Snippet Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1114852
SubjectTerms brix
Plant Science
remote sensing
ripening
Saccharum spp
smart harvest
sucrose
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9JBLSdo0dV5MoaeCia2VJTu3TekSCu2pG3IzkiWlhqy92ewe9t9nRnLCbijk0qsfaJgZzXwjjT4x9tU5bwzPXCqVlanQtsQ4mKnUapF57W0pPJ1G_vVbXk_Fz9viduOqL-oJi_TAUXEXZdV4bTHpYW4SJs81hk-TmZxbmzeNdCH6ZtVGMRVZvQn6qLiNiVVYdeHn98TOzUcUJERZ8K1EFPj6_wUyX_dKbiSfyT57P6BGGEdpD9iO6z6wd1c9Irv1R_YwHd9AOyM2ijVQyyfozsIstEk6GO6FuLuEMdhFSwsIEM5cLgABK8wXtFVDQQ__igQl0HuIhy0DKzisqcsN2g4eV3c4L3TnDtl08uPP9-t0uEohbYQslqnDaWboujHNhfMIuxB2eIW1AuZz3lSNk64kszlbeo_5K8udE1IXpa0y6THNfWK7Xd-5zwxyJXNpFNZVVgmfN1pnvPGIu7TWpjQ8Yd-e9VrPI2NGjZUGGaEmI9RkhHowQsKuSPMvHxLZdXiALlAPLlC_5QIJ-_JstxonB-14oCb6FQ6lMPwILAJFwo6iHV-GGknEKkEEtWXhLVm233Tt30DAXSGmrIrR8f8Q_oTtkUJoVYfLU7a7XKzcGeKcpTkPLv0EUxr-aQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELZQ4YEXxNiAwkA3aU-TAonr2MkkhNppCCFtTyvqW2THdqkESQmtRP_97pK0oqiPvCaxYt2X830Xn79j7Ltz3hgeukAqKwOhbYLrYKgCq0XotbeJ8HQa-c9feTsUd6N4tMWW7a1aA75sTO2on9Swerx4fV5co8NfUcaJ8fbSTx9JeJv3yP9FEuOKvM0FJupUydey_Ubqm_iQavY2N49ci061iP8m5vm-gPJNRLrZZ3stlYR-g_0ntuWKA7YzKJHuLT6z52H_HiZPJFGxAKoDBV1YeKprJx20zSLGP6EPtprQXwWoD2JWgCwWphXt39BKiKMa1RIoPTQnMGupcFhQ6RtMCniZj9FZdOG-sOHN73-_boO2v0KQCxnPAoe-Z6gHmebCeeRiyEW8wgQCgzzP09xJlxCWzibeY1ALI-eE1HFi01B6jH2HrFOUhTtmECkZSaMw2bJK-CjXOuS5RzKmtTaJ4V32Y2nXbNrIaGSYfhAIGYGQEQhZC0KXDcjyqwdJAbu-UFbjrHWoLElzry2SIeQswkSRxrBqQhNxa6M8l67Lvi1xy9BjaBsELVHO8VUK1ySBmaHosqMGx9WrehIJTD0FtYbw2lzW7xSTh1qVO0Wimca9k4-Y_CnbJYPQrx4uv7LOrJq7MyQ_M3Nef9L_AQK4BnM
  priority: 102
  providerName: Scholars Portal
Title UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane
URI https://www.ncbi.nlm.nih.gov/pubmed/36818852
https://search.proquest.com/docview/2779341494
https://pubmed.ncbi.nlm.nih.gov/PMC9929953
https://doaj.org/article/89cfad5542154b11a990b0b12dd1cc6e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2iQMXxG_KYDISJ6SssevYDrduYkxIRRwo6i3yzxJpTbqsPfS_5z0nnVbEiUsOSSxb77P9vmc_fybkYwjRWp6HTCovM2G8hnkwV5k3Io8mei0inkaefZfXc_FtUSyOSLE_C5OS9p2tz5ub1XlT_065leuVG-_zxMY_Zpcl-PSymIyPyTF00Achei_ojaxH9TuYEICV47i-QWFuPsH5QeiCH_igJNX_L375d5rkA79z9ZQ8GQgjnfYNe0aOQvOcPLpogdTtXpDb-fQXrVcoRLGjmO1JTePpKmVIBjpcCbH8TKfUdzWuHdB03LKjwFXpusNdGpzvoFSvTULbSPtzlkkQnO4wwY3WDb3bLmFImCa8JPOrLz8vr7PhFoXMCVlssgAjzOJNY4aLEIFxAeOICsIEcOXclS7IoBGx4HWM4LpyFoKQptC-zGUED_eKnDRtE94QypRk0ioIqbwSkTljcu4iUC5jjNWWj8invV2rdS-WUUGQgSBUCEKFIFQDCCNygZa__xF1rtOLtltWA9qVLl00HigPMBNhGTPgPG1uGfeeOSfDiHzY41bBuMDNDrBEu4WqFMw8AuI_MSKvexzvq5pIoCmpCeoA4YO2HH6Brpi0t4eu9_a_S56Sx2gFXMXh8h052XTb8B54zcaepfUAeH5dMHjOhD5LPfsPzkL_rg
link.rule.ids 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VggQX3oXwXCROSE5sZ722uaUVVYCm4tBUvVn7DBaNHUxyCL-embVdNRUXuNpe7XpnZueb3ZlvAd5b65SKQxuI1IiAS5PhOhimgZE8dNKZjDuqRp6diumcf7lILvYg6WthfNK-VuWwulwOq_K7z61cLfWozxMbfZsd5ejT82Q8ugW30V5Dfi1Ibym9Cfek7RkmhmD5yK0uiZo7HtMKwbMk3vFCnqz_bwjzZqLkNc9z_ADO-zG3CSc_hpu1GurfN-gc__mnHsL9DouySfv6EezZ6jHcOawRL26fwM_55JyVS-K42DJKJGWyMmzpky8t626bWHxkE2aakrYlmK_kbBjCYLZq6ACIllJs1dKesNqxtoTTc42zLeXOsbJivzYLtDZZ2acwP_50djQNugsaAs1Fsg4sGq-iS8xkzK1DMIdgxqUYgSBKiHWurbAZKYM1mXPoFcPIWi5kkpk8FA6d5wHsV3VlnwOLUhEJlWK0ZlLuIi1lGGuHaE5KqTIVD-BDL7Bi1fJwFBi_kHQLkm5B0i066Q7gkER69SFRaPsHdbMoujkvslw7aRBNIejhKook-mUVqig2JtJa2AG86xWiQJOjcxSciXqDXaW4qHEMLfkAnrUKctXVWCAC8kNId1RnZyy7b1AhPK13pwAv_rvlW7g7PZudFCefT7--hHs0I7RZFItXsL9uNvY1wqe1euON5Q-P4h8B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagINQL5dku5WEkTkjZPNZxEm7bwqo8WvXAooqL5ecStZuEsHtYfj0zTrbarTj1msSy45nxfGOPvyHknbVOqSSyAc8MD5g0OayDURYYySInncmZw9vIp2f8ZMq-XKQXG6W-fNK-VuWwupoPq_KXz61s5jpc54mF56fHBfj0Ih2FjXHhXXIPbDbiG4F6R-uN2CfrzjEhDCtC11whPXcywlWC5Wmy5Yk8Yf__UObNZMkN7zPZIz_X4-6STi6Hy4Ua6r83KB1v9WOPyMMek9Jx98ljcsdWT8j9oxpw4-op-T0d_6DlHLkuVhQTSqmsDJ37JExL-6oTsw90TE1b4vYE9Tc6WwpwmDYtHgThkgqtOvoTWjvaXeX0nON0hTl0tKzon-UMrE5W9hmZTj59Pz4J-kINgWY8XQQWjFhhMTOZMOsA1AGocRlEIoAWEl1oy22OSmFN7hx4xyi2lnGZ5qaIuAMn-pzsVHVlDwiNMx5zlUHUZjLmYi1llGgHqE5KqXKVDMj7tdBE0_FxCIhjUMICJSxQwqKX8IAcoVivP0Qqbf-gbmein3eRF9pJA6gKwA9TcSzBP6tIxYkxsdbcDsjbtVIIMD08T4GZqJfQVQaLG4MQkw3Ifqck112NOCAhP4RsS322xrL9BpTC03v3SvDi1i3fkAfnHyfi2-ezr4dkFycE94wS_pLsLNqlfQUoaqFee3v5B3GeIYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV+imagery+data+and+machine+learning%3A+A+driving+merger+for+predictive+analysis+of+qualitative+yield+in+sugarcane&rft.jtitle=Frontiers+in+plant+science&rft.au=Marcelo+Rodrigues+Barbosa+J%C3%BAnior&rft.au=Marcelo+Rodrigues+Barbosa+J%C3%BAnior&rft.au=Bruno+Rafael+de+Almeida+Moreira&rft.au=Rom%C3%A1rio+Porto+de+Oliveira&rft.date=2023-01-26&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=14&rft_id=info:doi/10.3389%2Ffpls.2023.1114852&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_89cfad5542154b11a990b0b12dd1cc6e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon