Comparison of Transfer Learning and Conventional Machine Learning Applied to Structural Brain MRI for the Early Diagnosis and Prognosis of Alzheimer's Disease

Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was proven effective in supporting the diagnosis of AD, while very few studies investigated the performance of deep learning and transfer learni...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurology Vol. 11; p. 576194
Main Authors Nanni, Loris, Interlenghi, Matteo, Brahnam, Sheryl, Salvatore, Christian, Papa, Sergio, Nemni, Raffaello, Castiglioni, Isabella
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 05.11.2020
Subjects
Online AccessGet full text
ISSN1664-2295
1664-2295
DOI10.3389/fneur.2020.576194

Cover

Abstract Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was proven effective in supporting the diagnosis of AD, while very few studies investigated the performance of deep learning and transfer learning in this complex task. In this paper, we evaluated the potential of ensemble transfer-learning techniques, pretrained on generic images and then transferred to structural brain MRI, for the early diagnosis and prognosis of AD, with respect to a fusion of conventional-ML approaches based on Support Vector Machine directly applied to structural brain MRI. Specifically, more than 600 subjects were obtained from the ADNI repository, including AD, Mild Cognitive Impaired converting to AD (MCIc), Mild Cognitive Impaired not converting to AD (MCInc), and cognitively-normal (CN) subjects. We used T1-weighted cerebral-MRI studies to train: (1) an ensemble of five transfer-learning architectures pretrained on generic images; (2) a 3D Convolutional Neutral Network (CNN) trained from scratch on MRI volumes; and (3) a fusion of two conventional-ML classifiers derived from different feature extraction/selection techniques coupled to SVM. The AD-vs-CN, MCIc-vs-CN, MCIc-vs-MCInc comparisons were investigated. The ensemble transfer-learning approach was able to effectively discriminate AD from CN with 90.2% AUC, MCIc from CN with 83.2% AUC, and MCIc from MCInc with 70.6% AUC, showing comparable or slightly lower results with the fusion of conventional-ML systems (AD from CN with 93.1% AUC, MCIc from CN with 89.6% AUC, and MCIc from MCInc with AUC in the range of 69.1-73.3%). The deep-learning network trained from scratch obtained lower performance than either the fusion of conventional-ML systems and the ensemble transfer-learning, due to the limited sample of images used for training. These results open new prospective on the use of transfer learning combined with neuroimages for the automatic early diagnosis and prognosis of AD, even if pretrained on generic images.
AbstractList Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was proven effective in supporting the diagnosis of AD, while very few studies investigated the performance of deep learning and transfer learning in this complex task. In this paper, we evaluated the potential of ensemble transfer-learning techniques, pretrained on generic images and then transferred to structural brain MRI, for the early diagnosis and prognosis of AD, with respect to a fusion of conventional-ML approaches based on Support Vector Machine directly applied to structural brain MRI. Specifically, more than 600 subjects were obtained from the ADNI repository, including AD, Mild Cognitive Impaired converting to AD (MCIc), Mild Cognitive Impaired not converting to AD (MCInc), and cognitively-normal (CN) subjects. We used T1-weighted cerebral-MRI studies to train: (1) an ensemble of five transfer-learning architectures pretrained on generic images; (2) a 3D Convolutional Neutral Network (CNN) trained from scratch on MRI volumes; and (3) a fusion of two conventional-ML classifiers derived from different feature extraction/selection techniques coupled to SVM. The AD-vs-CN, MCIc-vs-CN, MCIc-vs-MCInc comparisons were investigated. The ensemble transfer-learning approach was able to effectively discriminate AD from CN with 90.2% AUC, MCIc from CN with 83.2% AUC, and MCIc from MCInc with 70.6% AUC, showing comparable or slightly lower results with the fusion of conventional-ML systems (AD from CN with 93.1% AUC, MCIc from CN with 89.6% AUC, and MCIc from MCInc with AUC in the range of 69.1–73.3%). The deep-learning network trained from scratch obtained lower performance than either the fusion of conventional-ML systems and the ensemble transfer-learning, due to the limited sample of images used for training. These results open new prospective on the use of transfer learning combined with neuroimages for the automatic early diagnosis and prognosis of AD, even if pretrained on generic images.
Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was proven effective in supporting the diagnosis of AD, while very few studies investigated the performance of deep learning and transfer learning in this complex task. In this paper, we evaluated the potential of ensemble transfer-learning techniques, pretrained on generic images and then transferred to structural brain MRI, for the early diagnosis and prognosis of AD, with respect to a fusion of conventional-ML approaches based on Support Vector Machine directly applied to structural brain MRI. Specifically, more than 600 subjects were obtained from the ADNI repository, including AD, Mild Cognitive Impaired converting to AD (MCIc), Mild Cognitive Impaired not converting to AD (MCInc), and cognitively-normal (CN) subjects. We used T1-weighted cerebral-MRI studies to train: (1) an ensemble of five transfer-learning architectures pretrained on generic images; (2) a 3D Convolutional Neutral Network (CNN) trained from scratch on MRI volumes; and (3) a fusion of two conventional-ML classifiers derived from different feature extraction/selection techniques coupled to SVM. The AD-vs-CN, MCIc-vs-CN, MCIc-vs-MCInc comparisons were investigated. The ensemble transfer-learning approach was able to effectively discriminate AD from CN with 90.2% AUC, MCIc from CN with 83.2% AUC, and MCIc from MCInc with 70.6% AUC, showing comparable or slightly lower results with the fusion of conventional-ML systems (AD from CN with 93.1% AUC, MCIc from CN with 89.6% AUC, and MCIc from MCInc with AUC in the range of 69.1-73.3%). The deep-learning network trained from scratch obtained lower performance than either the fusion of conventional-ML systems and the ensemble transfer-learning, due to the limited sample of images used for training. These results open new prospective on the use of transfer learning combined with neuroimages for the automatic early diagnosis and prognosis of AD, even if pretrained on generic images.Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was proven effective in supporting the diagnosis of AD, while very few studies investigated the performance of deep learning and transfer learning in this complex task. In this paper, we evaluated the potential of ensemble transfer-learning techniques, pretrained on generic images and then transferred to structural brain MRI, for the early diagnosis and prognosis of AD, with respect to a fusion of conventional-ML approaches based on Support Vector Machine directly applied to structural brain MRI. Specifically, more than 600 subjects were obtained from the ADNI repository, including AD, Mild Cognitive Impaired converting to AD (MCIc), Mild Cognitive Impaired not converting to AD (MCInc), and cognitively-normal (CN) subjects. We used T1-weighted cerebral-MRI studies to train: (1) an ensemble of five transfer-learning architectures pretrained on generic images; (2) a 3D Convolutional Neutral Network (CNN) trained from scratch on MRI volumes; and (3) a fusion of two conventional-ML classifiers derived from different feature extraction/selection techniques coupled to SVM. The AD-vs-CN, MCIc-vs-CN, MCIc-vs-MCInc comparisons were investigated. The ensemble transfer-learning approach was able to effectively discriminate AD from CN with 90.2% AUC, MCIc from CN with 83.2% AUC, and MCIc from MCInc with 70.6% AUC, showing comparable or slightly lower results with the fusion of conventional-ML systems (AD from CN with 93.1% AUC, MCIc from CN with 89.6% AUC, and MCIc from MCInc with AUC in the range of 69.1-73.3%). The deep-learning network trained from scratch obtained lower performance than either the fusion of conventional-ML systems and the ensemble transfer-learning, due to the limited sample of images used for training. These results open new prospective on the use of transfer learning combined with neuroimages for the automatic early diagnosis and prognosis of AD, even if pretrained on generic images.
Author Interlenghi, Matteo
Nemni, Raffaello
Brahnam, Sheryl
Nanni, Loris
Salvatore, Christian
Castiglioni, Isabella
Papa, Sergio
AuthorAffiliation 5 DeepTrace Technologies S.R.L. , Milan , Italy
3 Department of IT and Cybersecurity, Missouri State University , Springfield, MO , United States
7 Department of Physics “G. Occhialini”, University of Milano Bicocca , Milan , Italy
1 Department of Information Engineering, University of Padua , Padua , Italy
2 Institute of Molecular Bioimaging and Physiology, National Research Council of Italy (IBFM-CNR) , Milan , Italy
6 Centro Diagnostico Italiano S.p.A. , Milan , Italy
4 Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia , Pavia , Italy
AuthorAffiliation_xml – name: 5 DeepTrace Technologies S.R.L. , Milan , Italy
– name: 2 Institute of Molecular Bioimaging and Physiology, National Research Council of Italy (IBFM-CNR) , Milan , Italy
– name: 1 Department of Information Engineering, University of Padua , Padua , Italy
– name: 6 Centro Diagnostico Italiano S.p.A. , Milan , Italy
– name: 3 Department of IT and Cybersecurity, Missouri State University , Springfield, MO , United States
– name: 7 Department of Physics “G. Occhialini”, University of Milano Bicocca , Milan , Italy
– name: 4 Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia , Pavia , Italy
Author_xml – sequence: 1
  givenname: Loris
  surname: Nanni
  fullname: Nanni, Loris
– sequence: 2
  givenname: Matteo
  surname: Interlenghi
  fullname: Interlenghi, Matteo
– sequence: 3
  givenname: Sheryl
  surname: Brahnam
  fullname: Brahnam, Sheryl
– sequence: 4
  givenname: Christian
  surname: Salvatore
  fullname: Salvatore, Christian
– sequence: 5
  givenname: Sergio
  surname: Papa
  fullname: Papa, Sergio
– sequence: 6
  givenname: Raffaello
  surname: Nemni
  fullname: Nemni, Raffaello
– sequence: 7
  givenname: Isabella
  surname: Castiglioni
  fullname: Castiglioni, Isabella
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33250847$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQXaEi-kF_ABfkG1wS_LW79gUphAKRUoGgnK2JdzZxtbFTe7dS-TH9rTgflJYDvtgev_fGM_NOiyMfPBbFK0bHQij9rvU4xDGnnI7LumJaPitOWFXJEee6PHp0Pi7OU7qmeQmtRSVeFMdC8JIqWZ8U99Ow3kB0KXgSWnIVwacWI5kjRO_8koBvyDT4W_S9Cx46cgl25Tz-RUw2m85hQ_pAfvRxsP0QM-xDBOfJ5fcZaUMk_QrJBcTujnx0sPQhubRT_hbD4ZaTT7pfK3RrjG9ShiWEhC-L5y10Cc8P-1nx89PF1fTLaP7182w6mY-srMp-hFyyWueaaFnRSlkp9UJqppRqgDYgGYNGKU01VdjSNkfFQllQUlbILLfirJjtdZsA12YT3RrinQngzC4Q4tJA7J3t0DS6tCVjgstmIQVnC1a2ttE1LzlUFCBrvd9rbYbFGhubO5cb8kT06Yt3K7MMt6auaqmEygJvDwIx3AyYerN2yWLXgccwJMNzzXVZSlln6OvHuR6S_BlwBrA9wMaQUsT2AcKo2frI7Hxktj4yex9lTv0Px7oetuPP33Xdf5i_ASxdz_E
CitedBy_id crossref_primary_10_3390_s23146330
crossref_primary_10_1140_epjs_s11734_023_01063_5
crossref_primary_10_1002_hbm_26521
crossref_primary_10_4103_1673_5374_367840
crossref_primary_10_1371_journal_pone_0297996
crossref_primary_10_1016_j_jbi_2022_104030
crossref_primary_10_1007_s11548_022_02620_4
crossref_primary_10_1016_j_compbiomed_2024_108029
crossref_primary_10_1186_s40708_023_00184_w
crossref_primary_10_1016_j_patcog_2025_111603
crossref_primary_10_1109_ACCESS_2023_3294711
crossref_primary_10_1109_ACCESS_2024_3481238
crossref_primary_10_3389_fnins_2021_630747
crossref_primary_10_3390_jpm11121349
crossref_primary_10_3390_analytics2030037
crossref_primary_10_1007_s11227_022_04668_0
crossref_primary_10_1016_j_compbiomed_2023_106790
crossref_primary_10_1016_j_seizure_2021_05_023
crossref_primary_10_1007_s42979_023_01853_7
crossref_primary_10_1140_epjs_s11734_024_01289_x
crossref_primary_10_1177_13872877241302493
crossref_primary_10_3390_diagnostics11050811
crossref_primary_10_1002_cpe_6821
crossref_primary_10_1259_bjr_20211253
crossref_primary_10_1038_s41598_023_33055_9
crossref_primary_10_3389_fbioe_2022_806761
crossref_primary_10_1111_exsy_13463
crossref_primary_10_3233_HIS_220002
crossref_primary_10_1007_s11831_024_10176_6
crossref_primary_10_1007_s11831_024_10179_3
crossref_primary_10_3390_math10152575
crossref_primary_10_1016_j_compbiomed_2022_105634
crossref_primary_10_1002_alz_13412
crossref_primary_10_1051_bioconf_20249700102
crossref_primary_10_1007_s10462_024_10914_z
crossref_primary_10_3390_s22218311
crossref_primary_10_1038_s41598_024_80938_6
crossref_primary_10_3390_diagnostics13101780
Cites_doi 10.1142/S0129065716500258
10.1016/S0140-6736(04)15441-X
10.1111/j.1600-0447.2008.01326.x
10.4236/jcc.2015.311023
10.1186/1471-2377-1246
10.1016/j.jalz.2018.02.018
10.1016/j.jalz.2011.03.003
10.3233/JAD-150570
10.1002/cem.1180070104
10.1016/j.jalz.2018.02.001
10.1515/bmt-2016-0239
10.1016/j.nrl.2016.02.016
10.1109/ACCESS.2019.2913847
10.1038/nature14539
10.1109/IACS.2018.8355455
10.1016/j.patrec.2016.10.010
10.1016/S1474-4422(07)70178-3
10.1016/0022-3956(75)90026-6
10.1016/j.neurobiolaging.2014.04.034
10.1007/11866763_8
10.1093/annonc/mdy166
10.1186/1471-2318-13-137
10.1371/journal.pone.0102541
10.1016/j.neuroimage.2014.06.077
10.1016/j.media.2017.07.005
10.1212/WNL.43.11.2412-a
10.1016/j.patrec.2015.03.018
10.1016/j.imu.2018.12.003
10.1109/TBME.2018.2869989
10.3389/fnagi.2018.00135
10.1117/12.2216307
10.1145/1961189.1961199
10.1109/CVPR.2015.7298594
10.3389/fnins.2015.00307
10.3233/JAD-130842
10.3233/JAD-130359
10.1109/JBHI.2018.2791863
10.1007/s10916-019-1428-9
10.1007/s12021-018-9370-4
10.1145/3095713.3095749
10.1109/ISBI.2017.7950647
10.1002/jmri.21049
10.2174/1567205013666151116141705
10.1016/j.jneumeth.2017.12.016
10.1371/journal.pone.0021896
10.1371/journal.pone.0031112
10.1016/j.neuroimage.2014.10.002
10.1016/j.neuroimage.2010.06.013
10.1016/j.artmed.2019.05.003
10.1002/ana.20799
10.1371/journal.pone.0077949
10.1016/j.compmedimag.2019.01.005
10.1073/pnas.082107399
10.1016/j.neuroimage.2019.116459
10.1016/j.jneumeth.2017.12.019
10.1609/aaai.v33i01.33014039
10.1016/j.dadm.2015.01.006
10.1016/j.jalz.2011.03.008
10.1212/WNL.34.7.939
ContentType Journal Article
Copyright Copyright © 2020 Nanni, Interlenghi, Brahnam, Salvatore, Papa, Nemni, Castiglioni and the Alzheimer's Disease Neuroimaging Initiative.
Copyright © 2020 Nanni, Interlenghi, Brahnam, Salvatore, Papa, Nemni, Castiglioni and the Alzheimer's Disease Neuroimaging Initiative. 2020 Nanni, Interlenghi, Brahnam, Salvatore, Papa, Nemni, Castiglioni and the Alzheimer's Disease Neuroimaging Initiative
Copyright_xml – notice: Copyright © 2020 Nanni, Interlenghi, Brahnam, Salvatore, Papa, Nemni, Castiglioni and the Alzheimer's Disease Neuroimaging Initiative.
– notice: Copyright © 2020 Nanni, Interlenghi, Brahnam, Salvatore, Papa, Nemni, Castiglioni and the Alzheimer's Disease Neuroimaging Initiative. 2020 Nanni, Interlenghi, Brahnam, Salvatore, Papa, Nemni, Castiglioni and the Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor The Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: The Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fneur.2020.576194
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2295
ExternalDocumentID oai_doaj_org_article_d95c511324db4321b15fcd97252a60aa
PMC7674838
33250847
10_3389_fneur_2020_576194
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-e24179250056068c449b491888da0da411ad8890908ef0f8da3b8ca8446e1c2c3
IEDL.DBID M48
ISSN 1664-2295
IngestDate Wed Aug 27 01:24:56 EDT 2025
Thu Aug 21 13:42:06 EDT 2025
Thu Sep 04 22:22:09 EDT 2025
Thu Apr 03 06:59:18 EDT 2025
Tue Jul 01 03:19:43 EDT 2025
Thu Apr 24 22:50:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
transfer learning
magnetic resonance imaging
CNN–convolutional neural networks
mild cognitive impairment
Alzheimer's disease
artificial intelligence
Language English
License Copyright © 2020 Nanni, Interlenghi, Brahnam, Salvatore, Papa, Nemni, Castiglioni and the Alzheimer's Disease Neuroimaging Initiative.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-e24179250056068c449b491888da0da411ad8890908ef0f8da3b8ca8446e1c2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Carl K. Chang, Iowa State University, United States
Reviewed by: Yunfei Feng, Walmart Labs, United States; Mingxia Liu, University of North Carolina at Chapel Hill, United States; Thanongchai Siriapisith, Mahidol University, Thailand
These authors have contributed equally to this work
This article was submitted to Dementia and Neurodegenerative Diseases, a section of the journal Frontiers in Neurology
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fneur.2020.576194
PMID 33250847
PQID 2465755447
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d95c511324db4321b15fcd97252a60aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674838
proquest_miscellaneous_2465755447
pubmed_primary_33250847
crossref_primary_10_3389_fneur_2020_576194
crossref_citationtrail_10_3389_fneur_2020_576194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-05
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neurology
PublicationTitleAlternate Front Neurol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Salvatore (B13) 2016; 13
Casanova (B48) 2013; 8
Moradi (B11) 2015; 104
Yosinski (B22) 2014
Mitchell (B4) 2009; 119
Liu (B68) 2018; 66
LeCun (B18) 2015; 521
Peters (B49) 2014; 38
Castiglioni (B15) 2018; 302
Cui (B65) 2019; 73
Nanni (B33) 2016; 84
Salvatore (B12) 2015; 9
Sun (B20) 2016
Folstein (B24) 1975; 12
Eskildsen (B52) 2015; 36
Grabner (B31) 2006
Sperling (B6) 2011; 7
Szegedy (B41) 2015
Liu (B64) 2018; 16
Morris (B25) 1993; 43
Dubois (B27) 2007; 6
Wang (B19) 2016
Krizhevsky (B17) 2012
Litjens (B23) 2017; 42
Sun (B39) 2014; 9
Zhang (B55) 2018; 63
Nguyen (B35) 2015; 61
Gaugler (B3) 2013; 13
Nanni (B34) 2019; 97
Haenssle (B72) 2018; 29
Salvatore (B58) 2018; 10
Dukart (B51) 2015; 49
Fox (B7) 2004; 363
Niu (B2) 2017; 32
McKhann (B28) 1984; 34
Li (B21) 2015; 3
Albert (B5) 2011; 7
Han (B38) 2006
Jack Jr (B9) 2018; 14
Runtti (B50) 2014; 39
Korolev (B61) 2017
Suk (B63) 2014; 101
Sharif Razavian (B16) 2014
Aderghal (B59) 2017
Farouk (B54) 2018
Salvatore (B14) 2018; 302
Alzheimer's (B1) 2018; 14
Smith (B71) 2002; 99
Ritter (B53) 2015; 1
Cheng (B60) 2017
Jack Jr (B30) 2008; 27
Lindgren (B37) 1993; 7
Koikkalainen (B46) 2012; 7
Kruthika (B57) 2019; 14
Chang (B40) 2011; 2
Cuingnet (B10) 2011; 56
He (B42) 2016
Liu (B67) 2018; 22
Salvatore (B29) 2017
Flach (B44) 2003
Wechsler (B26) 1987
Juba (B70) 2018; 33
Cui (B45) 2011; 6
Ye (B47) 2012; 12
Feng (B66) 2019; 7
Ortiz (B62) 2016; 26
Cawley (B36) 2007
Szegedy (B43) 2016
Liu (B69) 2020; 208
Duda (B32) 2000
Acharya (B56) 2019; 43
Jagust (B8) 2006; 59
References_xml – start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B42
  article-title: Deep residual learning for image recognition
– start-page: 3320
  volume-title: Advances in Neural Information Processing Systems.
  year: 2014
  ident: B22
  article-title: How transferable are features in deep neural networks?
– volume: 26
  start-page: 1650025
  year: 2016
  ident: B62
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's Disease
  publication-title: Int J Neural Syst.
  doi: 10.1142/S0129065716500258
– volume: 363
  start-page: 392
  year: 2004
  ident: B7
  article-title: Imaging cerebral atrophy: normal ageing to Alzheimer's disease
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(04)15441-X
– volume: 119
  start-page: 252
  year: 2009
  ident: B4
  article-title: Rate of progression of mild cognitive impairment to dementia-meta-analysis of 41 robust inception cohort studies
  publication-title: Acta Psychiatrica Scandinavica.
  doi: 10.1111/j.1600-0447.2008.01326.x
– volume: 3
  start-page: 146
  year: 2015
  ident: B21
  article-title: Automatic segmentation of liver tumor in CT images with deep convolutional neural networks
  publication-title: J Comp Commun.
  doi: 10.4236/jcc.2015.311023
– volume: 12
  start-page: 46
  year: 2012
  ident: B47
  article-title: Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-1246
– volume: 14
  start-page: 535
  year: 2018
  ident: B9
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer's disease
  publication-title: Alzheimer's Demen.
  doi: 10.1016/j.jalz.2018.02.018
– volume: 7
  start-page: 280
  year: 2011
  ident: B6
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimer's Demen.
  doi: 10.1016/j.jalz.2011.03.003
– volume: 49
  start-page: 1143
  year: 2015
  ident: B51
  article-title: Accurate prediction of conversion to Alzheimer's disease using imaging, genetic, neuropsychological biomarkers
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150570
– volume: 7
  start-page: 45
  year: 1993
  ident: B37
  article-title: The kernel algorithm for PLS
  publication-title: J Chemom.
  doi: 10.1002/cem.1180070104
– volume: 14
  start-page: 367
  year: 2018
  ident: B1
  article-title: 2018 Alzheimer's disease facts and figures
  publication-title: Alzheimer's Dem.
  doi: 10.1016/j.jalz.2018.02.001
– volume: 63
  start-page: 427
  year: 2018
  ident: B55
  article-title: Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease
  publication-title: Biomedical Eng /Biomed Technik.
  doi: 10.1515/bmt-2016-0239
– volume: 32
  start-page: 523
  year: 2017
  ident: B2
  article-title: Prevalencia e incidencia de la enfermedad de Alzheimer en Europa: metaanálisis
  publication-title: Neurologia.
  doi: 10.1016/j.nrl.2016.02.016
– volume: 7
  start-page: 63605
  year: 2019
  ident: B66
  article-title: Deep learning framework for Alzheimer's disease diagnosis via 3D-CNN and FSBi-LSTM
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2913847
– volume: 521
  start-page: 436
  year: 2015
  ident: B18
  article-title: Deep learning
  publication-title: Nature.
  doi: 10.1038/nature14539
– start-page: 133
  volume-title: 2018 9th International Conference on Information and Communication Systems (ICICS)
  year: 2018
  ident: B54
  article-title: Statistical features and voxel-based morphometry for alzheimer's disease classification
  doi: 10.1109/IACS.2018.8355455
– volume: 84
  start-page: 259
  year: 2016
  ident: B33
  article-title: Combining multiple approaches for the early diagnosis of Alzheimer's Disease
  publication-title: Pattern Recogn Lett.
  doi: 10.1016/j.patrec.2016.10.010
– volume: 6
  start-page: 734
  year: 2007
  ident: B27
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(07)70178-3
– volume-title: Random Forests Feature Selection With Kernel Partial Least Squares: Detecting Ischemia From Magnetocardiograms
  year: 2006
  ident: B38
– volume: 12
  start-page: 189
  year: 1975
  ident: B24
  article-title: Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 36
  start-page: S23
  year: 2015
  ident: B52
  article-title: Structural imaging biomarkers of Alzheimer's disease: predicting disease progression
  publication-title: Neurobiol. Aging.
  doi: 10.1016/j.neurobiolaging.2014.04.034
– start-page: 58
  volume-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006
  year: 2006
  ident: B31
  article-title: Symmetric atlasing and model based segmentation: anapplication to the hippocampus in older adults
  doi: 10.1007/11866763_8
– volume: 29
  start-page: 1836
  year: 2018
  ident: B72
  article-title: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann Oncol.
  doi: 10.1093/annonc/mdy166
– volume: 13
  start-page: 137
  year: 2013
  ident: B3
  article-title: Characteristics of patients misdiagnosed with Alzheimer's disease and their medication use: an analysis of the NACC-UDS database
  publication-title: BMC Geriatr.
  doi: 10.1186/1471-2318-13-137
– volume: 9
  start-page: e102541
  year: 2014
  ident: B39
  article-title: A kernel-based multivariate feature selection method for microarray data classification
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0102541
– volume: 101
  start-page: 569
  year: 2014
  ident: B63
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for, AD/MCI, diagnosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 42
  start-page: 60
  year: 2017
  ident: B23
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 43
  start-page: 2412
  year: 1993
  ident: B25
  article-title: The clinical dementia rating (CDR): current version and scoring rules
  publication-title: Neurology
  doi: 10.1212/WNL.43.11.2412-a
– volume: 61
  start-page: 16
  year: 2015
  ident: B35
  article-title: A novel aggregate gene selection method for microarray data classification
  publication-title: Pattern Recogn Lett.
  doi: 10.1016/j.patrec.2015.03.018
– volume: 14
  start-page: 34
  year: 2019
  ident: B57
  article-title: Multistage classifier-based approach for Alzheimer's disease prediction and retrieval
  publication-title: Inform Med Unlocked.
  doi: 10.1016/j.imu.2018.12.003
– volume: 66
  start-page: 1195
  year: 2018
  ident: B68
  article-title: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer's disease diagnosis
  publication-title: IEEE Trans Biomed Eng.
  doi: 10.1109/TBME.2018.2869989
– volume-title: Manual for Wechsler Memory Scale - Revised
  year: 1987
  ident: B26
– volume: 10
  start-page: 135
  year: 2018
  ident: B58
  article-title: MRI Characterizes the Progressive Course of AD and Predicts Conversion to Alzheimer's Dementia 24 Months Before Probable Diagnosis
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00135
– start-page: 5
  volume-title: Ninth International Conference on Digital Image Processing (ICDIP 2017)
  year: 2017
  ident: B60
  article-title: Classification of MR brain images by combination of multi-CNNs for AD diagnosis
– start-page: 209
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: B36
  article-title: Sparse multinomial logistic regression via bayesian l1 regularisation
– start-page: 97850Z
  year: 2016
  ident: B20
  article-title: Computer aided lung cancer diagnosis with deep learning algorithms
  publication-title: Medical Imaging
  doi: 10.1117/12.2216307
– year: 2016
  ident: B19
  article-title: Deep learning for identifying metastatic breast cancer
  publication-title: arXiv preprint
– volume: 2
  start-page: 27
  year: 2011
  ident: B40
  article-title: LIBSVM: a library for support vector machines
  publication-title: Trans Intell Syst Technol.
  doi: 10.1145/1961189.1961199
– volume-title: Going Deeper With Convolutions
  year: 2015
  ident: B41
  doi: 10.1109/CVPR.2015.7298594
– volume: 9
  start-page: 307
  year: 2015
  ident: B12
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2015.00307
– volume: 38
  start-page: 307
  year: 2014
  ident: B49
  article-title: Predicting progression to dementia in elderly subjects with mild cognitive impairment using both cognitive and neuroimaging predictors
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-130842
– volume: 39
  start-page: 49
  year: 2014
  ident: B50
  article-title: Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort
  publication-title: J Alzheimer's Dis.
  doi: 10.3233/JAD-130359
– volume: 22
  start-page: 1476
  year: 2018
  ident: B67
  article-title: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2018.2791863
– volume: 43
  start-page: 302
  year: 2019
  ident: B56
  article-title: Automated detection of Alzheimer's disease using brain MRI images-a study with various feature extraction techniques
  publication-title: J Med Syst.
  doi: 10.1007/s10916-019-1428-9
– volume: 16
  start-page: 295
  year: 2018
  ident: B64
  article-title: Multi-modality cascaded convolutional neural networks for alzheimer's disease diagnosis
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9370-4
– volume-title: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing
  year: 2017
  ident: B59
  article-title: FuseMe: classification of sMRI images by fusion of deep CNNs in 2D+ϵ projections
  doi: 10.1145/3095713.3095749
– start-page: 835
  volume-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
  year: 2017
  ident: B61
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  doi: 10.1109/ISBI.2017.7950647
– volume: 27
  start-page: 685
  year: 2008
  ident: B30
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imag.
  doi: 10.1002/jmri.21049
– start-page: 806
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
  year: 2014
  ident: B16
  article-title: CNN features off-the-shelf: an astounding baseline for recognition
– volume: 13
  start-page: 509
  year: 2016
  ident: B13
  article-title: Frontiers for the early diagnosis of AD by means of MRI brain imaging and support vector machines
  publication-title: Curr Alzheimer Res.
  doi: 10.2174/1567205013666151116141705
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: B17
  article-title: ImageNet classification with deep convolutional neural networks
– start-page: 2818
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B43
  article-title: Rethinking the inception architecture for computer vision
– volume: 302
  start-page: 58
  year: 2018
  ident: B14
  article-title: A wrapped multi-label classifier for the automatic diagnosis and prognosis of Alzheimer's disease
  publication-title: J Neurosci Methods.
  doi: 10.1016/j.jneumeth.2017.12.016
– start-page: 194
  volume-title: Proceedings of the 20th International Conference on Machine Learning (ICML-03)
  year: 2003
  ident: B44
  article-title: The geometry of ROC space: understanding machine learning metrics through ROC isometrics
– volume: 6
  start-page: e21896
  year: 2011
  ident: B45
  article-title: Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0021896
– volume: 7
  start-page: e31112
  year: 2012
  ident: B46
  article-title: Improved classification of Alzheimer's disease data via removal of nuisance variability
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0031112
– volume: 104
  start-page: 398
  year: 2015
  ident: B11
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume-title: Salvatore-509 dataset: Salvatore-509-v1.0.0 (Version V1.0.0)
  year: 2017
  ident: B29
– volume: 56
  start-page: 766
  year: 2011
  ident: B10
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 97
  start-page: 19
  year: 2019
  ident: B34
  article-title: Texture descriptors and voxels for the early diagnosis of Alzheimer's disease
  publication-title: Artif Intell Med.
  doi: 10.1016/j.artmed.2019.05.003
– volume: 59
  start-page: 673
  year: 2006
  ident: B8
  article-title: Brain imaging evidence of preclinical Alzheimer's disease in normal aging
  publication-title: Ann Neurol.
  doi: 10.1002/ana.20799
– volume: 8
  start-page: e77949
  year: 2013
  ident: B48
  article-title: Alzheimer's disease risk assessment using large-scale machine learning methods
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0077949
– volume: 73
  start-page: 1
  year: 2019
  ident: B65
  article-title: RNN and based longitudinal analysis for diagnosis of Alzheimer's disease
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.01.005
– volume: 99
  start-page: 4135
  year: 2002
  ident: B71
  article-title: Imaging the progression of Alzheimer pathology through the brain
  publication-title: Proc Natl Acad Sci.
  doi: 10.1073/pnas.082107399
– volume: 208
  start-page: 116459
  year: 2020
  ident: B69
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 302
  start-page: 10
  year: 2018
  ident: B15
  article-title: Machine-learning neuroimaging challenge for automated diagnosis of mild cognitive impairment: Lessons learnt
  publication-title: J Neurosci Methods.
  doi: 10.1016/j.jneumeth.2017.12.019
– volume: 33
  start-page: 4039
  year: 2018
  ident: B70
  article-title: Precision-recall versus accuracy and the role of large data sets
  publication-title: Assoc Adv Arti Intellig.
  doi: 10.1609/aaai.v33i01.33014039
– volume-title: Pattern Classification (2nd ed.)
  year: 2000
  ident: B32
– volume: 1
  start-page: 206
  year: 2015
  ident: B53
  article-title: Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.dadm.2015.01.006
– volume: 7
  start-page: 270
  year: 2011
  ident: B5
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimer's Dem.
  doi: 10.1016/j.jalz.2011.03.008
– volume: 34
  start-page: 939
  year: 1984
  ident: B28
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDSADRDA Work Group under the auspices of department of health and human services task force on Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
SSID ssj0000399363
Score 2.4508235
Snippet Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 576194
SubjectTerms Alzheimer's disease
artificial intelligence
deep learning
magnetic resonance imaging
mild cognitive impairment
Neurology
transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXRHkuj8pISEhIoX4m9rHdtipIixBQqTfLr9CVSoJ2txd-DL-VGSdddhGCC8fYk9jyjONvMpNvCHkZpDcmiVypNohKBaMrr42seDCAf3kQonzTnb2vz87Vuwt9sVHqC3PCBnrgYeEOktVRYzl0lYKSggeu25hsI7TwNfMFGjHLNpyp8g7Gc7eWQxgTvDB70CI_JPiDgr3RxXXfOogKX_-fQObvuZIbh8_pXXJnRI30cJjtHrmVu3tkdzbGxe-TH9N1OUHat7QcQG1e0JE99Qv1XaLTjQRzOitJlPmXxAhH6aqnnwqnLPJx0COsIEFnH99SALcUwCItjMj0eMjQmy_Lkz8s-vEKBj-8-n6Z51_z4tUSxEr45wE5Pz35PD2rxsoLVVS1XlVZYGEyQEcAj1htolI2KMvBW06eJa8498kYC-tucstaaJXBRG_At8w8iigfkp2u7_JjQoUJIGNs1Eoonxrbisx1SionWbMmTQi7UYOLIy05Vse4cuCeoOZc0ZxDzblBcxPyen3Lt4GT42_CR6jbtSDSaZcGMDI3Gpn7l5FNyIsby3Cw_TCm4rvcXy-dUBi50ko1E_JosJT1UFLCChrsabZsaGsu2z3d_LJQfCPFkpHmyf-Y_FNyG9ej_ECpn5EdsKH8HJDUKuyXTfMTzzIdXg
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparison of Transfer Learning and Conventional Machine Learning Applied to Structural Brain MRI for the Early Diagnosis and Prognosis of Alzheimer's Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/33250847
https://www.proquest.com/docview/2465755447
https://pubmed.ncbi.nlm.nih.gov/PMC7674838
https://doaj.org/article/d95c511324db4321b15fcd97252a60aa
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbGkKa9TPwmG0xGQkJCyogdO3EeENoK00AKQkClvUV27GyVSrKlnQT8Mfyt3DluaVHhMcnVSXPn3nc-9_sIeW5SrZTlLhaN4bEwSsZaqjRmRgH-ZYZzv6ZbfszOxuLDuTzfIgt5q_ACZxtLO9STGvfTo-_XP97AhH-NFSfk21cNUj9CqceTI-mr8lvkNiSmDGuxMqB9_8OMydhrq7EsEzEKWQ99zs2j7JKdNAWEoFB6ZSVpeW7_TYD0732VK4nq9A7ZCwiTHg8hcZdsufYe2SlDD_0--TVaSg_SrqE-WTWup4Fp9YLq1tLRymZ0WvoNl-6PRYCudN7RL55_Frk76AmqTdDy83sKQJgCsKSePZm-HXbzTWZ-5E99F47g5sfTn5du8s31L2Zg5ltFD8j49N3X0VkcVBriWmRyHjuOImbwngBKJZmqhSiMKBhU1lYnVgvGtFWqSIpEuSZp4GxqVK0V1KGO1bxOH5LttmvdY0K5MmCjiloKLrTNi4Y7Jq0VzqZZktuIJAs3VHWgMEcljWkFpQw6sfJOrNCJ1eDEiLxcfuRq4O_4n_EJ-nZpiNTb_kTXX1RhJle2kDWgVACi1oiUM8NkU9si55LrLNE6Is8WkVHBVMX-i25ddzOruMAulxQij8ijIVKWt1pEWkTytRhae5b1K-3k0tOBIx2TStX-P8c8ILv4Jf0_KOUTsg2B4Z4ClJqbQ78EceinyW_u8Rvo
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Transfer+Learning+and+Conventional+Machine+Learning+Applied+to+Structural+Brain+MRI+for+the+Early+Diagnosis+and+Prognosis+of+Alzheimer%27s+Disease&rft.jtitle=Frontiers+in+neurology&rft.au=Nanni%2C+Loris&rft.au=Interlenghi%2C+Matteo&rft.au=Brahnam%2C+Sheryl&rft.au=Salvatore%2C+Christian&rft.date=2020-11-05&rft.issn=1664-2295&rft.eissn=1664-2295&rft.volume=11&rft.spage=576194&rft_id=info:doi/10.3389%2Ffneur.2020.576194&rft_id=info%3Apmid%2F33250847&rft.externalDocID=33250847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon