Model Predictive Control of Robotic Grinding Based on Deep Belief Network

Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is proposed to control robotic grinding deformation. The rigid-flexible coupling dynamics of robotic grinding is first established, on the basis of...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2019; no. 2019; pp. 1 - 12
Main Authors Xiao, Meng, Zou, Yanbiao, Zhang, Tie, Chen, Shouyan
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Hindawi-Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is proposed to control robotic grinding deformation. The rigid-flexible coupling dynamics of robotic grinding is first established, on the basis of which a robotic grinding prediction model is constructed to predict the change of robotic grinding status and perform feed-forward control. A rolling optimization formula derived from the energy function is also established to optimize control output in real time and perform feedback control. As the accurately model parameters are hard to obtain, a deep belief network is constructed to obtain the parameters of robotic grinding predictive model. Simulation and experimental results indicate that the proposed model predictive control approach can predict abrupt change of robotic grinding status caused by deformation and perform a feed-forward and feedback based combination control, reducing control overflow and system oscillation caused by inaccurate feedback control.
AbstractList Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is proposed to control robotic grinding deformation. The rigid-flexible coupling dynamics of robotic grinding is first established, on the basis of which a robotic grinding prediction model is constructed to predict the change of robotic grinding status and perform feed-forward control. A rolling optimization formula derived from the energy function is also established to optimize control output in real time and perform feedback control. As the accurately model parameters are hard to obtain, a deep belief network is constructed to obtain the parameters of robotic grinding predictive model. Simulation and experimental results indicate that the proposed model predictive control approach can predict abrupt change of robotic grinding status caused by deformation and perform a feed-forward and feedback based combination control, reducing control overflow and system oscillation caused by inaccurate feedback control.
Audience Academic
Author Chen, Shouyan
Zou, Yanbiao
Zhang, Tie
Xiao, Meng
Author_xml – sequence: 1
  fullname: Xiao, Meng
– sequence: 2
  fullname: Zou, Yanbiao
– sequence: 3
  fullname: Zhang, Tie
– sequence: 4
  fullname: Chen, Shouyan
BookMark eNqFkc1v1DAQxS3USvSDG2dkiSOkHX_GPrYLlJVaQAjOlmNPFi9pvHVSKv57vKSiR-SRbI1-8_Q875gcjHlEQl4yOGNMqXMOzJ4zY5nQ6hk5YmBtA4rrg_271Q1vTfucHE_TFgCsFu0RWd_kiAP9UjCmMKdfSFd5nEseaO7p19zlOQV6VdIY07ihl37CSPNI3yHu6CUOCXv6CeeHXH6eksPeDxO-eLxPyPcP77-tPjbXn6_Wq4vrJkit5iaGIK1RSnZego-CG68kWAQVuY8WhRVda9F0wfTKcKECN1wyyxQEGVoQJ2S96Mbst25X0q0vv132yf1t5LJxvlTXAzrsPbSd8CxGkKCNUa2KRjNknYCey6r1etHalXx3j9Pstvm-jNW-4xyk0gaEqNTZQm18FU1jn-fiQz0Rb1OoEfSp9i80s201CrYOvF0GQsnTVLD_Z5OB2yfl9km5x6Qq_mbBf9Q1-4f0P_rVQmNl6g-faCZqafEH_pua8Q
CitedBy_id crossref_primary_10_1007_s43452_021_00318_z
crossref_primary_10_3389_fnbot_2022_971205
Cites_doi 10.1109/TCST.2010.2054092
10.1155/2017/7413642
10.1016/S1874-1029(13)60024-5
10.1109/TIE.2013.2258292
10.1108/IR-03-2017-0045
10.1016/j.rcim.2016.02.003
10.1109/70.864223
10.1109/TCST.2016.2601624
10.1016/j.rcim.2017.11.004
10.1016/j.eswa.2015.07.047
10.1016/j.rcim.2017.09.004
10.1109/TCST.2006.883339
10.1109/TIE.2017.2752151
10.1016/j.conengprac.2008.05.005
10.1007/s00170-016-9461-z
ContentType Journal Article
Copyright Copyright © 2019 Shouyan Chen et al.
COPYRIGHT 2019 John Wiley & Sons, Inc.
Copyright © 2019 Shouyan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2019 Shouyan Chen et al.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: Copyright © 2019 Shouyan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2019/1891365
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Proquest Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
Research Library (Alumni Edition)
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Advanced Technologies & Aerospace Collection



CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Nguang, Sing Kiong
Editor_xml – sequence: 1
  givenname: Sing Kiong
  surname: Nguang
  fullname: Nguang, Sing Kiong
– fullname: Sing Kiong Nguang
EndPage 12
ExternalDocumentID oai_doaj_org_article_efa07b3a1dd040688575d861e1b30f24
A619741909
10_1155_2019_1891365
1131136
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3R3
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACBWZ
ACCFJ
ACSCC
ACXQS
ADBBV
ADIZJ
ADJCN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFKRA
AFPKN
AFZJQ
AHFXO
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
DWQXO
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LH4
LP6
LP7
LW6
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
WYUIH
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
RHU
RHW
AAYXX
CITATION
7XB
8FK
JQ2
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c465t-dcc498554ba40ad328a5409e05d2ad9e393b79e8bc8f58235c282419150c4c703
IEDL.DBID RHX
ISSN 1076-2787
IngestDate Mon Nov 04 19:59:31 EST 2024
Thu Oct 10 16:21:18 EDT 2024
Tue Oct 15 04:48:39 EDT 2024
Fri Aug 23 04:19:32 EDT 2024
Sun Jun 02 19:16:23 EDT 2024
Wed Nov 06 06:03:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2019
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-dcc498554ba40ad328a5409e05d2ad9e393b79e8bc8f58235c282419150c4c703
ORCID 0000-0001-9716-3970
0000-0002-3052-3625
OpenAccessLink https://dx.doi.org/10.1155/2019/1891365
PQID 2204568033
PQPubID 2029978
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_efa07b3a1dd040688575d861e1b30f24
proquest_journals_2204568033
gale_infotracacademiconefile_A619741909
crossref_primary_10_1155_2019_1891365
hindawi_primary_10_1155_2019_1891365
emarefa_primary_1131136
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2019
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Hindawi-Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Hindawi Limited
– name: Hindawi-Wiley
References Chen H. (e_1_2_9_18_2) 2013
Zhang C. (e_1_2_9_17_2) 2007
e_1_2_9_10_2
Zeng X. (e_1_2_9_15_2) 2015; 46
e_1_2_9_20_2
e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
Li Z. (e_1_2_9_14_2) 2018
e_1_2_9_1_2
Yen V. T. (e_1_2_9_7_2) 2018; 18
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_19_2
References_xml – ident: e_1_2_9_16_2
  doi: 10.1109/TCST.2010.2054092
– ident: e_1_2_9_4_2
  doi: 10.1155/2017/7413642
– ident: e_1_2_9_9_2
  doi: 10.1016/S1874-1029(13)60024-5
– ident: e_1_2_9_13_2
  doi: 10.1109/TIE.2013.2258292
– volume-title: Model_Predictive_Control
  year: 2013
  ident: e_1_2_9_18_2
  contributor:
    fullname: Chen H.
– ident: e_1_2_9_20_2
  doi: 10.1108/IR-03-2017-0045
– start-page: 1
  year: 2018
  ident: e_1_2_9_14_2
  article-title: Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  contributor:
    fullname: Li Z.
– ident: e_1_2_9_10_2
  doi: 10.1016/j.rcim.2016.02.003
– volume-title: Machinery Dynamics
  year: 2007
  ident: e_1_2_9_17_2
  contributor:
    fullname: Zhang C.
– ident: e_1_2_9_6_2
  doi: 10.1109/70.864223
– volume: 18
  start-page: 1
  year: 2018
  ident: e_1_2_9_7_2
  article-title: Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators
  publication-title: Neural Computing and Applications
  contributor:
    fullname: Yen V. T.
– ident: e_1_2_9_8_2
  doi: 10.1109/TCST.2016.2601624
– ident: e_1_2_9_3_2
  doi: 10.1016/j.rcim.2017.11.004
– ident: e_1_2_9_5_2
  doi: 10.1016/j.eswa.2015.07.047
– ident: e_1_2_9_1_2
  doi: 10.1016/j.rcim.2017.09.004
– ident: e_1_2_9_12_2
  doi: 10.1109/TCST.2006.883339
– volume: 46
  start-page: 3710
  year: 2015
  ident: e_1_2_9_15_2
  article-title: An improved multivariable RBF-ARX model-based nonlinear model predictive control approach and application
  publication-title: Journal of Central South University (Science and Technology)
  contributor:
    fullname: Zeng X.
– ident: e_1_2_9_19_2
  doi: 10.1109/TIE.2017.2752151
– ident: e_1_2_9_11_2
  doi: 10.1016/j.conengprac.2008.05.005
– ident: e_1_2_9_2_2
  doi: 10.1007/s00170-016-9461-z
SSID ssj0009637
Score 2.2042296
Snippet Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is...
Considering the influence of rigid‐flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is...
SourceID doaj
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Belief networks
Computer simulation
Control systems
Control theory
Costs (Law)
Deformation mechanisms
Feedback control
Feedforward control
Grinding
Grinding tools
Mathematical models
Motion control
Network management systems
Neural networks
Optimization
Parameters
Predictive control
Robot control
Robotics
Robots
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SEPQgtn6tVsmhoh6WZvO1ybGvWqvQImKht5CvpQV5W9574r_vTDb7LHjoxeMuuySZSWbml0x-Q8iBCEoHCNRbQD-8RTaQ1isr25S6yKOyvC8p_2fn-vRCfr1Ul7dKfWFO2EQPPAnuMA-e9UH4LiWYb9pgRclkdJe7INjAJyZQZmcwNdPt6sKWCdhGtxzm5JzyrhSg_c4edng6hw7lljMqnP3lYq6HZ7-10fevEB3_vv7HWhcXdPKYPKqxIz2a-rxL7uXlHnl4tiVeXe-R3bpW1_R9JZT-8IR8wYJnP-m3FR7KoHmjx1OCOh0H-n0MI_xLP6-uywUXugC_lui4pB9zvqGLDEHqQM-nbPGn5OLk04_j07aWUGij1GrTphilxUy04CXzSXDjIUSzmanEfbJZWBF6m02IZlCGCxUBgknAcIpFGcEaPCM7y3GZXxBqgmeDHmLIvZJem6DAvUL00UUpet-JhrydZeluJqYMVxCGUg5l7qrMG7JAQW-_QX7r8gK07qrW3V1ab8jzqqa_bSFxkNANeYdqc7g-Nysffb1mAINApit3BIgRoijLbEMOqmbv6O_-rHZX1_facWTx14YJ8fJ_DOcVeYBNTls7-2Rns_qVX0Owswlvyrz-A8FQ8ts
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkeKloeDS3IhyLgEDXxK_Gp6ha2BakVQlTqzfIrUAltluwi_n5nHO8uEhIc83KSGc_LnvmGkCPupHLgqJcQ_bAS0UBKK7UoQ6g981KzJqX8X16pi2vx6Ube5AW3RU6rXOnEpKhD73GN_JghbrpqK85P5j9L7BqFu6u5hcZ98qDGUbFSfHq-Ad1VCTMTIhxVMpiZq8R3KSHmr_VxjXt0aFb-MEkJuT-V51o4tmtN_fA7xsi_b__S2ckQTR-TnexB0tOR5bvkXpztke3LNfzqYo_sZold0LcZVvrdE_IR2579oJ8H3JpBJUfPxjR12nf0S-96eJaeD7epzIVOwLoF2s_o-xjndBLBVe3o1Zgz_pRcTz98PbsocyOF0gsll2XwXmjMR3NWVDZw1lpw1HSsZGA26Mg1d42OrfNtJ1vGpYdATEAkJysvPOiEZ2Rr1s_iPqGts1WnOu9iI4VVrZNgZMEHqb3gja15QV6vaGnmI16GSXGGlAZpbjLNCzJBQq_vQZTrdKIfvpksNAboXzWO2zoE0DWqxW6ioVV1rB2vOiYK8jyzafMuhA_iqiBvkG0GpXQ5WG9zsQH8BOJdmVOIG8GX0pUuyFHm7H--93DFdpOlfGE2c_LFvy8fkEc42Lh0c0i2lsOv-BKcmaV7lWbsHZfm6qg
  priority: 102
  providerName: ProQuest
Title Model Predictive Control of Robotic Grinding Based on Deep Belief Network
URI https://search.emarefa.net/detail/BIM-1131136
https://dx.doi.org/10.1155/2019/1891365
https://www.proquest.com/docview/2204568033
https://doaj.org/article/efa07b3a1dd040688575d861e1b30f24
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB7RIiQ4IFpeCyXyoQg4rNhdP9Y-NqVpQGpURVTKzfJr1UooWyVB_H3GXicV9ABHr9b7mPE8Pnv8GeCYWi4sJuolop-mjGwgpeGKld7XrnFcNW0q-b-YiekV-7bgi0yStL6_hI_RDuF5rT7XcTlN8D3YkzLa33y6uOPWFYkaE4GMKBscgNv69r_6_hF5EkF_2oVrsG12DvnRdYTCv27uueYUbybP4GlOFMnJoNkDeBCWh_DkYseyuj6Eg2yYa_Ixs0d_eg5f4-lmP8jlKq7ARF9GTodqdNJ3ZN7bHvuS89VN2s1CxhjEPOmX5EsIt2QcMCPtyGwoDX8BV5Oz76fTMp-XUDom-Kb0zjEVy86sYZXxtJEG8zEVKu4b41WgitpWBWmd7LhsKHeItxgCNl455tD0X8L-sl-G10CkNVUnOmdDy5kR0nKMpZhq1I7R1tS0gPdbWerbgRZDJzjBuY4y11nmBYyjoHf3RDLrdAEVrLNtaJR_1Vpqau_RpQgZDw31UtShtrTqGlbAq6ymu3dFliAqCvgQ1aajMW5Wxpm8pwB_ItJa6ROEh5gyqUoVcJw1-4_vPdqqXWdjXusmUvYLWVH65v-e8hYex-YwU3ME-5vVz_AOc5eNHeH4nZyP4OH4bHY5H6UZgFEazb8BpCnj-w
link.rule.ids 315,783,787,866,867,880,881,2109,12777,21400,27936,27937,33385,33756,43612,43817
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BEQIOiBYKhgJ7KAIOVm3vw94TagppCk2EUCv1ttqXoRKKgxPE32dmvUmQkOAYx8-Z3Zn5dme-IeSQWSEtBOo5oJ8qRzaQ3AjFc-9LVzmhqjqm_E9ncnLJP16Jq7TgtkxplWubGA217xyukR9VyJsum4Kxd4sfOXaNwt3V1ELjJrnFGfhqrBQfn25Jd2XkzASEI_MKRuY68V0IwPylOipxjw7dyh8uKTL3x_JcA7_NxlLf_oYY-df1XzY7OqLxA3I_RZD0eFD5LrkR5nvk3nRDv7rcI7tpxi7pm0Qr_fYhOcO2Z9_p5x63ZtDI0ZMhTZ12Lf3S2Q6upaf9dSxzoSPwbp52c_o-hAUdBQhVWzobcsYfkcvxh4uTSZ4aKeSOS7HKvXNcYT6aNbwwnlWNgUBNhUL4yngVmGK2VqGxrmlFUzHhAIhxQHKicNyBTdgnO_NuHp4Q2lhTtLJ1NtSCG9lYAU4WYpDScVabkmXk1VqWejHwZeiIM4TQKHOdZJ6REQp6cw6yXMcDXf9Vp0mjQf5FbZkpvQdbIxvsJuobWYbSsqKteEYeJzVtn4X0QUxm5DWqTeMsXfXGmVRsAB-BfFf6GHAjxFKqUBk5TJr9z_serNWu0yxf6u2YfPrvv1-SO5OL6bk-P5t9ekbu4o2HZZwDsrPqf4bnENis7Is4en8DpEjtig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Predictive+Control+of+Robotic+Grinding+Based+on+Deep+Belief+Network&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Chen%2C+Shouyan&rft.au=Zhang%2C+Tie&rft.au=Zou%2C+Yanbiao&rft.au=Xiao%2C+Meng&rft.date=2019-01-01&rft.pub=Hindawi&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F1891365&rft.externalDocID=10_1155_2019_1891365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon