Model Predictive Control of Robotic Grinding Based on Deep Belief Network
Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is proposed to control robotic grinding deformation. The rigid-flexible coupling dynamics of robotic grinding is first established, on the basis of...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2019; no. 2019; pp. 1 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2019
Hindawi John Wiley & Sons, Inc Hindawi Limited Hindawi-Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is proposed to control robotic grinding deformation. The rigid-flexible coupling dynamics of robotic grinding is first established, on the basis of which a robotic grinding prediction model is constructed to predict the change of robotic grinding status and perform feed-forward control. A rolling optimization formula derived from the energy function is also established to optimize control output in real time and perform feedback control. As the accurately model parameters are hard to obtain, a deep belief network is constructed to obtain the parameters of robotic grinding predictive model. Simulation and experimental results indicate that the proposed model predictive control approach can predict abrupt change of robotic grinding status caused by deformation and perform a feed-forward and feedback based combination control, reducing control overflow and system oscillation caused by inaccurate feedback control. |
---|---|
AbstractList | Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is proposed to control robotic grinding deformation. The rigid-flexible coupling dynamics of robotic grinding is first established, on the basis of which a robotic grinding prediction model is constructed to predict the change of robotic grinding status and perform feed-forward control. A rolling optimization formula derived from the energy function is also established to optimize control output in real time and perform feedback control. As the accurately model parameters are hard to obtain, a deep belief network is constructed to obtain the parameters of robotic grinding predictive model. Simulation and experimental results indicate that the proposed model predictive control approach can predict abrupt change of robotic grinding status caused by deformation and perform a feed-forward and feedback based combination control, reducing control overflow and system oscillation caused by inaccurate feedback control. |
Audience | Academic |
Author | Chen, Shouyan Zou, Yanbiao Zhang, Tie Xiao, Meng |
Author_xml | – sequence: 1 fullname: Xiao, Meng – sequence: 2 fullname: Zou, Yanbiao – sequence: 3 fullname: Zhang, Tie – sequence: 4 fullname: Chen, Shouyan |
BookMark | eNqFkc1v1DAQxS3USvSDG2dkiSOkHX_GPrYLlJVaQAjOlmNPFi9pvHVSKv57vKSiR-SRbI1-8_Q875gcjHlEQl4yOGNMqXMOzJ4zY5nQ6hk5YmBtA4rrg_271Q1vTfucHE_TFgCsFu0RWd_kiAP9UjCmMKdfSFd5nEseaO7p19zlOQV6VdIY07ihl37CSPNI3yHu6CUOCXv6CeeHXH6eksPeDxO-eLxPyPcP77-tPjbXn6_Wq4vrJkit5iaGIK1RSnZego-CG68kWAQVuY8WhRVda9F0wfTKcKECN1wyyxQEGVoQJ2S96Mbst25X0q0vv132yf1t5LJxvlTXAzrsPbSd8CxGkKCNUa2KRjNknYCey6r1etHalXx3j9Pstvm-jNW-4xyk0gaEqNTZQm18FU1jn-fiQz0Rb1OoEfSp9i80s201CrYOvF0GQsnTVLD_Z5OB2yfl9km5x6Qq_mbBf9Q1-4f0P_rVQmNl6g-faCZqafEH_pua8Q |
CitedBy_id | crossref_primary_10_1007_s43452_021_00318_z crossref_primary_10_3389_fnbot_2022_971205 |
Cites_doi | 10.1109/TCST.2010.2054092 10.1155/2017/7413642 10.1016/S1874-1029(13)60024-5 10.1109/TIE.2013.2258292 10.1108/IR-03-2017-0045 10.1016/j.rcim.2016.02.003 10.1109/70.864223 10.1109/TCST.2016.2601624 10.1016/j.rcim.2017.11.004 10.1016/j.eswa.2015.07.047 10.1016/j.rcim.2017.09.004 10.1109/TCST.2006.883339 10.1109/TIE.2017.2752151 10.1016/j.conengprac.2008.05.005 10.1007/s00170-016-9461-z |
ContentType | Journal Article |
Copyright | Copyright © 2019 Shouyan Chen et al. COPYRIGHT 2019 John Wiley & Sons, Inc. Copyright © 2019 Shouyan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2019 Shouyan Chen et al. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc. – notice: Copyright © 2019 Shouyan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2019/1891365 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Proquest Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection Research Library (Alumni Edition) ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Nguang, Sing Kiong |
Editor_xml | – sequence: 1 givenname: Sing Kiong surname: Nguang fullname: Nguang, Sing Kiong – fullname: Sing Kiong Nguang |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_efa07b3a1dd040688575d861e1b30f24 A619741909 10_1155_2019_1891365 1131136 |
GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3R3 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCFJ ACSCC ACXQS ADBBV ADIZJ ADJCN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFKRA AFPKN AFZJQ AHFXO AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LH4 LP6 LP7 LW6 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC WYUIH XBAML XG1 XPP XSW XV2 ~IA ~WT RHU RHW AAYXX CITATION 7XB 8FK JQ2 MBDVC PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c465t-dcc498554ba40ad328a5409e05d2ad9e393b79e8bc8f58235c282419150c4c703 |
IEDL.DBID | RHX |
ISSN | 1076-2787 |
IngestDate | Mon Nov 04 19:59:31 EST 2024 Thu Oct 10 16:21:18 EDT 2024 Tue Oct 15 04:48:39 EDT 2024 Fri Aug 23 04:19:32 EDT 2024 Sun Jun 02 19:16:23 EDT 2024 Wed Nov 06 06:03:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2019 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-dcc498554ba40ad328a5409e05d2ad9e393b79e8bc8f58235c282419150c4c703 |
ORCID | 0000-0001-9716-3970 0000-0002-3052-3625 |
OpenAccessLink | https://dx.doi.org/10.1155/2019/1891365 |
PQID | 2204568033 |
PQPubID | 2029978 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_efa07b3a1dd040688575d861e1b30f24 proquest_journals_2204568033 gale_infotracacademiconefile_A619741909 crossref_primary_10_1155_2019_1891365 hindawi_primary_10_1155_2019_1891365 emarefa_primary_1131136 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2019 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Hindawi Limited Hindawi-Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Hindawi Limited – name: Hindawi-Wiley |
References | Chen H. (e_1_2_9_18_2) 2013 Zhang C. (e_1_2_9_17_2) 2007 e_1_2_9_10_2 Zeng X. (e_1_2_9_15_2) 2015; 46 e_1_2_9_20_2 e_1_2_9_12_2 e_1_2_9_11_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 Li Z. (e_1_2_9_14_2) 2018 e_1_2_9_1_2 Yen V. T. (e_1_2_9_7_2) 2018; 18 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_13_2 e_1_2_9_16_2 e_1_2_9_19_2 |
References_xml | – ident: e_1_2_9_16_2 doi: 10.1109/TCST.2010.2054092 – ident: e_1_2_9_4_2 doi: 10.1155/2017/7413642 – ident: e_1_2_9_9_2 doi: 10.1016/S1874-1029(13)60024-5 – ident: e_1_2_9_13_2 doi: 10.1109/TIE.2013.2258292 – volume-title: Model_Predictive_Control year: 2013 ident: e_1_2_9_18_2 contributor: fullname: Chen H. – ident: e_1_2_9_20_2 doi: 10.1108/IR-03-2017-0045 – start-page: 1 year: 2018 ident: e_1_2_9_14_2 article-title: Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems publication-title: IEEE Transactions on Neural Networks and Learning Systems contributor: fullname: Li Z. – ident: e_1_2_9_10_2 doi: 10.1016/j.rcim.2016.02.003 – volume-title: Machinery Dynamics year: 2007 ident: e_1_2_9_17_2 contributor: fullname: Zhang C. – ident: e_1_2_9_6_2 doi: 10.1109/70.864223 – volume: 18 start-page: 1 year: 2018 ident: e_1_2_9_7_2 article-title: Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators publication-title: Neural Computing and Applications contributor: fullname: Yen V. T. – ident: e_1_2_9_8_2 doi: 10.1109/TCST.2016.2601624 – ident: e_1_2_9_3_2 doi: 10.1016/j.rcim.2017.11.004 – ident: e_1_2_9_5_2 doi: 10.1016/j.eswa.2015.07.047 – ident: e_1_2_9_1_2 doi: 10.1016/j.rcim.2017.09.004 – ident: e_1_2_9_12_2 doi: 10.1109/TCST.2006.883339 – volume: 46 start-page: 3710 year: 2015 ident: e_1_2_9_15_2 article-title: An improved multivariable RBF-ARX model-based nonlinear model predictive control approach and application publication-title: Journal of Central South University (Science and Technology) contributor: fullname: Zeng X. – ident: e_1_2_9_19_2 doi: 10.1109/TIE.2017.2752151 – ident: e_1_2_9_11_2 doi: 10.1016/j.conengprac.2008.05.005 – ident: e_1_2_9_2_2 doi: 10.1007/s00170-016-9461-z |
SSID | ssj0009637 |
Score | 2.2042296 |
Snippet | Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is... Considering the influence of rigid‐flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Analysis Belief networks Computer simulation Control systems Control theory Costs (Law) Deformation mechanisms Feedback control Feedforward control Grinding Grinding tools Mathematical models Motion control Network management systems Neural networks Optimization Parameters Predictive control Robot control Robotics Robots |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SEPQgtn6tVsmhoh6WZvO1ybGvWqvQImKht5CvpQV5W9574r_vTDb7LHjoxeMuuySZSWbml0x-Q8iBCEoHCNRbQD-8RTaQ1isr25S6yKOyvC8p_2fn-vRCfr1Ul7dKfWFO2EQPPAnuMA-e9UH4LiWYb9pgRclkdJe7INjAJyZQZmcwNdPt6sKWCdhGtxzm5JzyrhSg_c4edng6hw7lljMqnP3lYq6HZ7-10fevEB3_vv7HWhcXdPKYPKqxIz2a-rxL7uXlHnl4tiVeXe-R3bpW1_R9JZT-8IR8wYJnP-m3FR7KoHmjx1OCOh0H-n0MI_xLP6-uywUXugC_lui4pB9zvqGLDEHqQM-nbPGn5OLk04_j07aWUGij1GrTphilxUy04CXzSXDjIUSzmanEfbJZWBF6m02IZlCGCxUBgknAcIpFGcEaPCM7y3GZXxBqgmeDHmLIvZJem6DAvUL00UUpet-JhrydZeluJqYMVxCGUg5l7qrMG7JAQW-_QX7r8gK07qrW3V1ab8jzqqa_bSFxkNANeYdqc7g-Nysffb1mAINApit3BIgRoijLbEMOqmbv6O_-rHZX1_facWTx14YJ8fJ_DOcVeYBNTls7-2Rns_qVX0Owswlvyrz-A8FQ8ts priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkeKloeDS3IhyLgEDXxK_Gp6ha2BakVQlTqzfIrUAltluwi_n5nHO8uEhIc83KSGc_LnvmGkCPupHLgqJcQ_bAS0UBKK7UoQ6g981KzJqX8X16pi2vx6Ube5AW3RU6rXOnEpKhD73GN_JghbrpqK85P5j9L7BqFu6u5hcZ98qDGUbFSfHq-Ad1VCTMTIhxVMpiZq8R3KSHmr_VxjXt0aFb-MEkJuT-V51o4tmtN_fA7xsi_b__S2ckQTR-TnexB0tOR5bvkXpztke3LNfzqYo_sZold0LcZVvrdE_IR2579oJ8H3JpBJUfPxjR12nf0S-96eJaeD7epzIVOwLoF2s_o-xjndBLBVe3o1Zgz_pRcTz98PbsocyOF0gsll2XwXmjMR3NWVDZw1lpw1HSsZGA26Mg1d42OrfNtJ1vGpYdATEAkJysvPOiEZ2Rr1s_iPqGts1WnOu9iI4VVrZNgZMEHqb3gja15QV6vaGnmI16GSXGGlAZpbjLNCzJBQq_vQZTrdKIfvpksNAboXzWO2zoE0DWqxW6ioVV1rB2vOiYK8jyzafMuhA_iqiBvkG0GpXQ5WG9zsQH8BOJdmVOIG8GX0pUuyFHm7H--93DFdpOlfGE2c_LFvy8fkEc42Lh0c0i2lsOv-BKcmaV7lWbsHZfm6qg priority: 102 providerName: ProQuest |
Title | Model Predictive Control of Robotic Grinding Based on Deep Belief Network |
URI | https://search.emarefa.net/detail/BIM-1131136 https://dx.doi.org/10.1155/2019/1891365 https://www.proquest.com/docview/2204568033 https://doaj.org/article/efa07b3a1dd040688575d861e1b30f24 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB7RIiQ4IFpeCyXyoQg4rNhdP9Y-NqVpQGpURVTKzfJr1UooWyVB_H3GXicV9ABHr9b7mPE8Pnv8GeCYWi4sJuolop-mjGwgpeGKld7XrnFcNW0q-b-YiekV-7bgi0yStL6_hI_RDuF5rT7XcTlN8D3YkzLa33y6uOPWFYkaE4GMKBscgNv69r_6_hF5EkF_2oVrsG12DvnRdYTCv27uueYUbybP4GlOFMnJoNkDeBCWh_DkYseyuj6Eg2yYa_Ixs0d_eg5f4-lmP8jlKq7ARF9GTodqdNJ3ZN7bHvuS89VN2s1CxhjEPOmX5EsIt2QcMCPtyGwoDX8BV5Oz76fTMp-XUDom-Kb0zjEVy86sYZXxtJEG8zEVKu4b41WgitpWBWmd7LhsKHeItxgCNl455tD0X8L-sl-G10CkNVUnOmdDy5kR0nKMpZhq1I7R1tS0gPdbWerbgRZDJzjBuY4y11nmBYyjoHf3RDLrdAEVrLNtaJR_1Vpqau_RpQgZDw31UtShtrTqGlbAq6ymu3dFliAqCvgQ1aajMW5Wxpm8pwB_ItJa6ROEh5gyqUoVcJw1-4_vPdqqXWdjXusmUvYLWVH65v-e8hYex-YwU3ME-5vVz_AOc5eNHeH4nZyP4OH4bHY5H6UZgFEazb8BpCnj-w |
link.rule.ids | 315,783,787,866,867,880,881,2109,12777,21400,27936,27937,33385,33756,43612,43817 |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BEQIOiBYKhgJ7KAIOVm3vw94TagppCk2EUCv1ttqXoRKKgxPE32dmvUmQkOAYx8-Z3Zn5dme-IeSQWSEtBOo5oJ8qRzaQ3AjFc-9LVzmhqjqm_E9ncnLJP16Jq7TgtkxplWubGA217xyukR9VyJsum4Kxd4sfOXaNwt3V1ELjJrnFGfhqrBQfn25Jd2XkzASEI_MKRuY68V0IwPylOipxjw7dyh8uKTL3x_JcA7_NxlLf_oYY-df1XzY7OqLxA3I_RZD0eFD5LrkR5nvk3nRDv7rcI7tpxi7pm0Qr_fYhOcO2Z9_p5x63ZtDI0ZMhTZ12Lf3S2Q6upaf9dSxzoSPwbp52c_o-hAUdBQhVWzobcsYfkcvxh4uTSZ4aKeSOS7HKvXNcYT6aNbwwnlWNgUBNhUL4yngVmGK2VqGxrmlFUzHhAIhxQHKicNyBTdgnO_NuHp4Q2lhTtLJ1NtSCG9lYAU4WYpDScVabkmXk1VqWejHwZeiIM4TQKHOdZJ6REQp6cw6yXMcDXf9Vp0mjQf5FbZkpvQdbIxvsJuobWYbSsqKteEYeJzVtn4X0QUxm5DWqTeMsXfXGmVRsAB-BfFf6GHAjxFKqUBk5TJr9z_serNWu0yxf6u2YfPrvv1-SO5OL6bk-P5t9ekbu4o2HZZwDsrPqf4bnENis7Is4en8DpEjtig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Predictive+Control+of+Robotic+Grinding+Based+on+Deep+Belief+Network&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Chen%2C+Shouyan&rft.au=Zhang%2C+Tie&rft.au=Zou%2C+Yanbiao&rft.au=Xiao%2C+Meng&rft.date=2019-01-01&rft.pub=Hindawi&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F1891365&rft.externalDocID=10_1155_2019_1891365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |