Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols

Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 295; no. 1; pp. 66 - 79
Main Authors van Velzen, Sanne G. M., Lessmann, Nikolas, Velthuis, Birgitta K., Bank, Ingrid E. M., van den Bongard, Desiree H. J. G., Leiner, Tim, de Jong, Pim A., Veldhuis, Wouter B., Correa, Adolfo, Terry, James G., Carr, John Jeffrey, Viergever, Max A., Verkooijen, Helena M., Išgum, Ivana
Format Journal Article
LanguageEnglish
Published United States Radiological Society of North America 01.04.2020
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.2020191621

Cover

Loading…
Abstract Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with 1181 low-dose chest CT examinations (baseline), a small set of examinations of the respective type supplemented to the baseline (data specific), and a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue.
AbstractList Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue.Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue.
Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with 1181 low-dose chest CT examinations (baseline), a small set of examinations of the respective type supplemented to the baseline (data specific), and a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue.
Author de Jong, Pim A.
Bank, Ingrid E. M.
van Velzen, Sanne G. M.
Carr, John Jeffrey
Verkooijen, Helena M.
Terry, James G.
Viergever, Max A.
Leiner, Tim
Lessmann, Nikolas
Išgum, Ivana
Correa, Adolfo
Velthuis, Birgitta K.
van den Bongard, Desiree H. J. G.
Veldhuis, Wouter B.
Author_xml – sequence: 1
  givenname: Sanne G. M.
  orcidid: 0000-0003-0682-1013
  surname: van Velzen
  fullname: van Velzen, Sanne G. M.
– sequence: 2
  givenname: Nikolas
  orcidid: 0000-0001-7935-9611
  surname: Lessmann
  fullname: Lessmann, Nikolas
– sequence: 3
  givenname: Birgitta K.
  surname: Velthuis
  fullname: Velthuis, Birgitta K.
– sequence: 4
  givenname: Ingrid E. M.
  orcidid: 0000-0002-2984-849X
  surname: Bank
  fullname: Bank, Ingrid E. M.
– sequence: 5
  givenname: Desiree H. J. G.
  surname: van den Bongard
  fullname: van den Bongard, Desiree H. J. G.
– sequence: 6
  givenname: Tim
  orcidid: 0000-0003-1885-5499
  surname: Leiner
  fullname: Leiner, Tim
– sequence: 7
  givenname: Pim A.
  orcidid: 0000-0003-4840-6854
  surname: de Jong
  fullname: de Jong, Pim A.
– sequence: 8
  givenname: Wouter B.
  orcidid: 0000-0002-9798-6843
  surname: Veldhuis
  fullname: Veldhuis, Wouter B.
– sequence: 9
  givenname: Adolfo
  surname: Correa
  fullname: Correa, Adolfo
– sequence: 10
  givenname: James G.
  surname: Terry
  fullname: Terry, James G.
– sequence: 11
  givenname: John Jeffrey
  orcidid: 0000-0002-4398-8237
  surname: Carr
  fullname: Carr, John Jeffrey
– sequence: 12
  givenname: Max A.
  surname: Viergever
  fullname: Viergever, Max A.
– sequence: 13
  givenname: Helena M.
  orcidid: 0000-0001-9480-1623
  surname: Verkooijen
  fullname: Verkooijen, Helena M.
– sequence: 14
  givenname: Ivana
  orcidid: 0000-0003-1869-5034
  surname: Išgum
  fullname: Išgum, Ivana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32043947$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFH8AF-cglZSa244QDUhU-pUUgseVqOY7TGjn2YidI_Hu8bCkfB06W_b7PzHjeM3ISYrCEPEa4QOTts6RHF_1FDTVgh02N98gGRS0rZChOyAaAsarl2J2Ss5y_ACAXrXxATlkNnHVcbkh4ae2ebq1OwYVrOsVEL9clznpxhvbaG7fO9JOJ6aC6QPvdc_pZezcWQwz0Kh_e369-cXtvC5BGpwu4ozqMtL-xeTlcPqa4RBN9fkjuT9pn--j2PCdXr1_t-rfV9sObd_3ltjK8EUs1CtAGsBlgaiYxcMGsMXVTxp9aLqXQbLCTBBwG4O0o264x0EwGeBGY7Tg7Jy-OdffrMNvR2LAk7dU-uVmn7ypqp_5WgrtR1_GbkghN4UuBp7cFUvy6lm-o2WVjvdfBxjWrmgkmWmAci_XJn73umvxacjHg0WBSzDnZ6c6CoA5BqmOQ6neQhZH_MMYtP3dexnX-P-QPiJukZg
CitedBy_id crossref_primary_10_1148_ryai_2021210097
crossref_primary_10_1016_j_ancard_2021_08_001
crossref_primary_10_1007_s00330_022_09143_1
crossref_primary_10_3389_fcvm_2021_736223
crossref_primary_10_1016_j_phro_2022_07_003
crossref_primary_10_1016_j_thorsurg_2023_03_001
crossref_primary_10_1093_eurjpc_zwae323
crossref_primary_10_1016_j_compbiomed_2023_106998
crossref_primary_10_1007_s10554_022_02656_2
crossref_primary_10_1007_s12350_022_03049_7
crossref_primary_10_3348_kjr_2020_1314
crossref_primary_10_3389_fcvm_2022_940615
crossref_primary_10_3390_diagnostics14020125
crossref_primary_10_2967_jnumed_119_231837
crossref_primary_10_1007_s00330_020_07659_y
crossref_primary_10_1016_j_heliyon_2022_e10872
crossref_primary_10_1016_j_cpet_2021_06_011
crossref_primary_10_1016_j_jcct_2021_03_006
crossref_primary_10_1007_s12181_021_00511_7
crossref_primary_10_1097_RTI_0000000000000657
crossref_primary_10_1016_j_jrras_2024_101012
crossref_primary_10_1007_s42058_022_00091_9
crossref_primary_10_2147_VHRM_S279337
crossref_primary_10_2196_55833
crossref_primary_10_1007_s12350_022_02941_6
crossref_primary_10_1007_s11912_024_01598_3
crossref_primary_10_1038_s41467_021_20966_2
crossref_primary_10_1200_CCI_21_00095
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_3390_jcm13123453
crossref_primary_10_1109_JBHI_2024_3512940
crossref_primary_10_1016_j_jcmg_2022_06_006
crossref_primary_10_1177_00033197231155963
crossref_primary_10_1007_s11886_022_01837_8
crossref_primary_10_1016_j_jcct_2020_09_008
crossref_primary_10_1007_s00330_022_08801_8
crossref_primary_10_1038_s41746_021_00460_1
crossref_primary_10_1148_radiol_2021211483
crossref_primary_10_1148_radiol_2021211002
crossref_primary_10_1371_journal_pone_0244267
crossref_primary_10_1016_j_ejrad_2021_109767
crossref_primary_10_1186_s13244_024_01827_0
crossref_primary_10_1016_j_medp_2023_100001
crossref_primary_10_1016_j_ejrad_2021_109528
crossref_primary_10_1001_jamaoncol_2021_1144
crossref_primary_10_1002_mp_17028
crossref_primary_10_3389_fcvm_2022_949454
crossref_primary_10_1186_s40959_024_00206_4
crossref_primary_10_1186_s12880_022_00907_1
crossref_primary_10_1148_radiol_232030
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_1016_j_pcad_2023_09_001
crossref_primary_10_1117_1_JMI_9_5_052406
crossref_primary_10_3389_fonc_2022_989250
crossref_primary_10_2147_JIR_S392482
crossref_primary_10_1016_j_ijcard_2020_12_079
crossref_primary_10_1093_ehjci_jeae081
crossref_primary_10_1002_hed_26927
crossref_primary_10_3390_diagnostics12102435
crossref_primary_10_1155_2020_6649410
crossref_primary_10_1148_rg_210122
crossref_primary_10_1016_j_diii_2021_06_007
crossref_primary_10_1109_ACCESS_2022_3161954
crossref_primary_10_1002_mp_15870
crossref_primary_10_1016_j_knosys_2020_106445
crossref_primary_10_1016_j_jacc_2020_11_030
crossref_primary_10_1007_s12350_022_02940_7
crossref_primary_10_1093_eurjpc_zwae325
crossref_primary_10_1161_CIRCIMAGING_121_013025
crossref_primary_10_3400_avd_oa_22_00060
crossref_primary_10_1016_j_banm_2023_07_017
crossref_primary_10_1161_JAHA_123_031601
crossref_primary_10_1016_j_ejrad_2023_110855
crossref_primary_10_1053_j_ro_2023_02_001
crossref_primary_10_1016_j_radonc_2024_110705
crossref_primary_10_1093_ehjci_jeab119
crossref_primary_10_1007_s12170_023_00731_4
crossref_primary_10_31083_j_rcm2501027
crossref_primary_10_1016_j_ijrobp_2021_09_008
crossref_primary_10_3390_diagnostics12051045
crossref_primary_10_1007_s00330_022_09028_3
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_1038_s41569_023_00900_3
crossref_primary_10_1007_s10554_020_01929_y
crossref_primary_10_1007_s12350_022_03047_9
crossref_primary_10_1038_s41598_022_20005_0
crossref_primary_10_3390_diagnostics14182096
crossref_primary_10_1016_j_jmir_2021_07_006
crossref_primary_10_3389_fcvm_2023_1120361
crossref_primary_10_1007_s12350_023_03288_2
crossref_primary_10_1148_radiol_2020192718
crossref_primary_10_1148_radiol_2021212586
crossref_primary_10_1007_s10554_024_03080_4
crossref_primary_10_17816_DD623196
crossref_primary_10_1016_j_ejrad_2022_110601
crossref_primary_10_3390_tomography7040054
crossref_primary_10_1016_j_ejrad_2020_109114
crossref_primary_10_1053_j_semnuclmed_2020_03_004
crossref_primary_10_3348_kjr_2021_0148
crossref_primary_10_1007_s11547_023_01606_9
crossref_primary_10_1016_j_banm_2024_11_019
crossref_primary_10_1016_j_rcl_2024_01_002
crossref_primary_10_1016_j_metrad_2024_100114
crossref_primary_10_3390_s21217059
crossref_primary_10_1097_MD_0000000000038295
crossref_primary_10_1016_j_compbiomed_2024_109295
crossref_primary_10_1259_bjro_20220021
crossref_primary_10_1016_j_imed_2021_06_004
crossref_primary_10_3390_healthcare10020232
crossref_primary_10_1148_ryct_2021200512
crossref_primary_10_1007_s00330_023_10573_8
crossref_primary_10_1097_RTI_0000000000000765
crossref_primary_10_3389_fcvm_2022_981901
crossref_primary_10_1016_j_hfc_2021_11_003
crossref_primary_10_1016_j_ijcard_2021_04_009
crossref_primary_10_3233_THC_231273
crossref_primary_10_1016_j_diii_2023_06_011
crossref_primary_10_1016_j_ijcha_2024_101593
crossref_primary_10_1148_radiol_2021204623
crossref_primary_10_3390_diagnostics12081876
crossref_primary_10_1007_s11042_024_18953_y
crossref_primary_10_1016_j_jcct_2024_08_003
crossref_primary_10_1016_S0140_6736_22_01694_4
crossref_primary_10_3390_jcm12144774
crossref_primary_10_1007_s11547_020_01277_w
crossref_primary_10_1016_j_rmr_2023_12_001
crossref_primary_10_1016_j_clinimag_2023_110045
crossref_primary_10_1007_s00330_022_08975_1
crossref_primary_10_1055_a_1717_2703
crossref_primary_10_1007_s11886_020_01337_7
crossref_primary_10_1111_resp_14344
crossref_primary_10_1001_jamacardio_2023_3142
crossref_primary_10_3348_kjr_2022_0826
crossref_primary_10_1111_echo_70098
crossref_primary_10_1016_j_amjcard_2020_10_022
crossref_primary_10_1007_s12410_020_09549_9
crossref_primary_10_1016_j_diii_2021_05_004
crossref_primary_10_1088_2057_1976_ad2ff2
crossref_primary_10_1148_radiol_240516
crossref_primary_10_1016_j_compmedimag_2025_102503
crossref_primary_10_1016_j_ijcrp_2021_200113
crossref_primary_10_1007_s00330_022_09117_3
crossref_primary_10_1016_j_acra_2020_09_021
crossref_primary_10_1038_s41467_024_46977_3
crossref_primary_10_1055_a_1395_7905
crossref_primary_10_1038_s41598_024_76092_8
Cites_doi 10.1109/TMI.2015.2412651
10.1007/s10554-010-9607-2
10.2214/AJR.04.1589
10.1371/journal.pone.0167925
10.1016/j.media.2017.06.015
10.1161/CIRCULATIONAHA.115.018524
10.1118/1.2710548
10.9734/BJMMR/2016/21449
10.1109/TMI.2014.2377694
10.1007/s12350-017-0866-3
10.1016/j.jcct.2016.11.003
10.1016/j.jcmg.2015.02.006
10.1056/NEJMoa1102873
10.1016/j.radonc.2018.04.011
10.1016/j.ahj.2007.11.019
10.1148/radiol.2017171920
10.1016/j.acra.2012.07.018
10.1148/radiol.15142062
10.1109/TMI.2016.2535302
10.1109/TMI.2016.2528162
10.2214/AJR.10.5577
10.1109/TMI.2017.2673121
10.1016/0735-1097(90)90282-T
10.1148/radiol.10100383
10.1093/ehjci/jes079
10.1109/TMI.2017.2769839
10.1016/j.jacc.2006.10.079
10.1371/journal.pone.0091239
10.1001/jamacardio.2016.5493
10.1118/1.3284211
ContentType Journal Article
Copyright 2020 by the Radiological Society of North America, Inc. 2020
Copyright_xml – notice: 2020 by the Radiological Society of North America, Inc. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1148/radiol.2020191621
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 79
ExternalDocumentID PMC7106943
32043947
10_1148_radiol_2020191621
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMHD NIH HHS
  grantid: HHSN268201800013I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201800014I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201800012I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201800010I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201800012C
– fundername: NHLBI NIH HHS
  grantid: HHSN268201800014C
– fundername: NCI NIH HHS
  grantid: HHSN261201800014I
– fundername: NCI NIH HHS
  grantid: HHSN261201800012I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201800015I
– fundername: NHLBI NIH HHS
  grantid: HHSN268201100011I
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c465t-d50ac016b0f6f5b453ecc26145f84775a3bef701bb048d7896c06fc04a3b3e943
ISSN 0033-8419
1527-1315
IngestDate Thu Aug 21 14:03:42 EDT 2025
Fri Jul 11 09:35:23 EDT 2025
Mon Jul 21 06:02:27 EDT 2025
Tue Jul 01 00:43:47 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-d50ac016b0f6f5b453ecc26145f84775a3bef701bb048d7896c06fc04a3b3e943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Author contributions: Guarantors of integrity of entire study, S.G.M.v.V., D.H.J.G.v.d.B., A.C.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of final version of submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors; literature research, S.G.M.v.V., T.L., I.I.; clinical studies, I.E.M.B., D.H.J.G.v.d.B., T.L., W.B.V., J.G.T., J.J.C.; statistical analysis, S.G.M.v.V., A.C., H.M.V.; and manuscript editing, S.G.M.v.V., N.L., B.K.V., I.E.M.B., D.H.J.G.v.d.B., T.L., W.B.V., A.C., J.G.T., J.J.C., M.A.V., H.M.V., I.I.
ORCID 0000-0001-7935-9611
0000-0003-1869-5034
0000-0003-1885-5499
0000-0003-0682-1013
0000-0002-4398-8237
0000-0003-4840-6854
0000-0002-2984-849X
0000-0001-9480-1623
0000-0002-9798-6843
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7106943
PMID 32043947
PQID 2353580341
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7106943
proquest_miscellaneous_2353580341
pubmed_primary_32043947
crossref_primary_10_1148_radiol_2020191621
crossref_citationtrail_10_1148_radiol_2020191621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2020
Publisher Radiological Society of North America
Publisher_xml – name: Radiological Society of North America
References r2
r3
r4
r5
r6
r7
r8
r9
Bank IEM (r19) 2017
r30
r10
r31
r12
r34
r11
r33
r14
r13
r35
r16
r15
r18
r17
Cano-Espinosa C (r32) 2018; 10574
Grundy SM (r1) 2019; 139
r21
r23
r22
r25
r24
r26
r29
r28
Taylor HA (r20) 2005; 15
32053061 - Radiology. 2020 Apr;295(1):80-81
References_xml – ident: r6
  doi: 10.1109/TMI.2015.2412651
– volume: 15
  start-page: S6
  issue: 4
  year: 2005
  ident: r20
  publication-title: Ethn Dis
– ident: r4
  doi: 10.1007/s10554-010-9607-2
– ident: r26
  doi: 10.2214/AJR.04.1589
– ident: r12
  doi: 10.1371/journal.pone.0167925
– ident: r17
  doi: 10.1016/j.media.2017.06.015
– ident: r28
  doi: 10.1161/CIRCULATIONAHA.115.018524
– ident: r3
  doi: 10.1118/1.2710548
– ident: r21
  doi: 10.9734/BJMMR/2016/21449
– ident: r16
  doi: 10.1109/TMI.2014.2377694
– ident: r13
  doi: 10.1007/s12350-017-0866-3
– volume: 10574
  start-page: 105742K
  volume-title: Proceedings of SPIE: medical imaging 2018—image processing
  year: 2018
  ident: r32
– ident: r35
  doi: 10.1016/j.jcct.2016.11.003
– ident: r2
  doi: 10.1016/j.jcmg.2015.02.006
– ident: r22
  doi: 10.1056/NEJMoa1102873
– volume: 139
  start-page: e1046
  issue: 25
  year: 2019
  ident: r1
  publication-title: Circulation
– ident: r11
  doi: 10.1016/j.radonc.2018.04.011
– ident: r14
  doi: 10.1016/j.ahj.2007.11.019
– ident: r18
  doi: 10.1148/radiol.2017171920
– volume-title: Ischaemic Heart Disease: Early Recognition and Risk Disparities [dissertation]. Vol. Chapter 3
  year: 2017
  ident: r19
– ident: r5
  doi: 10.1016/j.acra.2012.07.018
– ident: r9
  doi: 10.1148/radiol.15142062
– ident: r33
  doi: 10.1109/TMI.2016.2535302
– ident: r34
  doi: 10.1109/TMI.2016.2528162
– ident: r8
  doi: 10.2214/AJR.10.5577
– ident: r23
  doi: 10.1109/TMI.2017.2673121
– ident: r24
  doi: 10.1016/0735-1097(90)90282-T
– ident: r7
  doi: 10.1148/radiol.10100383
– ident: r30
  doi: 10.1093/ehjci/jes079
– ident: r10
  doi: 10.1109/TMI.2017.2769839
– ident: r25
  doi: 10.1016/j.jacc.2006.10.079
– ident: r31
  doi: 10.1371/journal.pone.0091239
– ident: r29
  doi: 10.1001/jamacardio.2016.5493
– ident: r15
  doi: 10.1118/1.3284211
– reference: 32053061 - Radiology. 2020 Apr;295(1):80-81
SSID ssj0014587
Score 2.6442003
Snippet Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 66
SubjectTerms Aged
Clinical Protocols
Coronary Artery Disease - diagnostic imaging
Deep Learning
Female
Heart - diagnostic imaging
Humans
Male
Middle Aged
Original Research
Retrospective Studies
Thorax - diagnostic imaging
Tomography, X-Ray Computed - methods
Vascular Calcification - diagnostic imaging
Title Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols
URI https://www.ncbi.nlm.nih.gov/pubmed/32043947
https://www.proquest.com/docview/2353580341
https://pubmed.ncbi.nlm.nih.gov/PMC7106943
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELeyTpr2Mu272Zc8aU9DZARjQ_bW0m7dqlTTllZ9QwZMi5pCReClf9L-yp2xcaDZpnUvKIB9cnw_n-_wfSD0jjk-qPEZtbkIiC0dGG3u-qkNW-HUdROPZW0S1_kROzj2vp7S09HoZ89rqanjSXL927iS_-EqPAO-yijZW3DWEIUH8Bv4C1fgMFz_icd7Qlx1GVKVP-ROU5cqCWvIl0neXMLiVS52MrpvIe3_E9C8VSElS_kLzDufwrBFC3RdtEcKoSylJW--VWVdAmBWfU32O0_zwSd5GQh1IpbXSo794CDArc8Taz5Z-_ysVpe6JvNRfgE2tdHnoV993qh0B7t5dZbXNbcOTc9dXlwoYXZW5am1b6jqzxWu0_Ny0SKYEDvwtJwUWuq6vj0lKq6zE8uuKr45wJ8Ssoz1tmtVimZzI_BkcEPVTsVEjgPsUqZisYdJt29shsZFUQVsB5EiEa1J3EF3XTBJ5Caw9-XQnFh5NFD5WfXf0yfoQOLDxiiGOtCGYXPTP7en8CweogfaUsE7CnaP0EgUj9G9ufbFeIIKiT7coQ8D-rBBH9bowxp9OC9wuPiI19jDLfZwhz2ssQetMGAPt9iTNwZ7T9Hxp_1FeGDr6h02rHBa2yl1eAIGRexkLKOxRwlIC7DXPZqBRuRTTmKR-c40jmETSf1gxhKHZYnjwQsiZh55hraKshDbCM_8eCYIGL8py7yMUg5ab0zBEAhSIEqzMXK6-YwSndpeVlhZRn_k4hi9N12uVF6XvzV-2zEpAukrj9R4IcpmFbmESj8CUAXH6LlimiFHVNi5P0b-gJ2mgczsPnxT5OdthndQ-xnMwIvbDPIlur9eb6_QVl014jUozHX8pkXqLzk6vic
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Automatic+Calcium+Scoring+in+CT%3A+Validation+Using+Multiple+Cardiac+CT+and+Chest+CT+Protocols&rft.jtitle=Radiology&rft.au=van+Velzen%2C+Sanne+G.+M.&rft.au=Lessmann%2C+Nikolas&rft.au=Velthuis%2C+Birgitta+K.&rft.au=Bank%2C+Ingrid+E.+M.&rft.date=2020-04-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=295&rft.issue=1&rft.spage=66&rft.epage=79&rft_id=info:doi/10.1148%2Fradiol.2020191621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2020191621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon