Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols
Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range...
Saved in:
Published in | Radiology Vol. 295; no. 1; pp. 66 - 79 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Radiological Society of North America
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0033-8419 1527-1315 1527-1315 |
DOI | 10.1148/radiol.2020191621 |
Cover
Loading…
Abstract | Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with
1181 low-dose chest CT examinations (baseline),
a small set of examinations of the respective type supplemented to the baseline (data specific), and
a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue. |
---|---|
AbstractList | Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue.Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue. Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with 1181 low-dose chest CT examinations (baseline), a small set of examinations of the respective type supplemented to the baseline (data specific), and a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue. |
Author | de Jong, Pim A. Bank, Ingrid E. M. van Velzen, Sanne G. M. Carr, John Jeffrey Verkooijen, Helena M. Terry, James G. Viergever, Max A. Leiner, Tim Lessmann, Nikolas Išgum, Ivana Correa, Adolfo Velthuis, Birgitta K. van den Bongard, Desiree H. J. G. Veldhuis, Wouter B. |
Author_xml | – sequence: 1 givenname: Sanne G. M. orcidid: 0000-0003-0682-1013 surname: van Velzen fullname: van Velzen, Sanne G. M. – sequence: 2 givenname: Nikolas orcidid: 0000-0001-7935-9611 surname: Lessmann fullname: Lessmann, Nikolas – sequence: 3 givenname: Birgitta K. surname: Velthuis fullname: Velthuis, Birgitta K. – sequence: 4 givenname: Ingrid E. M. orcidid: 0000-0002-2984-849X surname: Bank fullname: Bank, Ingrid E. M. – sequence: 5 givenname: Desiree H. J. G. surname: van den Bongard fullname: van den Bongard, Desiree H. J. G. – sequence: 6 givenname: Tim orcidid: 0000-0003-1885-5499 surname: Leiner fullname: Leiner, Tim – sequence: 7 givenname: Pim A. orcidid: 0000-0003-4840-6854 surname: de Jong fullname: de Jong, Pim A. – sequence: 8 givenname: Wouter B. orcidid: 0000-0002-9798-6843 surname: Veldhuis fullname: Veldhuis, Wouter B. – sequence: 9 givenname: Adolfo surname: Correa fullname: Correa, Adolfo – sequence: 10 givenname: James G. surname: Terry fullname: Terry, James G. – sequence: 11 givenname: John Jeffrey orcidid: 0000-0002-4398-8237 surname: Carr fullname: Carr, John Jeffrey – sequence: 12 givenname: Max A. surname: Viergever fullname: Viergever, Max A. – sequence: 13 givenname: Helena M. orcidid: 0000-0001-9480-1623 surname: Verkooijen fullname: Verkooijen, Helena M. – sequence: 14 givenname: Ivana orcidid: 0000-0003-1869-5034 surname: Išgum fullname: Išgum, Ivana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32043947$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFH8AF-cglZSa244QDUhU-pUUgseVqOY7TGjn2YidI_Hu8bCkfB06W_b7PzHjeM3ISYrCEPEa4QOTts6RHF_1FDTVgh02N98gGRS0rZChOyAaAsarl2J2Ss5y_ACAXrXxATlkNnHVcbkh4ae2ebq1OwYVrOsVEL9clznpxhvbaG7fO9JOJ6aC6QPvdc_pZezcWQwz0Kh_e369-cXtvC5BGpwu4ozqMtL-xeTlcPqa4RBN9fkjuT9pn--j2PCdXr1_t-rfV9sObd_3ltjK8EUs1CtAGsBlgaiYxcMGsMXVTxp9aLqXQbLCTBBwG4O0o264x0EwGeBGY7Tg7Jy-OdffrMNvR2LAk7dU-uVmn7ypqp_5WgrtR1_GbkghN4UuBp7cFUvy6lm-o2WVjvdfBxjWrmgkmWmAci_XJn73umvxacjHg0WBSzDnZ6c6CoA5BqmOQ6neQhZH_MMYtP3dexnX-P-QPiJukZg |
CitedBy_id | crossref_primary_10_1148_ryai_2021210097 crossref_primary_10_1016_j_ancard_2021_08_001 crossref_primary_10_1007_s00330_022_09143_1 crossref_primary_10_3389_fcvm_2021_736223 crossref_primary_10_1016_j_phro_2022_07_003 crossref_primary_10_1016_j_thorsurg_2023_03_001 crossref_primary_10_1093_eurjpc_zwae323 crossref_primary_10_1016_j_compbiomed_2023_106998 crossref_primary_10_1007_s10554_022_02656_2 crossref_primary_10_1007_s12350_022_03049_7 crossref_primary_10_3348_kjr_2020_1314 crossref_primary_10_3389_fcvm_2022_940615 crossref_primary_10_3390_diagnostics14020125 crossref_primary_10_2967_jnumed_119_231837 crossref_primary_10_1007_s00330_020_07659_y crossref_primary_10_1016_j_heliyon_2022_e10872 crossref_primary_10_1016_j_cpet_2021_06_011 crossref_primary_10_1016_j_jcct_2021_03_006 crossref_primary_10_1007_s12181_021_00511_7 crossref_primary_10_1097_RTI_0000000000000657 crossref_primary_10_1016_j_jrras_2024_101012 crossref_primary_10_1007_s42058_022_00091_9 crossref_primary_10_2147_VHRM_S279337 crossref_primary_10_2196_55833 crossref_primary_10_1007_s12350_022_02941_6 crossref_primary_10_1007_s11912_024_01598_3 crossref_primary_10_1038_s41467_021_20966_2 crossref_primary_10_1200_CCI_21_00095 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_3390_jcm13123453 crossref_primary_10_1109_JBHI_2024_3512940 crossref_primary_10_1016_j_jcmg_2022_06_006 crossref_primary_10_1177_00033197231155963 crossref_primary_10_1007_s11886_022_01837_8 crossref_primary_10_1016_j_jcct_2020_09_008 crossref_primary_10_1007_s00330_022_08801_8 crossref_primary_10_1038_s41746_021_00460_1 crossref_primary_10_1148_radiol_2021211483 crossref_primary_10_1148_radiol_2021211002 crossref_primary_10_1371_journal_pone_0244267 crossref_primary_10_1016_j_ejrad_2021_109767 crossref_primary_10_1186_s13244_024_01827_0 crossref_primary_10_1016_j_medp_2023_100001 crossref_primary_10_1016_j_ejrad_2021_109528 crossref_primary_10_1001_jamaoncol_2021_1144 crossref_primary_10_1002_mp_17028 crossref_primary_10_3389_fcvm_2022_949454 crossref_primary_10_1186_s40959_024_00206_4 crossref_primary_10_1186_s12880_022_00907_1 crossref_primary_10_1148_radiol_232030 crossref_primary_10_1007_s00259_021_05341_z crossref_primary_10_1016_j_pcad_2023_09_001 crossref_primary_10_1117_1_JMI_9_5_052406 crossref_primary_10_3389_fonc_2022_989250 crossref_primary_10_2147_JIR_S392482 crossref_primary_10_1016_j_ijcard_2020_12_079 crossref_primary_10_1093_ehjci_jeae081 crossref_primary_10_1002_hed_26927 crossref_primary_10_3390_diagnostics12102435 crossref_primary_10_1155_2020_6649410 crossref_primary_10_1148_rg_210122 crossref_primary_10_1016_j_diii_2021_06_007 crossref_primary_10_1109_ACCESS_2022_3161954 crossref_primary_10_1002_mp_15870 crossref_primary_10_1016_j_knosys_2020_106445 crossref_primary_10_1016_j_jacc_2020_11_030 crossref_primary_10_1007_s12350_022_02940_7 crossref_primary_10_1093_eurjpc_zwae325 crossref_primary_10_1161_CIRCIMAGING_121_013025 crossref_primary_10_3400_avd_oa_22_00060 crossref_primary_10_1016_j_banm_2023_07_017 crossref_primary_10_1161_JAHA_123_031601 crossref_primary_10_1016_j_ejrad_2023_110855 crossref_primary_10_1053_j_ro_2023_02_001 crossref_primary_10_1016_j_radonc_2024_110705 crossref_primary_10_1093_ehjci_jeab119 crossref_primary_10_1007_s12170_023_00731_4 crossref_primary_10_31083_j_rcm2501027 crossref_primary_10_1016_j_ijrobp_2021_09_008 crossref_primary_10_3390_diagnostics12051045 crossref_primary_10_1007_s00330_022_09028_3 crossref_primary_10_1016_j_jacc_2024_03_400 crossref_primary_10_1038_s41569_023_00900_3 crossref_primary_10_1007_s10554_020_01929_y crossref_primary_10_1007_s12350_022_03047_9 crossref_primary_10_1038_s41598_022_20005_0 crossref_primary_10_3390_diagnostics14182096 crossref_primary_10_1016_j_jmir_2021_07_006 crossref_primary_10_3389_fcvm_2023_1120361 crossref_primary_10_1007_s12350_023_03288_2 crossref_primary_10_1148_radiol_2020192718 crossref_primary_10_1148_radiol_2021212586 crossref_primary_10_1007_s10554_024_03080_4 crossref_primary_10_17816_DD623196 crossref_primary_10_1016_j_ejrad_2022_110601 crossref_primary_10_3390_tomography7040054 crossref_primary_10_1016_j_ejrad_2020_109114 crossref_primary_10_1053_j_semnuclmed_2020_03_004 crossref_primary_10_3348_kjr_2021_0148 crossref_primary_10_1007_s11547_023_01606_9 crossref_primary_10_1016_j_banm_2024_11_019 crossref_primary_10_1016_j_rcl_2024_01_002 crossref_primary_10_1016_j_metrad_2024_100114 crossref_primary_10_3390_s21217059 crossref_primary_10_1097_MD_0000000000038295 crossref_primary_10_1016_j_compbiomed_2024_109295 crossref_primary_10_1259_bjro_20220021 crossref_primary_10_1016_j_imed_2021_06_004 crossref_primary_10_3390_healthcare10020232 crossref_primary_10_1148_ryct_2021200512 crossref_primary_10_1007_s00330_023_10573_8 crossref_primary_10_1097_RTI_0000000000000765 crossref_primary_10_3389_fcvm_2022_981901 crossref_primary_10_1016_j_hfc_2021_11_003 crossref_primary_10_1016_j_ijcard_2021_04_009 crossref_primary_10_3233_THC_231273 crossref_primary_10_1016_j_diii_2023_06_011 crossref_primary_10_1016_j_ijcha_2024_101593 crossref_primary_10_1148_radiol_2021204623 crossref_primary_10_3390_diagnostics12081876 crossref_primary_10_1007_s11042_024_18953_y crossref_primary_10_1016_j_jcct_2024_08_003 crossref_primary_10_1016_S0140_6736_22_01694_4 crossref_primary_10_3390_jcm12144774 crossref_primary_10_1007_s11547_020_01277_w crossref_primary_10_1016_j_rmr_2023_12_001 crossref_primary_10_1016_j_clinimag_2023_110045 crossref_primary_10_1007_s00330_022_08975_1 crossref_primary_10_1055_a_1717_2703 crossref_primary_10_1007_s11886_020_01337_7 crossref_primary_10_1111_resp_14344 crossref_primary_10_1001_jamacardio_2023_3142 crossref_primary_10_3348_kjr_2022_0826 crossref_primary_10_1111_echo_70098 crossref_primary_10_1016_j_amjcard_2020_10_022 crossref_primary_10_1007_s12410_020_09549_9 crossref_primary_10_1016_j_diii_2021_05_004 crossref_primary_10_1088_2057_1976_ad2ff2 crossref_primary_10_1148_radiol_240516 crossref_primary_10_1016_j_compmedimag_2025_102503 crossref_primary_10_1016_j_ijcrp_2021_200113 crossref_primary_10_1007_s00330_022_09117_3 crossref_primary_10_1016_j_acra_2020_09_021 crossref_primary_10_1038_s41467_024_46977_3 crossref_primary_10_1055_a_1395_7905 crossref_primary_10_1038_s41598_024_76092_8 |
Cites_doi | 10.1109/TMI.2015.2412651 10.1007/s10554-010-9607-2 10.2214/AJR.04.1589 10.1371/journal.pone.0167925 10.1016/j.media.2017.06.015 10.1161/CIRCULATIONAHA.115.018524 10.1118/1.2710548 10.9734/BJMMR/2016/21449 10.1109/TMI.2014.2377694 10.1007/s12350-017-0866-3 10.1016/j.jcct.2016.11.003 10.1016/j.jcmg.2015.02.006 10.1056/NEJMoa1102873 10.1016/j.radonc.2018.04.011 10.1016/j.ahj.2007.11.019 10.1148/radiol.2017171920 10.1016/j.acra.2012.07.018 10.1148/radiol.15142062 10.1109/TMI.2016.2535302 10.1109/TMI.2016.2528162 10.2214/AJR.10.5577 10.1109/TMI.2017.2673121 10.1016/0735-1097(90)90282-T 10.1148/radiol.10100383 10.1093/ehjci/jes079 10.1109/TMI.2017.2769839 10.1016/j.jacc.2006.10.079 10.1371/journal.pone.0091239 10.1001/jamacardio.2016.5493 10.1118/1.3284211 |
ContentType | Journal Article |
Copyright | 2020 by the Radiological Society of North America,
Inc. 2020 |
Copyright_xml | – notice: 2020 by the Radiological Society of North America, Inc. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1148/radiol.2020191621 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-1315 |
EndPage | 79 |
ExternalDocumentID | PMC7106943 32043947 10_1148_radiol_2020191621 |
Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMHD NIH HHS grantid: HHSN268201800013I – fundername: NHLBI NIH HHS grantid: HHSN268201800014I – fundername: NHLBI NIH HHS grantid: HHSN268201800012I – fundername: NHLBI NIH HHS grantid: HHSN268201800010I – fundername: NHLBI NIH HHS grantid: HHSN268201800012C – fundername: NHLBI NIH HHS grantid: HHSN268201800014C – fundername: NCI NIH HHS grantid: HHSN261201800014I – fundername: NCI NIH HHS grantid: HHSN261201800012I – fundername: NHLBI NIH HHS grantid: HHSN268201800015I – fundername: NHLBI NIH HHS grantid: HHSN268201100011I |
GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c465t-d50ac016b0f6f5b453ecc26145f84775a3bef701bb048d7896c06fc04a3b3e943 |
ISSN | 0033-8419 1527-1315 |
IngestDate | Thu Aug 21 14:03:42 EDT 2025 Fri Jul 11 09:35:23 EDT 2025 Mon Jul 21 06:02:27 EDT 2025 Tue Jul 01 00:43:47 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-d50ac016b0f6f5b453ecc26145f84775a3bef701bb048d7896c06fc04a3b3e943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Author contributions: Guarantors of integrity of entire study, S.G.M.v.V., D.H.J.G.v.d.B., A.C.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of final version of submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors; literature research, S.G.M.v.V., T.L., I.I.; clinical studies, I.E.M.B., D.H.J.G.v.d.B., T.L., W.B.V., J.G.T., J.J.C.; statistical analysis, S.G.M.v.V., A.C., H.M.V.; and manuscript editing, S.G.M.v.V., N.L., B.K.V., I.E.M.B., D.H.J.G.v.d.B., T.L., W.B.V., A.C., J.G.T., J.J.C., M.A.V., H.M.V., I.I. |
ORCID | 0000-0001-7935-9611 0000-0003-1869-5034 0000-0003-1885-5499 0000-0003-0682-1013 0000-0002-4398-8237 0000-0003-4840-6854 0000-0002-2984-849X 0000-0001-9480-1623 0000-0002-9798-6843 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7106943 |
PMID | 32043947 |
PQID | 2353580341 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7106943 proquest_miscellaneous_2353580341 pubmed_primary_32043947 crossref_primary_10_1148_radiol_2020191621 crossref_citationtrail_10_1148_radiol_2020191621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Radiology |
PublicationTitleAlternate | Radiology |
PublicationYear | 2020 |
Publisher | Radiological Society of North America |
Publisher_xml | – name: Radiological Society of North America |
References | r2 r3 r4 r5 r6 r7 r8 r9 Bank IEM (r19) 2017 r30 r10 r31 r12 r34 r11 r33 r14 r13 r35 r16 r15 r18 r17 Cano-Espinosa C (r32) 2018; 10574 Grundy SM (r1) 2019; 139 r21 r23 r22 r25 r24 r26 r29 r28 Taylor HA (r20) 2005; 15 32053061 - Radiology. 2020 Apr;295(1):80-81 |
References_xml | – ident: r6 doi: 10.1109/TMI.2015.2412651 – volume: 15 start-page: S6 issue: 4 year: 2005 ident: r20 publication-title: Ethn Dis – ident: r4 doi: 10.1007/s10554-010-9607-2 – ident: r26 doi: 10.2214/AJR.04.1589 – ident: r12 doi: 10.1371/journal.pone.0167925 – ident: r17 doi: 10.1016/j.media.2017.06.015 – ident: r28 doi: 10.1161/CIRCULATIONAHA.115.018524 – ident: r3 doi: 10.1118/1.2710548 – ident: r21 doi: 10.9734/BJMMR/2016/21449 – ident: r16 doi: 10.1109/TMI.2014.2377694 – ident: r13 doi: 10.1007/s12350-017-0866-3 – volume: 10574 start-page: 105742K volume-title: Proceedings of SPIE: medical imaging 2018—image processing year: 2018 ident: r32 – ident: r35 doi: 10.1016/j.jcct.2016.11.003 – ident: r2 doi: 10.1016/j.jcmg.2015.02.006 – ident: r22 doi: 10.1056/NEJMoa1102873 – volume: 139 start-page: e1046 issue: 25 year: 2019 ident: r1 publication-title: Circulation – ident: r11 doi: 10.1016/j.radonc.2018.04.011 – ident: r14 doi: 10.1016/j.ahj.2007.11.019 – ident: r18 doi: 10.1148/radiol.2017171920 – volume-title: Ischaemic Heart Disease: Early Recognition and Risk Disparities [dissertation]. Vol. Chapter 3 year: 2017 ident: r19 – ident: r5 doi: 10.1016/j.acra.2012.07.018 – ident: r9 doi: 10.1148/radiol.15142062 – ident: r33 doi: 10.1109/TMI.2016.2535302 – ident: r34 doi: 10.1109/TMI.2016.2528162 – ident: r8 doi: 10.2214/AJR.10.5577 – ident: r23 doi: 10.1109/TMI.2017.2673121 – ident: r24 doi: 10.1016/0735-1097(90)90282-T – ident: r7 doi: 10.1148/radiol.10100383 – ident: r30 doi: 10.1093/ehjci/jes079 – ident: r10 doi: 10.1109/TMI.2017.2769839 – ident: r25 doi: 10.1016/j.jacc.2006.10.079 – ident: r31 doi: 10.1371/journal.pone.0091239 – ident: r29 doi: 10.1001/jamacardio.2016.5493 – ident: r15 doi: 10.1118/1.3284211 – reference: 32053061 - Radiology. 2020 Apr;295(1):80-81 |
SSID | ssj0014587 |
Score | 2.6442003 |
Snippet | Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 66 |
SubjectTerms | Aged Clinical Protocols Coronary Artery Disease - diagnostic imaging Deep Learning Female Heart - diagnostic imaging Humans Male Middle Aged Original Research Retrospective Studies Thorax - diagnostic imaging Tomography, X-Ray Computed - methods Vascular Calcification - diagnostic imaging |
Title | Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32043947 https://www.proquest.com/docview/2353580341 https://pubmed.ncbi.nlm.nih.gov/PMC7106943 |
Volume | 295 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELeyTpr2Mu272Zc8aU9DZARjQ_bW0m7dqlTTllZ9QwZMi5pCReClf9L-yp2xcaDZpnUvKIB9cnw_n-_wfSD0jjk-qPEZtbkIiC0dGG3u-qkNW-HUdROPZW0S1_kROzj2vp7S09HoZ89rqanjSXL927iS_-EqPAO-yijZW3DWEIUH8Bv4C1fgMFz_icd7Qlx1GVKVP-ROU5cqCWvIl0neXMLiVS52MrpvIe3_E9C8VSElS_kLzDufwrBFC3RdtEcKoSylJW--VWVdAmBWfU32O0_zwSd5GQh1IpbXSo794CDArc8Taz5Z-_ysVpe6JvNRfgE2tdHnoV993qh0B7t5dZbXNbcOTc9dXlwoYXZW5am1b6jqzxWu0_Ny0SKYEDvwtJwUWuq6vj0lKq6zE8uuKr45wJ8Ssoz1tmtVimZzI_BkcEPVTsVEjgPsUqZisYdJt29shsZFUQVsB5EiEa1J3EF3XTBJ5Caw9-XQnFh5NFD5WfXf0yfoQOLDxiiGOtCGYXPTP7en8CweogfaUsE7CnaP0EgUj9G9ufbFeIIKiT7coQ8D-rBBH9bowxp9OC9wuPiI19jDLfZwhz2ssQetMGAPt9iTNwZ7T9Hxp_1FeGDr6h02rHBa2yl1eAIGRexkLKOxRwlIC7DXPZqBRuRTTmKR-c40jmETSf1gxhKHZYnjwQsiZh55hraKshDbCM_8eCYIGL8py7yMUg5ab0zBEAhSIEqzMXK6-YwSndpeVlhZRn_k4hi9N12uVF6XvzV-2zEpAukrj9R4IcpmFbmESj8CUAXH6LlimiFHVNi5P0b-gJ2mgczsPnxT5OdthndQ-xnMwIvbDPIlur9eb6_QVl014jUozHX8pkXqLzk6vic |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Automatic+Calcium+Scoring+in+CT%3A+Validation+Using+Multiple+Cardiac+CT+and+Chest+CT+Protocols&rft.jtitle=Radiology&rft.au=van+Velzen%2C+Sanne+G.+M.&rft.au=Lessmann%2C+Nikolas&rft.au=Velthuis%2C+Birgitta+K.&rft.au=Bank%2C+Ingrid+E.+M.&rft.date=2020-04-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=295&rft.issue=1&rft.spage=66&rft.epage=79&rft_id=info:doi/10.1148%2Fradiol.2020191621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2020191621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |