Reverberant magnetic resonance elastographic imaging using a single mechanical driver

Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance el...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 68; no. 5; pp. 55015 - 55030
Main Authors Kabir, Irteza Enan, Caban-Rivera, Diego A, Ormachea, Juvenal, Parker, Kevin J, Johnson, Curtis L, Doyley, Marvin M
Format Journal Article
LanguageEnglish
Published England IOP Publishing 27.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed studies on healthy volunteers ( = 3); and a constrained calibrated brain phantom containing spherical inclusions with diameters ranging from 4-18 mm. In both studies (i.e. phantom and clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed using the established subzone inversion method. Errors incurred in reverberant elastograms varied from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast, errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70 Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65 to 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from reverberant and subzone elastograms was 2.36 ± 0.07 kPa and 2.38 ± 0.11 kPa, respectively, when imaging at 50 Hz and 2.70 ± 0.20 kPa and 2.89 ± 0.60 kPa respectively, when imaging at 70 Hz. The results of this investigation demonstrate that reverberant elastography can produce accurate, high-quality elastograms of the brain with a single mechanical driver.
AbstractList Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed studies on healthy volunteers ( = 3); and a constrained calibrated brain phantom containing spherical inclusions with diameters ranging from 4-18 mm. In both studies (i.e. phantom and clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed using the established subzone inversion method. Errors incurred in reverberant elastograms varied from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast, errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70 Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65 to 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from reverberant and subzone elastograms was 2.36 ± 0.07 kPa and 2.38 ± 0.11 kPa, respectively, when imaging at 50 Hz and 2.70 ± 0.20 kPa and 2.89 ± 0.60 kPa respectively, when imaging at 70 Hz. The results of this investigation demonstrate that reverberant elastography can produce accurate, high-quality elastograms of the brain with a single mechanical driver.
Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed studies on healthy volunteers ( n = 3); and a constrained calibrated brain phantom containing spherical inclusions with diameters ranging from 4–18 mm. In both studies (i.e. phantom and clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed using the established subzone inversion method. Errors incurred in reverberant elastograms varied from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast, errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70 Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65 to 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from reverberant and subzone elastograms was 2.36 ± 0.07 kPa and 2.38 ± 0.11 kPa, respectively, when imaging at 50 Hz and 2.70 ± 0.20 kPa and 2.89 ± 0.60 kPa respectively, when imaging at 70 Hz. The results of this investigation demonstrate that reverberant elastography can produce accurate, high-quality elastograms of the brain with a single mechanical driver.
Abstract Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed studies on healthy volunteers ( n = 3); and a constrained calibrated brain phantom containing spherical inclusions with diameters ranging from 4–18 mm. In both studies (i.e. phantom and clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed using the established subzone inversion method. Errors incurred in reverberant elastograms varied from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast, errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70 Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65 to 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from reverberant and subzone elastograms was 2.36 ± 0.07 kPa and 2.38 ± 0.11 kPa, respectively, when imaging at 50 Hz and 2.70 ± 0.20 kPa and 2.89 ± 0.60 kPa respectively, when imaging at 70 Hz. The results of this investigation demonstrate that reverberant elastography can produce accurate, high-quality elastograms of the brain with a single mechanical driver.
Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed studies on healthy volunteers (n= 3); and a constrained calibrated brain phantom containing spherical inclusions with diameters ranging from 4-18 mm. In both studies (i.e. phantom and clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed using the established subzone inversion method. Errors incurred in reverberant elastograms varied from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast, errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70 Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65 to 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from reverberant and subzone elastograms was 2.36 ± 0.07 kPa and 2.38 ± 0.11 kPa, respectively, when imaging at 50 Hz and 2.70 ± 0.20 kPa and 2.89 ± 0.60 kPa respectively, when imaging at 70 Hz. The results of this investigation demonstrate that reverberant elastography can produce accurate, high-quality elastograms of the brain with a single mechanical driver.Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for constrained organs such as the brain, reverberant elastography can produce accurate magnetic resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed studies on healthy volunteers (n= 3); and a constrained calibrated brain phantom containing spherical inclusions with diameters ranging from 4-18 mm. In both studies (i.e. phantom and clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed using the established subzone inversion method. Errors incurred in reverberant elastograms varied from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast, errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70 Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65 to 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from reverberant and subzone elastograms was 2.36 ± 0.07 kPa and 2.38 ± 0.11 kPa, respectively, when imaging at 50 Hz and 2.70 ± 0.20 kPa and 2.89 ± 0.60 kPa respectively, when imaging at 70 Hz. The results of this investigation demonstrate that reverberant elastography can produce accurate, high-quality elastograms of the brain with a single mechanical driver.
Author Kabir, Irteza Enan
Parker, Kevin J
Doyley, Marvin M
Caban-Rivera, Diego A
Ormachea, Juvenal
Johnson, Curtis L
Author_xml – sequence: 1
  givenname: Irteza Enan
  orcidid: 0000-0002-6061-0340
  surname: Kabir
  fullname: Kabir, Irteza Enan
  organization: University of Rochester , Hajim School of Engineering and Applied Sciences 1467, Rochester, NY, United States of America
– sequence: 2
  givenname: Diego A
  orcidid: 0000-0002-8977-8147
  surname: Caban-Rivera
  fullname: Caban-Rivera, Diego A
  organization: University of Delaware , Department of Biomedical Engineering 19716, Newark, DE, United States of America
– sequence: 3
  givenname: Juvenal
  orcidid: 0000-0003-2481-8133
  surname: Ormachea
  fullname: Ormachea, Juvenal
  organization: Verasonics, Inc., 11335 NE 122nd Way, Suite 100 98034 Kirkland, WA, United States of America
– sequence: 4
  givenname: Kevin J
  orcidid: 0000-0002-6313-6605
  surname: Parker
  fullname: Parker, Kevin J
  organization: University of Rochester , Hajim School of Engineering and Applied Sciences 1467, Rochester, NY, United States of America
– sequence: 5
  givenname: Curtis L
  orcidid: 0000-0002-7760-131X
  surname: Johnson
  fullname: Johnson, Curtis L
  organization: University of Delaware , Department of Biomedical Engineering 19716, Newark, DE, United States of America
– sequence: 6
  givenname: Marvin M
  orcidid: 0000-0002-5154-6711
  surname: Doyley
  fullname: Doyley, Marvin M
  organization: University of Rochester , Hajim School of Engineering and Applied Sciences 1467, Rochester, NY, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36780698$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJaTZJ7zkF39JD3UiWJUuXQAj9gkChNGehj_Gugi05kh3of1-ZTZYWQi8aGP3mzePNCToKMQBC5wR_IliIK0I5qTnj-EpbY0z3Bm0OrSO0wZiSWhLGjtFJzg8YEyKa9h06prwTmEuxQfc_4QmSgaTDXI16G2D2tkqQY9DBQgWDznPcJj3tSt8XwodtteT11dVaBqhGsDsdvNVD5ZIvemfoba-HDO-f6ym6__L51-23-u7H1--3N3e1bTmba9cKzCQBQh2TroOetz3tsTONoD0FyWTTWsmgYRSDkbbBjlisneEtUGEIPUXXe91pMSM4C2FOelBTKkbTbxW1V__-BL9T2_ikpOSSNavAh2eBFB8XyLMafbYwDDpAXLJquo4z0mHGCor3qE0x5wT9YQ3Bar2GWqNXa_Rqf40ycvG3vcPAS_wF-LgHfJzUQ1xSKGn9T-_yFXwajeJCMVVcYsLU5Hr6B4CSpeY
CODEN PHMBA7
CitedBy_id crossref_primary_10_1016_j_brain_2023_100082
crossref_primary_10_13104_imri_2023_0029
crossref_primary_10_1088_1361_6560_ad4446
crossref_primary_10_3390_acoustics6020023
crossref_primary_10_1016_j_jsv_2023_117955
crossref_primary_10_3390_acoustics5020035
Cites_doi 10.1016/j.media.2018.03.003
10.1088/0031-9155/57/3/R35
10.1016/j.neuroimage.2013.04.089
10.1016/j.nicl.2013.09.006
10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
10.1088/1361-6560/ac1b37
10.1016/j.ultrasmedbio.2018.01.011
10.1002/jmri.23731
10.7863/ultra.33.9.1597
10.1016/j.ultrasmedbio.2005.01.006
10.1088/1361-6501/aaec5c
10.1016/j.neuroimage.2015.02.016
10.1109/TMI.2013.2276060
10.1016/j.neuroimage.2009.06.018
10.1002/mrm.1111
10.1148/radiol.2021201852
10.1016/j.jmbbm.2016.03.005
10.1016/j.clbc.2020.08.005
10.1371/journal.pone.0081668
10.1038/s41467-019-12803-4
10.1016/j.mri.2004.11.060
10.1016/j.juro.2014.10.106
10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1
10.1002/jmri.22707
10.1002/mrm.21404
10.1002/mrm.25065
10.1088/0031-9155/45/6/313
10.1016/j.neuroimage.2007.08.030
10.1002/jmri.24479
10.1088/0031-9155/56/1/R01
10.1088/0031-9155/53/12/005
10.1088/1361-6560/aa5201
10.1007/s00234-011-0871-1
10.2214/ajr.178.6.1781411
10.1016/j.cmpb.2020.105605
10.1118/1.3454738
10.1002/1522-2594(200102)45:2<299::AID-MRM1039>3.0.CO;2-O
10.1098/rsif.2012.0325
10.1016/j.cmpb.2020.105437
10.1118/1.1386776
10.1109/ICIP.1996.560548
10.1039/c3sm50552a
10.1016/j.cgh.2007.06.012
10.1016/j.jbiomech.2011.04.034
10.1002/mrm.24473
10.1016/S1361-8415(00)00039-6
10.1118/1.1556607
10.1371/journal.pone.0023451
10.1088/0031-9155/56/13/N02
10.1088/0031-9155/45/6/317
10.1117/1.JBO.27.2.026003
10.1109/58.285463
10.1016/j.compbiomed.2014.08.024
10.1016/j.neuroimage.2004.07.051
10.1088/1361-6560/ab2778
10.1016/j.media.2020.101710
10.1016/j.nicl.2019.101750
10.1115/1.4046199
10.1002/nbm.1602
10.1088/0031-9155/45/6/309
10.1126/science.7569924
10.1088/0031-9155/61/24/R401
ContentType Journal Article
Copyright 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
Creative Commons Attribution license.
2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2023
Copyright_xml – notice: 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
– notice: 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2023
DBID O3W
TSCCA
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1088/1361-6560/acbbb7
DatabaseName IOP_英国物理学会OA刊
IOPscience (Open Access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: IOP Publishing Free Content(OpenAccess)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 10_1088_1361_6560_acbbb7
36780698
pmbacbbb7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: R01EB032337
  funderid: https://doi.org/10.13039/100000070
– fundername: NIBIB NIH HHS
  grantid: R01 EB032337
– fundername: ;
  grantid: R01EB032337
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c465t-d480591e13d59d7ef64f3f0db283f3e95924c95e2530eb9c20d1c0adb64e38b13
IEDL.DBID O3W
ISSN 0031-9155
1361-6560
IngestDate Tue Sep 17 21:31:57 EDT 2024
Sat Sep 14 09:27:53 EDT 2024
Fri Aug 23 01:09:02 EDT 2024
Wed Oct 23 09:46:00 EDT 2024
Wed Jun 07 11:18:58 EDT 2023
Wed Aug 21 03:34:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords brain imaging
phantom
elastography
magnetic resonance imaging
reverberant shear wave
magnetic resonance elastography
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-d480591e13d59d7ef64f3f0db283f3e95924c95e2530eb9c20d1c0adb64e38b13
Notes PMB-113531.R3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2481-8133
0000-0002-6061-0340
0000-0002-5154-6711
0000-0002-7760-131X
0000-0002-8977-8147
0000-0002-6313-6605
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6560/acbbb7
PMID 36780698
PQID 2776517055
PQPubID 23479
PageCount 16
ParticipantIDs iop_journals_10_1088_1361_6560_acbbb7
proquest_miscellaneous_2776517055
pubmed_primary_36780698
crossref_primary_10_1088_1361_6560_acbbb7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9969521
PublicationCentury 2000
PublicationDate 20230227
PublicationDateYYYYMMDD 2023-02-27
PublicationDate_xml – month: 2
  year: 2023
  text: 20230227
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ormachea (pmbacbbb7bib38) 2021; 66
Zhang (pmbacbbb7bib64) 2011; 44
Hiscox (pmbacbbb7bib15) 2016; 61
Sack (pmbacbbb7bib46) 2013; 9
Anderson (pmbacbbb7bib1) 2016; 59
Murphy (pmbacbbb7bib34) 2013; 8
Van Houten (pmbacbbb7bib59) 2001b; 45
Venkatesh (pmbacbbb7bib60) 2013; 37
Doyley (pmbacbbb7bib8) 2010; 37
Doyley (pmbacbbb7bib9) 2012; 57
Brock (pmbacbbb7bib4) 2015; 193
Doyley (pmbacbbb7bib10) 2000; 45
Strang (pmbacbbb7bib54) 2016
Techavipoo (pmbacbbb7bib56) 2005; 31
Fung (pmbacbbb7bib13) 1981
Hu (pmbacbbb7bib17) 2020; 192
Sinkus (pmbacbbb7bib49) 2005; 23
Zhao (pmbacbbb7bib66) 2018; 30
Honarvar (pmbacbbb7bib16) 2013; 32
Zhao (pmbacbbb7bib65) 2014; 33
Li (pmbacbbb7bib26) 2021; 299
Parker (pmbacbbb7bib41) 2017; 62
Dresner (pmbacbbb7bib11) 2001; 13
Freimann (pmbacbbb7bib12) 2012; 54
Sack (pmbacbbb7bib45) 2011; 6
Scott (pmbacbbb7bib47) 2020; 63
Weaver (pmbacbbb7bib61) 2001; 28
Parker (pmbacbbb7bib43) 2010
Hu (pmbacbbb7bib18) 2020; 195
Smith (pmbacbbb7bib53) 2004; 23
Parker (pmbacbbb7bib42) 2011; 56
Sinkus (pmbacbbb7bib48) 2000; 45
Murphy (pmbacbbb7bib33) 2011; 34
Knutsson (pmbacbbb7bib22) 1994; 1
Clayton (pmbacbbb7bib6) 2012; 9
Lipp (pmbacbbb7bib27) 2013; 3
Manduca (pmbacbbb7bib28) 1996; 3
Muthupillai (pmbacbbb7bib35) 1995; 269
Mariappan (pmbacbbb7bib30) 2014; 40
McGarry (pmbacbbb7bib31) 2011; 56
Sinkus (pmbacbbb7bib50) 2007; 58
Arani (pmbacbbb7bib2) 2015; 111
Skovoroda (pmbacbbb7bib51) 1994; 41
Ge (pmbacbbb7bib14) 2022; 27
Chaze (pmbacbbb7bib5) 2019; 22
Wuerfel (pmbacbbb7bib62) 2010; 49
Johnson (pmbacbbb7bib21) 2014; 71
Johnson (pmbacbbb7bib19) 2013a; 79
Papazoglou (pmbacbbb7bib40) 2008; 53
Zvietcovich (pmbacbbb7bib67) 2019; 10
Yin (pmbacbbb7bib63) 2007; 5
Ormachea (pmbacbbb7bib37) 2018; 44
Streitberger (pmbacbbb7bib55) 2011; 24
Manduca (pmbacbbb7bib29) 2001; 5
Kruse (pmbacbbb7bib23) 2000; 45
Barnhill (pmbacbbb7bib3) 2018; 46
Johnson (pmbacbbb7bib20) 2013b; 70
Van Houten (pmbacbbb7bib58) 2001a; 45
Doyley (pmbacbbb7bib7) 2003; 30
Oliphant (pmbacbbb7bib36) 2001; 45
Kruse (pmbacbbb7bib24) 2008; 39
Li (pmbacbbb7bib25) 2014; 54
Patel (pmbacbbb7bib44) 2021; 21
McKnight (pmbacbbb7bib32) 2002; 178
Van Houten (pmbacbbb7bib57) 1999; 42
Ormachea (pmbacbbb7bib39) 2019; 64
Smith (pmbacbbb7bib52) 2020; 142
References_xml – volume: 46
  start-page: 180
  year: 2018
  ident: pmbacbbb7bib3
  article-title: Heterogeneous Multifrequency Direct Inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.03.003
  contributor:
    fullname: Barnhill
– volume: 1
  start-page: 36
  year: 1994
  ident: pmbacbbb7bib22
  article-title: Local multiscale frequency and bandwidth estimation, in
  publication-title: Image Processing, 1994. Proc. ICIP-94., IEEE Int. Conf.
  contributor:
    fullname: Knutsson
– volume: 57
  start-page: R35
  year: 2012
  ident: pmbacbbb7bib9
  article-title: Model-based elastography: a survey of approaches to the inverse elasticity problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/3/R35
  contributor:
    fullname: Doyley
– volume: 79
  start-page: 145
  year: 2013a
  ident: pmbacbbb7bib19
  article-title: Local mechanical properties of white matter structures in the human brain
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2013.04.089
  contributor:
    fullname: Johnson
– volume: 3
  start-page: 381
  year: 2013
  ident: pmbacbbb7bib27
  article-title: Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2013.09.006
  contributor:
    fullname: Lipp
– volume: 42
  start-page: 779
  year: 1999
  ident: pmbacbbb7bib57
  article-title: An overlapping subzone technique for MR-based elastic property reconstruction
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
  contributor:
    fullname: Van Houten
– volume: 66
  year: 2021
  ident: pmbacbbb7bib38
  article-title: Reverberant shear wave phase gradients for elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac1b37
  contributor:
    fullname: Ormachea
– volume: 44
  start-page: 963
  year: 2018
  ident: pmbacbbb7bib37
  article-title: Shear wave speed estimation using reverberant shear wave fields: implementation and feasibility studies
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2018.01.011
  contributor:
    fullname: Ormachea
– volume: 37
  start-page: 544
  year: 2013
  ident: pmbacbbb7bib60
  article-title: Magnetic resonance elastography of liver: technique, analysis, and clinical applications
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23731
  contributor:
    fullname: Venkatesh
– volume: 33
  start-page: 1597
  year: 2014
  ident: pmbacbbb7bib65
  article-title: Noninvasive assessment of liver fibrosis using ultrasound-based shear wave measurement and comparison to magnetic resonance elastography
  publication-title: J. Ultrasound Med.
  doi: 10.7863/ultra.33.9.1597
  contributor:
    fullname: Zhao
– volume: 31
  start-page: 529
  year: 2005
  ident: pmbacbbb7bib56
  article-title: Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2005.01.006
  contributor:
    fullname: Techavipoo
– volume: 30
  year: 2018
  ident: pmbacbbb7bib66
  article-title: Robust 2D phase unwrapping algorithm based on the transport of intensity equation
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaec5c
  contributor:
    fullname: Zhao
– volume: 111
  start-page: 59
  year: 2015
  ident: pmbacbbb7bib2
  article-title: Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2015.02.016
  contributor:
    fullname: Arani
– volume: 32
  start-page: 2189
  year: 2013
  ident: pmbacbbb7bib16
  article-title: Curl-based finite element reconstruction of the shear modulus without assuming local homogeneity: time harmonic case
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2276060
  contributor:
    fullname: Honarvar
– volume: 49
  start-page: 2520
  year: 2010
  ident: pmbacbbb7bib62
  article-title: MR-elastography reveals degradation of tissue integrity in multiple sclerosis
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2009.06.018
  contributor:
    fullname: Wuerfel
– volume: 45
  start-page: 827
  year: 2001b
  ident: pmbacbbb7bib59
  article-title: Three-dimensional subzone-based reconstruction algorithm for MR elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1111
  contributor:
    fullname: Van Houten
– volume: 299
  year: 2021
  ident: pmbacbbb7bib26
  article-title: Tomoelastography based on multifrequency MR elastography for prostate cancer detection: comparison with multiparametric MRI
  publication-title: Radiology
  doi: 10.1148/radiol.2021201852
  contributor:
    fullname: Li
– volume: 59
  start-page: 538
  year: 2016
  ident: pmbacbbb7bib1
  article-title: Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.03.005
  contributor:
    fullname: Anderson
– volume: 21
  start-page: e102
  year: 2021
  ident: pmbacbbb7bib44
  article-title: MR elastography of the breast: evolution of technique, case examples, and future directions
  publication-title: Clin Breast Cancer.
  doi: 10.1016/j.clbc.2020.08.005
  contributor:
    fullname: Patel
– volume: 8
  year: 2013
  ident: pmbacbbb7bib34
  article-title: Measuring the characteristic topography of brain stiffness with magnetic resonance elastography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081668
  contributor:
    fullname: Murphy
– volume: 10
  start-page: 4895
  year: 2019
  ident: pmbacbbb7bib67
  article-title: Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12803-4
  contributor:
    fullname: Zvietcovich
– volume: 23
  start-page: 159
  year: 2005
  ident: pmbacbbb7bib49
  article-title: Viscoelastic shear properties of in vivo breast lesions measured by MR elastography
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2004.11.060
  contributor:
    fullname: Sinkus
– volume: 193
  start-page: 1191
  year: 2015
  ident: pmbacbbb7bib4
  article-title: Impact of real-time elastography on magnetic resonance imaging/ultrasound fusion guided biopsy in patients with prior negative prostate biopsies
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2014.10.106
  contributor:
    fullname: Brock
– volume: 13
  start-page: 269
  year: 2001
  ident: pmbacbbb7bib11
  article-title: Magnetic resonance elastography of skeletal muscle
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1
  contributor:
    fullname: Dresner
– volume: 34
  start-page: 494
  year: 2011
  ident: pmbacbbb7bib33
  article-title: Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22707
  contributor:
    fullname: Murphy
– year: 2010
  ident: pmbacbbb7bib43
  article-title: Elastography
  publication-title: Phys. Med. Biol.
  contributor:
    fullname: Parker
– volume: 58
  start-page: 1135
  year: 2007
  ident: pmbacbbb7bib50
  article-title: MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21404
  contributor:
    fullname: Sinkus
– year: 1981
  ident: pmbacbbb7bib13
  contributor:
    fullname: Fung
– volume: 71
  start-page: 477
  year: 2014
  ident: pmbacbbb7bib21
  article-title: 3D multislab, multishot acquisition for fast, whole-brain MR elastography with high signal-to-noise efficiency
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25065
  contributor:
    fullname: Johnson
– volume: 45
  start-page: 1579
  year: 2000
  ident: pmbacbbb7bib23
  article-title: Tissue characterization using magnetic resonance elastography: preliminary results [In Process Citation]
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/6/313
  contributor:
    fullname: Kruse
– volume: 39
  start-page: 231
  year: 2008
  ident: pmbacbbb7bib24
  article-title: Magnetic resonance elastography of the brain
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2007.08.030
  contributor:
    fullname: Kruse
– volume: 40
  start-page: 1230
  year: 2014
  ident: pmbacbbb7bib30
  article-title: Estimation of the absolute shear stiffness of human lung parenchyma using (1) H spin echo, echo planar MR elastography
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24479
  contributor:
    fullname: Mariappan
– volume: 56
  start-page: R1
  year: 2011
  ident: pmbacbbb7bib42
  article-title: Imaging the elastic properties of tissue: the 20 year perspective
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/1/R01
  contributor:
    fullname: Parker
– volume: 53
  start-page: 3147
  year: 2008
  ident: pmbacbbb7bib40
  article-title: Algebraic Helmholtz inversion in planar magnetic resonance elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/12/005
  contributor:
    fullname: Papazoglou
– volume: 62
  start-page: 1046
  year: 2017
  ident: pmbacbbb7bib41
  article-title: Reverberant shear wave fields and estimation of tissue properties
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5201
  contributor:
    fullname: Parker
– volume: 54
  start-page: 189
  year: 2012
  ident: pmbacbbb7bib12
  article-title: Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus
  publication-title: Neuroradiology.
  doi: 10.1007/s00234-011-0871-1
  contributor:
    fullname: Freimann
– volume: 178
  start-page: 1411
  year: 2002
  ident: pmbacbbb7bib32
  article-title: MR elastography of breast cancer: preliminary results
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/ajr.178.6.1781411
  contributor:
    fullname: McKnight
– volume: 195
  year: 2020
  ident: pmbacbbb7bib18
  article-title: Enhanced complex local frequency elastography method for tumor viscoelastic shear modulus reconstruction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105605
  contributor:
    fullname: Hu
– volume: 37
  start-page: 3970
  year: 2010
  ident: pmbacbbb7bib8
  article-title: The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials
  publication-title: Med. Phys.
  doi: 10.1118/1.3454738
  contributor:
    fullname: Doyley
– volume: 45
  start-page: 299
  year: 2001
  ident: pmbacbbb7bib36
  article-title: Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200102)45:2<299::AID-MRM1039>3.0.CO;2-O
  contributor:
    fullname: Oliphant
– volume: 9
  start-page: 2899
  year: 2012
  ident: pmbacbbb7bib6
  article-title: Transmission, attenuation and reflection of shear waves in the human brain
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0325
  contributor:
    fullname: Clayton
– volume: 192
  year: 2020
  ident: pmbacbbb7bib17
  article-title: Requirements for accurate estimation of shear modulus by magnetic resonance elastography: a computational comparative study
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105437
  contributor:
    fullname: Hu
– volume: 28
  start-page: 1620
  year: 2001
  ident: pmbacbbb7bib61
  article-title: Magnetic resonance elastography using 3D gradient echo measurements of steady-state motion
  publication-title: Med. Phys.
  doi: 10.1118/1.1386776
  contributor:
    fullname: Weaver
– volume: 3
  start-page: 527
  year: 1996
  ident: pmbacbbb7bib28
  article-title: Local wavelength estimation for magnetic-resonance elastography
  publication-title: Proc 3rd IEEE Int. Conf. Image Process.
  doi: 10.1109/ICIP.1996.560548
  contributor:
    fullname: Manduca
– volume: 9
  start-page: 5672
  year: 2013
  ident: pmbacbbb7bib46
  article-title: Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease
  publication-title: Soft Matter.
  doi: 10.1039/c3sm50552a
  contributor:
    fullname: Sack
– volume: 5
  start-page: 1207
  year: 2007
  ident: pmbacbbb7bib63
  article-title: Assessment of hepatic fibrosis with magnetic resonance elastography
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/j.cgh.2007.06.012
  contributor:
    fullname: Yin
– volume: 44
  start-page: 1909
  year: 2011
  ident: pmbacbbb7bib64
  article-title: Viscoelastic properties of human cerebellum using magnetic resonance elastography
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.04.034
  contributor:
    fullname: Zhang
– volume: 70
  start-page: 404
  year: 2013b
  ident: pmbacbbb7bib20
  article-title: Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24473
  contributor:
    fullname: Johnson
– volume: 5
  start-page: 237
  year: 2001
  ident: pmbacbbb7bib29
  article-title: Magnetic resonance elastography: non-invasive mapping of tissue elasticity
  publication-title: Med. Imaging Anal.
  doi: 10.1016/S1361-8415(00)00039-6
  contributor:
    fullname: Manduca
– volume: 30
  start-page: 495
  year: 2003
  ident: pmbacbbb7bib7
  article-title: Thresholds for detecting and characterizing focal lesions using steady-state MR elastography
  publication-title: Med. Phys.
  doi: 10.1118/1.1556607
  contributor:
    fullname: Doyley
– volume: 45
  start-page: 827
  year: 2001a
  ident: pmbacbbb7bib58
  article-title: Three-dimensional subzone-based reconstruction algorithm for MR elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1111
  contributor:
    fullname: Van Houten
– volume: 6
  year: 2011
  ident: pmbacbbb7bib45
  article-title: The influence of physiological aging and atrophy on brain viscoelastic properties in humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023451
  contributor:
    fullname: Sack
– volume: 56
  start-page: N153
  year: 2011
  ident: pmbacbbb7bib31
  article-title: An octahedral shear strain-based measure of SNR for 3D MR elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/13/N02
  contributor:
    fullname: McGarry
– volume: 45
  start-page: 1649
  year: 2000
  ident: pmbacbbb7bib48
  article-title: High-resolution tensor MR elastography for breast tumour detection
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/6/317
  contributor:
    fullname: Sinkus
– volume: 27
  year: 2022
  ident: pmbacbbb7bib14
  article-title: Assessing corneal cross-linking with reverberant 3D optical coherence elastography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.27.2.026003
  contributor:
    fullname: Ge
– volume: 41
  start-page: 302
  year: 1994
  ident: pmbacbbb7bib51
  article-title: Theoretical-analysis and verification of ultrasound displacement and strain imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.285463
  contributor:
    fullname: Skovoroda
– volume: 54
  start-page: 100
  year: 2014
  ident: pmbacbbb7bib25
  article-title: Evaluation of robust wave image processing methods for magnetic resonance elastography
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.08.024
  contributor:
    fullname: Li
– volume: 23
  start-page: S208
  year: 2004
  ident: pmbacbbb7bib53
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2004.07.051
  contributor:
    fullname: Smith
– volume: 64
  year: 2019
  ident: pmbacbbb7bib39
  article-title: An initial study of complete 2D shear wave dispersion images using a reverberant shear wave field
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab2778
  contributor:
    fullname: Ormachea
– volume: 63
  year: 2020
  ident: pmbacbbb7bib47
  article-title: Artificial neural networks for magnetic resonance elastography stiffness estimation in inhomogeneous materials
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101710
  contributor:
    fullname: Scott
– volume: 22
  year: 2019
  ident: pmbacbbb7bib5
  article-title: Altered brain tissue viscoelasticity in pediatric cerebral palsy measured by magnetic resonance elastography
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2019.101750
  contributor:
    fullname: Chaze
– volume: 142
  year: 2020
  ident: pmbacbbb7bib52
  article-title: Multi-excitation magnetic resonance elastography of the brain: wave propagation in anisotropic white matter
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4046199
  contributor:
    fullname: Smith
– volume: 24
  start-page: 385
  year: 2011
  ident: pmbacbbb7bib55
  article-title: In vivo viscoelastic properties of the brain in normal pressure hydrocephalus
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1602
  contributor:
    fullname: Streitberger
– volume: 45
  start-page: 1521
  year: 2000
  ident: pmbacbbb7bib10
  article-title: Evaluation of an iterative reconstruction method for quantitative elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/6/309
  contributor:
    fullname: Doyley
– volume: 269
  start-page: 1854
  year: 1995
  ident: pmbacbbb7bib35
  article-title: Magnetic-resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
  doi: 10.1126/science.7569924
  contributor:
    fullname: Muthupillai
– volume: 61
  start-page: R401
  year: 2016
  ident: pmbacbbb7bib15
  article-title: Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/24/R401
  contributor:
    fullname: Hiscox
– year: 2016
  ident: pmbacbbb7bib54
  contributor:
    fullname: Strang
SSID ssj0011824
Score 2.4869378
Snippet Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical utility. In...
Abstract Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance on multiple mechanical drivers hampers clinical...
SourceID pubmedcentral
proquest
crossref
pubmed
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55015
SubjectTerms Brain - diagnostic imaging
brain imaging
Elasticity Imaging Techniques - methods
elastography
Humans
magnetic resonance elastography
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
phantom
Phantoms, Imaging
reverberant shear wave
Title Reverberant magnetic resonance elastographic imaging using a single mechanical driver
URI https://iopscience.iop.org/article/10.1088/1361-6560/acbbb7
https://www.ncbi.nlm.nih.gov/pubmed/36780698
https://www.proquest.com/docview/2776517055/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC9969521
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51i0BcEJRXeFRGggOH0CR-xBYnhKgKUilCrOjNsuNxqcRmV930wL9n7KQrFlWIU6LYUZwZO_NNZuYzwMvoQ9U6iaU2TpRCBl76ynsCcq5DapQx_-84_qyO5uLTqTzdgbebWpjlavr0v6HTkSh4FOGUEKcPaq7qMnHGHLjOe9_O4AZZ3YyOTvj3TQiBgLOY4pLX3bVlh2b0rOsg5t-Zkn-YnsO7cGfCjOzdOMJ7sIP9Htwcd5H8tQe3jqf4OF3MCZ3d-j7MvyJNUo9kiga2cGd9KlZk5FsvE8MGMiTUPIx01XT9fJE3K2IpC_6MOZYOP5EtMNUFJzWycJESOB7A_PDDt_dH5bSFQtkJJYcyCE34qcaaB2lCi1GJyGMVPKGKyNFIcr86I7GRvEJvuqYKdVe54JVArn3NH8Juv-zxMbCAsREuNtIrI1RQXhoVOu0kabQOKAp4fSVQuxqZMmyOcGttk_BtEr4dhV_AK5K4nZbL-h_92Fa_1cJbpa20FTlWtbSrEAt4caU2SysjhTtcj8vLtW3aVsnMFlTAo1GNm4FxstGVMrqAdkvBmw6JdXu7pT__kdm3yUE0hHme_OcrPIXbaYf6XAXfPoPd4eISnxOOGfw-zD6efNnPs_Y3KEnyow
link.rule.ids 230,315,786,790,891,27955,27956,38898,38923,53875,53901
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIiouqJRXoICR4MAhbBI_4hyrwqo8WhBiRW-WHY9LJTa76qYH_j1jJ12xqEKcEsWO4szY8TeZmW8AXgbni9pKzHVjRS6k57krnCMgZ1ukRhnS_47jE3U0Ex9O5elY5zTlwiyW46f_DZ0ORMGDCMeAOD0puSrzyBkzsa1zrp4sfdiCmzJa7zShP_PvazcCgWcx-iavu3NjL9qi510HM_-Olvxj-5nuwp0RN7KDYZR34QZ2e3BrqCT5aw92jkcfOV1MQZ3t6h7MviJNVIe0HfVsbs-6mLDIyL5eRJYNZEjIuR8oq-n6-TwVLGIxEv6MWRYPP5HNMeYGR1UyfxGDOO7DbPru2-FRPpZRyFuhZJ97oQlDlVhyLxtfY1Ai8FB4R8gicGwkmWBtI7GSvEDXtFXhy7aw3imBXLuSP4DtbtHhI2AeQyVsqKRTjVBeOdko32orSaulR5HB6yuBmuXAlmGSl1trE4VvovDNIPwMXpHEzbhkVv_oxzb6LefOKG2kKci4KqUh7Wfw4kpthlZHdHnYDheXK1PVtZKJMSiDh4Ma1wPjtE8XqtEZ1BsKXneIzNubLd35j8TATUZiQ7jn8X--wnPY-fJ2aj69P_n4BG7HgvUpKb7eh-3-4hKfEqzp3bM0dX8DYW_1jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reverberant+magnetic+resonance+elastographic+imaging+using+a+single+mechanical+driver&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Kabir%2C+Irteza+Enan&rft.au=Caban-Rivera%2C+Diego+A&rft.au=Ormachea%2C+Juvenal&rft.au=Parker%2C+Kevin+J&rft.date=2023-02-27&rft.eissn=1361-6560&rft.volume=68&rft.issue=5&rft_id=info:doi/10.1088%2F1361-6560%2Facbbb7&rft_id=info%3Apmid%2F36780698&rft.externalDocID=36780698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon