A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth

Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of . Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cellular and infection microbiology Vol. 11; p. 660689
Main Authors Solano-Collado, Virtu, Colamarino, Rosa Angela, Calderwood, David A, Baldassarre, Massimiliano, Spanò, Stefania
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 07.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of . Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic . Typhi infection, the mechanisms that macrophages use to control the growth of . Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of . Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled . Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict . Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls . Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in . Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of . Typhi and other intracellular pathogens in primary immune cells.
AbstractList Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S . Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S . Typhi infection, the mechanisms that macrophages use to control the growth of S . Typhi and the role of these mechanisms in the bacterium’s adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S . Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S . Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S . Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S . Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S . Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S . Typhi and other intracellular pathogens in primary immune cells.
Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of . Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic . Typhi infection, the mechanisms that macrophages use to control the growth of . Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of . Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled . Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict . Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls . Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in . Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of . Typhi and other intracellular pathogens in primary immune cells.
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S. Typhi infection, the mechanisms that macrophages use to control the growth of S. Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S. Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S. Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S. Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S. Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S. Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S. Typhi and other intracellular pathogens in primary immune cells.
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S. Typhi infection, the mechanisms that macrophages use to control the growth of S. Typhi and the role of these mechanisms in the bacterium’s adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S. Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S. Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S. Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S. Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S. Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S. Typhi and other intracellular pathogens in primary immune cells.
Author Solano-Collado, Virtu
Baldassarre, Massimiliano
Colamarino, Rosa Angela
Spanò, Stefania
Calderwood, David A
AuthorAffiliation 2 Department of Pharmacology, Yale University School of Medicine , New Haven, CT , United States
3 Department of Cell Biology, Yale University School of Medicine , New Haven, CT , United States
1 Institute of Medical Sciences, University of Aberdeen , Aberdeen , United Kingdom
AuthorAffiliation_xml – name: 2 Department of Pharmacology, Yale University School of Medicine , New Haven, CT , United States
– name: 3 Department of Cell Biology, Yale University School of Medicine , New Haven, CT , United States
– name: 1 Institute of Medical Sciences, University of Aberdeen , Aberdeen , United Kingdom
Author_xml – sequence: 1
  givenname: Virtu
  surname: Solano-Collado
  fullname: Solano-Collado, Virtu
  organization: Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 2
  givenname: Rosa Angela
  surname: Colamarino
  fullname: Colamarino, Rosa Angela
  organization: Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 3
  givenname: David A
  surname: Calderwood
  fullname: Calderwood, David A
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
– sequence: 4
  givenname: Massimiliano
  surname: Baldassarre
  fullname: Baldassarre, Massimiliano
  organization: Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 5
  givenname: Stefania
  surname: Spanò
  fullname: Spanò, Stefania
  organization: Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33898333$$D View this record in MEDLINE/PubMed
BookMark eNpVklFv0zAQxyM0xMbYB-AF-ZGXFseuE-cFaaqgVNpgasuzdXYujScnLnYK2kfgW-M0Y9r84tP57nf-393b7Kz3PWbZ-5zOOZfVp8bYTs8ZZfm8KGghq1fZBWNczFgl5dkz-zy7ivGeplNSJiv-JjsfAZJzfpH9vSbbDpybbQ04JLHdfE8eExB7YntyF2wH4YHc-mNEcgsm-EMLe4xkXWM_2MYmE8jGp9zGBzK0SDagyWp3B_Fk5nrkLH0_BO-c7fdkC65LUpwDsns4tJasgv8ztO-y1w24iFeP92X28-uX3fLb7ObHar28vpmZRSGGWc0XuaB5I0veLHImDJTAADnwAoXOa62p5pAiECuOwqBYIKuTWsYZraHml9l64tYe7tVhEqg8WHVy-LBXEAZrHKqSgeCyKMqmHKtqLWRZAxpJTV0maYn1eWIdjrrD2qSWBHAvoC9fetuqvf-tJBVVWdEE-PgICP7XEeOgOhvN2JseU8sVE3kSKgs5huZTaJpBjAGbpzI5VeNA1Wkj1LgRatqIlPPh-f-eMv7Pn_8DIwa1Nw
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_124741
crossref_primary_10_1128_MRA_00804_21
crossref_primary_10_1002_wsbm_1587
Cites_doi 10.1126/science.272.5259.263
10.1146/annurev-micro-092412-155725[doi
10.1101/2020.12.01.406090
10.1046/j.1365-2958.2000.02103.x
10.1126/science.1229224
10.1083/jcb.115.1.31
10.1080/21541248.2017.1336192
10.1111/j.1600-0854.2011.01165.x[doi
10.1371/journal.pone.0003829
10.1073/pnas.83.14.5189
10.1371/journal.pone.0031752
10.1126/science.1149185
10.1371/journal.ppat.1005241
10.1371/journal.pone.0038097
10.1038/nbt.1857
10.1016/j.chom.2017.07.009
10.1084/jem.20031706
10.1038/sdata.2017.8
10.1126/sciadv.abb1795
10.1073/pnas.1608319113
10.1016/j.jviromet.2005.12.006
10.1006/mthe.2000.0027
10.1146/annurev-micro-091313-103739
10.1096/fj.201601052R
10.1016/j.chom.2016.01.004
10.1126/science.1227037
10.1042/BST20120167[doi
10.2144/99274rr05
10.1016/j.chom.2010.05.011
10.1101/pdb.prot5080
10.3389/fcimb.2020.00419
10.1097/QCO.0000000000000479
10.1074/jbc.M117.811737
10.1074/jbc.M111.307124
10.1111/imr.12266
10.1111/tra.12000[doi
10.1038/s42003-020-1005-2
10.1128/mBio.02169-19
10.1128/IAI.59.9.2901-2908.1991
10.14440/jbm.2015.66
ContentType Journal Article
Copyright Copyright © 2021 Solano-Collado, Colamarino, Calderwood, Baldassarre and Spanò.
Copyright © 2021 Solano-Collado, Colamarino, Calderwood, Baldassarre and Spanò 2021 Solano-Collado, Colamarino, Calderwood, Baldassarre and Spanò
Copyright_xml – notice: Copyright © 2021 Solano-Collado, Colamarino, Calderwood, Baldassarre and Spanò.
– notice: Copyright © 2021 Solano-Collado, Colamarino, Calderwood, Baldassarre and Spanò 2021 Solano-Collado, Colamarino, Calderwood, Baldassarre and Spanò
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcimb.2021.660689
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2235-2988
EndPage 660689
ExternalDocumentID oai_doaj_org_article_72a538667f73415bb587daec80cd7ab1
10_3389_fcimb_2021_660689
33898333
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N017854/1
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 109680/Z/15/Z
– fundername: Horizon 2020
  grantid: 2016-726152-TYPHI
– fundername: Horizon 2020
  grantid: 706040_KILLINGTYPHI
– fundername: Tenovus
  grantid: G14/19
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CGR
CUY
CVF
DIK
ECM
EIF
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IHW
INH
INR
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RPM
AAYXX
CITATION
7X8
ITC
5PM
ID FETCH-LOGICAL-c465t-d341501f873f4125ca7a2ae3a36e5b1dbb0b3a501ee93e5ce54e2d9832320dad3
IEDL.DBID RPM
ISSN 2235-2988
IngestDate Thu Sep 05 15:27:39 EDT 2024
Tue Sep 17 21:18:57 EDT 2024
Sat Aug 17 05:40:28 EDT 2024
Thu Sep 26 15:56:37 EDT 2024
Sat Sep 28 08:12:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords macrophages
shRNA screen
host-defense
Rab GTPases
Rab1b
Salmonella Typhi
Language English
License Copyright © 2021 Solano-Collado, Colamarino, Calderwood, Baldassarre and Spanò.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-d341501f873f4125ca7a2ae3a36e5b1dbb0b3a501ee93e5ce54e2d9832320dad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Xiaoyun Liu, Peking University, China; V. K. Viswanathan, University of Arizona, United States
This article was submitted to Bacteria and Host, a section of the journal Frontiers in Cellular and Infection Microbiology
Edited by: Stephanie M. Seveau, The Ohio State University, United States
Deceased
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059790/
PMID 33898333
PQID 2518738680
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_72a538667f73415bb587daec80cd7ab1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059790
proquest_miscellaneous_2518738680
crossref_primary_10_3389_fcimb_2021_660689
pubmed_primary_33898333
PublicationCentury 2000
PublicationDate 2021-04-07
PublicationDateYYYYMMDD 2021-04-07
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-07
  day: 07
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cellular and infection microbiology
PublicationTitleAlternate Front Cell Infect Microbiol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Connor (B5) 2015; 11
Spanò (B32) 2016; 19
Feng (B8) 2018; 293
Schroers (B25) 2000; 1
Zhou (B40) 2012; 7
Kagan (B17) 2004; 199
Yeung (B38) 2019; 10
Gan (B12) 2020; 10
Kakuta (B18) 2017; 31
Dougan (B6) 2014; 68
Silva (B28) 2008; 319
Thompson (B34) 1999; 27
Zeng (B39) 2006; 134
Weiss (B37) 2015; 264
Baldassarre (B2) 2021; 7
Meng (B21) 2020; 3
Solano-Collado (B29) 2020
Plutner (B24) 1991; 115
Guiet (B14) 2012; 287
Li (B19) 2017; 4
Hardiman (B15) 2012; 40
McGourty (B20) 2012; 338
Naldini (B23) 1996; 272
Spanò (B31) 2018; 9
Spanò (B30) 2012; 338
Bakowski (B1) 2010; 7
Shi (B27) 2016; 113
Eswarappa (B7) 2008; 3
Miller (B22) 2015; 2
Jennings (B16) 2017; 22
Galán (B10) 1991; 59
Weischenfeldt (B36) 2008; 2008
Gibani (B13) 2018; 31
Carette (B4) 2011; 29
Fields (B9) 1986; 83
Thornbrough (B35) 2012; 7
Brennan (B3) 2000; 38
Stein (B33) 2012; 13
Galán (B11) 2014; 68
Seto (B26) 2011; 12
References_xml – volume: 272
  start-page: 263
  year: 1996
  ident: B23
  article-title: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector
  publication-title: Science
  doi: 10.1126/science.272.5259.263
  contributor:
    fullname: Naldini
– volume: 68
  start-page: 415
  year: 2014
  ident: B11
  article-title: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-092412-155725[doi
  contributor:
    fullname: Galán
– volume-title: BioRxiv.
  year: 2020
  ident: B29
  article-title: A small-scale shRNA screen in primary mouse macrophages identifies a role for the Rab GTPase Rab1b in controlling Salmonella Typhi growth
  doi: 10.1101/2020.12.01.406090
  contributor:
    fullname: Solano-Collado
– volume: 38
  start-page: 31
  year: 2000
  ident: B3
  article-title: Salmonella induces macrophage death by caspase-1-dependent necrosis
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.02103.x
  contributor:
    fullname: Brennan
– volume: 338
  start-page: 960
  year: 2012
  ident: B30
  article-title: A Rab32-dependent pathway contributes to Salmonella typhi host restriction
  publication-title: Science
  doi: 10.1126/science.1229224
  contributor:
    fullname: Spanò
– volume: 115
  start-page: 31
  year: 1991
  ident: B24
  article-title: Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.115.1.31
  contributor:
    fullname: Plutner
– volume: 9
  start-page: 182
  year: 2018
  ident: B31
  article-title: Taking control: Hijacking of Rab GTPases by intracellular bacterial pathogens
  publication-title: Small GTPases
  doi: 10.1080/21541248.2017.1336192
  contributor:
    fullname: Spanò
– volume: 12
  start-page: 407
  year: 2011
  ident: B26
  article-title: Rab GTPases regulating phagosome maturation are differentially recruited to mycobacterial phagosomes
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2011.01165.x[doi
  contributor:
    fullname: Seto
– volume: 3
  year: 2008
  ident: B7
  article-title: Differentially evolved genes of Salmonella pathogenicity islands: insights into the mechanism of host specificity in Salmonella
  publication-title: PloS One
  doi: 10.1371/journal.pone.0003829
  contributor:
    fullname: Eswarappa
– volume: 83
  start-page: 5189
  year: 1986
  ident: B9
  article-title: Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.83.14.5189
  contributor:
    fullname: Fields
– volume: 7
  year: 2012
  ident: B40
  article-title: Genome-wide RNAi screen in IFN-gamma-treated human macrophages identifies genes mediating resistance to the intracellular pathogen Francisella tularensis
  publication-title: PloS One
  doi: 10.1371/journal.pone.0031752
  contributor:
    fullname: Zhou
– volume: 319
  start-page: 617
  year: 2008
  ident: B28
  article-title: Profiling essential genes in human mammary cells by multiplex RNAi screening
  publication-title: Science
  doi: 10.1126/science.1149185
  contributor:
    fullname: Silva
– volume: 11
  year: 2015
  ident: B5
  article-title: Yersinia pestis Requires Host Rab1b for Survival in Macrophages
  publication-title: PloS Pathog.
  doi: 10.1371/journal.ppat.1005241
  contributor:
    fullname: Connor
– volume: 7
  year: 2012
  ident: B35
  article-title: Human genome-wide RNAi screen for host factors that modulate intracellular Salmonella growth
  publication-title: PloS One
  doi: 10.1371/journal.pone.0038097
  contributor:
    fullname: Thornbrough
– volume: 29
  start-page: 542
  year: 2011
  ident: B4
  article-title: Global gene disruption in human cells to assign genes to phenotypes by deep sequencing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1857
  contributor:
    fullname: Carette
– volume: 22
  start-page: 217
  year: 2017
  ident: B16
  article-title: Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.07.009
  contributor:
    fullname: Jennings
– volume: 199
  start-page: 1201
  year: 2004
  ident: B17
  article-title: Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20031706
  contributor:
    fullname: Kagan
– volume: 4
  start-page: 170008
  year: 2017
  ident: B19
  article-title: Genome-wide siRNA screen of genes regulating the LPS-induced NF-kappaB and TNF-alpha responses in mouse macrophages
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.8
  contributor:
    fullname: Li
– volume: 7
  year: 2021
  ident: B2
  article-title: The Rab32/BLOC-3 dependent pathway mediates host- defence against different pathogens in human macrophages
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1795
  contributor:
    fullname: Baldassarre
– volume: 113
  start-page: E4558
  year: 2016
  ident: B27
  article-title: Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1608319113
  contributor:
    fullname: Shi
– volume: 134
  start-page: 66
  year: 2006
  ident: B39
  article-title: Effective transduction of primary mouse blood- and bone marrow-derived monocytes/macrophages by HIV-based defective lentiviral vectors
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2005.12.006
  contributor:
    fullname: Zeng
– volume: 1
  start-page: 171
  year: 2000
  ident: B25
  article-title: Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system
  publication-title: Mol. Ther.
  doi: 10.1006/mthe.2000.0027
  contributor:
    fullname: Schroers
– volume: 68
  start-page: 317
  year: 2014
  ident: B6
  article-title: Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-091313-103739
  contributor:
    fullname: Dougan
– volume: 31
  start-page: 3757
  year: 2017
  ident: B18
  article-title: Small GTPase Rab1B is associated with ATG9A vesicles and regulates autophagosome formation
  publication-title: FASEB J.
  doi: 10.1096/fj.201601052R
  contributor:
    fullname: Kakuta
– volume: 19
  start-page: 216
  year: 2016
  ident: B32
  article-title: A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.01.004
  contributor:
    fullname: Spanò
– volume: 338
  start-page: 963
  year: 2012
  ident: B20
  article-title: Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function
  publication-title: Science
  doi: 10.1126/science.1227037
  contributor:
    fullname: McGourty
– volume: 40
  start-page: 1353
  year: 2012
  ident: B15
  article-title: The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20120167[doi
  contributor:
    fullname: Hardiman
– volume: 27
  start-page: 824,6, 828
  year: 1999
  ident: B34
  article-title: Evaluation of methods for transient transfection of a murine macrophage cell line, RAW 264.7
  publication-title: BioTechniques
  doi: 10.2144/99274rr05
  contributor:
    fullname: Thompson
– volume: 7
  start-page: 453
  year: 2010
  ident: B1
  article-title: The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.05.011
  contributor:
    fullname: Bakowski
– volume: 2008
  year: 2008
  ident: B36
  article-title: Bone Marrow-Derived Macrophages (BMM): Isolation and Applications
  publication-title: CSH Protoc.
  doi: 10.1101/pdb.prot5080
  contributor:
    fullname: Weischenfeldt
– volume: 10
  year: 2020
  ident: B12
  article-title: The Salmonella Effector SseK3 Targets Small Rab GTPases
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2020.00419
  contributor:
    fullname: Gan
– volume: 31
  start-page: 440
  year: 2018
  ident: B13
  article-title: Typhoid and paratyphoid fever: a call to action
  publication-title: Curr. Opin. Infect. Dis.
  doi: 10.1097/QCO.0000000000000479
  contributor:
    fullname: Gibani
– volume: 293
  start-page: 9662
  year: 2018
  ident: B8
  article-title: The Salmonella effectors SseF and SseG inhibit Rab1A-mediated autophagy to facilitate intracellular bacterial survival and replication
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.811737
  contributor:
    fullname: Feng
– volume: 287
  start-page: 13051
  year: 2012
  ident: B14
  article-title: Macrophage mesenchymal migration requires podosome stabilization by filamin A
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.307124
  contributor:
    fullname: Guiet
– volume: 264
  start-page: 182
  year: 2015
  ident: B37
  article-title: Macrophage defense mechanisms against intracellular bacteria
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12266
  contributor:
    fullname: Weiss
– volume: 13
  start-page: 1565
  year: 2012
  ident: B33
  article-title: Bacterial pathogens commandeer Rab GTPases to establish intracellular niches
  publication-title: Traffic
  doi: 10.1111/tra.12000[doi
  contributor:
    fullname: Stein
– volume: 3
  start-page: 287,020
  year: 2020
  ident: B21
  article-title: Arginine GlcNAcylation of Rab small GTPases by the pathogen Salmonella Typhimurium
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-1005-2
  contributor:
    fullname: Meng
– volume: 10
  start-page: e02169
  year: 2019
  ident: B38
  article-title: A Genome-Wide Knockout Screen in Human Macrophages Identified Host Factors Modulating Salmonella Infection
  publication-title: mBio
  doi: 10.1128/mBio.02169-19
  contributor:
    fullname: Yeung
– volume: 59
  start-page: 2901
  year: 1991
  ident: B10
  article-title: Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.59.9.2901-2908.1991
  contributor:
    fullname: Galán
– volume: 2
  start-page: e23
  year: 2015
  ident: B22
  article-title: Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system
  publication-title: J. Biol. Methods
  doi: 10.14440/jbm.2015.66
  contributor:
    fullname: Miller
SSID ssj0000702893
Score 2.2850442
Snippet Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of . Typhi pathogenesis...
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S . Typhi...
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 660689
SubjectTerms Animals
Cellular and Infection Microbiology
host-defense
macrophages
Macrophages - metabolism
Mice
rab GTP-Binding Proteins - metabolism
Rab GTPases
Rab1b
RNA, Small Interfering
Salmonella Typhi
Salmonella typhi - genetics
shRNA screen
Typhoid Fever
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F33hQo9FdxYlmXJxzQ0CYUNYTeB3MRIGuOFjVOa7aE_of-6M9Ym7JZCL70ZWbblmZH0fcxoRogPKrreJGhKhcRVGxtCScy2KVOINRpOCIfs0Z2dticXzddLc7lV6otjwnJ64Cy4fVsDzcm2tb2lBdeEYJxNgNFVMVkImfgos0WmpjXYsgdNZzcmsbBuv4_Lq0B8sFafWgLtXNZ9ayOa8vX_DWT-GSu5tfkcPRIPN6hRHuTRPhb3cHwi7uc6kj-fil8HcnEFq1W5IImjvBnmp9QSOaRGLkd5ljNKyBmxfJQz4KpdA60jNzIf0-2JLUuQ82t6ljCsJEwo5xDk8fkZ7XF8qQK_5zCHtfMBdrmAFRkwh05JorLDUh4Tn18Pz8TF0Zfzw5NyU2OhjE1r1mVioVaqd1b3DYGdCBZqQA26RRNUCqEKGqgHYqfRRDQN1qmjdUDXVYKkn4u9kT73UkingOBGcGAce0vRdXVS0VqVWqxDhYX4eCtw_y3_uCcKwtrxk3Y8a8dn7RTiM6vkriNnwZ4ayDb8xjb8v2yjEO9vFepp1rArBEYkWXtCdY7LnbqqEC-ygu8-xQNyWutC2B3V74xl9864HKbM3I7Aqu2qV_9j8K_FA5bHFCVk34i99fcf-JYA0Dq8m2z9N-YsBG4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF7SlEIvpe8qfbCFngpKpV2tdnUoJQ1NQsEh2DHktuxjFBkcpbUdaH5C_3VnJDnUxcfejKzHar7dne9jRjOMfciDqVV0RZoDatVCe5-isi3S6IMARQXhgCK6o9PyZFp8v1AXO2zd3mow4HKrtKN-UtPFfP_Xz9svuOA_k-JEf_upDrMrj1JP5Psl8nFT3WP3RSELmvCjge13G7OmsJrsY5vbr9zwTl0R_23M898Eyr880tFj9migkvygx_4J24H2KXvQN5e8fcZ-H_DJlZvP0wnCAHzZjE_xSKA8Gz5r-VlfZoKPUPoDHzlq5dXg5rLk_be7NUpo7vj4Gq9FYsuRKPKx8_z4_AwdH_3MPd3nsM91p6_a-cTNcVZTPhVHfdvM-DGK_FXznE2Pvp0fnqRD44U0FKVapRFdm8ry2mhZF8iAgtNOOJBOlqB8Hr3PvHR4BkAlQQVQBYhY4eYgRRZdlC_YbouPe8W4yR1yEG-cMhRCBVOJmAet81iC8Bkk7OPa4PZH_-IWdQmhYzt0LKFje3QS9pUguTuRSmN3B64Xl3ZYaVYLh5t4Wepa02t4r4yODoLJQtRom4S9XwNqcSlRfMS1gLa2SPUM9UA1WcJe9gDfPYoGZKSUCdMb0G-MZfOfdtZ05boNMlhdZXv_Y_Cv2UOyR5c6pN-w3dXiBt4iK1r5d91c_wM21gy1
  priority: 102
  providerName: Scholars Portal
Title A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth
URI https://www.ncbi.nlm.nih.gov/pubmed/33898333
https://search.proquest.com/docview/2518738680
https://pubmed.ncbi.nlm.nih.gov/PMC8059790
https://doaj.org/article/72a538667f73415bb587daec80cd7ab1
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJoNBLadOXkzao0FPBu7ZlWdpjujQJBYdlN4HcjB7j2rDrhGR7yE_Iv86MvA7ZklMvxvgleWas-T7PaMTY99TpWnqTxykgV82VtTEy2zz21mUgqSAcUES3PC_OLvPfV_Jqh8lhLkxI2ne2HXXL1ahrm5BbebNy4yFPbDwrpxoxgZok4122q4R4RtHD8KsoeCb6CCYSsMm4du3KIhXM0lGBeF1TpVA6oYUQW-4oVO1_CWr-mzH5zAWdvGVvNtiRH_d9fMd2oNtnr_rVJO_fs4djvliZ5TJeoNyB3zXzczziKLGGtx2f9XUleIlcH3hpaO2uBkeTO95P1q2RM3PD59d4LyJZjsiQz43lpxcz9HS0m1p6zrRPbqdp7HxhlmjGlEDFkdA2LT9FVr9uPrDLk18X07N4s9JC7PJCrmOPvkwmaa2VqHOEPM4okxkQRhQgbeqtTawweAXARIB0IHPIPAoQ8VjijRcf2V6HzX1mXKcGQYfVRmqKmYKeZD51SqW-gMwmELEfg8Crm_7FKyQipI8qKKoiRVW9oiL2k1TydCHVwg4Hrm__VBuLqFRmcNQuClUreg1rpVbegNOJ8wplE7Fvg0Ir_HYoIGI6QFlXiO00LXqqk4h96hX81NRgIBFTW6rf6sv2GTTXUJ97Y54H_33nIXtNQggJQuoL21vf_oWviH3W9ij8M8BtmeujYPePXvUGqA
link.rule.ids 230,315,733,786,790,870,891,2115,24346,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEIIX7pdwNRJPSGmTOI7dx1GxFViqqu3Q3izfQiLadGpTIfgH_GuO42ZaJ17gLYqTOPb5bH9H5_MxQu9izQtqZBrGFnzVlCkVgmebhkbpxFKXEM66iG4-zkZn6edzen6AaLcXphXta1X16sWyV1dlq628WOp-pxPrT_IhB07ABlH_BroJ4zVhV5z0dgJmLnxGfAwTXLBBv9DVUoEzmMS9DBg7d7lCXQEnhOwtSG3e_r-RzeuaySuL0PE99LX7fa89-d7bNqqnf13L7PjP7buP7u5oKT7yxQ_Qga0folv-oMqfj9DvIzxbysUinIFJLd6U0zHc0U6zg6saT3zKCpyvthuLc-mOBSthotpgvw-4AHccSzxdwbtAkjGQTjyVCp_MJ7CIustYue8MvW7e7ZDHM7mAEeK0WRh85bLCJ-vVj6Z8jM6OP86Ho3B3iEOo04w2oYFlkkZxwRkpUmBTWjKZSEskySxVsVEqUkTCE9YOiKXa0tQmBiwDVC8y0pAn6LCG6p4hzGMJfEZxSbkLx1o-SEysGYtNZhMV2QC97ywpLnzDBfg4ztCiRYBwCBAeAQH64Gx9-aBLs93eWK2_iZ0xBEskACzLWMFcM5SinBlpNY-0YdA3AXrbIUXAsHSxFllb6GsBtJG781R5FKCnHjmXVXXICxDbw9Tev-yXAFLa1N87ZDz_7zffoNujeX4qTj-Nv7xAd1yHtDok9hIdNuutfQUUq1Gv2wH1B2rYJtc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCMTLuI6Fq5F4QkpzcRw7j6PQjUurqt2kiZfIt5CINq3aVAj-Af-a47iZ2omnvUWOc7HP5_g7Ol_OQehdpHhBtUj8yICvmjApffBsE19LFRtqE8IZG9EdjtKzi-TLJb3cKfXVivaVrHr1bN6rq7LVVi7nKuh0YsF42OfACVgWBktdBLfRHVizcbbjqLcfYWZDaMTFMcENy4JCVXMJDmEc9VJg7dzmC7UnOCFkb1Nqc_f_j3Be103ubESDB-h7NwSnP_nZ2zSyp_5cy-54ozE-RIdbeopPXJdH6JapH6O7rmDl7yfo7wmezsVs5k_BtAavy8kIWpTV7uCqxmOXugIPF5u1wUNhy4OV8MFaY_c_cAFuORZ4soBrgSxjIJ94IiQ-PR_DZmoPI2nv03f6efunPJ6KGawUq9HC4DOXFT5dLX415VN0Mfh03j_zt8UcfJWktPE1bJc0jArOSJEAq1KCiVgYIkhqqIy0lKEkAnoYkxFDlaGJiTVYByhfqIUmR-ighscdI8wjAbxGckG5DcsansU6UoxFOjWxDI2H3nfWzJdu4Dn4OtbYeYuC3KIgdyjw0Adr76uONt1227BY_ci3BslZLABkacoKZochJeVMC6N4qDSDufHQ2w4tOSxPG3MRtYG5zoE-cltXlYceeubQc_WoDn0eYnu42nuX_TOAljYF-BYdz2985Rt0b_xxkH_7PPr6At2389HKkdhLdNCsNuYVMK1Gvm7X1D-bkylX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Small-Scale+shRNA+Screen+in+Primary+Mouse+Macrophages+Identifies+a+Role+for+the+Rab+GTPase+Rab1b+in+Controlling+Salmonella+Typhi+Growth&rft.jtitle=Frontiers+in+cellular+and+infection+microbiology&rft.au=Virtu+Solano-Collado&rft.au=Rosa+Angela+Colamarino&rft.au=David+A.+Calderwood&rft.au=David+A.+Calderwood&rft.date=2021-04-07&rft.pub=Frontiers+Media+S.A&rft.eissn=2235-2988&rft.volume=11&rft_id=info:doi/10.3389%2Ffcimb.2021.660689&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_72a538667f73415bb587daec80cd7ab1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2235-2988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2235-2988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2235-2988&client=summon