Anti-PTK7 Monoclonal Antibodies Inhibit Angiogenesis by Suppressing PTK7 Function
PTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR oligomerization. This study developed anti-PTK7 monoclonal antibodies (mAbs) to regulate angiogenesis by inhibiting PTK7 function. The effect of a...
Saved in:
Published in | Cancers Vol. 14; no. 18; p. 4463 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR oligomerization. This study developed anti-PTK7 monoclonal antibodies (mAbs) to regulate angiogenesis by inhibiting PTK7 function. The effect of anti-PTK7 mAbs on vascular endothelial growth factor (VEGF)-induced angiogenic phenotypes in human umbilical vascular endothelial cells (HUVECs) was examined. Analysis of mAb binding with PTK7 deletion mutants revealed that mAb-43 and mAb-52 recognize immunoglobulin (Ig) domain 2 of PTK7, whereas mAb-32 and mAb-50 recognize Ig domains 6–7. Anti-PTK7 mAbs inhibited VEGF-induced adhesion and wound healing in HUVECs. mAb-32, mAb-43, and mAb-52 dose-dependently mitigated VEGF-induced migration and invasion in HUVECs without exerting cytotoxic effects. Additionally, mAb-32, mAb-43, and mAb-52 inhibited capillary-like tube formation in HUVECs, and mAb-32 and mAb-43 suppressed angiogenesis ex vivo (aortic ring assay) and in vivo (Matrigel plug assay). Furthermore, mAb-32 and mAb-43 downregulated VEGF-induced KDR activation and downstream signaling and inhibited PTK7–KDR interaction in PTK7-overexpressing and KDR-overexpressing HEK293 cells. Thus, anti-PTK7 mAbs inhibit angiogenic phenotypes by blocking PTK7–KDR interaction. These findings indicate that anti-PTK7 mAbs that neutralize PTK7 function can alleviate impaired angiogenesis-associated pathological conditions, such as cancer metastasis. |
---|---|
AbstractList | PTK7 is a catalytically defective receptor protein tyrosine kinase. We previously demonstrated that PTK7 enhances angiogenesis by interacting with KDR, a vascular endothelial growth factor (VEGF) receptor important for angiogenesis, and activating it through oligomerization. To control angiogenesis by inhibiting PTK7 function, we developed anti-PTK7 monoclonal antibodies (mAbs). The selected PTK7 mAbs reduced VEGF-induced angiogenic phenotypes of endothelial cells and angiogenesis ex vivo and in vivo. The PTK7 mAbs also inhibited VEGF-induced KDR activation in endothelial cells and its downstream signaling and PTK7-KDR interaction. Our results show that the PTK7 mAbs inhibit angiogenesis by blocking PTK7 function. Therefore, PTK7 mAbs could be applied as therapeutics to control angiogenesis-associated diseases such as metastatic cancers. PTK7 is a catalytically defective receptor protein tyrosine kinase. We previously demonstrated that PTK7 enhances angiogenesis by interacting with KDR, a vascular endothelial growth factor (VEGF) receptor important for angiogenesis, and activating it through oligomerization. To control angiogenesis by inhibiting PTK7 function, we developed anti-PTK7 monoclonal antibodies (mAbs). The selected PTK7 mAbs reduced VEGF-induced angiogenic phenotypes of endothelial cells and angiogenesis ex vivo and in vivo. The PTK7 mAbs also inhibited VEGF-induced KDR activation in endothelial cells and its downstream signaling and PTK7–KDR interaction. Our results show that the PTK7 mAbs inhibit angiogenesis by blocking PTK7 function. Therefore, PTK7 mAbs could be applied as therapeutics to control angiogenesis-associated diseases such as metastatic cancers. PTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR oligomerization. This study developed anti-PTK7 monoclonal antibodies (mAbs) to regulate angiogenesis by inhibiting PTK7 function. The effect of anti-PTK7 mAbs on vascular endothelial growth factor (VEGF)-induced angiogenic phenotypes in human umbilical vascular endothelial cells (HUVECs) was examined. Analysis of mAb binding with PTK7 deletion mutants revealed that mAb-43 and mAb-52 recognize immunoglobulin (Ig) domain 2 of PTK7, whereas mAb-32 and mAb-50 recognize Ig domains 6–7. Anti-PTK7 mAbs inhibited VEGF-induced adhesion and wound healing in HUVECs. mAb-32, mAb-43, and mAb-52 dose-dependently mitigated VEGF-induced migration and invasion in HUVECs without exerting cytotoxic effects. Additionally, mAb-32, mAb-43, and mAb-52 inhibited capillary-like tube formation in HUVECs, and mAb-32 and mAb-43 suppressed angiogenesis ex vivo (aortic ring assay) and in vivo (Matrigel plug assay). Furthermore, mAb-32 and mAb-43 downregulated VEGF-induced KDR activation and downstream signaling and inhibited PTK7–KDR interaction in PTK7-overexpressing and KDR-overexpressing HEK293 cells. Thus, anti-PTK7 mAbs inhibit angiogenic phenotypes by blocking PTK7–KDR interaction. These findings indicate that anti-PTK7 mAbs that neutralize PTK7 function can alleviate impaired angiogenesis-associated pathological conditions, such as cancer metastasis. Simple SummaryPTK7 is a catalytically defective receptor protein tyrosine kinase. We previously demonstrated that PTK7 enhances angiogenesis by interacting with KDR, a vascular endothelial growth factor (VEGF) receptor important for angiogenesis, and activating it through oligomerization. To control angiogenesis by inhibiting PTK7 function, we developed anti-PTK7 monoclonal antibodies (mAbs). The selected PTK7 mAbs reduced VEGF-induced angiogenic phenotypes of endothelial cells and angiogenesis ex vivo and in vivo. The PTK7 mAbs also inhibited VEGF-induced KDR activation in endothelial cells and its downstream signaling and PTK7–KDR interaction. Our results show that the PTK7 mAbs inhibit angiogenesis by blocking PTK7 function. Therefore, PTK7 mAbs could be applied as therapeutics to control angiogenesis-associated diseases such as metastatic cancers.AbstractPTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR oligomerization. This study developed anti-PTK7 monoclonal antibodies (mAbs) to regulate angiogenesis by inhibiting PTK7 function. The effect of anti-PTK7 mAbs on vascular endothelial growth factor (VEGF)-induced angiogenic phenotypes in human umbilical vascular endothelial cells (HUVECs) was examined. Analysis of mAb binding with PTK7 deletion mutants revealed that mAb-43 and mAb-52 recognize immunoglobulin (Ig) domain 2 of PTK7, whereas mAb-32 and mAb-50 recognize Ig domains 6–7. Anti-PTK7 mAbs inhibited VEGF-induced adhesion and wound healing in HUVECs. mAb-32, mAb-43, and mAb-52 dose-dependently mitigated VEGF-induced migration and invasion in HUVECs without exerting cytotoxic effects. Additionally, mAb-32, mAb-43, and mAb-52 inhibited capillary-like tube formation in HUVECs, and mAb-32 and mAb-43 suppressed angiogenesis ex vivo (aortic ring assay) and in vivo (Matrigel plug assay). Furthermore, mAb-32 and mAb-43 downregulated VEGF-induced KDR activation and downstream signaling and inhibited PTK7–KDR interaction in PTK7-overexpressing and KDR-overexpressing HEK293 cells. Thus, anti-PTK7 mAbs inhibit angiogenic phenotypes by blocking PTK7–KDR interaction. These findings indicate that anti-PTK7 mAbs that neutralize PTK7 function can alleviate impaired angiogenesis-associated pathological conditions, such as cancer metastasis. PTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR oligomerization. This study developed anti-PTK7 monoclonal antibodies (mAbs) to regulate angiogenesis by inhibiting PTK7 function. The effect of anti-PTK7 mAbs on vascular endothelial growth factor (VEGF)-induced angiogenic phenotypes in human umbilical vascular endothelial cells (HUVECs) was examined. Analysis of mAb binding with PTK7 deletion mutants revealed that mAb-43 and mAb-52 recognize immunoglobulin (Ig) domain 2 of PTK7, whereas mAb-32 and mAb-50 recognize Ig domains 6–7. Anti-PTK7 mAbs inhibited VEGF-induced adhesion and wound healing in HUVECs. mAb-32, mAb-43, and mAb-52 dose-dependently mitigated VEGF-induced migration and invasion in HUVECs without exerting cytotoxic effects. Additionally, mAb-32, mAb-43, and mAb-52 inhibited capillary-like tube formation in HUVECs, and mAb-32 and mAb-43 suppressed angiogenesis ex vivo (aortic ring assay) and in vivo (Matrigel plug assay). Furthermore, mAb-32 and mAb-43 downregulated VEGF-induced KDR activation and downstream signaling and inhibited PTK7–KDR interaction in PTK7-overexpressing and KDR-overexpressing HEK293 cells. Thus, anti-PTK7 mAbs inhibit angiogenic phenotypes by blocking PTK7–KDR interaction. These findings indicate that anti-PTK7 mAbs that neutralize PTK7 function can alleviate impaired angiogenesis-associated pathological conditions, such as cancer metastasis. |
Audience | Academic |
Author | Oh, Si Won Shin, Won-Sik Lee, Seung-Taek |
AuthorAffiliation | Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea |
AuthorAffiliation_xml | – name: Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea |
Author_xml | – sequence: 1 fullname: Oh, Si Won – sequence: 2 fullname: Shin, Won-Sik – sequence: 3 fullname: Lee, Seung-Taek |
BookMark | eNptkU1PxCAQhonRxM-z1yZevNSlhUK5mGyMq0aNGvVMgE4rpgsrtCb-e9nV-BXhwGR43hdmZhutO-8Aof0CHxEi8MQoZyDEghY1pYysoa0S8zJnTND1H_Em2ovxGadFSMEZ30J3UzfY_PbhkmfX3nnTe6f6bJnUvrEQswv3ZLUdUqqzvgMH0cZMv2X342IRIEbrumwln43ODNa7XbTRqj7C3ue5gx5npw8n5_nVzdnFyfQqN5RVQ95gWlJQNSOE6FZpzSpdtqwGXhJa6yb9VplKYaCpIqiV4KRmoml02zBatJzsoOMP38Wo59AYcENQvVwEO1fhTXpl5e8bZ59k51-loIKJEieDw0-D4F9GiIOc22ig75UDP0ZZ8tQiwRmpEnrwB332Y0idWlGswpyI8pvqVA_Sutand83SVE45rRJZkSJRR_9QaTcwtyaNtbUp_0sw-RCY4GMM0H7VWGC5nL78M33yDl9bpGY |
CitedBy_id | crossref_primary_10_1186_s12916_023_03197_8 crossref_primary_10_3390_ijms232012195 crossref_primary_10_1016_j_cellsig_2023_110967 crossref_primary_10_1016_j_biopha_2023_114609 crossref_primary_10_3390_ijms241512173 crossref_primary_10_1038_s41388_024_03060_x crossref_primary_10_3390_ijms241512179 crossref_primary_10_3390_ijms241512445 |
Cites_doi | 10.1096/fj.201900932R 10.1158/0008-5472.CAN-13-2775 10.1007/s13577-019-00309-6 10.1038/sj.cr.7290105 10.1002/jso.23154 10.1042/BC20080221 10.1074/jbc.M115.697615 10.4161/mabs.1.3.8515 10.1083/jcb.107.4.1589 10.3389/fonc.2021.699889 10.1016/j.bbamcr.2015.05.015 10.1200/JCO.2008.21.3223 10.1126/scitranslmed.aag2611 10.1007/978-3-319-11888-8 10.1158/1078-0432.CCR-20-4465 10.1016/j.bbrc.2010.10.044 10.20944/preprints202010.0572.v1 10.3390/ijms23042391 10.1242/dev.090183 10.1007/s12013-012-9363-0 10.1158/1078-0432.CCR-20-3757 10.18632/oncotarget.23163 10.1111/cas.12194 10.1042/BCJ20170340 10.1038/s41598-020-67289-8 10.1038/nprot.2011.435 10.1042/BST20130104 10.1002/path.2309 10.3390/biomedicines5020034 10.1371/journal.pone.0123768 10.1158/0008-5472.CAN-04-1567 10.1038/nrc2442 10.1016/j.canlet.2012.03.008 10.1161/ATVBAHA.114.305228 10.3791/1564 10.3390/antiox11050928 10.1016/j.bcp.2007.09.029 10.1038/emboj.2011.236 10.3892/or.2016.4983 10.1038/nm0603-669 10.3389/fcell.2017.00031 10.1586/era.12.13 10.20517/2394-4722.2022.08 10.1182/blood-2010-09-306928 10.1242/dev.095984 10.1007/s00018-019-03351-7 10.1158/1078-0432.CCR-06-1520 10.1182/blood-2002-07-2307 10.1161/RES.0000000000000054 10.1155/2019/5380197 10.3389/fneur.2017.00504 10.1007/978-1-59745-241-0_17 10.18632/oncotarget.1671 10.1016/S0167-4781(02)00536-5 10.1371/journal.pone.0090247 10.1016/j.biopha.2017.08.059 10.1007/s12079-016-0352-8 10.1016/j.bbrc.2008.04.168 10.1002/jcb.25939 10.3791/56083 10.21037/atm.2017.09.11 10.1081/RRS-120025567 10.3816/CCC.2005.n.030 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers14184463 |
DatabaseName | CrossRef ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences ProQuest Research Library Biological Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Academic url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2072-6694 |
ExternalDocumentID | A745271531 10_3390_cancers14184463 |
GeographicLocations | South Korea United States--US |
GeographicLocations_xml | – name: South Korea – name: United States--US |
GrantInformation_xml | – fundername: Korea Drug Development Fund grantid: HN21C1214 |
GroupedDBID | --- 3V. 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PIMPY PQQKQ PROAC RIG RPM TUS 7T5 7TO 7XB 8FK H94 MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c465t-d0424ea86333bfabb65b2f68e72348bd694ac5a0e4844e8a973869ddbfd641f73 |
IEDL.DBID | RPM |
ISSN | 2072-6694 |
IngestDate | Tue Sep 17 21:36:01 EDT 2024 Sat Oct 05 06:22:45 EDT 2024 Thu Oct 10 19:35:57 EDT 2024 Fri Feb 23 00:04:32 EST 2024 Wed Nov 13 00:07:43 EST 2024 Thu Sep 12 20:42:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-d0424ea86333bfabb65b2f68e72348bd694ac5a0e4844e8a973869ddbfd641f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9432-1320 0000-0001-7300-9784 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496920/ |
PQID | 2716507392 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9496920 proquest_miscellaneous_2717697635 proquest_journals_2716507392 gale_infotracmisc_A745271531 gale_infotracacademiconefile_A745271531 crossref_primary_10_3390_cancers14184463 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Cancers |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hayes (ref_6) 2013; 140 Shin (ref_21) 2008; 371 Bie (ref_11) 2020; 33 Shen (ref_47) 2012; 64 Lee (ref_28) 2017; 474 Lichtig (ref_7) 2014; 141 Peradziryi (ref_8) 2011; 30 Margheri (ref_23) 2008; 214 ref_19 Duan (ref_13) 2020; 24 ref_15 Sun (ref_12) 2019; 2019 Baker (ref_41) 2011; 7 Ferrara (ref_54) 2003; 9 Sulpice (ref_32) 2009; 101 Butz (ref_58) 2018; 9 Maitland (ref_65) 2021; 27 Jung (ref_3) 2002; 1579 Lin (ref_14) 2012; 106 ref_22 Hida (ref_55) 2004; 64 Berger (ref_9) 2017; 5 Kowanetz (ref_36) 2006; 12 ref_27 Chen (ref_10) 2014; 74 Carpentier (ref_29) 2020; 10 Abrams (ref_50) 2003; 101 Wagner (ref_4) 2010; 402 Shojaei (ref_57) 2012; 320 Selvakumaran (ref_59) 2008; 75 Kubota (ref_39) 1988; 107 Mendrola (ref_2) 2013; 41 Zhang (ref_31) 2017; 8 Lee (ref_44) 2011; 117 Gerber (ref_64) 2009; 1 Martinez (ref_5) 2015; 290 Lugano (ref_63) 2020; 77 ref_34 ref_33 Zhang (ref_35) 2002; 12 ref_30 Simons (ref_40) 2015; 116 Bergers (ref_56) 2008; 8 Chauhan (ref_25) 2015; 35 Endo (ref_49) 2003; 23 Ataseven (ref_16) 2013; 33 Tian (ref_18) 2016; 36 Shin (ref_24) 2015; 1853 Malinda (ref_43) 2009; 467 Kupsch (ref_52) 2005; 5 Shin (ref_26) 2017; 118 Nejadmoghaddam (ref_68) 2019; 11 Cui (ref_62) 2021; 11 Braghiroli (ref_53) 2012; 12 Shin (ref_20) 2019; 33 Haikala (ref_37) 2021; 27 ref_42 Vafopoulou (ref_38) 2022; 8 Quesada (ref_46) 2004; 61 Vazgiourakis (ref_48) 2013; 31 Poindessous (ref_60) 2014; 5 Katoh (ref_67) 2017; 5 ref_1 Sun (ref_61) 2017; 95 Abhinand (ref_45) 2016; 10 Sleijfer (ref_51) 2009; 27 Shin (ref_17) 2013; 104 Damelin (ref_66) 2017; 9 |
References_xml | – volume: 33 start-page: 12960 year: 2019 ident: ref_20 article-title: Catalytically inactive receptor tyrosine kinase PTK7 activates FGFR1 independent of FGF publication-title: FASEB J. doi: 10.1096/fj.201900932R contributor: fullname: Shin – volume: 74 start-page: 2892 year: 2014 ident: ref_10 article-title: A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2775 contributor: fullname: Chen – volume: 11 start-page: 3 year: 2019 ident: ref_68 article-title: Antibody-Drug Conjugates: Possibilities and Challenges publication-title: Avicenna J. Med. Biotechnol. contributor: fullname: Nejadmoghaddam – volume: 33 start-page: 356 year: 2020 ident: ref_11 article-title: PTK7 promotes the malignant properties of cancer stem-like cells in esophageal squamous cell lines publication-title: Hum. Cell doi: 10.1007/s13577-019-00309-6 contributor: fullname: Bie – volume: 12 start-page: 9 year: 2002 ident: ref_35 article-title: MAPK signal pathways in the regulation of cell proliferation in mammalian cells publication-title: Cell Res. doi: 10.1038/sj.cr.7290105 contributor: fullname: Zhang – volume: 106 start-page: 880 year: 2012 ident: ref_14 article-title: PTK7 as a novel marker for favorable gastric cancer patient survival publication-title: J. Surg. Oncol. doi: 10.1002/jso.23154 contributor: fullname: Lin – volume: 101 start-page: 525 year: 2009 ident: ref_32 article-title: Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells publication-title: Biol. Cell doi: 10.1042/BC20080221 contributor: fullname: Sulpice – volume: 290 start-page: 30562 year: 2015 ident: ref_5 article-title: The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity (PCP) Pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.697615 contributor: fullname: Martinez – volume: 1 start-page: 247 year: 2009 ident: ref_64 article-title: Antibody drug-conjugates targeting the tumor vasculature: Current and future developments publication-title: MAbs doi: 10.4161/mabs.1.3.8515 contributor: fullname: Gerber – volume: 107 start-page: 1589 year: 1988 ident: ref_39 article-title: Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures publication-title: J. Cell Biol. doi: 10.1083/jcb.107.4.1589 contributor: fullname: Kubota – volume: 11 start-page: 699889 year: 2021 ident: ref_62 article-title: Protein Tyrosine Kinase 7 Regulates EGFR/Akt Signaling Pathway and Correlates with Malignant Progression in Triple-Negative Breast Cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2021.699889 contributor: fullname: Cui – volume: 1853 start-page: 2251 year: 2015 ident: ref_24 article-title: Biphasic effect of PTK7 on KDR activity in endothelial cells and angiogenesis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2015.05.015 contributor: fullname: Shin – volume: 27 start-page: 3126 year: 2009 ident: ref_51 article-title: Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: A phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043) publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2008.21.3223 contributor: fullname: Sleijfer – volume: 9 start-page: eaag2611 year: 2017 ident: ref_66 article-title: A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aag2611 contributor: fullname: Damelin – ident: ref_1 doi: 10.1007/978-3-319-11888-8 – volume: 27 start-page: 3528 year: 2021 ident: ref_37 article-title: Thirty Years of HER3: From Basic Biology to Therapeutic Interventions publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-4465 contributor: fullname: Haikala – volume: 402 start-page: 402 year: 2010 ident: ref_4 article-title: PlexinA1 interacts with PTK7 and is required for neural crest migration publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.10.044 contributor: fullname: Wagner – ident: ref_27 doi: 10.20944/preprints202010.0572.v1 – ident: ref_34 doi: 10.3390/ijms23042391 – volume: 140 start-page: 1807 year: 2013 ident: ref_6 article-title: Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/β-catenin-dependent cell fate decisions during vertebrate development publication-title: Development doi: 10.1242/dev.090183 contributor: fullname: Hayes – volume: 64 start-page: 17 year: 2012 ident: ref_47 article-title: c-Jun N-terminal kinase mediated VEGFR2 sustained phosphorylation is critical for VEG-FA-induced angiogenesis in vitro and in vivo publication-title: Cell. Biochem. Biophys. doi: 10.1007/s12013-012-9363-0 contributor: fullname: Shen – volume: 27 start-page: 4511 year: 2021 ident: ref_65 article-title: First-in-Human Study of PF-06647020 (Cofetuzumab Pelidotin), an Antibody-Drug Conjugate Targeting Protein Tyrosine Kinase 7, in Advanced Solid Tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-3757 contributor: fullname: Maitland – volume: 9 start-page: 4661 year: 2018 ident: ref_58 article-title: Elucidating mechanisms of sunitinib resistance in renal cancer: An integrated pathological-molecular analysis publication-title: Oncotarget doi: 10.18632/oncotarget.23163 contributor: fullname: Butz – volume: 61 start-page: 2224 year: 2004 ident: ref_46 article-title: Angiogenesis and signal transduction in endothelial cells publication-title: Cell. Mol. Life Sci. contributor: fullname: Quesada – volume: 104 start-page: 1120 year: 2013 ident: ref_17 article-title: Oncogenic role of protein tyrosine kinase 7 in esophageal squamous cell carcinoma publication-title: Cancer Sci. doi: 10.1111/cas.12194 contributor: fullname: Shin – volume: 474 start-page: 3719 year: 2017 ident: ref_28 article-title: Processing of syndecan-2 by matrix metalloproteinase-14 and effect of its cleavage on VEGF-induced tube formation of HUVECs publication-title: Biochem. J. doi: 10.1042/BCJ20170340 contributor: fullname: Lee – volume: 33 start-page: 3759 year: 2013 ident: ref_16 article-title: PTK7 expression in triple-negative breast cancer publication-title: Anticancer Res. contributor: fullname: Ataseven – volume: 10 start-page: 11568 year: 2020 ident: ref_29 article-title: Angiogenesis Analyzer for ImageJ—A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay” publication-title: Sci. Rep. doi: 10.1038/s41598-020-67289-8 contributor: fullname: Carpentier – volume: 7 start-page: 89 year: 2011 ident: ref_41 article-title: Use of the mouse aortic ring assay to study angiogenesis publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.435 contributor: fullname: Baker – volume: 41 start-page: 1029 year: 2013 ident: ref_2 article-title: Receptor tyrosine kinases with intracellular pseudokinase domains publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20130104 contributor: fullname: Mendrola – volume: 214 start-page: 545 year: 2008 ident: ref_23 article-title: Endothelial cells and normal breast epithelial cells enhance invasion of breast carcinoma cells by CXCR-4-dependent up-regulation of urokinase-type plasminogen activator receptor (uPAR, CD87) expression publication-title: J. Pathol. doi: 10.1002/path.2309 contributor: fullname: Margheri – ident: ref_22 doi: 10.3390/biomedicines5020034 – ident: ref_15 doi: 10.1371/journal.pone.0123768 – volume: 64 start-page: 8249 year: 2004 ident: ref_55 article-title: Tumor-associated endothelial cells with cytogenetic abnormalities publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-1567 contributor: fullname: Hida – volume: 8 start-page: 592 year: 2008 ident: ref_56 article-title: Modes of resistance to anti-angiogenic therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2442 contributor: fullname: Bergers – volume: 320 start-page: 130 year: 2012 ident: ref_57 article-title: Anti-angiogenesis therapy in cancer: Current challenges and future perspectives publication-title: Cancer Lett. doi: 10.1016/j.canlet.2012.03.008 contributor: fullname: Shojaei – volume: 35 start-page: 1606 year: 2015 ident: ref_25 article-title: PTK7+ Mononuclear Cells Express VEGFR2 and Contribute to Vascular Stabilization by Upregulating Angiopoietin-1 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.305228 contributor: fullname: Chauhan – ident: ref_30 doi: 10.3791/1564 – ident: ref_33 doi: 10.3390/antiox11050928 – volume: 75 start-page: 627 year: 2008 ident: ref_59 article-title: Antitumor effect of the angiogenesis inhibitor bevacizumab is dependent on susceptibility of tumors to hypoxia-induced apoptosis publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2007.09.029 contributor: fullname: Selvakumaran – volume: 30 start-page: 3729 year: 2011 ident: ref_8 article-title: PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling publication-title: EMBO J. doi: 10.1038/emboj.2011.236 contributor: fullname: Peradziryi – volume: 36 start-page: 1829 year: 2016 ident: ref_18 article-title: PTK7 overexpression in colorectal tumors: Clinicopathological correlation and prognosis relevance publication-title: Oncol. Rep. doi: 10.3892/or.2016.4983 contributor: fullname: Tian – volume: 9 start-page: 669 year: 2003 ident: ref_54 article-title: The biology of VEGF and its receptors publication-title: Nat. Med. doi: 10.1038/nm0603-669 contributor: fullname: Ferrara – volume: 31 start-page: 97 year: 2013 ident: ref_48 article-title: Implication of VEGFR2 in systemic lupus erythematosus: A combined genetic and structural biological approach publication-title: Clin. Exp. Rheumatol. contributor: fullname: Vazgiourakis – volume: 5 start-page: 31 year: 2017 ident: ref_9 article-title: PTK7 Faces the Wnt in Development and Disease publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2017.00031 contributor: fullname: Berger – volume: 12 start-page: 567 year: 2012 ident: ref_53 article-title: Bevacizumab: Overview of the literature publication-title: Expert Rev. Anticancer Ther. doi: 10.1586/era.12.13 contributor: fullname: Braghiroli – volume: 24 start-page: 6809 year: 2020 ident: ref_13 article-title: Identification of PTK7 as a promising therapeutic target for thyroid cancer publication-title: Eur. Rev. Med. Pharmacol. Sci. contributor: fullname: Duan – volume: 8 start-page: 18 year: 2022 ident: ref_38 article-title: Anti-angiogenic drugs in cancer therapeutics: A review of the latest preclinical and clinical studies of anti-angiogenic agents with anticancer potential publication-title: J. Cancer Metastasis Treat. doi: 10.20517/2394-4722.2022.08 contributor: fullname: Vafopoulou – volume: 117 start-page: 5762 year: 2011 ident: ref_44 article-title: Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7–dependent pathway publication-title: Blood doi: 10.1182/blood-2010-09-306928 contributor: fullname: Lee – volume: 141 start-page: 410 year: 2014 ident: ref_7 article-title: PTK7 modulates Wnt signaling activity via LRP6 publication-title: Development doi: 10.1242/dev.095984 contributor: fullname: Lichtig – volume: 77 start-page: 1745 year: 2020 ident: ref_63 article-title: Tumor angiogenesis: Causes, consequences, challenges and opportunities publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03351-7 contributor: fullname: Lugano – volume: 12 start-page: 5018 year: 2006 ident: ref_36 article-title: Vascular endothelial growth factor signaling pathways: Therapeutic perspective publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-1520 contributor: fullname: Kowanetz – volume: 101 start-page: 3597 year: 2003 ident: ref_50 article-title: SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo publication-title: Blood doi: 10.1182/blood-2002-07-2307 contributor: fullname: Abrams – volume: 116 start-page: e99 year: 2015 ident: ref_40 article-title: State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: A scientific statement from the American heart association publication-title: Circ. Res. doi: 10.1161/RES.0000000000000054 contributor: fullname: Simons – volume: 2019 start-page: 5380197 year: 2019 ident: ref_12 article-title: The Increased PTK7 Expression Is a Malignant Factor in Cervical Cancer publication-title: Dis. Markers doi: 10.1155/2019/5380197 contributor: fullname: Sun – volume: 8 start-page: 504 year: 2017 ident: ref_31 article-title: Repulsive Guidance Molecule a Inhibits Angiogenesis by Downregulating VEGF and Phosphorylated Focal Adhesion Kinase In Vitro publication-title: Front. Neurol. doi: 10.3389/fneur.2017.00504 contributor: fullname: Zhang – volume: 467 start-page: 287 year: 2009 ident: ref_43 article-title: In vivo matrigel migration and angiogenesis assay publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-241-0_17 contributor: fullname: Malinda – volume: 5 start-page: 4709 year: 2014 ident: ref_60 article-title: Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor publication-title: Oncotarget doi: 10.18632/oncotarget.1671 contributor: fullname: Poindessous – volume: 1579 start-page: 153 year: 2002 ident: ref_3 article-title: Organization of the human PTK7 gene encoding a receptor protein tyrosine kinase-like molecule and alternative splicing of its mRNA publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4781(02)00536-5 contributor: fullname: Jung – ident: ref_19 doi: 10.1371/journal.pone.0090247 – volume: 95 start-page: 144 year: 2017 ident: ref_61 article-title: FGF-2-mediated FGFR1 signaling in human microvascular endothelial cells is activated by vaccarin to promote angiogenesis publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.08.059 contributor: fullname: Sun – volume: 10 start-page: 347 year: 2016 ident: ref_45 article-title: VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis publication-title: J. Cell Commun. Signal. doi: 10.1007/s12079-016-0352-8 contributor: fullname: Abhinand – volume: 371 start-page: 793 year: 2008 ident: ref_21 article-title: Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.04.168 contributor: fullname: Shin – volume: 118 start-page: 2887 year: 2017 ident: ref_26 article-title: PTK6 Localized at the Plasma Membrane Promotes Cell Proliferation and MigratiOn Through Phosphorylation of Eps8 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.25939 contributor: fullname: Shin – ident: ref_42 doi: 10.3791/56083 – volume: 5 start-page: 462 year: 2017 ident: ref_67 article-title: Antibody-drug conjugate targeting protein tyrosine kinase 7, a receptor tyrosine kinase-like molecule involved in WNT and vascular endothelial growth factor signaling: Effects on cancer stem cells, tumor microenvironment and whole-body homeostasis publication-title: Ann. Transl. Med. doi: 10.21037/atm.2017.09.11 contributor: fullname: Katoh – volume: 23 start-page: 239 year: 2003 ident: ref_49 article-title: Selective inhibition of vascular endothelial growth factor receptor-2 (VEGFR-2) identifies a central role for VEGFR-2 in human aortic endothelial cell responses to VEGF publication-title: J. Recept. Signal Transduct. Res. doi: 10.1081/RRS-120025567 contributor: fullname: Endo – volume: 5 start-page: 188 year: 2005 ident: ref_52 article-title: Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer publication-title: Clin. Colorectal Cancer doi: 10.3816/CCC.2005.n.030 contributor: fullname: Kupsch |
SSID | ssj0000331767 |
Score | 2.3705804 |
Snippet | PTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR... PTK7 is a catalytically defective receptor protein tyrosine kinase. We previously demonstrated that PTK7 enhances angiogenesis by interacting with KDR, a... Simple SummaryPTK7 is a catalytically defective receptor protein tyrosine kinase. We previously demonstrated that PTK7 enhances angiogenesis by interacting... |
SourceID | pubmedcentral proquest gale crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 4463 |
SubjectTerms | Analysis Angiogenesis Aorta Cell activation Cytotoxicity Deletion mutant Dosage and administration Endothelial cells Endothelium Ethylenediaminetetraacetic acid Health aspects Immunoglobulins Kinases Metastases Metastasis Monoclonal antibodies Mutagenesis Neovascularization Oligomerization Oligomers Phenotypes Phosphotransferases Prevention Protein-tyrosine kinase Proteins Signal transduction Tyrosine Vascular endothelial growth factor Wound healing |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0CuKL-InRKhEEfQlN93uf5JQeVWmp0kLfQvYj10BJai998L93Jrd3mnvwNbvLJjO78_nLDMB7tKhZ9DIWwZSaQjehcCHYouEx6NIa7x05iien6vhCfLuUlyngtkqwyo1MHAV16D3FyA8YGvaS0krs082vgrpGUXY1tdC4D3sMPYVyBnufj07Pfm6jLCVH_aj0uqYPR__-wBMxb1eHAl0bofhEHe0K5V2g5D-aZ_EYHiWTMZ-vefwE7sXuKTw4SUnxZ_Bj3g1tcXb-Xed4Q3t_3Y_T8aHrCSOYf-2uWtcO-GjZ9ksSbu0qd79z6ug5wmC7ZT4uX6CSI0Y9h4vF0fmX4yJ1Sii8UHIoAiUwY20U59w1tXNKOtYoEzXjwrigrKi9rMso8KOjqS21-rQhuCYocdho_gJmXd_Fl5AL0zS1t7WRDp2ZBrWV5kGhUaBYGaQxGXzcEKy6WRfEqNCRINpWO7TN4AMRtKKrguTzdUL840ZUdKqaayGRrSgFMtifzMQj7qfDG5ZU6Yqtqr8HIoN322FaSbCxLvZ34xytLNXcy0BPWLl9dyqvPR3p2quxzLYVVllWvvr_5q_hIaM_IkbY2T7Mhtu7-AbtlMG9TYfxD_Hi6ls priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qBfFF1CpGW4kg6Es0t7vZjweRo3jUSqWFHvQtZD9yDZRE71Kw_70ze7nWHH3wdWc3yf5mdz6yszMA79GiZsEVIfM6V_TrxmfWe5PVPHiVG-2cJUfx5Kc8movji-LirhzQAODqXteO6knNl1ef_vy--Yob_gt5nOiyf3aEz3I1EeitCMkfwEMm0E2nOL7B1o9imaOqjBVlWa5YJqUR61Q_9z1jpKW2ZfV2_OQ_Cmn2FJ4MlmQ6XbP-GeyE9jk8OhnOyvfgbNr2TXZ6_kOluHE7d9XF7thoOwodTL-3l41temxaNN2CZF6zSu1NSoU-Y3Rsu0jj8BnqPuLfC5jPvp0fHmVDAYXMCVn0madzzVBpyTm3dWWtLCyrpQ6KcaGtRwgqV1R5EDjpoCtDFUCN97b2UkxqxV_Cbtu14RWkQtd15UylC4s-To1KTHEv0VaQLPeF1gl83ABW_lrnySjRvyBsyy1sE_hAgJbEU4TPVcNFAHwR5aIqp0oUTKEkniSwP-qJK9-NyRuWlJuFUyIJjU6FZl8C727JNJKiydrQXcc-ShpKxZeAGrHy9tsp6_aY0jaXMfu2EUYalr_-71m8gceM7kzEwLR92O2X1-EALZnevo0r9C_cefLZ priority: 102 providerName: Scholars Portal |
Title | Anti-PTK7 Monoclonal Antibodies Inhibit Angiogenesis by Suppressing PTK7 Function |
URI | https://www.proquest.com/docview/2716507392 https://search.proquest.com/docview/2717697635 https://pubmed.ncbi.nlm.nih.gov/PMC9496920 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41RUJcEE9hKJGRkODixvG-j6FqKKBUAbVSbpb34dRSu64a98C_Z3bjVHWOXHzYmZXXs7Pz8H47C_AZI-rCGeYyK3MRft3YTFurspo4K3IljdEhUVyc87NL-nPFVgfAdmdhImjf6ObYX98c--YqYitvb8xkhxObLBcniiquinwyghEq6KMUPZpfgi6Ri20ZH4Ip_cQE-d1tphSzGcrJwAPt2-F9bOQjZzN_Ac_7KDGdbUfzEg6cfwVPF_0--Gv4PfNdky0vfokUF2VrrtvIjo26DbDA9Ie_anTTYdO6adfBnjWbVP9NwyWeEfnq12nsPke_FubmDVzOTy9OzrL-coTMUM66zIY9S1dJTgjRdaU1Z7qouXSiIFRqyxWtDKtyR_GjnaxUuN1TWatry-m0FuQtHPrWu3eQUlnXlVGVZBrzlxodlCCWYxzAi9wyKRP4uhNYebutgVFi7hBkW-7JNoEvQaBlWB0oPlP1IH98UagzVc4EZYVAKztN4GjAiVpthuTdlJT9qtqUSMKAUmBIl8CnB3LoGZBi3rX3kUdwFcrsJSAGU_kw9lBRe0hBRYuVtXvFev_fPT_AsyKcj4ggtCM47O7u3UeMWjo9hiffTs-Xf8Yw-r6a4nNB5Thq7j-rufO1 |
link.rule.ids | 230,315,730,783,787,888,2228,21400,24330,27936,27937,33756,33757,43817,53804,53806,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKwEXVF6qoS1GQoKLVdf7PqFQNUppExWUSr1Z3odTS8gujXvg3zPjOAHnwNW7q7Vnduf5eQbgI1rUWXAiJF6nikI3PrHem6RkwavUaOcsOYrTmZxc82834qYPuC17WOVaJnaC2jeOYuTHGRr2gtJK2Ze7Xwl1jaLsat9C4zHsUqkqdL52v57Nrn5soiwpQ_0o1aqmD0P__tgRMe-XJxxdGy7ZQB1tC-VtoOQ_mme8B897kzEerXj8Ah6F-iU8mfZJ8VfwfVS3VXI1v1Ax3tDG_Wy66fjQNoQRjM_r28pWLT5aVM2ChFu1jO3vmDp6djDYehF3y8eo5IhRr-F6fDY_nSR9p4TEcSnaxFMCMxRaMsZsWVgrhc1KqYPKGNfWS8MLJ4o0cPzooAtDrT6N97b0kp-Uir2Bnbqpwz7EXJdl4UyhhUVnpkRtpZiXaBTILPVC6wg-rwmW360KYuToSBBt8y3aRvCJCJrTVUHyuaJH_ONGVHQqHykukK0oBSI4GMzEI-6Gw2uW5P0VW-Z_D0QEHzbDtJJgY3VoHro5ShqquReBGrBy8-5UXns4Ule3XZltw400Wfr2_5u_h6eT-fQyvzyfXbyDZxn9HdFB0A5gp71_CIdos7T2qD-YfwA4W-1V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKlVcEE9hKK2RkOBixfWu93FCoTRqKY0CaqXeLO_DqaXKLo174N8z42wCzqFX767Wnpmdx87nGYCP6FFn3uY-cSqVdHXjEuOcTirmnUy1stZQoHg-EyeX_PtVfhXwT8sAq1zrxF5Ru9bSHfk4Q8c-p7RSNq4CLGL-bfrl9ndCHaQo0xraaTyGHckFS0ew8_V4Nv-1uXFJGdpKIVf1fRjG-mNLhL1bHnIMc7hgA9O0raC3QZP_WaHpM3ga3Md4suL3c3jkmxewex4S5C_h56Tp6mR-cSZjPK2tvWn76fjQtIQXjE-b69rUHT5a1O2CFF29jM2fmLp79pDYZhH3y6do8Ihpr-ByenxxdJKErgmJ5SLvEkfJTF8qwRgzVWmMyE1WCeVlxrgyTmhe2rxMPceP9qrU1PZTO2cqJ_hhJdlrGDVt499AzFVVlVaXKjcY2FRouSRzAh0EkaUuVyqCz2uCFber4hgFBhVE22KLthF8IoIWdGyQfLYM6H_ciApQFRPJc2QxaoQI9gYzUdztcHjNkiIct2XxTzgi-LAZppUEIWt8e9_PkUJT_b0I5ICVm3enUtvDkaa-7ktua66FztK3D29-ALsok8WP09nZO3iS0Y8SPRptD0bd3b1_j-5LZ_aDXP4FGYzxgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-PTK7+Monoclonal+Antibodies+Inhibit+Angiogenesis+by+Suppressing+PTK7+Function&rft.jtitle=Cancers&rft.au=Oh%2C+Si+Won&rft.au=Shin%2C+Won-Sik&rft.au=Lee%2C+Seung-Taek&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=14&rft.issue=18&rft_id=info:doi/10.3390%2Fcancers14184463&rft.externalDocID=A745271531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |