The Lack of Dopamine Transporter Is Associated With Conditional Associative Learning Impairments and Striatal Proteomic Changes
Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA...
Saved in:
Published in | Frontiers in psychiatry Vol. 13; p. 799433 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
18.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-0640 1664-0640 |
DOI | 10.3389/fpsyt.2022.799433 |
Cover
Abstract | Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus–unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field. |
---|---|
AbstractList | Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus–unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field. Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus-unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field.Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus-unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field. |
Author | Savchenko, Artem Müller, Carina Korz, Volker Lubec, Jana Leo, Damiana Malikovic, Jovana Sialana, Fernando J. Sukhanov, Ilya Lubec, Gert Afjehi-Sadat, Leila |
AuthorAffiliation | 4 Department of Neurosciences, University of Mons , Mons , Belgium 1 Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia 3 Programme for Proteomics, Paracelsus Medical University , Salzburg , Austria 2 Department of Pharmaceutical Chemistry, University of Vienna , Vienna , Austria |
AuthorAffiliation_xml | – name: 2 Department of Pharmaceutical Chemistry, University of Vienna , Vienna , Austria – name: 3 Programme for Proteomics, Paracelsus Medical University , Salzburg , Austria – name: 4 Department of Neurosciences, University of Mons , Mons , Belgium – name: 1 Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia |
Author_xml | – sequence: 1 givenname: Artem surname: Savchenko fullname: Savchenko, Artem – sequence: 2 givenname: Carina surname: Müller fullname: Müller, Carina – sequence: 3 givenname: Jana surname: Lubec fullname: Lubec, Jana – sequence: 4 givenname: Damiana surname: Leo fullname: Leo, Damiana – sequence: 5 givenname: Volker surname: Korz fullname: Korz, Volker – sequence: 6 givenname: Leila surname: Afjehi-Sadat fullname: Afjehi-Sadat, Leila – sequence: 7 givenname: Jovana surname: Malikovic fullname: Malikovic, Jovana – sequence: 8 givenname: Fernando J. surname: Sialana fullname: Sialana, Fernando J. – sequence: 9 givenname: Gert surname: Lubec fullname: Lubec, Gert – sequence: 10 givenname: Ilya surname: Sukhanov fullname: Sukhanov, Ilya |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35370807$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhi1URD_oD-CCfOSS4K9dry9IVQolUiSQCOJoeb2zicuuvdhOpZ746zhNiVoO-GJr5p1nbM97jk588IDQG0rmnDfqfT-l-zxnhLG5VEpw_gKd0boWM1ILcvLkfIouU7olZXGleF29Qqe84pI0RJ6h3-st4JWxP3Ho8XWYzOg84HU0Pk0hZoh4mfBVSsE6k6HDP1ze4kXwncsueDMcc-6ucMBE7_wGL8fJuDiCzwkb3-FvORZJUX-NIUMYncWLrfEbSK_Ry94MCS4f9wv0_dPH9eLzbPXlZrm4Ws2sqKs8s51krFJc9AYsEMslK59AWsaBtp2iXc37noISwETPLYPGVkzWqmMNBVlZfoGWB24XzK2eohtNvNfBOP0QCHGjTczODqAJ9JYoaBhvKmEkb1nFqKKUQ8-hlVBYHw6sadeO0NnyzGiGZ9DnGe-2ehPudKMkrVhdAO8eATH82kHKenTJwjAYD2GXNKtFrQRRjSzSt097HZv8nWAR0IPAxpBShP4ooUTvjaIfjKL3RtEHo5Qa-U-NddnsB1qu64b_VP4B6mXGSQ |
CitedBy_id | crossref_primary_10_3390_biomedicines12061270 crossref_primary_10_1038_s42003_023_05441_6 crossref_primary_10_1016_j_neuron_2024_12_002 crossref_primary_10_17816_MAJ630270 crossref_primary_10_3390_biom13010009 crossref_primary_10_3390_biom13050806 crossref_primary_10_3390_biomedicines11010222 |
Cites_doi | 10.3390/biom10060842 10.3389/fnins.2018.00418 10.1016/S0166-4328(97)87580-8 10.1016/j.nlm.2005.12.001 10.1046/j.1460-9568.2000.00876.x 10.1038/s41380-020-00978-y 10.3389/fnbeh.2020.00058 10.1002/jnr.21161 10.1101/lm.60503 10.1021/acschemneuro.6b00064 10.3389/fnbeh.2021.654469 10.1523/JNEUROSCI.18-05-01650.1998 10.1093/nar/gky1106 10.1016/j.pneurobio.2021.102112 10.1038/npp.2011.278 10.1038/nmeth.3901 10.1136/jnnp.54.1.30 10.1046/j.1460-9568.1999.00764.x 10.1007/BF01248996 10.1523/JNEUROSCI.1656-06.2006 10.3389/fnagi.2019.00198 10.1038/379606a0 10.1016/j.ydbio.2013.04.014 10.1523/JNEUROSCI.23-28-09395.2003 10.1016/S0166-4328(03)00218-3 10.1016/j.neuron.2014.03.028 10.1016/j.tins.2018.12.004 10.1126/sciadv.1501672 10.3390/cells8080872 10.1007/s10571-018-0632-3 10.1038/tp.2016.257 10.1002/hipo.22492 10.1016/j.bbr.2020.112642 10.1016/j.bbr.2016.02.022 10.1038/nature09588 10.3389/fnhum.2010.00239 10.1007/s00213-019-05221-3 10.1073/pnas.0807746105 10.1113/jphysiol.2012.241067 10.1038/s41531-021-00161-2 10.1021/pr900748n 10.1093/nar/gkw419 10.1016/j.neuron.2016.10.029 10.1124/pr.110.002642 10.1007/s00702-016-1510-0 10.1111/gbb.12463 10.3390/ijms19051540 10.1038/nbt.1511 10.1007/s00213-003-1702-9 10.1016/j.neuropharm.2016.06.028 10.1093/bioinformatics/btp101 10.1186/1742-4682-6-21 10.1073/pnas.95.7.4029 10.1037/0735-7044.117.4.675 10.1007/s002590000330 10.3390/biomedicines9020157 10.1523/JNEUROSCI.1498-05.2005 10.1523/JNEUROSCI.1931-17.2018 10.3109/01677063.2016.1144751 10.1002/syn.20360 10.1038/nprot.2007.261 10.1038/npp.2009.142 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Savchenko, Müller, Lubec, Leo, Korz, Afjehi-Sadat, Malikovic, Sialana, Lubec and Sukhanov. Copyright © 2022 Savchenko, Müller, Lubec, Leo, Korz, Afjehi-Sadat, Malikovic, Sialana, Lubec and Sukhanov. 2022 Savchenko, Müller, Lubec, Leo, Korz, Afjehi-Sadat, Malikovic, Sialana, Lubec and Sukhanov |
Copyright_xml | – notice: Copyright © 2022 Savchenko, Müller, Lubec, Leo, Korz, Afjehi-Sadat, Malikovic, Sialana, Lubec and Sukhanov. – notice: Copyright © 2022 Savchenko, Müller, Lubec, Leo, Korz, Afjehi-Sadat, Malikovic, Sialana, Lubec and Sukhanov. 2022 Savchenko, Müller, Lubec, Leo, Korz, Afjehi-Sadat, Malikovic, Sialana, Lubec and Sukhanov |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpsyt.2022.799433 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1664-0640 |
ExternalDocumentID | oai_doaj_org_article_0efc09e823854a73b25219113ef3eb7e PMC8971526 35370807 10_3389_fpsyt_2022_799433 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ABIVO ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ IPY NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-cd7225934faece0c3723380b23e1bd91d63ff1e94e24f3c2e8c52769d281e75c3 |
IEDL.DBID | M48 |
ISSN | 1664-0640 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Thu Aug 21 17:53:37 EDT 2025 Thu Sep 04 16:46:54 EDT 2025 Thu Jan 02 22:55:42 EST 2025 Thu Apr 24 23:04:04 EDT 2025 Tue Jul 01 03:12:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | associative learning knock-out animal model striatum DAT proteomic analysis |
Language | English |
License | Copyright © 2022 Savchenko, Müller, Lubec, Leo, Korz, Afjehi-Sadat, Malikovic, Sialana, Lubec and Sukhanov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-cd7225934faece0c3723380b23e1bd91d63ff1e94e24f3c2e8c52769d281e75c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors have contributed equally to this work Edited by: Mira Jakovcevski, Max Planck Institute of Psychiatry (MPI), Germany Reviewed by: Belen Gago, University of Malaga, Spain; Anna Brancato, University of Palermo, Italy This article was submitted to Molecular Psychiatry, a section of the journal Frontiers in Psychiatry |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpsyt.2022.799433 |
PMID | 35370807 |
PQID | 2646940987 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0efc09e823854a73b25219113ef3eb7e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8971526 proquest_miscellaneous_2646940987 pubmed_primary_35370807 crossref_primary_10_3389_fpsyt_2022_799433 crossref_citationtrail_10_3389_fpsyt_2022_799433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-18 |
PublicationDateYYYYMMDD | 2022-03-18 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in psychiatry |
PublicationTitleAlternate | Front Psychiatry |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Harraz (B61) 2021; 26 Wiśniewski (B29) 2009; 8 Goggi (B53) 2007; 61 Bach (B12) 2008; 105 Olausson (B27) 2004; 173 Phillips (B38) 2003; 117 Klein (B5) 2019; 39 Fraser (B43) 2016; 305 Lubec (B28) 2019; 10 Meneses (B39) 2003; 10 Illiano (B22) 2020; 10 Yin (B37) 2006; 85 Smith (B58) 2014; 82 Cox (B31) 2008; 26 German (B1) 1983; 57 Babicki (B33) 2016; 44 Best (B50) 2009; 6 Pakkenberg (B2) 1991; 54 Limanaqi (B62) 2021; 204 Hegarty (B3) 2013; 379 Palermo (B18) 2019; 8 Leo (B19) 2018; 38 Bindea (B34) 2009; 25 Featherstone (B11) 2004; 150 Dumartin (B52) 1998; 18 Macpherson (B55) 2018; 12 Jaber (B48) 1999; 11 Fauchey (B51) 2000; 12 Bu (B15) 2021; 7 Adinolfi (B42) 2018; 17 Narayan (B59) 2007; 85 Meneses (B26) 1997; 85 Choi (B25) 2005; 25 Giros (B21) 1996; 379 Peciña (B36) 2003; 23 Kurzina (B23) 2021; 15 Flagel (B41) 2010; 35 Sariñana (B6) 2016; 26 Flagel (B40) 2011; 469 Chow (B56) 2016; 109 Wang (B60) 2018; 19 Beaulieu (B4) 2011; 63 Purves-Tyson (B17) 2017; 7 Kurzina (B8) 2020; 390 Salvatore (B49) 2016; 7 Paul (B57) 2013; 591 Efimova (B47) 2016; 30 Sanna (B24) 2020; 14 Perez-Riverol (B35) 2019; 47 Dresel (B16) 2000; 27 Gutierrez (B7) 2019; 236 Tyanova (B32) 2016; 13 Nagy (B46) 2012; 37 Rappsilber (B30) 2007; 2 Stefani (B10) 2006; 26 Makino (B13) 2016; 92 McCutcheon (B44) 2019; 42 Jones (B20) 1998; 95 Diaconescu (B45) 2010; 4 Illiano (B54) 2021; 9 Schultz (B14) 2016; 123 Roffman (B9) 2016; 2 |
References_xml | – volume: 10 start-page: 642 year: 2020 ident: B22 article-title: Rats lacking dopamine transporter display increased vulnerability and aberrant autonomic response to acute stress publication-title: Biomolecules. doi: 10.3390/biom10060842 – volume: 12 start-page: 418 year: 2018 ident: B55 article-title: Nucleus accumbens dopamine D1-receptor-expressing neurons control the acquisition of sign-tracking to conditioned cues in mice publication-title: Front Neurosci. doi: 10.3389/fnins.2018.00418 – volume: 85 start-page: 121 year: 1997 ident: B26 article-title: Effects of nimodipine on learning in normotensive and spontaneously hypertensive rats publication-title: Behav Brain Res. doi: 10.1016/S0166-4328(97)87580-8 – volume: 85 start-page: 283 year: 2006 ident: B37 article-title: Instrumental learning in hyperdopaminergic mice publication-title: Neurobiol Learn Mem. doi: 10.1016/j.nlm.2005.12.001 – volume: 12 start-page: 19 year: 2000 ident: B51 article-title: Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter publication-title: Eur J Neurosci. doi: 10.1046/j.1460-9568.2000.00876.x – volume: 26 start-page: 370 year: 2021 ident: B61 article-title: Cocaine-induced locomotor stimulation involves autophagic degradation of the dopamine transporter publication-title: Mol Psychiatry. doi: 10.1038/s41380-020-00978-y – volume: 14 start-page: 58 year: 2020 ident: B24 article-title: Altered sexual behavior in dopamine transporter (DAT) knockout male rats: a behavioral, neurochemical and intracerebral microdialysis study publication-title: Front Behav Neurosci. doi: 10.3389/fnbeh.2020.00058 – volume: 85 start-page: 757 year: 2007 ident: B59 article-title: Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain publication-title: J Neurosci Res. doi: 10.1002/jnr.21161 – volume: 10 start-page: 363 year: 2003 ident: B39 article-title: A pharmacological analysis of an associative learning task: 5-HT 1 to 5-HT7 receptor subtypes function on a Pavlovian/instrumental autoshaped memory publication-title: Learn Mem. doi: 10.1101/lm.60503 – volume: 7 start-page: 941 year: 2016 ident: B49 article-title: Regulation of tyrosine hydroxylase expression and phosphorylation in dopamine transporter-deficient mice publication-title: ACS Chem Neurosci. doi: 10.1021/acschemneuro.6b00064 – volume: 15 start-page: 654469 year: 2021 ident: B23 article-title: A new paradigm for training hyperactive dopamine transporter knockout rats: influence of novel stimuli on object recognition publication-title: Front Behav Neurosci. doi: 10.3389/fnbeh.2021.654469 – volume: 18 start-page: 1650 year: 1998 ident: B52 article-title: Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-05-01650.1998 – volume: 47 start-page: D442 year: 2019 ident: B35 article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1106 – volume: 204 start-page: 102112 year: 2021 ident: B62 article-title: Autophagy as a gateway for the effects of methamphetamine: from neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders publication-title: Prog Neurobiol. doi: 10.1016/j.pneurobio.2021.102112 – volume: 37 start-page: 950 year: 2012 ident: B46 article-title: The effect of dopamine agonists on adaptive and aberrant salience in Parkinson's disease publication-title: Neuropsychopharmacology. doi: 10.1038/npp.2011.278 – volume: 13 start-page: 731 year: 2016 ident: B32 article-title: The perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat Methods. doi: 10.1038/nmeth.3901 – volume: 54 start-page: 30 year: 1991 ident: B2 article-title: The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method publication-title: J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp.54.1.30 – volume: 11 start-page: 3499 year: 1999 ident: B48 article-title: Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter publication-title: Eur J Neurosci. doi: 10.1046/j.1460-9568.1999.00764.x – volume: 57 start-page: 243 year: 1983 ident: B1 article-title: Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: from mouse to man publication-title: J Neural Transm. doi: 10.1007/BF01248996 – volume: 26 start-page: 8810 year: 2006 ident: B10 article-title: Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.1656-06.2006 – volume: 10 start-page: 198 year: 2019 ident: B28 article-title: Dentate gyrus peroxiredoxin 6 levels discriminate aged unimpaired from impaired rats in a spatial memory task publication-title: Front Aging Neurosci. doi: 10.3389/fnagi.2019.00198 – volume: 379 start-page: 606 year: 1996 ident: B21 article-title: Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter publication-title: Nature. doi: 10.1038/379606a0 – volume: 379 start-page: 123 year: 2013 ident: B3 article-title: Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development publication-title: Dev Biol. doi: 10.1016/j.ydbio.2013.04.014 – volume: 23 start-page: 9395 year: 2003 ident: B36 article-title: Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.23-28-09395.2003 – volume: 150 start-page: 15 year: 2004 ident: B11 article-title: Dorsal striatum and stimulus-response learning: Lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a simple discrimination task publication-title: Behav Brain Res. doi: 10.1016/S0166-4328(03)00218-3 – volume: 82 start-page: 645 year: 2014 ident: B58 article-title: Fragile X mental retardation protein regulates synaptic and behavioral plasticity to repeated cocaine administration publication-title: Neuron. doi: 10.1016/j.neuron.2014.03.028 – volume: 42 start-page: 205 year: 2019 ident: B44 article-title: Schizophrenia, dopamine and the striatum: from biology to symptoms publication-title: Trends Neurosci. doi: 10.1016/j.tins.2018.12.004 – volume: 2 start-page: e1501672 year: 2016 ident: B9 article-title: Dopamine D1 signaling organizes network dynamics underlying working memory publication-title: Sci Adv. doi: 10.1126/sciadv.1501672 – volume: 8 start-page: 872 year: 2019 ident: B18 article-title: Molecular imaging of the dopamine transporter publication-title: Cells. doi: 10.3390/cells8080872 – volume: 39 start-page: 31 year: 2019 ident: B5 article-title: Dopamine: functions, signaling, and association with neurological diseases publication-title: Cell Mol Neurobiol. doi: 10.1007/s10571-018-0632-3 – volume: 7 start-page: e1003 year: 2017 ident: B17 article-title: Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain publication-title: Transl Psychiatry. doi: 10.1038/tp.2016.257 – volume: 26 start-page: 76 year: 2016 ident: B6 article-title: Differentiation of forebrain and hippocampal dopamine 1-class receptors, D1R and D5R, in spatial learning and memory publication-title: Hippocampus. doi: 10.1002/hipo.22492 – volume: 390 start-page: 112642 year: 2020 ident: B8 article-title: Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze publication-title: Behav Brain Res. doi: 10.1016/j.bbr.2020.112642 – volume: 305 start-page: 87 year: 2016 ident: B43 article-title: Examining the role of dopamine D2 and D3 receptors in pavlovian conditioned approach behaviors publication-title: Behav Brain Res. doi: 10.1016/j.bbr.2016.02.022 – volume: 469 start-page: 53 year: 2011 ident: B40 article-title: A selective role for dopamine in stimulus-reward learning publication-title: Nature. doi: 10.1038/nature09588 – volume: 4 start-page: 239 year: 2010 ident: B45 article-title: Aberrant effective connectivity in schizophrenia patients during appetitive conditioning publication-title: Front Hum Neurosci. doi: 10.3389/fnhum.2010.00239 – volume: 236 start-page: 2243 year: 2019 ident: B7 article-title: Effects of intrastriatal dopamine D1 or D2 antagonists on methamphetamine-induced egocentric and allocentric learning and memory deficits in Sprague–Dawley rats publication-title: Psychopharmacology. doi: 10.1007/s00213-019-05221-3 – volume: 105 start-page: 16027 year: 2008 ident: B12 article-title: Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0807746105 – volume: 591 start-page: 1133 year: 2013 ident: B57 article-title: Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice publication-title: J Physiol. doi: 10.1113/jphysiol.2012.241067 – volume: 7 start-page: 22 year: 2021 ident: B15 article-title: Dynamic control of the dopamine transporter in neurotransmission and homeostasis publication-title: NPJ Park Dis. doi: 10.1038/s41531-021-00161-2 – volume: 8 start-page: 5674 year: 2009 ident: B29 article-title: Combination of FASP and stagetip-based fractionation allows in-depth analysis of the hippocampal membrane proteome publication-title: J Proteome Res. doi: 10.1021/pr900748n – volume: 44 start-page: W147 year: 2016 ident: B33 article-title: Heatmapper: web-enabled heat mapping for all publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw419 – volume: 92 start-page: 705 year: 2016 ident: B13 article-title: Circuit mechanisms of sensorimotor learning publication-title: Neuron. doi: 10.1016/j.neuron.2016.10.029 – volume: 63 start-page: 182 year: 2011 ident: B4 article-title: The physiology, signaling, and pharmacology of dopamine receptors publication-title: Pharmacol Rev. doi: 10.1124/pr.110.002642 – volume: 123 start-page: 679 year: 2016 ident: B14 article-title: Reward functions of the basal ganglia publication-title: J Neural Transm. doi: 10.1007/s00702-016-1510-0 – volume: 17 start-page: e12463 year: 2018 ident: B42 article-title: Novelty-related behavior of young and adult dopamine transporter knockout rats: implication for cognitive and emotional phenotypic patterns publication-title: Genes, Brain Behav. doi: 10.1111/gbb.12463 – volume: 19 start-page: 1540 year: 2018 ident: B60 article-title: Dopamine receptor subtypes differentially regulate autophagy publication-title: Int J Mol Sci. doi: 10.3390/ijms19051540 – volume: 26 start-page: 1367 year: 2008 ident: B31 article-title: MaxQuant enables high peptide identification rates. individualized ppb-range mass accuracies and proteome-wide protein quantification publication-title: Nat Biotechnol. doi: 10.1038/nbt.1511 – volume: 173 start-page: 98 year: 2004 ident: B27 article-title: Repeated nicotine exposure enhances responding with conditioned reinforcement publication-title: Psychopharmacology. doi: 10.1007/s00213-003-1702-9 – volume: 109 start-page: 320 year: 2016 ident: B56 article-title: Toward isolating the role of dopamine in the acquisition of incentive salience attribution publication-title: Neuropharmacology. doi: 10.1016/j.neuropharm.2016.06.028 – volume: 25 start-page: 1091 year: 2009 ident: B34 article-title: ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp101 – volume: 6 start-page: 1 year: 2009 ident: B50 article-title: Homeostatic mechanisms in dopamine synthesis and release: a mathematical model publication-title: Theor Biol Med Model. doi: 10.1186/1742-4682-6-21 – volume: 95 start-page: 4029 year: 1998 ident: B20 article-title: Profound neuronal plasticity in response to inactivation of the dopamine transporter publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.95.7.4029 – volume: 117 start-page: 675 year: 2003 ident: B38 article-title: Facilitation of appetitive pavlovian conditioning by d-amphetamine in the shell, but not the core, of the nucleus accumbens publication-title: Behav Neurosci. doi: 10.1037/0735-7044.117.4.675 – volume: 27 start-page: 1518 year: 2000 ident: B16 article-title: Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment publication-title: Eur J Nucl Med. doi: 10.1007/s002590000330 – volume: 9 start-page: 1 year: 2021 ident: B54 article-title: Early adolescence prefrontal cortex alterations in female rats lacking dopamine transporter publication-title: Biomedicines. doi: 10.3390/biomedicines9020157 – volume: 25 start-page: 6729 year: 2005 ident: B25 article-title: Extended habit training reduces dopamine mediation of appetitive response expression publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.1498-05.2005 – volume: 38 start-page: 1959 year: 2018 ident: B19 article-title: Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.1931-17.2018 – volume: 30 start-page: 5 year: 2016 ident: B47 article-title: Dopamine transporter mutant animals: a translational perspective publication-title: J Neurogenet. doi: 10.3109/01677063.2016.1144751 – volume: 61 start-page: 231 year: 2007 ident: B53 article-title: Agonist-dependent internalization of D2 receptors: imaging quantification by confocal microscopy publication-title: Synapse. doi: 10.1002/syn.20360 – volume: 2 start-page: 1896 year: 2007 ident: B30 article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stagetips publication-title: Nat Protoc. doi: 10.1038/nprot.2007.261 – volume: 35 start-page: 388 year: 2010 ident: B41 article-title: An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction publication-title: Neuropsychopharmacology. doi: 10.1038/npp.2009.142 |
SSID | ssj0000399365 |
Score | 2.3192606 |
Snippet | Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 799433 |
SubjectTerms | associative learning DAT knock-out animal model proteomic analysis Psychiatry striatum |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQiAILBRmJE1Jo4nHs-FhaqhYBQoKK3qzYGdMVNFvtbg898deZibPLLkJw4RonijXP82WP3wjxIiRyMgGwgBhsoQNWRQugi1gj06FHmzdz3n8wJ2f67Xl9vtHqi2vCMj1wFtx-iSmWDhtyLbVuLQRFDoc0FDABBotsfUtXbiRTgw1mv2vqfIxJWZjbT1eLG66dVOqVdU4DbDmiga__T0Hm77WSG87n-K64M0aN8iDP9p64hf198YMglu_a-E3Okjyi5PeSIkb5i618Lk8XciV-7OSX6fJCHs74jHrY_1uPkcGTI8_qV3lK9mE6Hy6-ybbv5Cfu60ERuvzIjA58h1nmGwmLXXF2_Obz4Ukx9lMoojb1soidJe11oFOLEcsIVpFoyqAAq9C5qjOQUoVOo9IJosIm1soa16mmQltHeCB2-lmPj4SMytmESNllAE3otEpjNKCScYgNlhNRroTr40g2zj0vvntKOhgPP-DhGQ-f8ZiIl-tPrjLTxt9efs2IrV9kkuzhAS0dPy4d_6-lMxHPV3h7Uio-KWl7nF0vPEWJxlHm29iJeJjxX_8KarAUZtOI3VoZW3PZHumnFwNxd-MshUvm8f-Y_BNxm-XB5XBVsyd2lvNrfErx0TI8G1ThJ-B2ERc priority: 102 providerName: Directory of Open Access Journals |
Title | The Lack of Dopamine Transporter Is Associated With Conditional Associative Learning Impairments and Striatal Proteomic Changes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35370807 https://www.proquest.com/docview/2646940987 https://pubmed.ncbi.nlm.nih.gov/PMC8971526 https://doaj.org/article/0efc09e823854a73b25219113ef3eb7e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKuXBBoPKxhVZG4oSUkngcOz6gCkqrFlGEBCt6s2Jn3K4oSUm2Ej3x1xkn2YVFK05c41ix5mU8b_zxhrHnLlCQcYAJeKcT6TBLSgCZ-ByjHLrXw2LO6Qd1PJXvzvKzDbYobzUasFub2sV6UtP2cu_H95t9cvhXMeOkePsyXHU38VikEHvaGAlwi92mwKRiLnY6sv1-Yo7BWOXD3ub6nivRqRfxX8c8_z5A-UdEOrrH7o5Ukr8esL_PNrDeYj8Jd_6-9F95E_hbyoi_EY3kvyXMW37S8QUmWPEvs_kFP2jixnW_KLhso1mQj-Kr5_yEJo1Z29-G42Vd8U-x2AdZjH-MMg_xYjMfril0D9j06PDzwXEyFllIvFT5PPGVJpc2IEOJHlMPWpBpUicAM1eZrFIQQoZGopABvMDC50IrU4kiQ517eMg266bGx4x7YXRApJTTgTRYlEKiVyCCMogFphOWLoxr_ahAHgthXFrKRCIetsfDRjzsgMeEvVh2uRrkN_718puI2PLFqJzdP2jaczs6ok0x-JQGR1Qll6UGJ4jA0IwPGACdxgl7tsDbkqfF7ZOyxua6s0QdlaF0uNAT9mjAf_kpyEET96YWvfJnrIxltaWeXfRq3oXRxKHU9v8Y_BN2J9ojnpHLiqdsc95e4w6Rprnb7RcbdnuH-AUcghq- |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Lack+of+Dopamine+Transporter+Is+Associated+With+Conditional+Associative+Learning+Impairments+and+Striatal+Proteomic+Changes&rft.jtitle=Frontiers+in+psychiatry&rft.au=Artem+Savchenko&rft.au=Carina+M%C3%BCller&rft.au=Jana+Lubec&rft.au=Damiana+Leo&rft.date=2022-03-18&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-0640&rft.volume=13&rft_id=info:doi/10.3389%2Ffpsyt.2022.799433&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0efc09e823854a73b25219113ef3eb7e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-0640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-0640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-0640&client=summon |