Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we constru...
Saved in:
Published in | Soft matter Vol. 14; no. 11; pp. 232 - 243 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental
in vitro
measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s
−1
) and high velocities (>3 mm s
−1
) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. |
---|---|
AbstractList | Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental
in vitro
measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s
−1
) and high velocities (>3 mm s
−1
) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s−1) and high velocities (>3 mm s−1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions. Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s ) and high velocities (>3 mm s ) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions. Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s-1) and high velocities (>3 mm s-1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s-1) and high velocities (>3 mm s-1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions. Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s −1 ) and high velocities (>3 mm s −1 ) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions. |
Author | Kihm, Alexander Wagner, Christian Gekle, Stephan John, Thomas Guckenberger, Achim |
AuthorAffiliation | Experimental Physics Universität Bayreuth Biofluid Simulation and Modeling Theoretische Physik Saarland University Physics and Materials Science Research Unit University of Luxembourg |
AuthorAffiliation_xml | – sequence: 0 name: Biofluid Simulation and Modeling – sequence: 0 name: University of Luxembourg – sequence: 0 name: Universität Bayreuth – sequence: 0 name: Theoretische Physik – sequence: 0 name: Saarland University – sequence: 0 name: Experimental Physics – sequence: 0 name: Physics and Materials Science Research Unit |
Author_xml | – sequence: 1 givenname: Achim surname: Guckenberger fullname: Guckenberger, Achim – sequence: 2 givenname: Alexander surname: Kihm fullname: Kihm, Alexander – sequence: 3 givenname: Thomas surname: John fullname: John, Thomas – sequence: 4 givenname: Christian surname: Wagner fullname: Wagner, Christian – sequence: 5 givenname: Stephan surname: Gekle fullname: Gekle, Stephan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29473072$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kdtrHSEQxqUkNNeXvrdY8lICm-rqUfexHNI0kMtDW8ibqKuJwdWt7rbNf19PTi4QQp9mmPnNMPN9O2AjpmgBeIfREUak-2x4GVDb8vb6DdjGnNKGCSo2nnJytQV2SrlFiAiK2Vuw1XaUE8TbbdBfzIPN3qjQ2L9jzQYbJxVg0sXm32ryKcLkYLlRo4Xal0lpH_x0typm20MdUuqhsSEU6EL64-M19BEqOHiTk7lRMdqwBzadCsXuP8Rd8PPr8Y_lt-bs8uR0-eWsMZQtpsYQIZClaoFF1zKHrGgXlLEFVp2qZaoF58wK2ndOO94ZgohGzDjcu04obcgu-LTeO-b0a7ZlkoMvq9tUtGkuskWId4JQxCt68AK9TXOO9bpKYcIxI4RV6sMDNevB9nKs-qh8Jx_1qwBaA_XZUrJ10vjpXrUpKx8kRnJlkVzy7-f3Fp3UkcMXI49bX4Xfr-FczBP37Hftf_xfX469I_8AX3WmlQ |
CitedBy_id | crossref_primary_10_1103_PhysRevFluids_6_023602 crossref_primary_10_1016_j_bpj_2020_03_019 crossref_primary_10_3390_cells12111529 crossref_primary_10_1016_j_bpj_2018_06_013 crossref_primary_10_3390_biom11050727 crossref_primary_10_1039_D3SM00208J crossref_primary_10_1103_PhysRevFluids_8_L061101 crossref_primary_10_1016_j_jcp_2021_110494 crossref_primary_10_1103_PhysRevFluids_8_L021602 crossref_primary_10_1016_j_mvr_2019_02_003 crossref_primary_10_1017_jfm_2022_936 crossref_primary_10_1364_OL_483062 crossref_primary_10_1111_micc_12693 crossref_primary_10_3390_mi12101162 crossref_primary_10_3390_mi10030199 crossref_primary_10_1016_j_snb_2023_135056 crossref_primary_10_1016_j_jcp_2024_113042 crossref_primary_10_1140_epje_s10189_023_00369_5 crossref_primary_10_1002_fld_4832 crossref_primary_10_1016_j_bpj_2020_12_012 crossref_primary_10_3390_membranes12020217 crossref_primary_10_1002_fld_4835 crossref_primary_10_1140_epje_i2018_11715_7 crossref_primary_10_1002_adts_201800160 crossref_primary_10_1103_PhysRevFluids_3_123601 crossref_primary_10_1186_s12859_020_3357_5 crossref_primary_10_1016_j_bpj_2019_05_022 crossref_primary_10_1039_D3SM01064C crossref_primary_10_1016_j_bpj_2021_09_025 crossref_primary_10_1103_PhysRevE_98_043111 crossref_primary_10_1142_S0219519418400328 crossref_primary_10_1063_5_0197208 crossref_primary_10_1016_j_cma_2024_117088 crossref_primary_10_1039_D4SM00446A crossref_primary_10_1103_PhysRevFluids_9_053603 crossref_primary_10_1103_PhysRevFluids_3_084101 crossref_primary_10_1140_epjs_s11734_024_01177_4 crossref_primary_10_1103_PhysRevE_107_044608 crossref_primary_10_1017_flo_2024_1 crossref_primary_10_1007_s10237_020_01397_2 crossref_primary_10_1017_jfm_2020_946 crossref_primary_10_1039_D1SM00246E crossref_primary_10_1039_D0SM00587H crossref_primary_10_1103_PhysRevFluids_7_093602 crossref_primary_10_1103_PhysRevFluids_7_093603 crossref_primary_10_1063_5_0141811 crossref_primary_10_1039_C8SM01026A crossref_primary_10_1039_D0LC01297A crossref_primary_10_3389_fphy_2021_666913 crossref_primary_10_1016_j_bpj_2021_12_009 crossref_primary_10_1103_PhysRevFluids_7_L032201 crossref_primary_10_1007_s40997_018_0233_2 crossref_primary_10_1039_D0SM02121K crossref_primary_10_1103_PhysRevE_99_062418 crossref_primary_10_1063_1_5112033 |
Cites_doi | 10.1039/C4SM00894D 10.1103/PhysRevLett.112.238304 10.1039/C0LC00348D 10.1046/j.1365-2141.1996.d01-1794.x 10.1007/s10439-007-9275-0 10.1126/science.162.3850.275 10.1039/b904584h 10.1146/annurev-fluid-010313-141349 10.1073/pnas.1101210108 10.1039/c2sm26289d 10.1088/1748-6041/3/3/034011 10.1016/0026-2862(70)90034-8 10.1515/znc-1973-11-1209 10.1063/1.4721811 10.1137/0907058 10.1073/pnas.0504243102 10.1146/annurev.fluid.37.042604.133933 10.1126/science.142.3597.1319 10.1063/1.4863723 10.1017/jfm.2014.14 10.1038/srep06659 10.1016/0893-9659(89)90079-7 10.1016/j.cpc.2016.04.018 10.1051/lhb/2009063 10.1103/PhysRevE.93.012612 10.1201/b11221 10.1039/C5SM02933C 10.1126/science.164.3880.717 10.1038/srep33084 10.1017/S0022112086002355 10.1146/annurev.bioeng.7.011205.135108 10.1039/C4SM00248B 10.1016/j.crhy.2013.04.004 10.1016/S0006-3495(73)85983-1 10.1529/biophysj.108.138826 10.1016/j.jcp.2014.07.008 10.1039/C6SM01165A 10.1039/C4LC00701H 10.1063/1.4871300 10.1016/j.jcp.2010.01.024 10.1364/OE.24.022144 10.1103/PhysRevE.84.041906 10.1016/0026-2862(70)90036-1 10.1063/1.4819341 10.1039/C7SM00339K 10.1152/jappl.1966.21.1.81 10.1007/s00397-015-0867-6 10.1098/rspb.1972.0084 10.1088/1478-3975/5/3/036007 10.1016/j.mvr.2015.02.006 10.1017/jfm.2017.836 10.1146/annurev-fluid-010816-060246 10.1016/j.mvr.2011.03.004 10.1103/PhysRevE.85.016307 10.1103/PhysRevE.89.042709 10.3109/10739689609146782 10.1063/1.5009782 10.1146/annurev-fluid-010816-060302 10.1016/j.crhy.2009.10.002 10.1146/annurev.fl.21.010189.001123 10.1038/srep04348 10.1038/nmeth.3281 10.1073/pnas.1608074113 10.1038/srep34375 10.1103/PhysRevLett.89.188302 10.1143/JPSJ.78.041002 10.1006/jcph.2000.6582 10.1016/j.medengphy.2015.05.007 10.1016/j.mvr.2012.10.001 10.1016/S0022-5193(70)80032-7 10.1364/OL.37.000707 10.1103/PhysRevLett.98.088104 10.1103/PhysRevE.92.042710 10.1103/PhysRevLett.102.148102 10.1039/c1sm05794d 10.1016/0026-2862(87)90078-1 10.1017/jfm.2012.637 10.1039/C3SM51645H 10.1016/0026-2862(72)90069-6 10.1117/1.2355666 10.1016/j.cma.2010.04.014 10.1103/PhysRevLett.103.188101 10.1063/1.1862262 10.1063/1.4986392 10.1038/lsa.2016.241 10.1117/1.JBO.18.4.040503 10.1016/0026-2862(82)90056-5 10.1103/PhysRevE.90.033011 10.1073/pnas.0909533107 10.1016/j.bpj.2015.03.046 10.1002/ajh.23941 10.1063/1.5000357 10.1016/j.camwa.2010.03.057 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1039/c7sm02272g |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 243 |
ExternalDocumentID | 29473072 10_1039_C7SM02272G c7sm02272g |
Genre | Journal Article |
GroupedDBID | -JG 0-7 0R~ 123 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N J3I KZ1 N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SLH VH6 0UZ 1TJ 53G 71~ AAYXX ACHDF ACRPL ADNMO AFFNX AFRZK AGQPQ AHGXI AKMSF ALSGL ANBJS ANLMG ASPBG AVWKF BBWZM C1A CITATION EEHRC FEDTE HVGLF H~9 J3G J3H L-8 M4U NDZJH R56 RCLXC XJT NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c465t-c3880e4a518926f0e82546651a9ae4a4b8776e84d9fbf79c303b06cf1df98abc3 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Fri Jul 11 00:42:33 EDT 2025 Mon Jun 30 11:58:53 EDT 2025 Mon Jul 21 06:02:35 EDT 2025 Tue Jul 01 03:13:11 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Tue Dec 17 20:58:59 EST 2024 Thu May 30 17:37:07 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-c3880e4a518926f0e82546651a9ae4a4b8776e84d9fbf79c303b06cf1df98abc3 |
Notes | five videos showing the various shapes observed in the numerical simulations; and one PDF with short descriptions of the videos. See DOI 10.1039/c7sm02272g Fig. 4 Electronic supplementary information (ESI) available: One PDF containing further details regarding setups, analysis methodology and additional experimental data such as the original photographs of the cells; one excel sheet containing the raw data from ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5597-1160 0000-0001-7788-4594 0000-0003-0372-3151 0000-0003-1282-3875 |
OpenAccessLink | http://orbilu.uni.lu/handle/10993/37368 |
PMID | 29473072 |
PQID | 2013716336 |
PQPubID | 2047495 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1039_C7SM02272G proquest_miscellaneous_2007983407 pubmed_primary_29473072 proquest_journals_2013716336 rsc_primary_c7sm02272g crossref_primary_10_1039_C7SM02272G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Guckenberger (C7SM02272G-(cit82)/*[position()=1]) 2016; 207 Lanotte (C7SM02272G-(cit34)/*[position()=1]) 2014; 8 Pégard (C7SM02272G-(cit96)/*[position()=1]) 2014; 14 Bogacki (C7SM02272G-(cit89)/*[position()=1]) 1989; 2 Saad (C7SM02272G-(cit88)/*[position()=1]) 1986; 7 Le (C7SM02272G-(cit69)/*[position()=1]) 2010; 199 Chien (C7SM02272G-(cit70)/*[position()=1]) 1966; 21 Kubota (C7SM02272G-(cit39)/*[position()=1]) 1996; 94 Noguchi (C7SM02272G-(cit53)/*[position()=1]) 2005; 102 Pégard (C7SM02272G-(cit95)/*[position()=1]) 2013; 18 Otto (C7SM02272G-(cit15)/*[position()=1]) 2015; 12 Rasmi (C7SM02272G-(cit99)/*[position()=1]) 2017; 111 Merola (C7SM02272G-(cit16)/*[position()=1]) 2017; 6 Helfrich (C7SM02272G-(cit79)/*[position()=1]) 1973; 28 Cokelet (C7SM02272G-(cit61)/*[position()=1]) 1968; 162 Freund (C7SM02272G-(cit1)/*[position()=1]) 2013; 25 Secomb (C7SM02272G-(cit47)/*[position()=1]) 1982; 24 Krüger (C7SM02272G-(cit10)/*[position()=1]) 2013; 9 Skalak (C7SM02272G-(cit38)/*[position()=1]) 1969; 164 Wagner (C7SM02272G-(cit41)/*[position()=1]) 2013; 14 Peng (C7SM02272G-(cit59)/*[position()=1]) 2014; 742 Secomb (C7SM02272G-(cit45)/*[position()=1]) 1987; 34 Tahiri (C7SM02272G-(cit6)/*[position()=1]) 2013; 85 Seshadri (C7SM02272G-(cit29)/*[position()=1]) 1970; 2 Sebastian (C7SM02272G-(cit63)/*[position()=1]) 2018; 50 Koller (C7SM02272G-(cit67)/*[position()=1]) 1987; 253 Danker (C7SM02272G-(cit7)/*[position()=1]) 2007; 98 Abkarian (C7SM02272G-(cit22)/*[position()=1]) 2008; 3 Pries (C7SM02272G-(cit91)/*[position()=1]) 1995; 269 Kim (C7SM02272G-(cit98)/*[position()=1]) 2016; 6 Daddi-Moussa-Ider (C7SM02272G-(cit90)/*[position()=1]) 2016; 93 Schaaf (C7SM02272G-(cit94)/*[position()=1]) 2017; 13 Saintillan (C7SM02272G-(cit87)/*[position()=1]) 2005; 17 Fedosov (C7SM02272G-(cit4)/*[position()=1]) 2014; 10 Thiébaud (C7SM02272G-(cit11)/*[position()=1]) 2014; 112 Henry (C7SM02272G-(cit14)/*[position()=1]) 2016; 6 Yazdani (C7SM02272G-(cit101)/*[position()=1]) 2013; 718 Brust (C7SM02272G-(cit42)/*[position()=1]) 2014; 4 Cui (C7SM02272G-(cit65)/*[position()=1]) 2002; 89 Goldsmith (C7SM02272G-(cit43)/*[position()=1]) 1972; 182 Jagannadh (C7SM02272G-(cit97)/*[position()=1]) 2016; 24 Farutin (C7SM02272G-(cit17)/*[position()=1]) 2014; 89 Sinha (C7SM02272G-(cit60)/*[position()=1]) 2015; 92 Secomb (C7SM02272G-(cit72)/*[position()=1]) 2017; 49 Freund (C7SM02272G-(cit77)/*[position()=1]) 2014; 46 Fedosov (C7SM02272G-(cit9)/*[position()=1]) 2011; 108 Kaoui (C7SM02272G-(cit49)/*[position()=1]) 2011; 84 Kaoui (C7SM02272G-(cit48)/*[position()=1]) 2009; 103 Yoon (C7SM02272G-(cit76)/*[position()=1]) 2008; 5 Guckenberger (C7SM02272G-(cit84)/*[position()=1]) 2018; 836 Aouane (C7SM02272G-(cit5)/*[position()=1]) 2014; 90 Park (C7SM02272G-(cit81)/*[position()=1]) 2010; 107 Baskurt (C7SM02272G-(cit92)/*[position()=1]) 2011 Suzuki (C7SM02272G-(cit19)/*[position()=1]) 1996; 3 Zhao (C7SM02272G-(cit86)/*[position()=1]) 2010; 229 Tomaiuolo (C7SM02272G-(cit31)/*[position()=1]) 2007; 43 Pozrikidis (C7SM02272G-(cit85)/*[position()=1]) 2001; 169 Secomb (C7SM02272G-(cit20)/*[position()=1]) 2007; 35 Guest (C7SM02272G-(cit37)/*[position()=1]) 1963; 142 Tomaiuolo (C7SM02272G-(cit40)/*[position()=1]) 2012; 24 Tomaiuolo (C7SM02272G-(cit100)/*[position()=1]) 2011; 11 McWhirter (C7SM02272G-(cit54)/*[position()=1]) 2011; 7 Krüger (C7SM02272G-(cit75)/*[position()=1]) 2011; 61 Zharov (C7SM02272G-(cit30)/*[position()=1]) 2006; 11 Kaoui (C7SM02272G-(cit93)/*[position()=1]) 2016; 55 Vitkova (C7SM02272G-(cit8)/*[position()=1]) 2008; 95 Clavera (C7SM02272G-(cit36)/*[position()=1]) 2016; 12 Cluitmans (C7SM02272G-(cit26)/*[position()=1]) 2014 Katanov (C7SM02272G-(cit12)/*[position()=1]) 2015; 99 Popel (C7SM02272G-(cit62)/*[position()=1]) 2005; 37 Quint (C7SM02272G-(cit27)/*[position()=1]) 2017; 111 Prado (C7SM02272G-(cit25)/*[position()=1]) 2015; 108 Canham (C7SM02272G-(cit78)/*[position()=1]) 1970; 26 Salehyar (C7SM02272G-(cit3)/*[position()=1]) 2016; 12 Kim (C7SM02272G-(cit73)/*[position()=1]) 2014; 4 Picot (C7SM02272G-(cit2)/*[position()=1]) 2015; 90 Tomaiuolo (C7SM02272G-(cit24)/*[position()=1]) 2011; 82 Lázaro (C7SM02272G-(cit52)/*[position()=1]) 2014; 10 Lanotte (C7SM02272G-(cit13)/*[position()=1]) 2016; 113 Secomb (C7SM02272G-(cit44)/*[position()=1]) 1986; 163 Danker (C7SM02272G-(cit56)/*[position()=1]) 2009; 102 Cordasco (C7SM02272G-(cit58)/*[position()=1]) 2014; 26 Shi (C7SM02272G-(cit51)/*[position()=1]) 2012; 85 Gaehtgens (C7SM02272G-(cit18)/*[position()=1]) 1980; 6 Skalak (C7SM02272G-(cit74)/*[position()=1]) 1973; 13 Kaoui (C7SM02272G-(cit50)/*[position()=1]) 2012; 8 Hochmuth (C7SM02272G-(cit28)/*[position()=1]) 1970; 2 Skalak (C7SM02272G-(cit71)/*[position()=1]) 1989; 21 Toner (C7SM02272G-(cit64)/*[position()=1]) 2005; 7 Tomaiuolo (C7SM02272G-(cit23)/*[position()=1]) 2009; 5 Kaoui (C7SM02272G-(cit57)/*[position()=1]) 2009 Evans (C7SM02272G-(cit68)/*[position()=1]) 1972; 4 Ye (C7SM02272G-(cit55)/*[position()=1]) 2017; 122 Tomaiuolo (C7SM02272G-(cit35)/*[position()=1]) 2016; 38 Farutin (C7SM02272G-(cit83)/*[position()=1]) 2014; 275 Guido (C7SM02272G-(cit32)/*[position()=1]) 2009; 10 Diamant (C7SM02272G-(cit66)/*[position()=1]) 2009; 78 Secomb (C7SM02272G-(cit46)/*[position()=1]) 2001; 281 Gorthi (C7SM02272G-(cit33)/*[position()=1]) 2012; 37 Guckenberger (C7SM02272G-(cit80)/*[position()=1]) 2017; 29 |
References_xml | – issn: 2006 doi: Faivre – issn: 2011 publication-title: Red Blood Cell Aggregation doi: Baskurt Neu Meiselman – volume: 10 start-page: 7195 year: 2014 ident: C7SM02272G-(cit52)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C4SM00894D – volume: 112 start-page: 238304 year: 2014 ident: C7SM02272G-(cit11)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.238304 – volume: 269 start-page: H1713 year: 1995 ident: C7SM02272G-(cit91)/*[position()=1] publication-title: Am. J. Physiol.: Heart Circ. Physiol. – volume: 11 start-page: 449 year: 2011 ident: C7SM02272G-(cit100)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C0LC00348D – volume: 94 start-page: 266 year: 1996 ident: C7SM02272G-(cit39)/*[position()=1] publication-title: Br. J. Haematol. doi: 10.1046/j.1365-2141.1996.d01-1794.x – volume: 35 start-page: 755 year: 2007 ident: C7SM02272G-(cit20)/*[position()=1] publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9275-0 – volume: 162 start-page: 275 year: 1968 ident: C7SM02272G-(cit61)/*[position()=1] publication-title: Science doi: 10.1126/science.162.3850.275 – volume: 5 start-page: 3736 year: 2009 ident: C7SM02272G-(cit23)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b904584h – volume: 46 start-page: 67 year: 2014 ident: C7SM02272G-(cit77)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010313-141349 – volume: 108 start-page: 11772 year: 2011 ident: C7SM02272G-(cit9)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1101210108 – volume: 8 start-page: 9246 year: 2012 ident: C7SM02272G-(cit50)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c2sm26289d – volume: 3 start-page: 034011 year: 2008 ident: C7SM02272G-(cit22)/*[position()=1] publication-title: Biomed. Mater. doi: 10.1088/1748-6041/3/3/034011 – volume: 2 start-page: 409 year: 1970 ident: C7SM02272G-(cit28)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/0026-2862(70)90034-8 – volume: 28 start-page: 693 year: 1973 ident: C7SM02272G-(cit79)/*[position()=1] publication-title: Z. Naturforsch., C: J. Biosci. doi: 10.1515/znc-1973-11-1209 – start-page: e764268 year: 2014 ident: C7SM02272G-(cit26)/*[position()=1] publication-title: BioMed Res. Int. – volume: 24 start-page: 1 year: 2012 ident: C7SM02272G-(cit40)/*[position()=1] publication-title: Phys. Fluids doi: 10.1063/1.4721811 – volume: 7 start-page: 856 year: 1986 ident: C7SM02272G-(cit88)/*[position()=1] publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – volume: 102 start-page: 14159 year: 2005 ident: C7SM02272G-(cit53)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504243102 – volume: 37 start-page: 43 year: 2005 ident: C7SM02272G-(cit62)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.042604.133933 – volume: 142 start-page: 1319 year: 1963 ident: C7SM02272G-(cit37)/*[position()=1] publication-title: Science doi: 10.1126/science.142.3597.1319 – volume: 8 start-page: 014104 year: 2014 ident: C7SM02272G-(cit34)/*[position()=1] publication-title: Biomicrofluidics doi: 10.1063/1.4863723 – volume: 742 start-page: 96 year: 2014 ident: C7SM02272G-(cit59)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.14 – volume: 4 start-page: 6659 year: 2014 ident: C7SM02272G-(cit73)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep06659 – volume: 2 start-page: 321 year: 1989 ident: C7SM02272G-(cit89)/*[position()=1] publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(89)90079-7 – volume: 207 start-page: 1 year: 2016 ident: C7SM02272G-(cit82)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.04.018 – start-page: 112 year: 2009 ident: C7SM02272G-(cit57)/*[position()=1] publication-title: Houille Blanche doi: 10.1051/lhb/2009063 – volume: 93 start-page: 012612 year: 2016 ident: C7SM02272G-(cit90)/*[position()=1] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.012612 – volume-title: Red Blood Cell Aggregation year: 2011 ident: C7SM02272G-(cit92)/*[position()=1] doi: 10.1201/b11221 – volume: 12 start-page: 3156 year: 2016 ident: C7SM02272G-(cit3)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM02933C – volume: 164 start-page: 717 year: 1969 ident: C7SM02272G-(cit38)/*[position()=1] publication-title: Science doi: 10.1126/science.164.3880.717 – volume: 6 start-page: 33084 year: 2016 ident: C7SM02272G-(cit98)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep33084 – volume: 43 start-page: 186 year: 2007 ident: C7SM02272G-(cit31)/*[position()=1] publication-title: Ann. Ist. Super. Sanita – volume: 163 start-page: 405 year: 1986 ident: C7SM02272G-(cit44)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112086002355 – volume: 281 start-page: H629 year: 2001 ident: C7SM02272G-(cit46)/*[position()=1] publication-title: Am. J. Physiol.: Heart Circ. Physiol. – volume: 7 start-page: 77 year: 2005 ident: C7SM02272G-(cit64)/*[position()=1] publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.7.011205.135108 – volume: 10 start-page: 4258 year: 2014 ident: C7SM02272G-(cit4)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C4SM00248B – volume: 14 start-page: 459 year: 2013 ident: C7SM02272G-(cit41)/*[position()=1] publication-title: C. R. Phys. doi: 10.1016/j.crhy.2013.04.004 – volume: 13 start-page: 245 year: 1973 ident: C7SM02272G-(cit74)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/S0006-3495(73)85983-1 – volume: 95 start-page: L33 year: 2008 ident: C7SM02272G-(cit8)/*[position()=1] publication-title: Biophys. J. doi: 10.1529/biophysj.108.138826 – volume: 275 start-page: 539 year: 2014 ident: C7SM02272G-(cit83)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.07.008 – volume: 12 start-page: 8235 year: 2016 ident: C7SM02272G-(cit36)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C6SM01165A – volume: 14 start-page: 4447 year: 2014 ident: C7SM02272G-(cit96)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C4LC00701H – volume: 26 start-page: 041902 year: 2014 ident: C7SM02272G-(cit58)/*[position()=1] publication-title: Phys. Fluids doi: 10.1063/1.4871300 – volume: 229 start-page: 3726 year: 2010 ident: C7SM02272G-(cit86)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.01.024 – volume: 24 start-page: 22144 year: 2016 ident: C7SM02272G-(cit97)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.24.022144 – volume: 6 start-page: 799 year: 1980 ident: C7SM02272G-(cit18)/*[position()=1] publication-title: Blood Cells – volume: 84 start-page: 041906 year: 2011 ident: C7SM02272G-(cit49)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.84.041906 – volume: 2 start-page: 434 year: 1970 ident: C7SM02272G-(cit29)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/0026-2862(70)90036-1 – volume: 25 start-page: 110807 year: 2013 ident: C7SM02272G-(cit1)/*[position()=1] publication-title: Phys. Fluids doi: 10.1063/1.4819341 – volume: 13 start-page: 3544 year: 2017 ident: C7SM02272G-(cit94)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C7SM00339K – volume: 21 start-page: 81 year: 1966 ident: C7SM02272G-(cit70)/*[position()=1] publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1966.21.1.81 – volume: 55 start-page: 465 year: 2016 ident: C7SM02272G-(cit93)/*[position()=1] publication-title: Rheol. Acta doi: 10.1007/s00397-015-0867-6 – volume: 182 start-page: 351 year: 1972 ident: C7SM02272G-(cit43)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. B doi: 10.1098/rspb.1972.0084 – volume: 5 start-page: 036007 year: 2008 ident: C7SM02272G-(cit76)/*[position()=1] publication-title: Phys. Biol. doi: 10.1088/1478-3975/5/3/036007 – volume: 99 start-page: 57 year: 2015 ident: C7SM02272G-(cit12)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2015.02.006 – volume: 836 start-page: 952 year: 2018 ident: C7SM02272G-(cit84)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.836 – volume: 50 start-page: 483 year: 2018 ident: C7SM02272G-(cit63)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010816-060246 – volume: 82 start-page: 35 year: 2011 ident: C7SM02272G-(cit24)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2011.03.004 – volume: 85 start-page: 016307 year: 2012 ident: C7SM02272G-(cit51)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.85.016307 – volume: 89 start-page: 042709 year: 2014 ident: C7SM02272G-(cit17)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.89.042709 – volume: 3 start-page: 49 year: 1996 ident: C7SM02272G-(cit19)/*[position()=1] publication-title: Microcirculation doi: 10.3109/10739689609146782 – volume: 111 start-page: 243702 year: 2017 ident: C7SM02272G-(cit99)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5009782 – volume: 49 start-page: 443 year: 2017 ident: C7SM02272G-(cit72)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010816-060302 – volume: 10 start-page: 751 year: 2009 ident: C7SM02272G-(cit32)/*[position()=1] publication-title: C. R. Phys. doi: 10.1016/j.crhy.2009.10.002 – volume: 21 start-page: 167 year: 1989 ident: C7SM02272G-(cit71)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.21.010189.001123 – volume: 4 start-page: 4348 year: 2014 ident: C7SM02272G-(cit42)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep04348 – volume: 12 start-page: 199 year: 2015 ident: C7SM02272G-(cit15)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth.3281 – volume: 113 start-page: 13289 year: 2016 ident: C7SM02272G-(cit13)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1608074113 – volume: 6 start-page: 34375 year: 2016 ident: C7SM02272G-(cit14)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep34375 – volume: 89 start-page: 188302 year: 2002 ident: C7SM02272G-(cit65)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.188302 – volume: 78 start-page: 041002 year: 2009 ident: C7SM02272G-(cit66)/*[position()=1] publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.78.041002 – volume: 169 start-page: 250 year: 2001 ident: C7SM02272G-(cit85)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6582 – volume: 38 start-page: 11 year: 2016 ident: C7SM02272G-(cit35)/*[position()=1] publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.05.007 – volume: 85 start-page: 40 year: 2013 ident: C7SM02272G-(cit6)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2012.10.001 – volume: 26 start-page: 61 year: 1970 ident: C7SM02272G-(cit78)/*[position()=1] publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(70)80032-7 – volume: 37 start-page: 707 year: 2012 ident: C7SM02272G-(cit33)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.37.000707 – volume: 98 start-page: 088104 year: 2007 ident: C7SM02272G-(cit7)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.088104 – volume: 29 start-page: 203001 year: 2017 ident: C7SM02272G-(cit80)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 92 start-page: 042710 year: 2015 ident: C7SM02272G-(cit60)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.92.042710 – volume: 102 start-page: 148102 year: 2009 ident: C7SM02272G-(cit56)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.148102 – volume: 7 start-page: 10967 year: 2011 ident: C7SM02272G-(cit54)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c1sm05794d – volume: 34 start-page: 46 year: 1987 ident: C7SM02272G-(cit45)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/0026-2862(87)90078-1 – volume: 718 start-page: 569 year: 2013 ident: C7SM02272G-(cit101)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.637 – volume: 9 start-page: 9008 year: 2013 ident: C7SM02272G-(cit10)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C3SM51645H – volume: 4 start-page: 335 year: 1972 ident: C7SM02272G-(cit68)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/0026-2862(72)90069-6 – volume: 11 start-page: 054034 year: 2006 ident: C7SM02272G-(cit30)/*[position()=1] publication-title: J. Biomed. Opt. doi: 10.1117/1.2355666 – volume: 199 start-page: 2622 year: 2010 ident: C7SM02272G-(cit69)/*[position()=1] publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.04.014 – volume: 103 start-page: 188101 year: 2009 ident: C7SM02272G-(cit48)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.188101 – volume: 17 start-page: 033301 year: 2005 ident: C7SM02272G-(cit87)/*[position()=1] publication-title: Phys. Fluids doi: 10.1063/1.1862262 – volume: 111 start-page: 103701 year: 2017 ident: C7SM02272G-(cit27)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4986392 – volume: 6 start-page: e16241 year: 2017 ident: C7SM02272G-(cit16)/*[position()=1] publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2016.241 – volume: 18 start-page: 040503 year: 2013 ident: C7SM02272G-(cit95)/*[position()=1] publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.18.4.040503 – volume: 24 start-page: 194 year: 1982 ident: C7SM02272G-(cit47)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/0026-2862(82)90056-5 – volume: 90 start-page: 033011 year: 2014 ident: C7SM02272G-(cit5)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.90.033011 – volume: 107 start-page: 6731 year: 2010 ident: C7SM02272G-(cit81)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0909533107 – volume: 108 start-page: 2126 year: 2015 ident: C7SM02272G-(cit25)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.03.046 – volume: 90 start-page: 339 year: 2015 ident: C7SM02272G-(cit2)/*[position()=1] publication-title: Am. J. Hematol. doi: 10.1002/ajh.23941 – volume: 253 start-page: H154 year: 1987 ident: C7SM02272G-(cit67)/*[position()=1] publication-title: Am. J. Physiol.: Heart Circ. Physiol. – volume: 122 start-page: 084701 year: 2017 ident: C7SM02272G-(cit55)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.5000357 – volume: 61 start-page: 3485 year: 2011 ident: C7SM02272G-(cit75)/*[position()=1] publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.03.057 |
SSID | ssj0038416 |
Score | 2.5063534 |
Snippet | Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 232 |
SubjectTerms | Bistability Blood Capillaries Computer simulation Deformability Deformation Erythrocytes Flow velocity Footwear Formability Initial conditions Phase diagrams Position measurement Viscosity Viscosity ratio |
Title | Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29473072 https://www.proquest.com/docview/2013716336 https://www.proquest.com/docview/2007983407 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJiReEF9jGQMZwQuqAvlwnPhxmroN1JUHWtG3yE7tdahNqzUVEk_8AZ74h_wSrh0ndbUKAS9R60RJ5Hti32ufey5Cr7XGXcwI9UkCQyBhnPoikhCqUMIhkCM8NpXnLgf0YkQ-jJNxp_PDYS2tK_G2-LYzr-R_rAptYFedJfsPlm1vCg3wG-wLR7AwHP_KxoN1vd8yaygL8ZZg_0K0S67aJ1xN-VJ2hXYYDSPW7K1r-rkhr3f1Ev6qq2aLrzbNhXfnmq2nU4NLS6z_0uT0qqo755VD7T3X_AxDFrPlsYvp9XyzwT-db2XTuHQUm1HmUII_8yubhlNLHzQItosTdiSt-Ux68aNhnhpmia1f5wy2KSE-zUw9YJiL3LZafbMdoYmLxNAdbwO7Oirt31rz6da8EMRaVrVIV3MtmRhdbWa_Zsd_8DE_G_X7-bA3Ht5B-xFEHTDO75_0hu_7zdQe6z3aOsO2fvFG7zZm7zb33vZwboUt4MTcNMVljBMzfIDu2-gDn9RQeog6snyE7hoWcLF6jFQLqF_ff7pQwg6U8EJhAyXsQEk3ApSwgRI2UMIWSvi6xBy7UHqCRme94emFbwtx-AWhSeUXWjFIEp6EGYuoCqSpokCTUEu7E05ElqZUZmTClFApK8AtEgEtVDhRLOOiiA_QXrko5SHChAo6kaGmYiUklkxEgQolScGxFiIJCg-9aTovL6xKvS6WMssNWyJm-Wn66dJ09LmHXrXXLmttlp1XHTc2yO23u8ojrbQJoUhMPfSyPQ0A1R3ES7lY62uClGUxCVIPPa1t1z4mYgSmxjTy0AEYs23egMBDR7tP5MuJOvrzKz1D9_S3VC_0HaO96mYtn4PrW4kXFpC_ATdrs3M |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical%E2%80%93experimental+observation+of+shape+bistability+of+red+blood+cells+flowing+in+a+microchannel&rft.jtitle=Soft+matter&rft.au=Guckenberger%2C+Achim&rft.au=Kihm%2C+Alexander&rft.au=Thomas%2C+John&rft.au=Wagner%2C+Christian&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=14&rft.issue=11&rft.spage=2032&rft.epage=2043&rft_id=info:doi/10.1039%2Fc7sm02272g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |