Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel

Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we constru...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 14; no. 11; pp. 232 - 243
Main Authors Guckenberger, Achim, Kihm, Alexander, John, Thomas, Wagner, Christian, Gekle, Stephan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s −1 ) and high velocities (>3 mm s −1 ) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions. Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability.
AbstractList Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s −1 ) and high velocities (>3 mm s −1 ) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions. Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability.
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s−1) and high velocities (>3 mm s−1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s ) and high velocities (>3 mm s ) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s-1) and high velocities (>3 mm s-1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s-1) and high velocities (>3 mm s-1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s −1 ) and high velocities (>3 mm s −1 ) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Author Kihm, Alexander
Wagner, Christian
Gekle, Stephan
John, Thomas
Guckenberger, Achim
AuthorAffiliation Experimental Physics
Universität Bayreuth
Biofluid Simulation and Modeling
Theoretische Physik
Saarland University
Physics and Materials Science Research Unit
University of Luxembourg
AuthorAffiliation_xml – sequence: 0
  name: Biofluid Simulation and Modeling
– sequence: 0
  name: University of Luxembourg
– sequence: 0
  name: Universität Bayreuth
– sequence: 0
  name: Theoretische Physik
– sequence: 0
  name: Saarland University
– sequence: 0
  name: Experimental Physics
– sequence: 0
  name: Physics and Materials Science Research Unit
Author_xml – sequence: 1
  givenname: Achim
  surname: Guckenberger
  fullname: Guckenberger, Achim
– sequence: 2
  givenname: Alexander
  surname: Kihm
  fullname: Kihm, Alexander
– sequence: 3
  givenname: Thomas
  surname: John
  fullname: John, Thomas
– sequence: 4
  givenname: Christian
  surname: Wagner
  fullname: Wagner, Christian
– sequence: 5
  givenname: Stephan
  surname: Gekle
  fullname: Gekle, Stephan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29473072$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtrHSEQxqUkNNeXvrdY8lICm-rqUfexHNI0kMtDW8ibqKuJwdWt7rbNf19PTi4QQp9mmPnNMPN9O2AjpmgBeIfREUak-2x4GVDb8vb6DdjGnNKGCSo2nnJytQV2SrlFiAiK2Vuw1XaUE8TbbdBfzIPN3qjQ2L9jzQYbJxVg0sXm32ryKcLkYLlRo4Xal0lpH_x0typm20MdUuqhsSEU6EL64-M19BEqOHiTk7lRMdqwBzadCsXuP8Rd8PPr8Y_lt-bs8uR0-eWsMZQtpsYQIZClaoFF1zKHrGgXlLEFVp2qZaoF58wK2ndOO94ZgohGzDjcu04obcgu-LTeO-b0a7ZlkoMvq9tUtGkuskWId4JQxCt68AK9TXOO9bpKYcIxI4RV6sMDNevB9nKs-qh8Jx_1qwBaA_XZUrJ10vjpXrUpKx8kRnJlkVzy7-f3Fp3UkcMXI49bX4Xfr-FczBP37Hftf_xfX469I_8AX3WmlQ
CitedBy_id crossref_primary_10_1103_PhysRevFluids_6_023602
crossref_primary_10_1016_j_bpj_2020_03_019
crossref_primary_10_3390_cells12111529
crossref_primary_10_1016_j_bpj_2018_06_013
crossref_primary_10_3390_biom11050727
crossref_primary_10_1039_D3SM00208J
crossref_primary_10_1103_PhysRevFluids_8_L061101
crossref_primary_10_1016_j_jcp_2021_110494
crossref_primary_10_1103_PhysRevFluids_8_L021602
crossref_primary_10_1016_j_mvr_2019_02_003
crossref_primary_10_1017_jfm_2022_936
crossref_primary_10_1364_OL_483062
crossref_primary_10_1111_micc_12693
crossref_primary_10_3390_mi12101162
crossref_primary_10_3390_mi10030199
crossref_primary_10_1016_j_snb_2023_135056
crossref_primary_10_1016_j_jcp_2024_113042
crossref_primary_10_1140_epje_s10189_023_00369_5
crossref_primary_10_1002_fld_4832
crossref_primary_10_1016_j_bpj_2020_12_012
crossref_primary_10_3390_membranes12020217
crossref_primary_10_1002_fld_4835
crossref_primary_10_1140_epje_i2018_11715_7
crossref_primary_10_1002_adts_201800160
crossref_primary_10_1103_PhysRevFluids_3_123601
crossref_primary_10_1186_s12859_020_3357_5
crossref_primary_10_1016_j_bpj_2019_05_022
crossref_primary_10_1039_D3SM01064C
crossref_primary_10_1016_j_bpj_2021_09_025
crossref_primary_10_1103_PhysRevE_98_043111
crossref_primary_10_1142_S0219519418400328
crossref_primary_10_1063_5_0197208
crossref_primary_10_1016_j_cma_2024_117088
crossref_primary_10_1039_D4SM00446A
crossref_primary_10_1103_PhysRevFluids_9_053603
crossref_primary_10_1103_PhysRevFluids_3_084101
crossref_primary_10_1140_epjs_s11734_024_01177_4
crossref_primary_10_1103_PhysRevE_107_044608
crossref_primary_10_1017_flo_2024_1
crossref_primary_10_1007_s10237_020_01397_2
crossref_primary_10_1017_jfm_2020_946
crossref_primary_10_1039_D1SM00246E
crossref_primary_10_1039_D0SM00587H
crossref_primary_10_1103_PhysRevFluids_7_093602
crossref_primary_10_1103_PhysRevFluids_7_093603
crossref_primary_10_1063_5_0141811
crossref_primary_10_1039_C8SM01026A
crossref_primary_10_1039_D0LC01297A
crossref_primary_10_3389_fphy_2021_666913
crossref_primary_10_1016_j_bpj_2021_12_009
crossref_primary_10_1103_PhysRevFluids_7_L032201
crossref_primary_10_1007_s40997_018_0233_2
crossref_primary_10_1039_D0SM02121K
crossref_primary_10_1103_PhysRevE_99_062418
crossref_primary_10_1063_1_5112033
Cites_doi 10.1039/C4SM00894D
10.1103/PhysRevLett.112.238304
10.1039/C0LC00348D
10.1046/j.1365-2141.1996.d01-1794.x
10.1007/s10439-007-9275-0
10.1126/science.162.3850.275
10.1039/b904584h
10.1146/annurev-fluid-010313-141349
10.1073/pnas.1101210108
10.1039/c2sm26289d
10.1088/1748-6041/3/3/034011
10.1016/0026-2862(70)90034-8
10.1515/znc-1973-11-1209
10.1063/1.4721811
10.1137/0907058
10.1073/pnas.0504243102
10.1146/annurev.fluid.37.042604.133933
10.1126/science.142.3597.1319
10.1063/1.4863723
10.1017/jfm.2014.14
10.1038/srep06659
10.1016/0893-9659(89)90079-7
10.1016/j.cpc.2016.04.018
10.1051/lhb/2009063
10.1103/PhysRevE.93.012612
10.1201/b11221
10.1039/C5SM02933C
10.1126/science.164.3880.717
10.1038/srep33084
10.1017/S0022112086002355
10.1146/annurev.bioeng.7.011205.135108
10.1039/C4SM00248B
10.1016/j.crhy.2013.04.004
10.1016/S0006-3495(73)85983-1
10.1529/biophysj.108.138826
10.1016/j.jcp.2014.07.008
10.1039/C6SM01165A
10.1039/C4LC00701H
10.1063/1.4871300
10.1016/j.jcp.2010.01.024
10.1364/OE.24.022144
10.1103/PhysRevE.84.041906
10.1016/0026-2862(70)90036-1
10.1063/1.4819341
10.1039/C7SM00339K
10.1152/jappl.1966.21.1.81
10.1007/s00397-015-0867-6
10.1098/rspb.1972.0084
10.1088/1478-3975/5/3/036007
10.1016/j.mvr.2015.02.006
10.1017/jfm.2017.836
10.1146/annurev-fluid-010816-060246
10.1016/j.mvr.2011.03.004
10.1103/PhysRevE.85.016307
10.1103/PhysRevE.89.042709
10.3109/10739689609146782
10.1063/1.5009782
10.1146/annurev-fluid-010816-060302
10.1016/j.crhy.2009.10.002
10.1146/annurev.fl.21.010189.001123
10.1038/srep04348
10.1038/nmeth.3281
10.1073/pnas.1608074113
10.1038/srep34375
10.1103/PhysRevLett.89.188302
10.1143/JPSJ.78.041002
10.1006/jcph.2000.6582
10.1016/j.medengphy.2015.05.007
10.1016/j.mvr.2012.10.001
10.1016/S0022-5193(70)80032-7
10.1364/OL.37.000707
10.1103/PhysRevLett.98.088104
10.1103/PhysRevE.92.042710
10.1103/PhysRevLett.102.148102
10.1039/c1sm05794d
10.1016/0026-2862(87)90078-1
10.1017/jfm.2012.637
10.1039/C3SM51645H
10.1016/0026-2862(72)90069-6
10.1117/1.2355666
10.1016/j.cma.2010.04.014
10.1103/PhysRevLett.103.188101
10.1063/1.1862262
10.1063/1.4986392
10.1038/lsa.2016.241
10.1117/1.JBO.18.4.040503
10.1016/0026-2862(82)90056-5
10.1103/PhysRevE.90.033011
10.1073/pnas.0909533107
10.1016/j.bpj.2015.03.046
10.1002/ajh.23941
10.1063/1.5000357
10.1016/j.camwa.2010.03.057
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/c7sm02272g
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 243
ExternalDocumentID 29473072
10_1039_C7SM02272G
c7sm02272g
Genre Journal Article
GroupedDBID -JG
0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
VH6
0UZ
1TJ
53G
71~
AAYXX
ACHDF
ACRPL
ADNMO
AFFNX
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
BBWZM
C1A
CITATION
EEHRC
FEDTE
HVGLF
H~9
J3G
J3H
L-8
M4U
NDZJH
R56
RCLXC
XJT
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c465t-c3880e4a518926f0e82546651a9ae4a4b8776e84d9fbf79c303b06cf1df98abc3
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 00:42:33 EDT 2025
Mon Jun 30 11:58:53 EDT 2025
Mon Jul 21 06:02:35 EDT 2025
Tue Jul 01 03:13:11 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Tue Dec 17 20:58:59 EST 2024
Thu May 30 17:37:07 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-c3880e4a518926f0e82546651a9ae4a4b8776e84d9fbf79c303b06cf1df98abc3
Notes five videos showing the various shapes observed in the numerical simulations; and one PDF with short descriptions of the videos. See DOI
10.1039/c7sm02272g
Fig. 4
Electronic supplementary information (ESI) available: One PDF containing further details regarding setups, analysis methodology and additional experimental data such as the original photographs of the cells; one excel sheet containing the raw data from
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5597-1160
0000-0001-7788-4594
0000-0003-0372-3151
0000-0003-1282-3875
OpenAccessLink http://orbilu.uni.lu/handle/10993/37368
PMID 29473072
PQID 2013716336
PQPubID 2047495
PageCount 12
ParticipantIDs crossref_citationtrail_10_1039_C7SM02272G
proquest_miscellaneous_2007983407
pubmed_primary_29473072
proquest_journals_2013716336
rsc_primary_c7sm02272g
crossref_primary_10_1039_C7SM02272G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Guckenberger (C7SM02272G-(cit82)/*[position()=1]) 2016; 207
Lanotte (C7SM02272G-(cit34)/*[position()=1]) 2014; 8
Pégard (C7SM02272G-(cit96)/*[position()=1]) 2014; 14
Bogacki (C7SM02272G-(cit89)/*[position()=1]) 1989; 2
Saad (C7SM02272G-(cit88)/*[position()=1]) 1986; 7
Le (C7SM02272G-(cit69)/*[position()=1]) 2010; 199
Chien (C7SM02272G-(cit70)/*[position()=1]) 1966; 21
Kubota (C7SM02272G-(cit39)/*[position()=1]) 1996; 94
Noguchi (C7SM02272G-(cit53)/*[position()=1]) 2005; 102
Pégard (C7SM02272G-(cit95)/*[position()=1]) 2013; 18
Otto (C7SM02272G-(cit15)/*[position()=1]) 2015; 12
Rasmi (C7SM02272G-(cit99)/*[position()=1]) 2017; 111
Merola (C7SM02272G-(cit16)/*[position()=1]) 2017; 6
Helfrich (C7SM02272G-(cit79)/*[position()=1]) 1973; 28
Cokelet (C7SM02272G-(cit61)/*[position()=1]) 1968; 162
Freund (C7SM02272G-(cit1)/*[position()=1]) 2013; 25
Secomb (C7SM02272G-(cit47)/*[position()=1]) 1982; 24
Krüger (C7SM02272G-(cit10)/*[position()=1]) 2013; 9
Skalak (C7SM02272G-(cit38)/*[position()=1]) 1969; 164
Wagner (C7SM02272G-(cit41)/*[position()=1]) 2013; 14
Peng (C7SM02272G-(cit59)/*[position()=1]) 2014; 742
Secomb (C7SM02272G-(cit45)/*[position()=1]) 1987; 34
Tahiri (C7SM02272G-(cit6)/*[position()=1]) 2013; 85
Seshadri (C7SM02272G-(cit29)/*[position()=1]) 1970; 2
Sebastian (C7SM02272G-(cit63)/*[position()=1]) 2018; 50
Koller (C7SM02272G-(cit67)/*[position()=1]) 1987; 253
Danker (C7SM02272G-(cit7)/*[position()=1]) 2007; 98
Abkarian (C7SM02272G-(cit22)/*[position()=1]) 2008; 3
Pries (C7SM02272G-(cit91)/*[position()=1]) 1995; 269
Kim (C7SM02272G-(cit98)/*[position()=1]) 2016; 6
Daddi-Moussa-Ider (C7SM02272G-(cit90)/*[position()=1]) 2016; 93
Schaaf (C7SM02272G-(cit94)/*[position()=1]) 2017; 13
Saintillan (C7SM02272G-(cit87)/*[position()=1]) 2005; 17
Fedosov (C7SM02272G-(cit4)/*[position()=1]) 2014; 10
Thiébaud (C7SM02272G-(cit11)/*[position()=1]) 2014; 112
Henry (C7SM02272G-(cit14)/*[position()=1]) 2016; 6
Yazdani (C7SM02272G-(cit101)/*[position()=1]) 2013; 718
Brust (C7SM02272G-(cit42)/*[position()=1]) 2014; 4
Cui (C7SM02272G-(cit65)/*[position()=1]) 2002; 89
Goldsmith (C7SM02272G-(cit43)/*[position()=1]) 1972; 182
Jagannadh (C7SM02272G-(cit97)/*[position()=1]) 2016; 24
Farutin (C7SM02272G-(cit17)/*[position()=1]) 2014; 89
Sinha (C7SM02272G-(cit60)/*[position()=1]) 2015; 92
Secomb (C7SM02272G-(cit72)/*[position()=1]) 2017; 49
Freund (C7SM02272G-(cit77)/*[position()=1]) 2014; 46
Fedosov (C7SM02272G-(cit9)/*[position()=1]) 2011; 108
Kaoui (C7SM02272G-(cit49)/*[position()=1]) 2011; 84
Kaoui (C7SM02272G-(cit48)/*[position()=1]) 2009; 103
Yoon (C7SM02272G-(cit76)/*[position()=1]) 2008; 5
Guckenberger (C7SM02272G-(cit84)/*[position()=1]) 2018; 836
Aouane (C7SM02272G-(cit5)/*[position()=1]) 2014; 90
Park (C7SM02272G-(cit81)/*[position()=1]) 2010; 107
Baskurt (C7SM02272G-(cit92)/*[position()=1]) 2011
Suzuki (C7SM02272G-(cit19)/*[position()=1]) 1996; 3
Zhao (C7SM02272G-(cit86)/*[position()=1]) 2010; 229
Tomaiuolo (C7SM02272G-(cit31)/*[position()=1]) 2007; 43
Pozrikidis (C7SM02272G-(cit85)/*[position()=1]) 2001; 169
Secomb (C7SM02272G-(cit20)/*[position()=1]) 2007; 35
Guest (C7SM02272G-(cit37)/*[position()=1]) 1963; 142
Tomaiuolo (C7SM02272G-(cit40)/*[position()=1]) 2012; 24
Tomaiuolo (C7SM02272G-(cit100)/*[position()=1]) 2011; 11
McWhirter (C7SM02272G-(cit54)/*[position()=1]) 2011; 7
Krüger (C7SM02272G-(cit75)/*[position()=1]) 2011; 61
Zharov (C7SM02272G-(cit30)/*[position()=1]) 2006; 11
Kaoui (C7SM02272G-(cit93)/*[position()=1]) 2016; 55
Vitkova (C7SM02272G-(cit8)/*[position()=1]) 2008; 95
Clavera (C7SM02272G-(cit36)/*[position()=1]) 2016; 12
Cluitmans (C7SM02272G-(cit26)/*[position()=1]) 2014
Katanov (C7SM02272G-(cit12)/*[position()=1]) 2015; 99
Popel (C7SM02272G-(cit62)/*[position()=1]) 2005; 37
Quint (C7SM02272G-(cit27)/*[position()=1]) 2017; 111
Prado (C7SM02272G-(cit25)/*[position()=1]) 2015; 108
Canham (C7SM02272G-(cit78)/*[position()=1]) 1970; 26
Salehyar (C7SM02272G-(cit3)/*[position()=1]) 2016; 12
Kim (C7SM02272G-(cit73)/*[position()=1]) 2014; 4
Picot (C7SM02272G-(cit2)/*[position()=1]) 2015; 90
Tomaiuolo (C7SM02272G-(cit24)/*[position()=1]) 2011; 82
Lázaro (C7SM02272G-(cit52)/*[position()=1]) 2014; 10
Lanotte (C7SM02272G-(cit13)/*[position()=1]) 2016; 113
Secomb (C7SM02272G-(cit44)/*[position()=1]) 1986; 163
Danker (C7SM02272G-(cit56)/*[position()=1]) 2009; 102
Cordasco (C7SM02272G-(cit58)/*[position()=1]) 2014; 26
Shi (C7SM02272G-(cit51)/*[position()=1]) 2012; 85
Gaehtgens (C7SM02272G-(cit18)/*[position()=1]) 1980; 6
Skalak (C7SM02272G-(cit74)/*[position()=1]) 1973; 13
Kaoui (C7SM02272G-(cit50)/*[position()=1]) 2012; 8
Hochmuth (C7SM02272G-(cit28)/*[position()=1]) 1970; 2
Skalak (C7SM02272G-(cit71)/*[position()=1]) 1989; 21
Toner (C7SM02272G-(cit64)/*[position()=1]) 2005; 7
Tomaiuolo (C7SM02272G-(cit23)/*[position()=1]) 2009; 5
Kaoui (C7SM02272G-(cit57)/*[position()=1]) 2009
Evans (C7SM02272G-(cit68)/*[position()=1]) 1972; 4
Ye (C7SM02272G-(cit55)/*[position()=1]) 2017; 122
Tomaiuolo (C7SM02272G-(cit35)/*[position()=1]) 2016; 38
Farutin (C7SM02272G-(cit83)/*[position()=1]) 2014; 275
Guido (C7SM02272G-(cit32)/*[position()=1]) 2009; 10
Diamant (C7SM02272G-(cit66)/*[position()=1]) 2009; 78
Secomb (C7SM02272G-(cit46)/*[position()=1]) 2001; 281
Gorthi (C7SM02272G-(cit33)/*[position()=1]) 2012; 37
Guckenberger (C7SM02272G-(cit80)/*[position()=1]) 2017; 29
References_xml – issn: 2006
  doi: Faivre
– issn: 2011
  publication-title: Red Blood Cell Aggregation
  doi: Baskurt Neu Meiselman
– volume: 10
  start-page: 7195
  year: 2014
  ident: C7SM02272G-(cit52)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C4SM00894D
– volume: 112
  start-page: 238304
  year: 2014
  ident: C7SM02272G-(cit11)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.238304
– volume: 269
  start-page: H1713
  year: 1995
  ident: C7SM02272G-(cit91)/*[position()=1]
  publication-title: Am. J. Physiol.: Heart Circ. Physiol.
– volume: 11
  start-page: 449
  year: 2011
  ident: C7SM02272G-(cit100)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C0LC00348D
– volume: 94
  start-page: 266
  year: 1996
  ident: C7SM02272G-(cit39)/*[position()=1]
  publication-title: Br. J. Haematol.
  doi: 10.1046/j.1365-2141.1996.d01-1794.x
– volume: 35
  start-page: 755
  year: 2007
  ident: C7SM02272G-(cit20)/*[position()=1]
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9275-0
– volume: 162
  start-page: 275
  year: 1968
  ident: C7SM02272G-(cit61)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.162.3850.275
– volume: 5
  start-page: 3736
  year: 2009
  ident: C7SM02272G-(cit23)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/b904584h
– volume: 46
  start-page: 67
  year: 2014
  ident: C7SM02272G-(cit77)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010313-141349
– volume: 108
  start-page: 11772
  year: 2011
  ident: C7SM02272G-(cit9)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1101210108
– volume: 8
  start-page: 9246
  year: 2012
  ident: C7SM02272G-(cit50)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c2sm26289d
– volume: 3
  start-page: 034011
  year: 2008
  ident: C7SM02272G-(cit22)/*[position()=1]
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/3/3/034011
– volume: 2
  start-page: 409
  year: 1970
  ident: C7SM02272G-(cit28)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(70)90034-8
– volume: 28
  start-page: 693
  year: 1973
  ident: C7SM02272G-(cit79)/*[position()=1]
  publication-title: Z. Naturforsch., C: J. Biosci.
  doi: 10.1515/znc-1973-11-1209
– start-page: e764268
  year: 2014
  ident: C7SM02272G-(cit26)/*[position()=1]
  publication-title: BioMed Res. Int.
– volume: 24
  start-page: 1
  year: 2012
  ident: C7SM02272G-(cit40)/*[position()=1]
  publication-title: Phys. Fluids
  doi: 10.1063/1.4721811
– volume: 7
  start-page: 856
  year: 1986
  ident: C7SM02272G-(cit88)/*[position()=1]
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– volume: 102
  start-page: 14159
  year: 2005
  ident: C7SM02272G-(cit53)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504243102
– volume: 37
  start-page: 43
  year: 2005
  ident: C7SM02272G-(cit62)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.042604.133933
– volume: 142
  start-page: 1319
  year: 1963
  ident: C7SM02272G-(cit37)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.142.3597.1319
– volume: 8
  start-page: 014104
  year: 2014
  ident: C7SM02272G-(cit34)/*[position()=1]
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4863723
– volume: 742
  start-page: 96
  year: 2014
  ident: C7SM02272G-(cit59)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.14
– volume: 4
  start-page: 6659
  year: 2014
  ident: C7SM02272G-(cit73)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep06659
– volume: 2
  start-page: 321
  year: 1989
  ident: C7SM02272G-(cit89)/*[position()=1]
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(89)90079-7
– volume: 207
  start-page: 1
  year: 2016
  ident: C7SM02272G-(cit82)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.04.018
– start-page: 112
  year: 2009
  ident: C7SM02272G-(cit57)/*[position()=1]
  publication-title: Houille Blanche
  doi: 10.1051/lhb/2009063
– volume: 93
  start-page: 012612
  year: 2016
  ident: C7SM02272G-(cit90)/*[position()=1]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.012612
– volume-title: Red Blood Cell Aggregation
  year: 2011
  ident: C7SM02272G-(cit92)/*[position()=1]
  doi: 10.1201/b11221
– volume: 12
  start-page: 3156
  year: 2016
  ident: C7SM02272G-(cit3)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM02933C
– volume: 164
  start-page: 717
  year: 1969
  ident: C7SM02272G-(cit38)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.164.3880.717
– volume: 6
  start-page: 33084
  year: 2016
  ident: C7SM02272G-(cit98)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep33084
– volume: 43
  start-page: 186
  year: 2007
  ident: C7SM02272G-(cit31)/*[position()=1]
  publication-title: Ann. Ist. Super. Sanita
– volume: 163
  start-page: 405
  year: 1986
  ident: C7SM02272G-(cit44)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086002355
– volume: 281
  start-page: H629
  year: 2001
  ident: C7SM02272G-(cit46)/*[position()=1]
  publication-title: Am. J. Physiol.: Heart Circ. Physiol.
– volume: 7
  start-page: 77
  year: 2005
  ident: C7SM02272G-(cit64)/*[position()=1]
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.7.011205.135108
– volume: 10
  start-page: 4258
  year: 2014
  ident: C7SM02272G-(cit4)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C4SM00248B
– volume: 14
  start-page: 459
  year: 2013
  ident: C7SM02272G-(cit41)/*[position()=1]
  publication-title: C. R. Phys.
  doi: 10.1016/j.crhy.2013.04.004
– volume: 13
  start-page: 245
  year: 1973
  ident: C7SM02272G-(cit74)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(73)85983-1
– volume: 95
  start-page: L33
  year: 2008
  ident: C7SM02272G-(cit8)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.138826
– volume: 275
  start-page: 539
  year: 2014
  ident: C7SM02272G-(cit83)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.07.008
– volume: 12
  start-page: 8235
  year: 2016
  ident: C7SM02272G-(cit36)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C6SM01165A
– volume: 14
  start-page: 4447
  year: 2014
  ident: C7SM02272G-(cit96)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C4LC00701H
– volume: 26
  start-page: 041902
  year: 2014
  ident: C7SM02272G-(cit58)/*[position()=1]
  publication-title: Phys. Fluids
  doi: 10.1063/1.4871300
– volume: 229
  start-page: 3726
  year: 2010
  ident: C7SM02272G-(cit86)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.01.024
– volume: 24
  start-page: 22144
  year: 2016
  ident: C7SM02272G-(cit97)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.24.022144
– volume: 6
  start-page: 799
  year: 1980
  ident: C7SM02272G-(cit18)/*[position()=1]
  publication-title: Blood Cells
– volume: 84
  start-page: 041906
  year: 2011
  ident: C7SM02272G-(cit49)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.84.041906
– volume: 2
  start-page: 434
  year: 1970
  ident: C7SM02272G-(cit29)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(70)90036-1
– volume: 25
  start-page: 110807
  year: 2013
  ident: C7SM02272G-(cit1)/*[position()=1]
  publication-title: Phys. Fluids
  doi: 10.1063/1.4819341
– volume: 13
  start-page: 3544
  year: 2017
  ident: C7SM02272G-(cit94)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C7SM00339K
– volume: 21
  start-page: 81
  year: 1966
  ident: C7SM02272G-(cit70)/*[position()=1]
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1966.21.1.81
– volume: 55
  start-page: 465
  year: 2016
  ident: C7SM02272G-(cit93)/*[position()=1]
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-015-0867-6
– volume: 182
  start-page: 351
  year: 1972
  ident: C7SM02272G-(cit43)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. B
  doi: 10.1098/rspb.1972.0084
– volume: 5
  start-page: 036007
  year: 2008
  ident: C7SM02272G-(cit76)/*[position()=1]
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/5/3/036007
– volume: 99
  start-page: 57
  year: 2015
  ident: C7SM02272G-(cit12)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2015.02.006
– volume: 836
  start-page: 952
  year: 2018
  ident: C7SM02272G-(cit84)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.836
– volume: 50
  start-page: 483
  year: 2018
  ident: C7SM02272G-(cit63)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010816-060246
– volume: 82
  start-page: 35
  year: 2011
  ident: C7SM02272G-(cit24)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2011.03.004
– volume: 85
  start-page: 016307
  year: 2012
  ident: C7SM02272G-(cit51)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.85.016307
– volume: 89
  start-page: 042709
  year: 2014
  ident: C7SM02272G-(cit17)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.89.042709
– volume: 3
  start-page: 49
  year: 1996
  ident: C7SM02272G-(cit19)/*[position()=1]
  publication-title: Microcirculation
  doi: 10.3109/10739689609146782
– volume: 111
  start-page: 243702
  year: 2017
  ident: C7SM02272G-(cit99)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5009782
– volume: 49
  start-page: 443
  year: 2017
  ident: C7SM02272G-(cit72)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010816-060302
– volume: 10
  start-page: 751
  year: 2009
  ident: C7SM02272G-(cit32)/*[position()=1]
  publication-title: C. R. Phys.
  doi: 10.1016/j.crhy.2009.10.002
– volume: 21
  start-page: 167
  year: 1989
  ident: C7SM02272G-(cit71)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.21.010189.001123
– volume: 4
  start-page: 4348
  year: 2014
  ident: C7SM02272G-(cit42)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep04348
– volume: 12
  start-page: 199
  year: 2015
  ident: C7SM02272G-(cit15)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3281
– volume: 113
  start-page: 13289
  year: 2016
  ident: C7SM02272G-(cit13)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1608074113
– volume: 6
  start-page: 34375
  year: 2016
  ident: C7SM02272G-(cit14)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep34375
– volume: 89
  start-page: 188302
  year: 2002
  ident: C7SM02272G-(cit65)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.188302
– volume: 78
  start-page: 041002
  year: 2009
  ident: C7SM02272G-(cit66)/*[position()=1]
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.78.041002
– volume: 169
  start-page: 250
  year: 2001
  ident: C7SM02272G-(cit85)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6582
– volume: 38
  start-page: 11
  year: 2016
  ident: C7SM02272G-(cit35)/*[position()=1]
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.05.007
– volume: 85
  start-page: 40
  year: 2013
  ident: C7SM02272G-(cit6)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2012.10.001
– volume: 26
  start-page: 61
  year: 1970
  ident: C7SM02272G-(cit78)/*[position()=1]
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(70)80032-7
– volume: 37
  start-page: 707
  year: 2012
  ident: C7SM02272G-(cit33)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.000707
– volume: 98
  start-page: 088104
  year: 2007
  ident: C7SM02272G-(cit7)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.088104
– volume: 29
  start-page: 203001
  year: 2017
  ident: C7SM02272G-(cit80)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 92
  start-page: 042710
  year: 2015
  ident: C7SM02272G-(cit60)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.92.042710
– volume: 102
  start-page: 148102
  year: 2009
  ident: C7SM02272G-(cit56)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.148102
– volume: 7
  start-page: 10967
  year: 2011
  ident: C7SM02272G-(cit54)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c1sm05794d
– volume: 34
  start-page: 46
  year: 1987
  ident: C7SM02272G-(cit45)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(87)90078-1
– volume: 718
  start-page: 569
  year: 2013
  ident: C7SM02272G-(cit101)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.637
– volume: 9
  start-page: 9008
  year: 2013
  ident: C7SM02272G-(cit10)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C3SM51645H
– volume: 4
  start-page: 335
  year: 1972
  ident: C7SM02272G-(cit68)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(72)90069-6
– volume: 11
  start-page: 054034
  year: 2006
  ident: C7SM02272G-(cit30)/*[position()=1]
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2355666
– volume: 199
  start-page: 2622
  year: 2010
  ident: C7SM02272G-(cit69)/*[position()=1]
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.04.014
– volume: 103
  start-page: 188101
  year: 2009
  ident: C7SM02272G-(cit48)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.188101
– volume: 17
  start-page: 033301
  year: 2005
  ident: C7SM02272G-(cit87)/*[position()=1]
  publication-title: Phys. Fluids
  doi: 10.1063/1.1862262
– volume: 111
  start-page: 103701
  year: 2017
  ident: C7SM02272G-(cit27)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4986392
– volume: 6
  start-page: e16241
  year: 2017
  ident: C7SM02272G-(cit16)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2016.241
– volume: 18
  start-page: 040503
  year: 2013
  ident: C7SM02272G-(cit95)/*[position()=1]
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.18.4.040503
– volume: 24
  start-page: 194
  year: 1982
  ident: C7SM02272G-(cit47)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/0026-2862(82)90056-5
– volume: 90
  start-page: 033011
  year: 2014
  ident: C7SM02272G-(cit5)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.90.033011
– volume: 107
  start-page: 6731
  year: 2010
  ident: C7SM02272G-(cit81)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0909533107
– volume: 108
  start-page: 2126
  year: 2015
  ident: C7SM02272G-(cit25)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.03.046
– volume: 90
  start-page: 339
  year: 2015
  ident: C7SM02272G-(cit2)/*[position()=1]
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.23941
– volume: 253
  start-page: H154
  year: 1987
  ident: C7SM02272G-(cit67)/*[position()=1]
  publication-title: Am. J. Physiol.: Heart Circ. Physiol.
– volume: 122
  start-page: 084701
  year: 2017
  ident: C7SM02272G-(cit55)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5000357
– volume: 61
  start-page: 3485
  year: 2011
  ident: C7SM02272G-(cit75)/*[position()=1]
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.03.057
SSID ssj0038416
Score 2.5063534
Snippet Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 232
SubjectTerms Bistability
Blood
Capillaries
Computer simulation
Deformability
Deformation
Erythrocytes
Flow velocity
Footwear
Formability
Initial conditions
Phase diagrams
Position measurement
Viscosity
Viscosity ratio
Title Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel
URI https://www.ncbi.nlm.nih.gov/pubmed/29473072
https://www.proquest.com/docview/2013716336
https://www.proquest.com/docview/2007983407
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKJiReEF9jGQMZwQuqAvlwnPhxmroN1JUHWtG3yE7tdahNqzUVEk_8AZ74h_wSrh0ndbUKAS9R60RJ5Hti32ufey5Cr7XGXcwI9UkCQyBhnPoikhCqUMIhkCM8NpXnLgf0YkQ-jJNxp_PDYS2tK_G2-LYzr-R_rAptYFedJfsPlm1vCg3wG-wLR7AwHP_KxoN1vd8yaygL8ZZg_0K0S67aJ1xN-VJ2hXYYDSPW7K1r-rkhr3f1Ev6qq2aLrzbNhXfnmq2nU4NLS6z_0uT0qqo755VD7T3X_AxDFrPlsYvp9XyzwT-db2XTuHQUm1HmUII_8yubhlNLHzQItosTdiSt-Ux68aNhnhpmia1f5wy2KSE-zUw9YJiL3LZafbMdoYmLxNAdbwO7Oirt31rz6da8EMRaVrVIV3MtmRhdbWa_Zsd_8DE_G_X7-bA3Ht5B-xFEHTDO75_0hu_7zdQe6z3aOsO2fvFG7zZm7zb33vZwboUt4MTcNMVljBMzfIDu2-gDn9RQeog6snyE7hoWcLF6jFQLqF_ff7pQwg6U8EJhAyXsQEk3ApSwgRI2UMIWSvi6xBy7UHqCRme94emFbwtx-AWhSeUXWjFIEp6EGYuoCqSpokCTUEu7E05ElqZUZmTClFApK8AtEgEtVDhRLOOiiA_QXrko5SHChAo6kaGmYiUklkxEgQolScGxFiIJCg-9aTovL6xKvS6WMssNWyJm-Wn66dJ09LmHXrXXLmttlp1XHTc2yO23u8ojrbQJoUhMPfSyPQ0A1R3ES7lY62uClGUxCVIPPa1t1z4mYgSmxjTy0AEYs23egMBDR7tP5MuJOvrzKz1D9_S3VC_0HaO96mYtn4PrW4kXFpC_ATdrs3M
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical%E2%80%93experimental+observation+of+shape+bistability+of+red+blood+cells+flowing+in+a+microchannel&rft.jtitle=Soft+matter&rft.au=Guckenberger%2C+Achim&rft.au=Kihm%2C+Alexander&rft.au=Thomas%2C+John&rft.au=Wagner%2C+Christian&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=14&rft.issue=11&rft.spage=2032&rft.epage=2043&rft_id=info:doi/10.1039%2Fc7sm02272g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon