Survival of the most transferable at the top of Jacob’s ladder: Defining and testing the ωB97M(2) double hybrid density functional
A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwis...
Saved in:
Published in | The Journal of chemical physics Vol. 148; no. 24; pp. 241736 - 241749 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.06.2018
American Institute of Physics (AIP) AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry. |
---|---|
AbstractList | A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resu|ting functional, ωB97M(2) is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 datq points clearly surpasses that of all of the tested density funstionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry. A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry. A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ω B97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ω B97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ω B97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ω B97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ω B97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ω B97X-V and ω B97M-V on Rung 4. The results suggest that ω B97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry. A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry. |
Author | Head-Gordon, Martin Mardirossian, Narbe |
Author_xml | – sequence: 1 givenname: Narbe surname: Mardirossian fullname: Mardirossian, Narbe organization: Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California – sequence: 2 givenname: Martin surname: Head-Gordon fullname: Head-Gordon, Martin email: mhg@cchem.berkeley.edu organization: 2Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29960332$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1477312$$D View this record in Osti.gov |
BookMark | eNp9kktuFDEQhi0URCaBBRdAFmwSpEn86LbbLJAgvBXEAlhbbj8yjnrsYLtHmh0bFhyBU3EHToKbmUEQIVa2XF_9rvqrDsBeiMECcBejE4wYPcUnLSItIewGmGHUiTlnAu2BGUIEzwVDbB8c5HyJEMKcNLfAPhH1lVIyA1_ej2nlV2qA0cGysHAZc4ElqZCdTaofLFTlV6DEq4l5o3Tsf3z-luGgjLHpEXxmnQ8-XEAVDCw2l-k-ZXz_-lTwt0fkGJo4TkqLdZ-8gcaG7MsaujHo4mNQw21w06kh2zvb8xB8fPH8w9mr-fm7l6_PnpzPdcPaMldccUIMFaI3rHXUGd20rkGOdhYrxpzQru84bXXXIoWIahuNnTE900q7jtJD8HijezX2S2u0DbXTQV4lv1RpLaPy8u9I8At5EVeyFQILjqrA_Y1AdcnLrH2xeqFjCFYXiRvOKSYVOtr-kuKnsRoilz5rOwwq2DhmSerMOOGYiYo-uIZexjFVRyaq6yjDrJkE7_1Z9u96d2OswOkG0CnmnKyTtTI1eVu78IPESE6LIrHcLkrNOL6WsRP9F_tww-ad6n_gn7JuzAw |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jctc_2c00055 crossref_primary_10_1063_5_0174988 crossref_primary_10_1021_acs_jpclett_1c00360 crossref_primary_10_1039_D2CP02827A crossref_primary_10_1021_acs_jpclett_0c03545 crossref_primary_10_1071_CH20093 crossref_primary_10_1002_jcc_26411 crossref_primary_10_1063_5_0129820 crossref_primary_10_1021_acs_jpca_9b05734 crossref_primary_10_1039_C9CP03211H crossref_primary_10_1063_1_5126716 crossref_primary_10_1016_j_comptc_2021_113295 crossref_primary_10_1021_acs_jpca_9b03157 crossref_primary_10_1021_acscentsci_1c00685 crossref_primary_10_1021_acs_jpclett_1c03468 crossref_primary_10_1063_5_0091198 crossref_primary_10_1021_acsomega_4c02628 crossref_primary_10_1021_acs_jctc_9b01294 crossref_primary_10_1071_CH19023 crossref_primary_10_1063_5_0077722 crossref_primary_10_3390_molecules24040681 crossref_primary_10_1021_acs_jpca_9b10880 crossref_primary_10_1021_acs_jpclett_2c02620 crossref_primary_10_1021_acs_jctc_1c01100 crossref_primary_10_1063_5_0025160 crossref_primary_10_1021_jacsau_4c00488 crossref_primary_10_1063_1_5049143 crossref_primary_10_1021_acs_jpca_9b08586 crossref_primary_10_1039_D2CP04603B crossref_primary_10_1021_acs_jpclett_2c00718 crossref_primary_10_1038_s41467_023_36094_y crossref_primary_10_1063_5_0018354 crossref_primary_10_1088_2516_1075_ac9942 crossref_primary_10_1139_cjc_2022_0277 crossref_primary_10_1021_acs_jctc_9b00891 crossref_primary_10_1021_acs_jctc_9b00013 crossref_primary_10_1021_acs_chemrev_9b00073 crossref_primary_10_1002_wcms_1490 crossref_primary_10_1021_acs_jctc_4c00801 crossref_primary_10_1002_eem2_12204 crossref_primary_10_1021_acs_jctc_1c00006 crossref_primary_10_1021_acs_jpca_2c01962 crossref_primary_10_1021_acs_jpca_9b01546 crossref_primary_10_1021_acs_jpcc_9b02272 crossref_primary_10_1021_acs_jctc_0c01106 crossref_primary_10_1021_acs_joc_2c00442 crossref_primary_10_1039_D0TC05463A crossref_primary_10_1021_acs_jctc_0c00292 crossref_primary_10_1021_acs_jctc_1c00422 crossref_primary_10_1063_1674_0068_cjcp2206098 crossref_primary_10_1002_ijch_201900114 crossref_primary_10_3390_molecules28083487 crossref_primary_10_1002_jcc_27248 crossref_primary_10_1002_asia_201901767 crossref_primary_10_1063_5_0128996 crossref_primary_10_1021_jacsau_1c00011 crossref_primary_10_1063_1_5125802 crossref_primary_10_1021_acs_jctc_0c00442 crossref_primary_10_1021_acs_jctc_8b00731 crossref_primary_10_1021_acs_jctc_1c00271 crossref_primary_10_1021_acs_jctc_2c00082 crossref_primary_10_1039_D2CP03938A crossref_primary_10_1021_acs_jpca_2c06407 crossref_primary_10_1021_acs_jpcc_9b06288 crossref_primary_10_1021_acs_jctc_9b01193 crossref_primary_10_1021_acs_jpclett_1c02838 crossref_primary_10_1021_acs_jctc_2c00641 crossref_primary_10_1021_acs_jctc_1c00535 crossref_primary_10_1002_jcc_27351 crossref_primary_10_1021_acs_jctc_1c00659 crossref_primary_10_1021_acs_jctc_2c00802 crossref_primary_10_1039_D1CP04922D crossref_primary_10_1021_acs_jctc_9b01127 crossref_primary_10_1002_jcc_26149 crossref_primary_10_1021_acs_jpclett_9b03661 crossref_primary_10_1021_acs_chemrev_2c00758 crossref_primary_10_1063_5_0174040 crossref_primary_10_1021_acs_jpca_2c03922 crossref_primary_10_1021_acs_jctc_8b00842 crossref_primary_10_1021_acs_jpclett_9b01641 crossref_primary_10_1126_sciadv_abq0279 crossref_primary_10_1002_tcr_201900081 crossref_primary_10_1063_1_5040786 crossref_primary_10_1063_1_5108536 crossref_primary_10_1039_D3CP03598K crossref_primary_10_1021_acs_jpca_1c01294 crossref_primary_10_1021_acs_jctc_3c00744 crossref_primary_10_1021_acs_jpclett_3c01832 crossref_primary_10_1021_acs_jpca_1c01295 crossref_primary_10_1063_5_0178236 crossref_primary_10_1039_D3CP06217A crossref_primary_10_1063_5_0207682 crossref_primary_10_1002_jcc_25761 crossref_primary_10_1021_acs_jctc_9b01255 crossref_primary_10_1063_5_0038694 crossref_primary_10_1021_acs_jctc_0c00189 crossref_primary_10_1021_acs_jctc_8b00514 crossref_primary_10_1021_acs_joc_3c01793 crossref_primary_10_1021_acs_jctc_0c00986 crossref_primary_10_1039_C8FD00229K crossref_primary_10_1039_C9DT03789F crossref_primary_10_1063_5_0141238 crossref_primary_10_1021_acs_joc_0c02008 crossref_primary_10_1071_CH21133 crossref_primary_10_1021_acs_jctc_3c01424 crossref_primary_10_1063_5_0134764 crossref_primary_10_1021_acs_jctc_2c00426 crossref_primary_10_1073_pnas_2202744121 crossref_primary_10_1080_00268976_2018_1542164 crossref_primary_10_1039_D1CP04996H crossref_primary_10_1016_j_rechem_2024_101922 crossref_primary_10_1039_C8CP03852J crossref_primary_10_1021_acs_jctc_4c01016 crossref_primary_10_1016_j_fuel_2023_128869 crossref_primary_10_1021_acs_jpca_1c02549 crossref_primary_10_1063_5_0148438 crossref_primary_10_1002_jcc_26728 crossref_primary_10_1063_5_0055522 crossref_primary_10_1039_D1CP01773J crossref_primary_10_1021_acs_jctc_1c00469 crossref_primary_10_1021_acs_jpclett_1c01157 crossref_primary_10_1063_5_0174923 crossref_primary_10_1021_acsomega_1c00997 crossref_primary_10_1021_acs_jpca_9b05088 crossref_primary_10_1002_ijch_202100101 crossref_primary_10_1021_acs_jctc_4c01503 crossref_primary_10_1002_jcc_26517 crossref_primary_10_1021_acs_jctc_1c00990 crossref_primary_10_1021_acs_jctc_4c00814 crossref_primary_10_1063_5_0169105 crossref_primary_10_1021_acs_jpca_2c07657 crossref_primary_10_1021_acs_jpca_1c01041 crossref_primary_10_1021_acs_orglett_3c02936 crossref_primary_10_1021_acs_jctc_0c01055 crossref_primary_10_1021_acs_jpca_4c03137 crossref_primary_10_1039_D0CP01275K crossref_primary_10_1021_acs_jpclett_1c00744 crossref_primary_10_1063_5_0047628 crossref_primary_10_1063_5_0133727 crossref_primary_10_1063_1_5043213 |
Cites_doi | 10.1063/1.4952647 10.1016/j.chemphys.2015.07.005 10.1021/ct500642x 10.1063/1.460205 10.1063/1.475007 10.1016/j.cplett.2005.08.060 10.1021/ct400818v 10.1021/acs.chemrev.5b00533 10.1073/pnas.0901093106 10.1063/1.4813523 10.1021/jp809106b 10.1039/b704725h 10.1063/1.1767519 10.1021/jp903640h 10.1021/jp301499y 10.2307/2286904 10.1021/jp1070852 10.1021/jp801805p 10.1063/1.4868117 10.1002/jcc.23837 10.1021/acs.jpca.5b10266 10.1021/ct500026v 10.1021/ct400057w 10.1063/1.464913 10.1021/ct300215p 10.1021/jp045141s 10.1002/jcc.23391 10.1063/1.1543944 10.1039/b416937a 10.1021/ct900489g 10.1021/ct5010593 10.1016/j.cplett.2011.05.007 10.1063/1.3640019 10.1039/b709669k 10.1002/wcms.1193 10.1002/qua.25024 10.1021/ct500506t 10.1021/ct501050s 10.1080/00401706.1967.10490502 10.1021/ct300647k 10.1021/ct301064t 10.1039/c5cp02365c 10.1021/ct200751e 10.1039/c7cp04913g 10.1002/jcc.23539 10.1016/j.chemphys.2014.07.015 10.1063/1.3604569 10.1021/ct2002946 10.1002/cphc.201402786 10.1103/physrev.140.a1133 10.1080/00268976.2014.1001806 10.1007/s00214-007-0310-x 10.1021/ct100563b 10.1145/358669.358692 10.1063/1.3521275 10.1021/jp2069489 10.1021/jp021590l 10.1021/ct4000235 10.1063/1.2148954 10.1039/b600027d 10.1021/ct400558w 10.1021/acs.jctc.5b01066 10.1039/c3cp54374a 10.1021/jp809062x 10.1063/1.3382344 10.1021/ct200523a 10.1021/ct300846m 10.1021/jz101245s 10.1063/1.3544215 10.1080/00268976.2010.519729 10.1063/1.4890314 10.1073/pnas.1115123108 10.1080/00268976.2012.698316 10.1021/jp5098603 10.1021/ct500347q 10.1002/jcc.23963 10.1063/1.3659142 10.1063/1.3244209 10.1063/1.3484283 10.1080/00268976.2014.881634 10.1021/jp9034375 10.1063/1.4812689 10.1021/ct3004723 10.1103/physrevb.53.3764 10.1016/0009-2614(93)80125-9 10.1039/c3cp51826d 10.1021/jp904369h 10.1021/ct200930x 10.1021/jp410723v 10.1021/ct300132e 10.1002/jcc.21759 10.1080/00268976.2014.986238 10.1080/00268976.2017.1333644 10.1063/1.1904565 10.1103/physrev.136.b864 10.1021/ct100466k 10.1080/00268976.2015.1081418 10.1021/ct600281g 10.1063/1.3703893 10.1021/jp312644t 10.1103/physreva.47.3649 10.1021/jp209536e 10.1021/ct500899h 10.1016/j.cplett.2012.04.045 10.1021/ct200644w 10.1080/00268976.2014.952696 10.1021/jp401429u 10.1103/physreva.72.012510 10.1021/ct900005c 10.1002/anie.200905484 10.1063/1.4907719 10.1021/acs.jctc.5b00281 10.1021/ct800549f |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). Published by AIP Publishing. Copyright © 2018 Author(s) 2018 Author(s) |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). Published by AIP Publishing. – notice: Copyright © 2018 Author(s) 2018 Author(s) |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OIOZB OTOTI 5PM |
DOI | 10.1063/1.5025226 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
DocumentTitleAlternate | N. Mardirossian and M. Head-Gordon |
EISSN | 1089-7690 |
ExternalDocumentID | PMC5991970 1477312 29960332 10_1063_1_5025226 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: Basic Energy Sciences grantid: DE-AC02-05CH11231 funderid: http://dx.doi.org/10.13039/100006151 – fundername: National Institutes of Health grantid: 2R44GM096678 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NIGMS NIH HHS grantid: R44 GM096678 – fundername: ; ; grantid: DE-AC02-05CH11231 – fundername: ; ; grantid: 2R44GM096678 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 ABPTK AGIHO OIOZB OTOTI UE8 ZHY 5PM |
ID | FETCH-LOGICAL-c465t-a7a722d399bd65f3fdc45f40f38e1a66f9cfb8735c850a02a54c1fddb6cacf833 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Aug 21 13:53:15 EDT 2025 Wed Nov 29 06:11:15 EST 2023 Thu Jul 10 23:57:46 EDT 2025 Sun Jun 29 12:40:06 EDT 2025 Mon Jul 21 05:58:28 EDT 2025 Tue Jul 01 00:27:18 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Fri Jun 21 00:14:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | 0021-9606/2018/148(24)/241736/14/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-a7a722d399bd65f3fdc45f40f38e1a66f9cfb8735c850a02a54c1fddb6cacf833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) Electronic mail: mhg@cchem.berkeley.edu |
ORCID | 0000-0002-4309-6669 0000000243096669 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1477312 |
PMID | 29960332 |
PQID | 2088361642 |
PQPubID | 2050685 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2088361642 pubmed_primary_29960332 scitation_primary_10_1063_1_5025226 crossref_citationtrail_10_1063_1_5025226 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5991970 proquest_miscellaneous_2063727169 osti_scitechconnect_1477312 crossref_primary_10_1063_1_5025226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-28 |
PublicationDateYYYYMMDD | 2018-06-28 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2018 |
Publisher | American Institute of Physics American Institute of Physics (AIP) AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: American Institute of Physics (AIP) – name: AIP Publishing LLC |
References | Becke (c37) 1997; 107 O’Reilly, Karton (c97) 2016; 116 Gerber, Ángyán (c33) 2005; 415 Peverati, Head-Gordon (c27) 2013; 139 Lao, Herbert (c63) 2013; 139 Kozuch, Gruzman, Martin (c17) 2010; 114 Chai, Head-Gordon (c16) 2009; 131 Grimme, Hansen, Brandenburg, Bannwarth (c6) 2016; 116 Mardirossian, Head-Gordon (c30) 2015; 142 Mardirossian, Lambrecht, McCaslin, Xantheas, Head-Gordon (c66) 2013; 9 de-la Roza, Johnson, DiLabio (c76) 2014; 10 Bendel, Afifi (c38) 1977; 72 Tang, Toennies (c105) 2003; 118 Grimme, Kruse, Goerigk, Erker (c95) 2010; 49 Goldey, Dutoi, Head-Gordon (c111) 2013; 15 Řezáč, Hobza (c40) 2013; 9 Yu, Karton (c88) 2014; 441 Witte, Goldey, Neaton, Head-Gordon (c50) 2015; 11 Toulouse, Sharkas, Brémond, Adamo (c24) 2011; 135 Chakravorty, Gwaltney, Davidson, Parpia, Fischer (c104) 1993; 47 Manna, Martin (c90) 2016; 120 Curtiss, Raghavachari, Trucks, Pople (c91) 1991; 94 Chai, Mao (c22) 2012; 538 Martin (c82) 2013; 117 Steinmann, Piemontesi, Delachat, Corminboeuf (c77) 2012; 8 Marshall, Burns, Sherrill (c44) 2011; 135 Yu, Sarrami, O’Reilly, Karton (c101) 2015; 458 Řezáč, Hobza (c42) 2012; 8 Granatier, Pitoňák, Hobza (c57) 2012; 8 Becke (c112) 1993; 98 Jurečka, Šponer, Černý, Hobza (c48) 2006; 8 Mardirossian, Head-Gordon (c29) 2014; 16 Chan, Gilbert, Gill, Radom (c70) 2014; 10 Ángyán, Gerber, Savin, Toulouse (c14) 2005; 72 Lao, Schäffer, Jansen, Herbert (c62) 2015; 11 Kohn, Sham (c2) 1965; 140 Lao, Herbert (c64) 2015; 119 Zhang, Xu, Goddard (c9) 2009; 106 Hohenstein, Sherrill (c45) 2009; 113 Fischler, Bolles (c39) 1981; 24 Zhao, González-García, Truhlar (c92) 2005; 109 Grimme (c10) 2006; 124 Shao, Gan, Epifanovsky, Gilbert, Wormit, Kussmann, Lange, Behn, Deng, Feng, Ghosh, Goldey, Horn, Jacobson, Kaliman, Khaliullin, Kuś, Landau, Liu, Proynov, Rhee, Richard, Rohrdanz, Steele, Sundstrom, Woodcock, Zimmerman, Zuev, Albrecht, Alguire, Austin, Beran, Bernard, Berquist, Brandhorst, Bravaya, Brown, Casanova, Chang, Chen, Chien, Closser, Crittenden, Diedenhofen, DiStasio, Do, Dutoi, Edgar, Fatehi, Fusti-Molnar, Ghysels, Golubeva-Zadorozhnaya, Gomes, Hanson-Heine, Harbach, Hauser, Hohenstein, Holden, Jagau, Ji, Kaduk, Khistyaev, Kim, Kim, King, Klunzinger, Kosenkov, Kowalczyk, Krauter, Lao, Laurent, Lawler, Levchenko, Lin, Liu, Livshits, Lochan, Luenser, Manohar, Manzer, Mao, Mardirossian, Marenich, Maurer, Mayhall, Neuscamman, Oana, Olivares-Amaya, O’Neill, Parkhill, Perrine, Peverati, Prociuk, Rehn, Rosta, Russ, Sharada, Sharma, Small, Sodt, Stein, Stück, Su, Thom, Tsuchimochi, Vanovschi, Vogt, Vydrov, Wang, Watson, Wenzel, White, Williams, Yang, Yeganeh, Yost, You, Zhang, Zhang, Zhao, Brooks, Chan, Chipman, Cramer, Goddard, Gordon, Hehre, Klamt, Schaefer, Schmidt, Sherrill, Truhlar, Warshel, Xu, Aspuru-Guzik, Baer, Bell, Besley, Chai, Dreuw, Dunietz, Furlani, Gwaltney, Hsu, Jung, Kong, Lambrecht, Liang, Ochsenfeld, Rassolov, Slipchenko, Subotnik, Voorhis, Herbert, Krylov, Gill, Head-Gordon (c108) 2015; 113 Zhao, Lynch, Truhlar (c93) 2005; 7 Zhang, Su, Brémond, Adamo, Xu (c28) 2012; 136 Boese (c59) 2013; 9 Crittenden (c51) 2009; 113 Řezáč, Riley, Hobza (c55) 2011; 7 Copeland, Tschumper (c52) 2012; 8 Tentscher, Arey (c73) 2013; 9 Vydrov, Voorhis (c7) 2010; 133 Faver, Benson, He, Roberts, Wang, Marshall, Kennedy, Sherrill, Merz (c43) 2011; 7 Bauzá, Alkorta, Frontera, Elguero (c75) 2013; 9 Karton, Tarnopolsky, Lamère, Schatz, Martin (c15) 2008; 112 Brémond, Adamo (c21) 2011; 135 Rappoport, Furche (c106) 2010; 133 Karton, Gruzman, Martin (c78) 2009; 113 Mardirossian, Head-Gordon (c32) 2014; 140 Zhang, Xu, Jung, Goddard (c19) 2011; 108 Bartlett (c114) 2014; 112 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (c109) 2011; 12 Zhao, Truhlar (c113) 2008; 120 Karton, O’Reilly, Chan, Radom (c69) 2012; 8 Gill, Johnson, Pople (c107) 1993; 209 Anacker, Friedrich (c72) 2014; 35 Temelso, Archer, Shields (c65) 2011; 115 Boese (c60) 2015; 113 Kozuch, Bachrach, Martin (c79) 2014; 118 Sherrill, Takatani, Hohenstein (c46) 2009; 113 Kozuch, Martin (c74) 2013; 9 Bryantsev, Diallo, van Duin, Goddard (c67) 2009; 5 Hujo, Grimme (c34) 2011; 7 Řezáč, Riley, Hobza (c54) 2011; 7 Hohenberg, Kohn (c1) 1964; 136 Kozuch, Martin (c20) 2013; 34 Grimme, Ehrlich, Goerigk (c13) 2011; 32 Brémond, Sancho-García, Pérez-Jiménez, Adamo (c25) 2014; 141 Smith, Jankowski, Slawik, Witek, Patkowski (c53) 2014; 10 Karton, Schreiner, Martin (c99) 2016; 37 Goerigk, Hansen, Bauer, Ehrlich, Najibi, Grimme (c5) 2017; 19 Hocking, Leslie (c36) 1967; 9 Řezáč, Huang, Hobza, Beran (c56) 2015; 11 Gruzman, Karton, Martin (c80) 2009; 113 Goerigk, Grimme (c18) 2011; 7 Mintz, Parks (c41) 2012; 116 Mardirossian, Head-Gordon (c3) 2017; 115 Krieg, Grimme (c96) 2010; 108 Yu (c110) 2014; 10 Lynch, Zhao, Truhlar (c94) 2003; 107 Fanourgakis, Aprà, Xantheas (c71) 2004; 121 Zheng, Zhao, Truhlar (c102) 2007; 3 Perdew, Ruzsinszky, Tao, Staroverov, Scuseria, Csonka (c4) 2005; 123 Seidl, Görling, Vogl, Majewski, Levy (c8) 1996; 53 Schwabe, Grimme (c11) 2007; 9 Boese (c61) 2015; 16 Karton, Daon, Martin (c89) 2011; 510 Řezáč, Riley, Hobza (c49) 2012; 8 Karton, Martin (c87) 2012; 110 Yoo, Aprà, Zeng, Xantheas (c83) 2010; 1 Kesharwani, Karton, Martin (c85) 2016; 12 Grimme, Antony, Ehrlich, Krieg (c12) 2010; 132 Takatani, David Sherrill (c47) 2007; 9 Wilke, Lind, Schaefer, Csaszar, Allen (c81) 2009; 5 Goerigk (c35) 2014; 10 Goerigk, Grimme (c68) 2010; 6 Yu, Sarrami, Karton, O’Reilly (c86) 2015; 113 Karton, Goerigk (c100) 2015; 36 Yu, Sarrami, O’Reilly, Karton (c103) 2016; 114 Goerigk, Grimme (c26) 2014; 4 Sharkas, Toulouse, Savin (c23) 2011; 134 Mardirossian, Head-Gordon (c31) 2016; 144 Karton, O’Reilly, Radom (c98) 2012; 116 Li, Smith, Patkowski (c58) 2015; 17 Fogueri, Kozuch, Karton, Martin (c84) 2013; 117 (2023080308021612300_c16) 2009; 131 (2023080308021612300_c59) 2013; 9 (2023080308021612300_c97) 2016; 116 (2023080308021612300_c98) 2012; 116 (2023080308021612300_c106) 2010; 133 (2023080308021612300_c18) 2011; 7 (2023080308021612300_c45) 2009; 113 (2023080308021612300_c57) 2012; 8 (2023080308021612300_c114) 2014; 112 (2023080308021612300_c50) 2015; 11 (2023080308021612300_c10) 2006; 124 (2023080308021612300_c78) 2009; 113 (2023080308021612300_c76) 2014; 10 (2023080308021612300_c11) 2007; 9 (2023080308021612300_c71) 2004; 121 (2023080308021612300_c64) 2015; 119 (2023080308021612300_c6) 2016; 116 (2023080308021612300_c67) 2009; 5 (2023080308021612300_c109) 2011; 12 (2023080308021612300_c48) 2006; 8 (2023080308021612300_c72) 2014; 35 (2023080308021612300_c70) 2014; 10 (2023080308021612300_c25) 2014; 141 (2023080308021612300_c9) 2009; 106 (2023080308021612300_c29) 2014; 16 (2023080308021612300_c95) 2010; 49 (2023080308021612300_c63) 2013; 139 (2023080308021612300_c89) 2011; 510 (2023080308021612300_c92) 2005; 109 (2023080308021612300_c7) 2010; 133 (2023080308021612300_c19) 2011; 108 (2023080308021612300_c3) 2017; 115 (2023080308021612300_c108) 2015; 113 (2023080308021612300_c39) 1981; 24 (2023080308021612300_c52) 2012; 8 (2023080308021612300_c103) 2016; 114 (2023080308021612300_c24) 2011; 135 (2023080308021612300_c44) 2011; 135 (2023080308021612300_c73) 2013; 9 (2023080308021612300_c38) 1977; 72 (2023080308021612300_c51) 2009; 113 (2023080308021612300_c21) 2011; 135 (2023080308021612300_c58) 2015; 17 (2023080308021612300_c80) 2009; 113 (2023080308021612300_c40) 2013; 9 (2023080308021612300_c75) 2013; 9 (2023080308021612300_c55) 2011; 7 (2023080308021612300_c65) 2011; 115 (2023080308021612300_c27) 2013; 139 (2023080308021612300_c60) 2015; 113 (2023080308021612300_c32) 2014; 140 (2023080308021612300_c53) 2014; 10 (2023080308021612300_c62) 2015; 11 (2023080308021612300_c8) 1996; 53 (2023080308021612300_c102) 2007; 3 (2023080308021612300_c23) 2011; 134 (2023080308021612300_c15) 2008; 112 (2023080308021612300_c41) 2012; 116 (2023080308021612300_c61) 2015; 16 (2023080308021612300_c47) 2007; 9 (2023080308021612300_c14) 2005; 72 (2023080308021612300_c2) 1965; 140 (2023080308021612300_c74) 2013; 9 (2023080308021612300_c105) 2003; 118 (2023080308021612300_c69) 2012; 8 (2023080308021612300_c83) 2010; 1 (2023080308021612300_c12) 2010; 132 (2023080308021612300_c5) 2017; 19 (2023080308021612300_c86) 2015; 113 (2023080308021612300_c36) 1967; 9 (2023080308021612300_c66) 2013; 9 (2023080308021612300_c34) 2011; 7 (2023080308021612300_c4) 2005; 123 (2023080308021612300_c33) 2005; 415 (2023080308021612300_c17) 2010; 114 (2023080308021612300_c35) 2014; 10 (2023080308021612300_c79) 2014; 118 (2023080308021612300_c104) 1993; 47 (2023080308021612300_c88) 2014; 441 (2023080308021612300_c101) 2015; 458 (2023080308021612300_c30) 2015; 142 (2023080308021612300_c49) 2012; 8 (2023080308021612300_c94) 2003; 107 (2023080308021612300_c26) 2014; 4 (2023080308021612300_c46) 2009; 113 (2023080308021612300_c85) 2016; 12 (2023080308021612300_c84) 2013; 117 (2023080308021612300_c111) 2013; 15 (2023080308021612300_c22) 2012; 538 (2023080308021612300_c91) 1991; 94 (2023080308021612300_c110) 2014; 10 (2023080308021612300_c28) 2012; 136 (2023080308021612300_c77) 2012; 8 (2023080308021612300_c1) 1964; 136 (2023080308021612300_c31) 2016; 144 (2023080308021612300_c81) 2009; 5 (2023080308021612300_c96) 2010; 108 (2023080308021612300_c20) 2013; 34 (2023080308021612300_c13) 2011; 32 (2023080308021612300_c93) 2005; 7 (2023080308021612300_c100) 2015; 36 (2023080308021612300_c37) 1997; 107 (2023080308021612300_c43) 2011; 7 (2023080308021612300_c90) 2016; 120 (2023080308021612300_c107) 1993; 209 (2023080308021612300_c99) 2016; 37 (2023080308021612300_c82) 2013; 117 (2023080308021612300_c68) 2010; 6 (2023080308021612300_c112) 1993; 98 (2023080308021612300_c42) 2012; 8 (2023080308021612300_c56) 2015; 11 (2023080308021612300_c87) 2012; 110 (2023080308021612300_c113) 2008; 120 (2023080308021612300_c54) 2011; 7 |
References_xml | – volume: 109 start-page: 2012 year: 2005 ident: c92 publication-title: J. Phys. Chem. A – volume: 113 start-page: 10146 year: 2009 ident: c46 publication-title: J. Phys. Chem. A – volume: 8 start-page: 4285 year: 2012 ident: c49 publication-title: J. Chem. Theory Comput. – volume: 106 start-page: 4963 year: 2009 ident: c9 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 142 start-page: 074111 year: 2015 ident: c30 publication-title: J. Chem. Phys. – volume: 47 start-page: 3649 year: 1993 ident: c104 publication-title: Phys. Rev. A – volume: 10 start-page: 5436 year: 2014 ident: c76 publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 1481 year: 2015 ident: c50 publication-title: J. Chem. Theory Comput. – volume: 139 start-page: 034107 year: 2013 ident: c63 publication-title: J. Chem. Phys. – volume: 94 start-page: 7221 year: 1991 ident: c91 publication-title: J. Chem. Phys. – volume: 120 start-page: 215 year: 2008 ident: c113 publication-title: Theor. Chem. Acc.: Theory, Comput. Model. (Theor. Chim. Acta) – volume: 112 start-page: 12868 year: 2008 ident: c15 publication-title: J. Phys. Chem. A – volume: 53 start-page: 3764 year: 1996 ident: c8 publication-title: Phys. Rev. B – volume: 24 start-page: 381 year: 1981 ident: c39 publication-title: Commun. ACM – volume: 441 start-page: 166 year: 2014 ident: c88 publication-title: Chem. Phys. – volume: 135 start-page: 024106 year: 2011 ident: c21 publication-title: J. Chem. Phys. – volume: 11 start-page: 3065 year: 2015 ident: c56 publication-title: J. Chem. Theory Comput. – volume: 16 start-page: 978 year: 2015 ident: c61 publication-title: ChemPhysChem – volume: 113 start-page: 11974 year: 2009 ident: c80 publication-title: J. Phys. Chem. A – volume: 36 start-page: 622 year: 2015 ident: c100 publication-title: J. Comput. Chem. – volume: 17 start-page: 16560 year: 2015 ident: c58 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 4403 year: 2013 ident: c59 publication-title: J. Chem. Theory Comput. – volume: 135 start-page: 101102 year: 2011 ident: c24 publication-title: J. Chem. Phys. – volume: 108 start-page: 2655 year: 2010 ident: c96 publication-title: Mol. Phys. – volume: 49 start-page: 1402 year: 2010 ident: c95 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 3128 year: 2012 ident: c69 publication-title: J. Chem. Theory Comput. – volume: 15 start-page: 15869 year: 2013 ident: c111 publication-title: Phys. Chem. Chem. Phys. – volume: 118 start-page: 4976 year: 2003 ident: c105 publication-title: J. Chem. Phys. – volume: 5 start-page: 1511 year: 2009 ident: c81 publication-title: J. Chem. Theory Comput. – volume: 116 start-page: 52 year: 2016 ident: c97 publication-title: Int. J. Quantum Chem. – volume: 7 start-page: 43 year: 2005 ident: c93 publication-title: Phys. Chem. Chem. Phys. – volume: 133 start-page: 134105 year: 2010 ident: c106 publication-title: J. Chem. Phys. – volume: 116 start-page: 1086 year: 2012 ident: c41 publication-title: J. Phys. Chem. A – volume: 140 start-page: 18A527 year: 2014 ident: c32 publication-title: J. Chem. Phys. – volume: 132 start-page: 154104 year: 2010 ident: c12 publication-title: J. Chem. Phys. – volume: 123 start-page: 062201 year: 2005 ident: c4 publication-title: J. Chem. Phys. – volume: 114 start-page: 20801 year: 2010 ident: c17 publication-title: J. Phys. Chem. C – volume: 8 start-page: 1646 year: 2012 ident: c52 publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 6106 year: 2007 ident: c47 publication-title: Phys. Chem. Chem. Phys. – volume: 113 start-page: 1663 year: 2009 ident: c51 publication-title: J. Phys. Chem. A – volume: 117 start-page: 3118 year: 2013 ident: c82 publication-title: J. Phys. Chem. A – volume: 113 start-page: 878 year: 2009 ident: c45 publication-title: J. Phys. Chem. A – volume: 107 start-page: 8554 year: 1997 ident: c37 publication-title: J. Chem. Phys. – volume: 10 start-page: 3777 year: 2014 ident: c70 publication-title: J. Chem. Theory Comput. – volume: 115 start-page: 2315 year: 2017 ident: c3 publication-title: Mol. Phys. – volume: 9 start-page: 1918 year: 2013 ident: c74 publication-title: J. Chem. Theory Comput. – volume: 72 start-page: 012510 year: 2005 ident: c14 publication-title: Phys. Rev. A – volume: 8 start-page: 141 year: 2012 ident: c42 publication-title: J. Chem. Theory Comput. – volume: 10 start-page: 4400 year: 2014 ident: c110 publication-title: J. Chem. Theory Comput. – volume: 7 start-page: 3866 year: 2011 ident: c34 publication-title: J. Chem. Theory Comput. – volume: 116 start-page: 5105 year: 2016 ident: c6 publication-title: Chem. Rev. – volume: 113 start-page: 184 year: 2015 ident: c108 publication-title: Mol. Phys. – volume: 8 start-page: 1985 year: 2006 ident: c48 publication-title: Phys. Chem. Chem. Phys. – volume: 209 start-page: 506 year: 1993 ident: c107 publication-title: Chem. Phys. Lett. – volume: 10 start-page: 968 year: 2014 ident: c35 publication-title: J. Chem. Theory Comput. – volume: 113 start-page: 1284 year: 2015 ident: c86 publication-title: Mol. Phys. – volume: 136 start-page: B864 year: 1964 ident: c1 publication-title: Phys. Rev. – volume: 140 start-page: A1133 year: 1965 ident: c2 publication-title: Phys. Rev. – volume: 7 start-page: 291 year: 2011 ident: c18 publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 2151 year: 2013 ident: c40 publication-title: J. Chem. Theory Comput. – volume: 124 start-page: 034108 year: 2006 ident: c10 publication-title: J. Chem. Phys. – volume: 139 start-page: 024110 year: 2013 ident: c27 publication-title: J. Chem. Phys. – volume: 10 start-page: 3140 year: 2014 ident: c53 publication-title: J. Chem. Theory Comput. – volume: 117 start-page: 2269 year: 2013 ident: c84 publication-title: J. Phys. Chem. A – volume: 119 start-page: 235 year: 2015 ident: c64 publication-title: J. Phys. Chem. A – volume: 32 start-page: 1456 year: 2011 ident: c13 publication-title: J. Comput. Chem. – volume: 4 start-page: 576 year: 2014 ident: c26 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 37 start-page: 49 year: 2016 ident: c99 publication-title: J. Comput. Chem. – volume: 7 start-page: 3466 year: 2011 ident: c55 publication-title: J. Chem. Theory Comput. – volume: 114 start-page: 21 year: 2016 ident: c103 publication-title: Mol. Phys. – volume: 1 start-page: 3122 year: 2010 ident: c83 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 3397 year: 2007 ident: c11 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 32184 year: 2017 ident: c5 publication-title: Phys. Chem. Chem. Phys. – volume: 538 start-page: 121 year: 2012 ident: c22 publication-title: Chem. Phys. Lett. – volume: 11 start-page: 2473 year: 2015 ident: c62 publication-title: J. Chem. Theory Comput. – volume: 34 start-page: 2327 year: 2013 ident: c20 publication-title: J. Comput. Chem. – volume: 144 start-page: 214110 year: 2016 ident: c31 publication-title: J. Chem. Phys. – volume: 113 start-page: 8434 year: 2009 ident: c78 publication-title: J. Phys. Chem. A – volume: 12 start-page: 2825 year: 2011 ident: c109 publication-title: J. Mach. Learn. Res. – volume: 133 start-page: 244103 year: 2010 ident: c7 publication-title: J. Chem. Phys. – volume: 141 start-page: 031101 year: 2014 ident: c25 publication-title: J. Chem. Phys. – volume: 136 start-page: 174103 year: 2012 ident: c28 publication-title: J. Chem. Phys. – volume: 118 start-page: 293 year: 2014 ident: c79 publication-title: J. Phys. Chem. A – volume: 115 start-page: 12034 year: 2011 ident: c65 publication-title: J. Phys. Chem. A – volume: 131 start-page: 174105 year: 2009 ident: c16 publication-title: J. Chem. Phys. – volume: 121 start-page: 2655 year: 2004 ident: c71 publication-title: J. Chem. Phys. – volume: 135 start-page: 194102 year: 2011 ident: c44 publication-title: J. Chem. Phys. – volume: 458 start-page: 1 year: 2015 ident: c101 publication-title: Chem. Phys. – volume: 72 start-page: 46 year: 1977 ident: c38 publication-title: J. Am. Stat. Assoc. – volume: 110 start-page: 2477 year: 2012 ident: c87 publication-title: Mol. Phys. – volume: 7 start-page: 790 year: 2011 ident: c43 publication-title: J. Chem. Theory Comput. – volume: 116 start-page: 4211 year: 2012 ident: c98 publication-title: J. Phys. Chem. A – volume: 98 start-page: 5648 year: 1993 ident: c112 publication-title: J. Chem. Phys. – volume: 35 start-page: 634 year: 2014 ident: c72 publication-title: J. Comput. Chem. – volume: 3 start-page: 569 year: 2007 ident: c102 publication-title: J. Chem. Theory Comput. – volume: 510 start-page: 165 year: 2011 ident: c89 publication-title: Chem. Phys. Lett. – volume: 134 start-page: 064113 year: 2011 ident: c23 publication-title: J. Chem. Phys. – volume: 9 start-page: 5201 year: 2013 ident: c75 publication-title: J. Chem. Theory Comput. – volume: 107 start-page: 1384 year: 2003 ident: c94 publication-title: J. Phys. Chem. A – volume: 108 start-page: 19896 year: 2011 ident: c19 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 2427 year: 2011 ident: c54 publication-title: J. Chem. Theory Comput. – volume: 112 start-page: 559 year: 2014 ident: c114 publication-title: Mol. Phys. – volume: 5 start-page: 1016 year: 2009 ident: c67 publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 444 year: 2016 ident: c85 publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 1568 year: 2013 ident: c73 publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 1368 year: 2013 ident: c66 publication-title: J. Chem. Theory Comput. – volume: 8 start-page: 1629 year: 2012 ident: c77 publication-title: J. Chem. Theory Comput. – volume: 16 start-page: 9904 year: 2014 ident: c29 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 531 year: 1967 ident: c36 publication-title: Technometrics – volume: 415 start-page: 100 year: 2005 ident: c33 publication-title: Chem. Phys. Lett. – volume: 8 start-page: 2282 year: 2012 ident: c57 publication-title: J. Chem. Theory Comput. – volume: 120 start-page: 153 year: 2016 ident: c90 publication-title: J. Phys. Chem. A – volume: 6 start-page: 107 year: 2010 ident: c68 publication-title: J. Chem. Theory Comput. – volume: 113 start-page: 1618 year: 2015 ident: c60 publication-title: Mol. Phys. – volume: 144 start-page: 214110 year: 2016 ident: 2023080308021612300_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.4952647 – volume: 458 start-page: 1 year: 2015 ident: 2023080308021612300_c101 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2015.07.005 – volume: 10 start-page: 4400 year: 2014 ident: 2023080308021612300_c110 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500642x – volume: 94 start-page: 7221 year: 1991 ident: 2023080308021612300_c91 publication-title: J. Chem. Phys. doi: 10.1063/1.460205 – volume: 107 start-page: 8554 year: 1997 ident: 2023080308021612300_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.475007 – volume: 415 start-page: 100 year: 2005 ident: 2023080308021612300_c33 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.08.060 – volume: 9 start-page: 5201 year: 2013 ident: 2023080308021612300_c75 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400818v – volume: 116 start-page: 5105 year: 2016 ident: 2023080308021612300_c6 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00533 – volume: 106 start-page: 4963 year: 2009 ident: 2023080308021612300_c9 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0901093106 – volume: 139 start-page: 034107 year: 2013 ident: 2023080308021612300_c63 publication-title: J. Chem. Phys. doi: 10.1063/1.4813523 – volume: 113 start-page: 1663 year: 2009 ident: 2023080308021612300_c51 publication-title: J. Phys. Chem. A doi: 10.1021/jp809106b – volume: 9 start-page: 3397 year: 2007 ident: 2023080308021612300_c11 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b704725h – volume: 121 start-page: 2655 year: 2004 ident: 2023080308021612300_c71 publication-title: J. Chem. Phys. doi: 10.1063/1.1767519 – volume: 113 start-page: 11974 year: 2009 ident: 2023080308021612300_c80 publication-title: J. Phys. Chem. A doi: 10.1021/jp903640h – volume: 116 start-page: 4211 year: 2012 ident: 2023080308021612300_c98 publication-title: J. Phys. Chem. A doi: 10.1021/jp301499y – volume: 72 start-page: 46 year: 1977 ident: 2023080308021612300_c38 publication-title: J. Am. Stat. Assoc. doi: 10.2307/2286904 – volume: 114 start-page: 20801 year: 2010 ident: 2023080308021612300_c17 publication-title: J. Phys. Chem. C doi: 10.1021/jp1070852 – volume: 112 start-page: 12868 year: 2008 ident: 2023080308021612300_c15 publication-title: J. Phys. Chem. A doi: 10.1021/jp801805p – volume: 140 start-page: 18A527 year: 2014 ident: 2023080308021612300_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.4868117 – volume: 36 start-page: 622 year: 2015 ident: 2023080308021612300_c100 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23837 – volume: 120 start-page: 153 year: 2016 ident: 2023080308021612300_c90 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b10266 – volume: 10 start-page: 968 year: 2014 ident: 2023080308021612300_c35 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500026v – volume: 9 start-page: 2151 year: 2013 ident: 2023080308021612300_c40 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400057w – volume: 98 start-page: 5648 year: 1993 ident: 2023080308021612300_c112 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 8 start-page: 2282 year: 2012 ident: 2023080308021612300_c57 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300215p – volume: 109 start-page: 2012 year: 2005 ident: 2023080308021612300_c92 publication-title: J. Phys. Chem. A doi: 10.1021/jp045141s – volume: 34 start-page: 2327 year: 2013 ident: 2023080308021612300_c20 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23391 – volume: 118 start-page: 4976 year: 2003 ident: 2023080308021612300_c105 publication-title: J. Chem. Phys. doi: 10.1063/1.1543944 – volume: 7 start-page: 43 year: 2005 ident: 2023080308021612300_c93 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b416937a – volume: 6 start-page: 107 year: 2010 ident: 2023080308021612300_c68 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900489g – volume: 11 start-page: 2473 year: 2015 ident: 2023080308021612300_c62 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5010593 – volume: 510 start-page: 165 year: 2011 ident: 2023080308021612300_c89 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.05.007 – volume: 135 start-page: 101102 year: 2011 ident: 2023080308021612300_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.3640019 – volume: 9 start-page: 6106 year: 2007 ident: 2023080308021612300_c47 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b709669k – volume: 4 start-page: 576 year: 2014 ident: 2023080308021612300_c26 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. doi: 10.1002/wcms.1193 – volume: 116 start-page: 52 year: 2016 ident: 2023080308021612300_c97 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25024 – volume: 10 start-page: 3777 year: 2014 ident: 2023080308021612300_c70 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500506t – volume: 11 start-page: 1481 year: 2015 ident: 2023080308021612300_c50 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct501050s – volume: 9 start-page: 531 year: 1967 ident: 2023080308021612300_c36 publication-title: Technometrics doi: 10.1080/00401706.1967.10490502 – volume: 8 start-page: 4285 year: 2012 ident: 2023080308021612300_c49 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300647k – volume: 9 start-page: 1918 year: 2013 ident: 2023080308021612300_c74 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct301064t – volume: 17 start-page: 16560 year: 2015 ident: 2023080308021612300_c58 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c5cp02365c – volume: 8 start-page: 141 year: 2012 ident: 2023080308021612300_c42 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200751e – volume: 19 start-page: 32184 year: 2017 ident: 2023080308021612300_c5 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c7cp04913g – volume: 35 start-page: 634 year: 2014 ident: 2023080308021612300_c72 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23539 – volume: 441 start-page: 166 year: 2014 ident: 2023080308021612300_c88 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2014.07.015 – volume: 135 start-page: 024106 year: 2011 ident: 2023080308021612300_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.3604569 – volume: 7 start-page: 2427 year: 2011 ident: 2023080308021612300_c54 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct2002946 – volume: 16 start-page: 978 year: 2015 ident: 2023080308021612300_c61 publication-title: ChemPhysChem doi: 10.1002/cphc.201402786 – volume: 140 start-page: A1133 year: 1965 ident: 2023080308021612300_c2 publication-title: Phys. Rev. doi: 10.1103/physrev.140.a1133 – volume: 113 start-page: 1618 year: 2015 ident: 2023080308021612300_c60 publication-title: Mol. Phys. doi: 10.1080/00268976.2014.1001806 – volume: 120 start-page: 215 year: 2008 ident: 2023080308021612300_c113 publication-title: Theor. Chem. Acc.: Theory, Comput. Model. (Theor. Chim. Acta) doi: 10.1007/s00214-007-0310-x – volume: 7 start-page: 790 year: 2011 ident: 2023080308021612300_c43 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100563b – volume: 24 start-page: 381 year: 1981 ident: 2023080308021612300_c39 publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 133 start-page: 244103 year: 2010 ident: 2023080308021612300_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.3521275 – volume: 12 start-page: 2825 year: 2011 ident: 2023080308021612300_c109 publication-title: J. Mach. Learn. Res. – volume: 115 start-page: 12034 year: 2011 ident: 2023080308021612300_c65 publication-title: J. Phys. Chem. A doi: 10.1021/jp2069489 – volume: 107 start-page: 1384 year: 2003 ident: 2023080308021612300_c94 publication-title: J. Phys. Chem. A doi: 10.1021/jp021590l – volume: 9 start-page: 1368 year: 2013 ident: 2023080308021612300_c66 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4000235 – volume: 124 start-page: 034108 year: 2006 ident: 2023080308021612300_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.2148954 – volume: 8 start-page: 1985 year: 2006 ident: 2023080308021612300_c48 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b600027d – volume: 9 start-page: 4403 year: 2013 ident: 2023080308021612300_c59 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400558w – volume: 12 start-page: 444 year: 2016 ident: 2023080308021612300_c85 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b01066 – volume: 16 start-page: 9904 year: 2014 ident: 2023080308021612300_c29 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54374a – volume: 113 start-page: 878 year: 2009 ident: 2023080308021612300_c45 publication-title: J. Phys. Chem. A doi: 10.1021/jp809062x – volume: 132 start-page: 154104 year: 2010 ident: 2023080308021612300_c12 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 7 start-page: 3466 year: 2011 ident: 2023080308021612300_c55 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200523a – volume: 9 start-page: 1568 year: 2013 ident: 2023080308021612300_c73 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300846m – volume: 1 start-page: 3122 year: 2010 ident: 2023080308021612300_c83 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101245s – volume: 134 start-page: 064113 year: 2011 ident: 2023080308021612300_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.3544215 – volume: 108 start-page: 2655 year: 2010 ident: 2023080308021612300_c96 publication-title: Mol. Phys. doi: 10.1080/00268976.2010.519729 – volume: 141 start-page: 031101 year: 2014 ident: 2023080308021612300_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.4890314 – volume: 108 start-page: 19896 year: 2011 ident: 2023080308021612300_c19 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1115123108 – volume: 110 start-page: 2477 year: 2012 ident: 2023080308021612300_c87 publication-title: Mol. Phys. doi: 10.1080/00268976.2012.698316 – volume: 119 start-page: 235 year: 2015 ident: 2023080308021612300_c64 publication-title: J. Phys. Chem. A doi: 10.1021/jp5098603 – volume: 10 start-page: 3140 year: 2014 ident: 2023080308021612300_c53 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500347q – volume: 37 start-page: 49 year: 2016 ident: 2023080308021612300_c99 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23963 – volume: 135 start-page: 194102 year: 2011 ident: 2023080308021612300_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.3659142 – volume: 131 start-page: 174105 year: 2009 ident: 2023080308021612300_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.3244209 – volume: 133 start-page: 134105 year: 2010 ident: 2023080308021612300_c106 publication-title: J. Chem. Phys. doi: 10.1063/1.3484283 – volume: 112 start-page: 559 year: 2014 ident: 2023080308021612300_c114 publication-title: Mol. Phys. doi: 10.1080/00268976.2014.881634 – volume: 113 start-page: 10146 year: 2009 ident: 2023080308021612300_c46 publication-title: J. Phys. Chem. A doi: 10.1021/jp9034375 – volume: 139 start-page: 024110 year: 2013 ident: 2023080308021612300_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.4812689 – volume: 8 start-page: 3128 year: 2012 ident: 2023080308021612300_c69 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3004723 – volume: 53 start-page: 3764 year: 1996 ident: 2023080308021612300_c8 publication-title: Phys. Rev. B doi: 10.1103/physrevb.53.3764 – volume: 209 start-page: 506 year: 1993 ident: 2023080308021612300_c107 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)80125-9 – volume: 15 start-page: 15869 year: 2013 ident: 2023080308021612300_c111 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51826d – volume: 113 start-page: 8434 year: 2009 ident: 2023080308021612300_c78 publication-title: J. Phys. Chem. A doi: 10.1021/jp904369h – volume: 8 start-page: 1629 year: 2012 ident: 2023080308021612300_c77 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200930x – volume: 118 start-page: 293 year: 2014 ident: 2023080308021612300_c79 publication-title: J. Phys. Chem. A doi: 10.1021/jp410723v – volume: 8 start-page: 1646 year: 2012 ident: 2023080308021612300_c52 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300132e – volume: 32 start-page: 1456 year: 2011 ident: 2023080308021612300_c13 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 113 start-page: 1284 year: 2015 ident: 2023080308021612300_c86 publication-title: Mol. Phys. doi: 10.1080/00268976.2014.986238 – volume: 115 start-page: 2315 year: 2017 ident: 2023080308021612300_c3 publication-title: Mol. Phys. doi: 10.1080/00268976.2017.1333644 – volume: 123 start-page: 062201 year: 2005 ident: 2023080308021612300_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.1904565 – volume: 136 start-page: B864 year: 1964 ident: 2023080308021612300_c1 publication-title: Phys. Rev. doi: 10.1103/physrev.136.b864 – volume: 7 start-page: 291 year: 2011 ident: 2023080308021612300_c18 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100466k – volume: 114 start-page: 21 year: 2016 ident: 2023080308021612300_c103 publication-title: Mol. Phys. doi: 10.1080/00268976.2015.1081418 – volume: 3 start-page: 569 year: 2007 ident: 2023080308021612300_c102 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct600281g – volume: 136 start-page: 174103 year: 2012 ident: 2023080308021612300_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.3703893 – volume: 117 start-page: 2269 year: 2013 ident: 2023080308021612300_c84 publication-title: J. Phys. Chem. A doi: 10.1021/jp312644t – volume: 47 start-page: 3649 year: 1993 ident: 2023080308021612300_c104 publication-title: Phys. Rev. A doi: 10.1103/physreva.47.3649 – volume: 116 start-page: 1086 year: 2012 ident: 2023080308021612300_c41 publication-title: J. Phys. Chem. A doi: 10.1021/jp209536e – volume: 10 start-page: 5436 year: 2014 ident: 2023080308021612300_c76 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500899h – volume: 538 start-page: 121 year: 2012 ident: 2023080308021612300_c22 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2012.04.045 – volume: 7 start-page: 3866 year: 2011 ident: 2023080308021612300_c34 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200644w – volume: 113 start-page: 184 year: 2015 ident: 2023080308021612300_c108 publication-title: Mol. Phys. doi: 10.1080/00268976.2014.952696 – volume: 117 start-page: 3118 year: 2013 ident: 2023080308021612300_c82 publication-title: J. Phys. Chem. A doi: 10.1021/jp401429u – volume: 72 start-page: 012510 year: 2005 ident: 2023080308021612300_c14 publication-title: Phys. Rev. A doi: 10.1103/physreva.72.012510 – volume: 5 start-page: 1511 year: 2009 ident: 2023080308021612300_c81 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900005c – volume: 49 start-page: 1402 year: 2010 ident: 2023080308021612300_c95 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905484 – volume: 142 start-page: 074111 year: 2015 ident: 2023080308021612300_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.4907719 – volume: 11 start-page: 3065 year: 2015 ident: 2023080308021612300_c56 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00281 – volume: 5 start-page: 1016 year: 2009 ident: 2023080308021612300_c67 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800549f |
SSID | ssj0001724 |
Score | 2.624653 |
Snippet | A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final... |
SourceID | pubmedcentral osti proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 241736 |
SubjectTerms | Data analysis Data points Density Electronic structure Functionals INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mathematical analysis Organic chemistry Outliers (statistics) Perturbation theory Special Topic: Data-Enabled Theoretical Chemistry |
Title | Survival of the most transferable at the top of Jacob’s ladder: Defining and testing the ωB97M(2) double hybrid density functional |
URI | http://dx.doi.org/10.1063/1.5025226 https://www.ncbi.nlm.nih.gov/pubmed/29960332 https://www.proquest.com/docview/2088361642 https://www.proquest.com/docview/2063727169 https://www.osti.gov/servlets/purl/1477312 https://pubmed.ncbi.nlm.nih.gov/PMC5991970 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELegExovCMa_sIHMn0lDU0YTx47DWymrpqktSGulvkWOk6iTRjq1KRI88cIDH4FPxXfgk3AXJ2mqFQS8RFXiWK7v5_PvLndnQl4kzHESKVIbtpPUBoWn7YBHke1HIpIMGWqE_o7BUJyMvdMJn6wc-kV2SR4d6c8b80r-R6pwD-SKWbL_INm6U7gBv0G-cAUJw_WvZHy2hIX-0dBJJJAfZoscD30AKprMi5wok6oIBPMS25yC-ouq8IZgcXihivohrANqJy1OijABlVh5o8yi2u_29mXwJvAHQEVd9CHEsyX2PP2EuV6HMQbAY9Qn7I_Grdiku6vEs2KMuqpOYPwpNZ0fIExxu0ZtM1TzKGk6IxyJQVNlcvcq_l9l65EO7xt9VikEjo2mk9mEjOZty8D2hTk7tFbNnmxg0CRbX9H5QLLQ_XDEgb657oa62sN3YW_c74ej48noOtlywaBwW2Sr83bQP6t3bSByZcVuM7SqCpVgr-qu17hLC0R6vskuuRpeuw1sxgRWNLjL6Da5VUqAdgyC7pBrSbZDtrvVWX875EY5eXfJ1wpTdJZSAABFTNEmpqjKiweAKWxTYOrnl-8LatD0mlZYooAlWmKpeOPHN8TRgfuSGgxRgyFaYoiuMHSPjHvHo-6JXR7VYWtP8NxWvoJJjYHtRrHgKUtj7fHUa6dMJo4SIg10GkmfcS15W7VdxT3tpHEcCa10Khm7T1rZLEseEipVApMtuUyY8rh2lFKgS7RyJXYhhUUOKiGE1bTicSoXYRFPIVjohKW8LPKsbnppirdsarSLkgxRRomeaowv0zmYxL7PHNcie5WAw3LlL0IXtmYmHDDdLfK0fgwiw49tKktmS2wjGNgGjggs8sDgoR6DiyWRGIO3_TWk1A2w5vv6k-x8WtR-52DPBX7bIs9rTP3-rz368-B3yc3VGt4jrXy-TB4Dxc6jJ-Xq-AWlzNTY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+of+the+most+transferable+at+the+top+of+Jacob%E2%80%99s+ladder%3A+Defining+and+testing+the+%CF%89B97M%282%29+double+hybrid+density+functional&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Mardirossian+Narbe&rft.date=2018-06-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=148&rft.issue=24&rft_id=info:doi/10.1063%2F1.5025226&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |