Survival of the most transferable at the top of Jacob’s ladder: Defining and testing the ωB97M(2) double hybrid density functional

A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwis...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 148; no. 24; pp. 241736 - 241749
Main Authors Mardirossian, Narbe, Head-Gordon, Martin
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.06.2018
American Institute of Physics (AIP)
AIP Publishing LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.
AbstractList A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resu|ting functional, ωB97M(2) is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 datq points clearly surpasses that of all of the tested density funstionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.
A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.
A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ω B97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ω B97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ω B97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ω B97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ω B97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ω B97X-V and ω B97M-V on Rung 4. The results suggest that ω B97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.
A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.
Author Head-Gordon, Martin
Mardirossian, Narbe
Author_xml – sequence: 1
  givenname: Narbe
  surname: Mardirossian
  fullname: Mardirossian, Narbe
  organization: Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California
– sequence: 2
  givenname: Martin
  surname: Head-Gordon
  fullname: Head-Gordon, Martin
  email: mhg@cchem.berkeley.edu
  organization: 2Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29960332$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1477312$$D View this record in Osti.gov
BookMark eNp9kktuFDEQhi0URCaBBRdAFmwSpEn86LbbLJAgvBXEAlhbbj8yjnrsYLtHmh0bFhyBU3EHToKbmUEQIVa2XF_9rvqrDsBeiMECcBejE4wYPcUnLSItIewGmGHUiTlnAu2BGUIEzwVDbB8c5HyJEMKcNLfAPhH1lVIyA1_ej2nlV2qA0cGysHAZc4ElqZCdTaofLFTlV6DEq4l5o3Tsf3z-luGgjLHpEXxmnQ8-XEAVDCw2l-k-ZXz_-lTwt0fkGJo4TkqLdZ-8gcaG7MsaujHo4mNQw21w06kh2zvb8xB8fPH8w9mr-fm7l6_PnpzPdcPaMldccUIMFaI3rHXUGd20rkGOdhYrxpzQru84bXXXIoWIahuNnTE900q7jtJD8HijezX2S2u0DbXTQV4lv1RpLaPy8u9I8At5EVeyFQILjqrA_Y1AdcnLrH2xeqFjCFYXiRvOKSYVOtr-kuKnsRoilz5rOwwq2DhmSerMOOGYiYo-uIZexjFVRyaq6yjDrJkE7_1Z9u96d2OswOkG0CnmnKyTtTI1eVu78IPESE6LIrHcLkrNOL6WsRP9F_tww-ad6n_gn7JuzAw
CODEN JCPSA6
CitedBy_id crossref_primary_10_1021_acs_jctc_2c00055
crossref_primary_10_1063_5_0174988
crossref_primary_10_1021_acs_jpclett_1c00360
crossref_primary_10_1039_D2CP02827A
crossref_primary_10_1021_acs_jpclett_0c03545
crossref_primary_10_1071_CH20093
crossref_primary_10_1002_jcc_26411
crossref_primary_10_1063_5_0129820
crossref_primary_10_1021_acs_jpca_9b05734
crossref_primary_10_1039_C9CP03211H
crossref_primary_10_1063_1_5126716
crossref_primary_10_1016_j_comptc_2021_113295
crossref_primary_10_1021_acs_jpca_9b03157
crossref_primary_10_1021_acscentsci_1c00685
crossref_primary_10_1021_acs_jpclett_1c03468
crossref_primary_10_1063_5_0091198
crossref_primary_10_1021_acsomega_4c02628
crossref_primary_10_1021_acs_jctc_9b01294
crossref_primary_10_1071_CH19023
crossref_primary_10_1063_5_0077722
crossref_primary_10_3390_molecules24040681
crossref_primary_10_1021_acs_jpca_9b10880
crossref_primary_10_1021_acs_jpclett_2c02620
crossref_primary_10_1021_acs_jctc_1c01100
crossref_primary_10_1063_5_0025160
crossref_primary_10_1021_jacsau_4c00488
crossref_primary_10_1063_1_5049143
crossref_primary_10_1021_acs_jpca_9b08586
crossref_primary_10_1039_D2CP04603B
crossref_primary_10_1021_acs_jpclett_2c00718
crossref_primary_10_1038_s41467_023_36094_y
crossref_primary_10_1063_5_0018354
crossref_primary_10_1088_2516_1075_ac9942
crossref_primary_10_1139_cjc_2022_0277
crossref_primary_10_1021_acs_jctc_9b00891
crossref_primary_10_1021_acs_jctc_9b00013
crossref_primary_10_1021_acs_chemrev_9b00073
crossref_primary_10_1002_wcms_1490
crossref_primary_10_1021_acs_jctc_4c00801
crossref_primary_10_1002_eem2_12204
crossref_primary_10_1021_acs_jctc_1c00006
crossref_primary_10_1021_acs_jpca_2c01962
crossref_primary_10_1021_acs_jpca_9b01546
crossref_primary_10_1021_acs_jpcc_9b02272
crossref_primary_10_1021_acs_jctc_0c01106
crossref_primary_10_1021_acs_joc_2c00442
crossref_primary_10_1039_D0TC05463A
crossref_primary_10_1021_acs_jctc_0c00292
crossref_primary_10_1021_acs_jctc_1c00422
crossref_primary_10_1063_1674_0068_cjcp2206098
crossref_primary_10_1002_ijch_201900114
crossref_primary_10_3390_molecules28083487
crossref_primary_10_1002_jcc_27248
crossref_primary_10_1002_asia_201901767
crossref_primary_10_1063_5_0128996
crossref_primary_10_1021_jacsau_1c00011
crossref_primary_10_1063_1_5125802
crossref_primary_10_1021_acs_jctc_0c00442
crossref_primary_10_1021_acs_jctc_8b00731
crossref_primary_10_1021_acs_jctc_1c00271
crossref_primary_10_1021_acs_jctc_2c00082
crossref_primary_10_1039_D2CP03938A
crossref_primary_10_1021_acs_jpca_2c06407
crossref_primary_10_1021_acs_jpcc_9b06288
crossref_primary_10_1021_acs_jctc_9b01193
crossref_primary_10_1021_acs_jpclett_1c02838
crossref_primary_10_1021_acs_jctc_2c00641
crossref_primary_10_1021_acs_jctc_1c00535
crossref_primary_10_1002_jcc_27351
crossref_primary_10_1021_acs_jctc_1c00659
crossref_primary_10_1021_acs_jctc_2c00802
crossref_primary_10_1039_D1CP04922D
crossref_primary_10_1021_acs_jctc_9b01127
crossref_primary_10_1002_jcc_26149
crossref_primary_10_1021_acs_jpclett_9b03661
crossref_primary_10_1021_acs_chemrev_2c00758
crossref_primary_10_1063_5_0174040
crossref_primary_10_1021_acs_jpca_2c03922
crossref_primary_10_1021_acs_jctc_8b00842
crossref_primary_10_1021_acs_jpclett_9b01641
crossref_primary_10_1126_sciadv_abq0279
crossref_primary_10_1002_tcr_201900081
crossref_primary_10_1063_1_5040786
crossref_primary_10_1063_1_5108536
crossref_primary_10_1039_D3CP03598K
crossref_primary_10_1021_acs_jpca_1c01294
crossref_primary_10_1021_acs_jctc_3c00744
crossref_primary_10_1021_acs_jpclett_3c01832
crossref_primary_10_1021_acs_jpca_1c01295
crossref_primary_10_1063_5_0178236
crossref_primary_10_1039_D3CP06217A
crossref_primary_10_1063_5_0207682
crossref_primary_10_1002_jcc_25761
crossref_primary_10_1021_acs_jctc_9b01255
crossref_primary_10_1063_5_0038694
crossref_primary_10_1021_acs_jctc_0c00189
crossref_primary_10_1021_acs_jctc_8b00514
crossref_primary_10_1021_acs_joc_3c01793
crossref_primary_10_1021_acs_jctc_0c00986
crossref_primary_10_1039_C8FD00229K
crossref_primary_10_1039_C9DT03789F
crossref_primary_10_1063_5_0141238
crossref_primary_10_1021_acs_joc_0c02008
crossref_primary_10_1071_CH21133
crossref_primary_10_1021_acs_jctc_3c01424
crossref_primary_10_1063_5_0134764
crossref_primary_10_1021_acs_jctc_2c00426
crossref_primary_10_1073_pnas_2202744121
crossref_primary_10_1080_00268976_2018_1542164
crossref_primary_10_1039_D1CP04996H
crossref_primary_10_1016_j_rechem_2024_101922
crossref_primary_10_1039_C8CP03852J
crossref_primary_10_1021_acs_jctc_4c01016
crossref_primary_10_1016_j_fuel_2023_128869
crossref_primary_10_1021_acs_jpca_1c02549
crossref_primary_10_1063_5_0148438
crossref_primary_10_1002_jcc_26728
crossref_primary_10_1063_5_0055522
crossref_primary_10_1039_D1CP01773J
crossref_primary_10_1021_acs_jctc_1c00469
crossref_primary_10_1021_acs_jpclett_1c01157
crossref_primary_10_1063_5_0174923
crossref_primary_10_1021_acsomega_1c00997
crossref_primary_10_1021_acs_jpca_9b05088
crossref_primary_10_1002_ijch_202100101
crossref_primary_10_1021_acs_jctc_4c01503
crossref_primary_10_1002_jcc_26517
crossref_primary_10_1021_acs_jctc_1c00990
crossref_primary_10_1021_acs_jctc_4c00814
crossref_primary_10_1063_5_0169105
crossref_primary_10_1021_acs_jpca_2c07657
crossref_primary_10_1021_acs_jpca_1c01041
crossref_primary_10_1021_acs_orglett_3c02936
crossref_primary_10_1021_acs_jctc_0c01055
crossref_primary_10_1021_acs_jpca_4c03137
crossref_primary_10_1039_D0CP01275K
crossref_primary_10_1021_acs_jpclett_1c00744
crossref_primary_10_1063_5_0047628
crossref_primary_10_1063_5_0133727
crossref_primary_10_1063_1_5043213
Cites_doi 10.1063/1.4952647
10.1016/j.chemphys.2015.07.005
10.1021/ct500642x
10.1063/1.460205
10.1063/1.475007
10.1016/j.cplett.2005.08.060
10.1021/ct400818v
10.1021/acs.chemrev.5b00533
10.1073/pnas.0901093106
10.1063/1.4813523
10.1021/jp809106b
10.1039/b704725h
10.1063/1.1767519
10.1021/jp903640h
10.1021/jp301499y
10.2307/2286904
10.1021/jp1070852
10.1021/jp801805p
10.1063/1.4868117
10.1002/jcc.23837
10.1021/acs.jpca.5b10266
10.1021/ct500026v
10.1021/ct400057w
10.1063/1.464913
10.1021/ct300215p
10.1021/jp045141s
10.1002/jcc.23391
10.1063/1.1543944
10.1039/b416937a
10.1021/ct900489g
10.1021/ct5010593
10.1016/j.cplett.2011.05.007
10.1063/1.3640019
10.1039/b709669k
10.1002/wcms.1193
10.1002/qua.25024
10.1021/ct500506t
10.1021/ct501050s
10.1080/00401706.1967.10490502
10.1021/ct300647k
10.1021/ct301064t
10.1039/c5cp02365c
10.1021/ct200751e
10.1039/c7cp04913g
10.1002/jcc.23539
10.1016/j.chemphys.2014.07.015
10.1063/1.3604569
10.1021/ct2002946
10.1002/cphc.201402786
10.1103/physrev.140.a1133
10.1080/00268976.2014.1001806
10.1007/s00214-007-0310-x
10.1021/ct100563b
10.1145/358669.358692
10.1063/1.3521275
10.1021/jp2069489
10.1021/jp021590l
10.1021/ct4000235
10.1063/1.2148954
10.1039/b600027d
10.1021/ct400558w
10.1021/acs.jctc.5b01066
10.1039/c3cp54374a
10.1021/jp809062x
10.1063/1.3382344
10.1021/ct200523a
10.1021/ct300846m
10.1021/jz101245s
10.1063/1.3544215
10.1080/00268976.2010.519729
10.1063/1.4890314
10.1073/pnas.1115123108
10.1080/00268976.2012.698316
10.1021/jp5098603
10.1021/ct500347q
10.1002/jcc.23963
10.1063/1.3659142
10.1063/1.3244209
10.1063/1.3484283
10.1080/00268976.2014.881634
10.1021/jp9034375
10.1063/1.4812689
10.1021/ct3004723
10.1103/physrevb.53.3764
10.1016/0009-2614(93)80125-9
10.1039/c3cp51826d
10.1021/jp904369h
10.1021/ct200930x
10.1021/jp410723v
10.1021/ct300132e
10.1002/jcc.21759
10.1080/00268976.2014.986238
10.1080/00268976.2017.1333644
10.1063/1.1904565
10.1103/physrev.136.b864
10.1021/ct100466k
10.1080/00268976.2015.1081418
10.1021/ct600281g
10.1063/1.3703893
10.1021/jp312644t
10.1103/physreva.47.3649
10.1021/jp209536e
10.1021/ct500899h
10.1016/j.cplett.2012.04.045
10.1021/ct200644w
10.1080/00268976.2014.952696
10.1021/jp401429u
10.1103/physreva.72.012510
10.1021/ct900005c
10.1002/anie.200905484
10.1063/1.4907719
10.1021/acs.jctc.5b00281
10.1021/ct800549f
ContentType Journal Article
Copyright Author(s)
2018 Author(s). Published by AIP Publishing.
Copyright © 2018 Author(s) 2018 Author(s)
Copyright_xml – notice: Author(s)
– notice: 2018 Author(s). Published by AIP Publishing.
– notice: Copyright © 2018 Author(s) 2018 Author(s)
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
OIOZB
OTOTI
5PM
DOI 10.1063/1.5025226
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
DocumentTitleAlternate N. Mardirossian and M. Head-Gordon
EISSN 1089-7690
ExternalDocumentID PMC5991970
1477312
29960332
10_1063_1_5025226
jcp
Genre Journal Article
GrantInformation_xml – fundername: Basic Energy Sciences
  grantid: DE-AC02-05CH11231
  funderid: http://dx.doi.org/10.13039/100006151
– fundername: National Institutes of Health
  grantid: 2R44GM096678
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIGMS NIH HHS
  grantid: R44 GM096678
– fundername: ; ;
  grantid: DE-AC02-05CH11231
– fundername: ; ;
  grantid: 2R44GM096678
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ABPTK
AGIHO
OIOZB
OTOTI
UE8
ZHY
5PM
ID FETCH-LOGICAL-c465t-a7a722d399bd65f3fdc45f40f38e1a66f9cfb8735c850a02a54c1fddb6cacf833
ISSN 0021-9606
1089-7690
IngestDate Thu Aug 21 13:53:15 EDT 2025
Wed Nov 29 06:11:15 EST 2023
Thu Jul 10 23:57:46 EDT 2025
Sun Jun 29 12:40:06 EDT 2025
Mon Jul 21 05:58:28 EDT 2025
Tue Jul 01 00:27:18 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Fri Jun 21 00:14:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License 0021-9606/2018/148(24)/241736/14/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-a7a722d399bd65f3fdc45f40f38e1a66f9cfb8735c850a02a54c1fddb6cacf833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Electronic mail: mhg@cchem.berkeley.edu
ORCID 0000-0002-4309-6669
0000000243096669
OpenAccessLink https://www.osti.gov/servlets/purl/1477312
PMID 29960332
PQID 2088361642
PQPubID 2050685
PageCount 14
ParticipantIDs proquest_journals_2088361642
pubmed_primary_29960332
scitation_primary_10_1063_1_5025226
crossref_citationtrail_10_1063_1_5025226
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5991970
proquest_miscellaneous_2063727169
osti_scitechconnect_1477312
crossref_primary_10_1063_1_5025226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-28
PublicationDateYYYYMMDD 2018-06-28
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2018
Publisher American Institute of Physics
American Institute of Physics (AIP)
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics (AIP)
– name: AIP Publishing LLC
References Becke (c37) 1997; 107
O’Reilly, Karton (c97) 2016; 116
Gerber, Ángyán (c33) 2005; 415
Peverati, Head-Gordon (c27) 2013; 139
Lao, Herbert (c63) 2013; 139
Kozuch, Gruzman, Martin (c17) 2010; 114
Chai, Head-Gordon (c16) 2009; 131
Grimme, Hansen, Brandenburg, Bannwarth (c6) 2016; 116
Mardirossian, Head-Gordon (c30) 2015; 142
Mardirossian, Lambrecht, McCaslin, Xantheas, Head-Gordon (c66) 2013; 9
de-la Roza, Johnson, DiLabio (c76) 2014; 10
Bendel, Afifi (c38) 1977; 72
Tang, Toennies (c105) 2003; 118
Grimme, Kruse, Goerigk, Erker (c95) 2010; 49
Goldey, Dutoi, Head-Gordon (c111) 2013; 15
Řezáč, Hobza (c40) 2013; 9
Yu, Karton (c88) 2014; 441
Witte, Goldey, Neaton, Head-Gordon (c50) 2015; 11
Toulouse, Sharkas, Brémond, Adamo (c24) 2011; 135
Chakravorty, Gwaltney, Davidson, Parpia, Fischer (c104) 1993; 47
Manna, Martin (c90) 2016; 120
Curtiss, Raghavachari, Trucks, Pople (c91) 1991; 94
Chai, Mao (c22) 2012; 538
Martin (c82) 2013; 117
Steinmann, Piemontesi, Delachat, Corminboeuf (c77) 2012; 8
Marshall, Burns, Sherrill (c44) 2011; 135
Yu, Sarrami, O’Reilly, Karton (c101) 2015; 458
Řezáč, Hobza (c42) 2012; 8
Granatier, Pitoňák, Hobza (c57) 2012; 8
Becke (c112) 1993; 98
Jurečka, Šponer, Černý, Hobza (c48) 2006; 8
Mardirossian, Head-Gordon (c29) 2014; 16
Chan, Gilbert, Gill, Radom (c70) 2014; 10
Ángyán, Gerber, Savin, Toulouse (c14) 2005; 72
Lao, Schäffer, Jansen, Herbert (c62) 2015; 11
Kohn, Sham (c2) 1965; 140
Lao, Herbert (c64) 2015; 119
Zhang, Xu, Goddard (c9) 2009; 106
Hohenstein, Sherrill (c45) 2009; 113
Fischler, Bolles (c39) 1981; 24
Zhao, González-García, Truhlar (c92) 2005; 109
Grimme (c10) 2006; 124
Shao, Gan, Epifanovsky, Gilbert, Wormit, Kussmann, Lange, Behn, Deng, Feng, Ghosh, Goldey, Horn, Jacobson, Kaliman, Khaliullin, Kuś, Landau, Liu, Proynov, Rhee, Richard, Rohrdanz, Steele, Sundstrom, Woodcock, Zimmerman, Zuev, Albrecht, Alguire, Austin, Beran, Bernard, Berquist, Brandhorst, Bravaya, Brown, Casanova, Chang, Chen, Chien, Closser, Crittenden, Diedenhofen, DiStasio, Do, Dutoi, Edgar, Fatehi, Fusti-Molnar, Ghysels, Golubeva-Zadorozhnaya, Gomes, Hanson-Heine, Harbach, Hauser, Hohenstein, Holden, Jagau, Ji, Kaduk, Khistyaev, Kim, Kim, King, Klunzinger, Kosenkov, Kowalczyk, Krauter, Lao, Laurent, Lawler, Levchenko, Lin, Liu, Livshits, Lochan, Luenser, Manohar, Manzer, Mao, Mardirossian, Marenich, Maurer, Mayhall, Neuscamman, Oana, Olivares-Amaya, O’Neill, Parkhill, Perrine, Peverati, Prociuk, Rehn, Rosta, Russ, Sharada, Sharma, Small, Sodt, Stein, Stück, Su, Thom, Tsuchimochi, Vanovschi, Vogt, Vydrov, Wang, Watson, Wenzel, White, Williams, Yang, Yeganeh, Yost, You, Zhang, Zhang, Zhao, Brooks, Chan, Chipman, Cramer, Goddard, Gordon, Hehre, Klamt, Schaefer, Schmidt, Sherrill, Truhlar, Warshel, Xu, Aspuru-Guzik, Baer, Bell, Besley, Chai, Dreuw, Dunietz, Furlani, Gwaltney, Hsu, Jung, Kong, Lambrecht, Liang, Ochsenfeld, Rassolov, Slipchenko, Subotnik, Voorhis, Herbert, Krylov, Gill, Head-Gordon (c108) 2015; 113
Zhao, Lynch, Truhlar (c93) 2005; 7
Zhang, Su, Brémond, Adamo, Xu (c28) 2012; 136
Boese (c59) 2013; 9
Crittenden (c51) 2009; 113
Řezáč, Riley, Hobza (c55) 2011; 7
Copeland, Tschumper (c52) 2012; 8
Tentscher, Arey (c73) 2013; 9
Vydrov, Voorhis (c7) 2010; 133
Faver, Benson, He, Roberts, Wang, Marshall, Kennedy, Sherrill, Merz (c43) 2011; 7
Bauzá, Alkorta, Frontera, Elguero (c75) 2013; 9
Karton, Tarnopolsky, Lamère, Schatz, Martin (c15) 2008; 112
Brémond, Adamo (c21) 2011; 135
Rappoport, Furche (c106) 2010; 133
Karton, Gruzman, Martin (c78) 2009; 113
Mardirossian, Head-Gordon (c32) 2014; 140
Zhang, Xu, Jung, Goddard (c19) 2011; 108
Bartlett (c114) 2014; 112
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (c109) 2011; 12
Zhao, Truhlar (c113) 2008; 120
Karton, O’Reilly, Chan, Radom (c69) 2012; 8
Gill, Johnson, Pople (c107) 1993; 209
Anacker, Friedrich (c72) 2014; 35
Temelso, Archer, Shields (c65) 2011; 115
Boese (c60) 2015; 113
Kozuch, Bachrach, Martin (c79) 2014; 118
Sherrill, Takatani, Hohenstein (c46) 2009; 113
Kozuch, Martin (c74) 2013; 9
Bryantsev, Diallo, van Duin, Goddard (c67) 2009; 5
Hujo, Grimme (c34) 2011; 7
Řezáč, Riley, Hobza (c54) 2011; 7
Hohenberg, Kohn (c1) 1964; 136
Kozuch, Martin (c20) 2013; 34
Grimme, Ehrlich, Goerigk (c13) 2011; 32
Brémond, Sancho-García, Pérez-Jiménez, Adamo (c25) 2014; 141
Smith, Jankowski, Slawik, Witek, Patkowski (c53) 2014; 10
Karton, Schreiner, Martin (c99) 2016; 37
Goerigk, Hansen, Bauer, Ehrlich, Najibi, Grimme (c5) 2017; 19
Hocking, Leslie (c36) 1967; 9
Řezáč, Huang, Hobza, Beran (c56) 2015; 11
Gruzman, Karton, Martin (c80) 2009; 113
Goerigk, Grimme (c18) 2011; 7
Mintz, Parks (c41) 2012; 116
Mardirossian, Head-Gordon (c3) 2017; 115
Krieg, Grimme (c96) 2010; 108
Yu (c110) 2014; 10
Lynch, Zhao, Truhlar (c94) 2003; 107
Fanourgakis, Aprà, Xantheas (c71) 2004; 121
Zheng, Zhao, Truhlar (c102) 2007; 3
Perdew, Ruzsinszky, Tao, Staroverov, Scuseria, Csonka (c4) 2005; 123
Seidl, Görling, Vogl, Majewski, Levy (c8) 1996; 53
Schwabe, Grimme (c11) 2007; 9
Boese (c61) 2015; 16
Karton, Daon, Martin (c89) 2011; 510
Řezáč, Riley, Hobza (c49) 2012; 8
Karton, Martin (c87) 2012; 110
Yoo, Aprà, Zeng, Xantheas (c83) 2010; 1
Kesharwani, Karton, Martin (c85) 2016; 12
Grimme, Antony, Ehrlich, Krieg (c12) 2010; 132
Takatani, David Sherrill (c47) 2007; 9
Wilke, Lind, Schaefer, Csaszar, Allen (c81) 2009; 5
Goerigk (c35) 2014; 10
Goerigk, Grimme (c68) 2010; 6
Yu, Sarrami, Karton, O’Reilly (c86) 2015; 113
Karton, Goerigk (c100) 2015; 36
Yu, Sarrami, O’Reilly, Karton (c103) 2016; 114
Goerigk, Grimme (c26) 2014; 4
Sharkas, Toulouse, Savin (c23) 2011; 134
Mardirossian, Head-Gordon (c31) 2016; 144
Karton, O’Reilly, Radom (c98) 2012; 116
Li, Smith, Patkowski (c58) 2015; 17
Fogueri, Kozuch, Karton, Martin (c84) 2013; 117
(2023080308021612300_c16) 2009; 131
(2023080308021612300_c59) 2013; 9
(2023080308021612300_c97) 2016; 116
(2023080308021612300_c98) 2012; 116
(2023080308021612300_c106) 2010; 133
(2023080308021612300_c18) 2011; 7
(2023080308021612300_c45) 2009; 113
(2023080308021612300_c57) 2012; 8
(2023080308021612300_c114) 2014; 112
(2023080308021612300_c50) 2015; 11
(2023080308021612300_c10) 2006; 124
(2023080308021612300_c78) 2009; 113
(2023080308021612300_c76) 2014; 10
(2023080308021612300_c11) 2007; 9
(2023080308021612300_c71) 2004; 121
(2023080308021612300_c64) 2015; 119
(2023080308021612300_c6) 2016; 116
(2023080308021612300_c67) 2009; 5
(2023080308021612300_c109) 2011; 12
(2023080308021612300_c48) 2006; 8
(2023080308021612300_c72) 2014; 35
(2023080308021612300_c70) 2014; 10
(2023080308021612300_c25) 2014; 141
(2023080308021612300_c9) 2009; 106
(2023080308021612300_c29) 2014; 16
(2023080308021612300_c95) 2010; 49
(2023080308021612300_c63) 2013; 139
(2023080308021612300_c89) 2011; 510
(2023080308021612300_c92) 2005; 109
(2023080308021612300_c7) 2010; 133
(2023080308021612300_c19) 2011; 108
(2023080308021612300_c3) 2017; 115
(2023080308021612300_c108) 2015; 113
(2023080308021612300_c39) 1981; 24
(2023080308021612300_c52) 2012; 8
(2023080308021612300_c103) 2016; 114
(2023080308021612300_c24) 2011; 135
(2023080308021612300_c44) 2011; 135
(2023080308021612300_c73) 2013; 9
(2023080308021612300_c38) 1977; 72
(2023080308021612300_c51) 2009; 113
(2023080308021612300_c21) 2011; 135
(2023080308021612300_c58) 2015; 17
(2023080308021612300_c80) 2009; 113
(2023080308021612300_c40) 2013; 9
(2023080308021612300_c75) 2013; 9
(2023080308021612300_c55) 2011; 7
(2023080308021612300_c65) 2011; 115
(2023080308021612300_c27) 2013; 139
(2023080308021612300_c60) 2015; 113
(2023080308021612300_c32) 2014; 140
(2023080308021612300_c53) 2014; 10
(2023080308021612300_c62) 2015; 11
(2023080308021612300_c8) 1996; 53
(2023080308021612300_c102) 2007; 3
(2023080308021612300_c23) 2011; 134
(2023080308021612300_c15) 2008; 112
(2023080308021612300_c41) 2012; 116
(2023080308021612300_c61) 2015; 16
(2023080308021612300_c47) 2007; 9
(2023080308021612300_c14) 2005; 72
(2023080308021612300_c2) 1965; 140
(2023080308021612300_c74) 2013; 9
(2023080308021612300_c105) 2003; 118
(2023080308021612300_c69) 2012; 8
(2023080308021612300_c83) 2010; 1
(2023080308021612300_c12) 2010; 132
(2023080308021612300_c5) 2017; 19
(2023080308021612300_c86) 2015; 113
(2023080308021612300_c36) 1967; 9
(2023080308021612300_c66) 2013; 9
(2023080308021612300_c34) 2011; 7
(2023080308021612300_c4) 2005; 123
(2023080308021612300_c33) 2005; 415
(2023080308021612300_c17) 2010; 114
(2023080308021612300_c35) 2014; 10
(2023080308021612300_c79) 2014; 118
(2023080308021612300_c104) 1993; 47
(2023080308021612300_c88) 2014; 441
(2023080308021612300_c101) 2015; 458
(2023080308021612300_c30) 2015; 142
(2023080308021612300_c49) 2012; 8
(2023080308021612300_c94) 2003; 107
(2023080308021612300_c26) 2014; 4
(2023080308021612300_c46) 2009; 113
(2023080308021612300_c85) 2016; 12
(2023080308021612300_c84) 2013; 117
(2023080308021612300_c111) 2013; 15
(2023080308021612300_c22) 2012; 538
(2023080308021612300_c91) 1991; 94
(2023080308021612300_c110) 2014; 10
(2023080308021612300_c28) 2012; 136
(2023080308021612300_c77) 2012; 8
(2023080308021612300_c1) 1964; 136
(2023080308021612300_c31) 2016; 144
(2023080308021612300_c81) 2009; 5
(2023080308021612300_c96) 2010; 108
(2023080308021612300_c20) 2013; 34
(2023080308021612300_c13) 2011; 32
(2023080308021612300_c93) 2005; 7
(2023080308021612300_c100) 2015; 36
(2023080308021612300_c37) 1997; 107
(2023080308021612300_c43) 2011; 7
(2023080308021612300_c90) 2016; 120
(2023080308021612300_c107) 1993; 209
(2023080308021612300_c99) 2016; 37
(2023080308021612300_c82) 2013; 117
(2023080308021612300_c68) 2010; 6
(2023080308021612300_c112) 1993; 98
(2023080308021612300_c42) 2012; 8
(2023080308021612300_c56) 2015; 11
(2023080308021612300_c87) 2012; 110
(2023080308021612300_c113) 2008; 120
(2023080308021612300_c54) 2011; 7
References_xml – volume: 109
  start-page: 2012
  year: 2005
  ident: c92
  publication-title: J. Phys. Chem. A
– volume: 113
  start-page: 10146
  year: 2009
  ident: c46
  publication-title: J. Phys. Chem. A
– volume: 8
  start-page: 4285
  year: 2012
  ident: c49
  publication-title: J. Chem. Theory Comput.
– volume: 106
  start-page: 4963
  year: 2009
  ident: c9
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 142
  start-page: 074111
  year: 2015
  ident: c30
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 3649
  year: 1993
  ident: c104
  publication-title: Phys. Rev. A
– volume: 10
  start-page: 5436
  year: 2014
  ident: c76
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 1481
  year: 2015
  ident: c50
  publication-title: J. Chem. Theory Comput.
– volume: 139
  start-page: 034107
  year: 2013
  ident: c63
  publication-title: J. Chem. Phys.
– volume: 94
  start-page: 7221
  year: 1991
  ident: c91
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 215
  year: 2008
  ident: c113
  publication-title: Theor. Chem. Acc.: Theory, Comput. Model. (Theor. Chim. Acta)
– volume: 112
  start-page: 12868
  year: 2008
  ident: c15
  publication-title: J. Phys. Chem. A
– volume: 53
  start-page: 3764
  year: 1996
  ident: c8
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 381
  year: 1981
  ident: c39
  publication-title: Commun. ACM
– volume: 441
  start-page: 166
  year: 2014
  ident: c88
  publication-title: Chem. Phys.
– volume: 135
  start-page: 024106
  year: 2011
  ident: c21
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 3065
  year: 2015
  ident: c56
  publication-title: J. Chem. Theory Comput.
– volume: 16
  start-page: 978
  year: 2015
  ident: c61
  publication-title: ChemPhysChem
– volume: 113
  start-page: 11974
  year: 2009
  ident: c80
  publication-title: J. Phys. Chem. A
– volume: 36
  start-page: 622
  year: 2015
  ident: c100
  publication-title: J. Comput. Chem.
– volume: 17
  start-page: 16560
  year: 2015
  ident: c58
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 4403
  year: 2013
  ident: c59
  publication-title: J. Chem. Theory Comput.
– volume: 135
  start-page: 101102
  year: 2011
  ident: c24
  publication-title: J. Chem. Phys.
– volume: 108
  start-page: 2655
  year: 2010
  ident: c96
  publication-title: Mol. Phys.
– volume: 49
  start-page: 1402
  year: 2010
  ident: c95
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 3128
  year: 2012
  ident: c69
  publication-title: J. Chem. Theory Comput.
– volume: 15
  start-page: 15869
  year: 2013
  ident: c111
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 4976
  year: 2003
  ident: c105
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 1511
  year: 2009
  ident: c81
  publication-title: J. Chem. Theory Comput.
– volume: 116
  start-page: 52
  year: 2016
  ident: c97
  publication-title: Int. J. Quantum Chem.
– volume: 7
  start-page: 43
  year: 2005
  ident: c93
  publication-title: Phys. Chem. Chem. Phys.
– volume: 133
  start-page: 134105
  year: 2010
  ident: c106
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 1086
  year: 2012
  ident: c41
  publication-title: J. Phys. Chem. A
– volume: 140
  start-page: 18A527
  year: 2014
  ident: c32
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 154104
  year: 2010
  ident: c12
  publication-title: J. Chem. Phys.
– volume: 123
  start-page: 062201
  year: 2005
  ident: c4
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 20801
  year: 2010
  ident: c17
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 1646
  year: 2012
  ident: c52
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 6106
  year: 2007
  ident: c47
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  start-page: 1663
  year: 2009
  ident: c51
  publication-title: J. Phys. Chem. A
– volume: 117
  start-page: 3118
  year: 2013
  ident: c82
  publication-title: J. Phys. Chem. A
– volume: 113
  start-page: 878
  year: 2009
  ident: c45
  publication-title: J. Phys. Chem. A
– volume: 107
  start-page: 8554
  year: 1997
  ident: c37
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 3777
  year: 2014
  ident: c70
  publication-title: J. Chem. Theory Comput.
– volume: 115
  start-page: 2315
  year: 2017
  ident: c3
  publication-title: Mol. Phys.
– volume: 9
  start-page: 1918
  year: 2013
  ident: c74
  publication-title: J. Chem. Theory Comput.
– volume: 72
  start-page: 012510
  year: 2005
  ident: c14
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 141
  year: 2012
  ident: c42
  publication-title: J. Chem. Theory Comput.
– volume: 10
  start-page: 4400
  year: 2014
  ident: c110
  publication-title: J. Chem. Theory Comput.
– volume: 7
  start-page: 3866
  year: 2011
  ident: c34
  publication-title: J. Chem. Theory Comput.
– volume: 116
  start-page: 5105
  year: 2016
  ident: c6
  publication-title: Chem. Rev.
– volume: 113
  start-page: 184
  year: 2015
  ident: c108
  publication-title: Mol. Phys.
– volume: 8
  start-page: 1985
  year: 2006
  ident: c48
  publication-title: Phys. Chem. Chem. Phys.
– volume: 209
  start-page: 506
  year: 1993
  ident: c107
  publication-title: Chem. Phys. Lett.
– volume: 10
  start-page: 968
  year: 2014
  ident: c35
  publication-title: J. Chem. Theory Comput.
– volume: 113
  start-page: 1284
  year: 2015
  ident: c86
  publication-title: Mol. Phys.
– volume: 136
  start-page: B864
  year: 1964
  ident: c1
  publication-title: Phys. Rev.
– volume: 140
  start-page: A1133
  year: 1965
  ident: c2
  publication-title: Phys. Rev.
– volume: 7
  start-page: 291
  year: 2011
  ident: c18
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 2151
  year: 2013
  ident: c40
  publication-title: J. Chem. Theory Comput.
– volume: 124
  start-page: 034108
  year: 2006
  ident: c10
  publication-title: J. Chem. Phys.
– volume: 139
  start-page: 024110
  year: 2013
  ident: c27
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 3140
  year: 2014
  ident: c53
  publication-title: J. Chem. Theory Comput.
– volume: 117
  start-page: 2269
  year: 2013
  ident: c84
  publication-title: J. Phys. Chem. A
– volume: 119
  start-page: 235
  year: 2015
  ident: c64
  publication-title: J. Phys. Chem. A
– volume: 32
  start-page: 1456
  year: 2011
  ident: c13
  publication-title: J. Comput. Chem.
– volume: 4
  start-page: 576
  year: 2014
  ident: c26
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 37
  start-page: 49
  year: 2016
  ident: c99
  publication-title: J. Comput. Chem.
– volume: 7
  start-page: 3466
  year: 2011
  ident: c55
  publication-title: J. Chem. Theory Comput.
– volume: 114
  start-page: 21
  year: 2016
  ident: c103
  publication-title: Mol. Phys.
– volume: 1
  start-page: 3122
  year: 2010
  ident: c83
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 3397
  year: 2007
  ident: c11
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 32184
  year: 2017
  ident: c5
  publication-title: Phys. Chem. Chem. Phys.
– volume: 538
  start-page: 121
  year: 2012
  ident: c22
  publication-title: Chem. Phys. Lett.
– volume: 11
  start-page: 2473
  year: 2015
  ident: c62
  publication-title: J. Chem. Theory Comput.
– volume: 34
  start-page: 2327
  year: 2013
  ident: c20
  publication-title: J. Comput. Chem.
– volume: 144
  start-page: 214110
  year: 2016
  ident: c31
  publication-title: J. Chem. Phys.
– volume: 113
  start-page: 8434
  year: 2009
  ident: c78
  publication-title: J. Phys. Chem. A
– volume: 12
  start-page: 2825
  year: 2011
  ident: c109
  publication-title: J. Mach. Learn. Res.
– volume: 133
  start-page: 244103
  year: 2010
  ident: c7
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 031101
  year: 2014
  ident: c25
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 174103
  year: 2012
  ident: c28
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 293
  year: 2014
  ident: c79
  publication-title: J. Phys. Chem. A
– volume: 115
  start-page: 12034
  year: 2011
  ident: c65
  publication-title: J. Phys. Chem. A
– volume: 131
  start-page: 174105
  year: 2009
  ident: c16
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 2655
  year: 2004
  ident: c71
  publication-title: J. Chem. Phys.
– volume: 135
  start-page: 194102
  year: 2011
  ident: c44
  publication-title: J. Chem. Phys.
– volume: 458
  start-page: 1
  year: 2015
  ident: c101
  publication-title: Chem. Phys.
– volume: 72
  start-page: 46
  year: 1977
  ident: c38
  publication-title: J. Am. Stat. Assoc.
– volume: 110
  start-page: 2477
  year: 2012
  ident: c87
  publication-title: Mol. Phys.
– volume: 7
  start-page: 790
  year: 2011
  ident: c43
  publication-title: J. Chem. Theory Comput.
– volume: 116
  start-page: 4211
  year: 2012
  ident: c98
  publication-title: J. Phys. Chem. A
– volume: 98
  start-page: 5648
  year: 1993
  ident: c112
  publication-title: J. Chem. Phys.
– volume: 35
  start-page: 634
  year: 2014
  ident: c72
  publication-title: J. Comput. Chem.
– volume: 3
  start-page: 569
  year: 2007
  ident: c102
  publication-title: J. Chem. Theory Comput.
– volume: 510
  start-page: 165
  year: 2011
  ident: c89
  publication-title: Chem. Phys. Lett.
– volume: 134
  start-page: 064113
  year: 2011
  ident: c23
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 5201
  year: 2013
  ident: c75
  publication-title: J. Chem. Theory Comput.
– volume: 107
  start-page: 1384
  year: 2003
  ident: c94
  publication-title: J. Phys. Chem. A
– volume: 108
  start-page: 19896
  year: 2011
  ident: c19
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  start-page: 2427
  year: 2011
  ident: c54
  publication-title: J. Chem. Theory Comput.
– volume: 112
  start-page: 559
  year: 2014
  ident: c114
  publication-title: Mol. Phys.
– volume: 5
  start-page: 1016
  year: 2009
  ident: c67
  publication-title: J. Chem. Theory Comput.
– volume: 12
  start-page: 444
  year: 2016
  ident: c85
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 1568
  year: 2013
  ident: c73
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 1368
  year: 2013
  ident: c66
  publication-title: J. Chem. Theory Comput.
– volume: 8
  start-page: 1629
  year: 2012
  ident: c77
  publication-title: J. Chem. Theory Comput.
– volume: 16
  start-page: 9904
  year: 2014
  ident: c29
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 531
  year: 1967
  ident: c36
  publication-title: Technometrics
– volume: 415
  start-page: 100
  year: 2005
  ident: c33
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 2282
  year: 2012
  ident: c57
  publication-title: J. Chem. Theory Comput.
– volume: 120
  start-page: 153
  year: 2016
  ident: c90
  publication-title: J. Phys. Chem. A
– volume: 6
  start-page: 107
  year: 2010
  ident: c68
  publication-title: J. Chem. Theory Comput.
– volume: 113
  start-page: 1618
  year: 2015
  ident: c60
  publication-title: Mol. Phys.
– volume: 144
  start-page: 214110
  year: 2016
  ident: 2023080308021612300_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4952647
– volume: 458
  start-page: 1
  year: 2015
  ident: 2023080308021612300_c101
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2015.07.005
– volume: 10
  start-page: 4400
  year: 2014
  ident: 2023080308021612300_c110
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500642x
– volume: 94
  start-page: 7221
  year: 1991
  ident: 2023080308021612300_c91
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460205
– volume: 107
  start-page: 8554
  year: 1997
  ident: 2023080308021612300_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475007
– volume: 415
  start-page: 100
  year: 2005
  ident: 2023080308021612300_c33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.08.060
– volume: 9
  start-page: 5201
  year: 2013
  ident: 2023080308021612300_c75
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400818v
– volume: 116
  start-page: 5105
  year: 2016
  ident: 2023080308021612300_c6
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00533
– volume: 106
  start-page: 4963
  year: 2009
  ident: 2023080308021612300_c9
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0901093106
– volume: 139
  start-page: 034107
  year: 2013
  ident: 2023080308021612300_c63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4813523
– volume: 113
  start-page: 1663
  year: 2009
  ident: 2023080308021612300_c51
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp809106b
– volume: 9
  start-page: 3397
  year: 2007
  ident: 2023080308021612300_c11
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b704725h
– volume: 121
  start-page: 2655
  year: 2004
  ident: 2023080308021612300_c71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1767519
– volume: 113
  start-page: 11974
  year: 2009
  ident: 2023080308021612300_c80
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp903640h
– volume: 116
  start-page: 4211
  year: 2012
  ident: 2023080308021612300_c98
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp301499y
– volume: 72
  start-page: 46
  year: 1977
  ident: 2023080308021612300_c38
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2286904
– volume: 114
  start-page: 20801
  year: 2010
  ident: 2023080308021612300_c17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1070852
– volume: 112
  start-page: 12868
  year: 2008
  ident: 2023080308021612300_c15
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp801805p
– volume: 140
  start-page: 18A527
  year: 2014
  ident: 2023080308021612300_c32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4868117
– volume: 36
  start-page: 622
  year: 2015
  ident: 2023080308021612300_c100
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23837
– volume: 120
  start-page: 153
  year: 2016
  ident: 2023080308021612300_c90
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.5b10266
– volume: 10
  start-page: 968
  year: 2014
  ident: 2023080308021612300_c35
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500026v
– volume: 9
  start-page: 2151
  year: 2013
  ident: 2023080308021612300_c40
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400057w
– volume: 98
  start-page: 5648
  year: 1993
  ident: 2023080308021612300_c112
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 8
  start-page: 2282
  year: 2012
  ident: 2023080308021612300_c57
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300215p
– volume: 109
  start-page: 2012
  year: 2005
  ident: 2023080308021612300_c92
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp045141s
– volume: 34
  start-page: 2327
  year: 2013
  ident: 2023080308021612300_c20
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23391
– volume: 118
  start-page: 4976
  year: 2003
  ident: 2023080308021612300_c105
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1543944
– volume: 7
  start-page: 43
  year: 2005
  ident: 2023080308021612300_c93
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b416937a
– volume: 6
  start-page: 107
  year: 2010
  ident: 2023080308021612300_c68
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900489g
– volume: 11
  start-page: 2473
  year: 2015
  ident: 2023080308021612300_c62
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5010593
– volume: 510
  start-page: 165
  year: 2011
  ident: 2023080308021612300_c89
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.05.007
– volume: 135
  start-page: 101102
  year: 2011
  ident: 2023080308021612300_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3640019
– volume: 9
  start-page: 6106
  year: 2007
  ident: 2023080308021612300_c47
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b709669k
– volume: 4
  start-page: 576
  year: 2014
  ident: 2023080308021612300_c26
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
  doi: 10.1002/wcms.1193
– volume: 116
  start-page: 52
  year: 2016
  ident: 2023080308021612300_c97
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25024
– volume: 10
  start-page: 3777
  year: 2014
  ident: 2023080308021612300_c70
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500506t
– volume: 11
  start-page: 1481
  year: 2015
  ident: 2023080308021612300_c50
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct501050s
– volume: 9
  start-page: 531
  year: 1967
  ident: 2023080308021612300_c36
  publication-title: Technometrics
  doi: 10.1080/00401706.1967.10490502
– volume: 8
  start-page: 4285
  year: 2012
  ident: 2023080308021612300_c49
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300647k
– volume: 9
  start-page: 1918
  year: 2013
  ident: 2023080308021612300_c74
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct301064t
– volume: 17
  start-page: 16560
  year: 2015
  ident: 2023080308021612300_c58
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c5cp02365c
– volume: 8
  start-page: 141
  year: 2012
  ident: 2023080308021612300_c42
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200751e
– volume: 19
  start-page: 32184
  year: 2017
  ident: 2023080308021612300_c5
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c7cp04913g
– volume: 35
  start-page: 634
  year: 2014
  ident: 2023080308021612300_c72
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23539
– volume: 441
  start-page: 166
  year: 2014
  ident: 2023080308021612300_c88
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2014.07.015
– volume: 135
  start-page: 024106
  year: 2011
  ident: 2023080308021612300_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3604569
– volume: 7
  start-page: 2427
  year: 2011
  ident: 2023080308021612300_c54
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct2002946
– volume: 16
  start-page: 978
  year: 2015
  ident: 2023080308021612300_c61
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402786
– volume: 140
  start-page: A1133
  year: 1965
  ident: 2023080308021612300_c2
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.140.a1133
– volume: 113
  start-page: 1618
  year: 2015
  ident: 2023080308021612300_c60
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.1001806
– volume: 120
  start-page: 215
  year: 2008
  ident: 2023080308021612300_c113
  publication-title: Theor. Chem. Acc.: Theory, Comput. Model. (Theor. Chim. Acta)
  doi: 10.1007/s00214-007-0310-x
– volume: 7
  start-page: 790
  year: 2011
  ident: 2023080308021612300_c43
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100563b
– volume: 24
  start-page: 381
  year: 1981
  ident: 2023080308021612300_c39
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: 133
  start-page: 244103
  year: 2010
  ident: 2023080308021612300_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3521275
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2023080308021612300_c109
  publication-title: J. Mach. Learn. Res.
– volume: 115
  start-page: 12034
  year: 2011
  ident: 2023080308021612300_c65
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp2069489
– volume: 107
  start-page: 1384
  year: 2003
  ident: 2023080308021612300_c94
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp021590l
– volume: 9
  start-page: 1368
  year: 2013
  ident: 2023080308021612300_c66
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4000235
– volume: 124
  start-page: 034108
  year: 2006
  ident: 2023080308021612300_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2148954
– volume: 8
  start-page: 1985
  year: 2006
  ident: 2023080308021612300_c48
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b600027d
– volume: 9
  start-page: 4403
  year: 2013
  ident: 2023080308021612300_c59
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400558w
– volume: 12
  start-page: 444
  year: 2016
  ident: 2023080308021612300_c85
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b01066
– volume: 16
  start-page: 9904
  year: 2014
  ident: 2023080308021612300_c29
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54374a
– volume: 113
  start-page: 878
  year: 2009
  ident: 2023080308021612300_c45
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp809062x
– volume: 132
  start-page: 154104
  year: 2010
  ident: 2023080308021612300_c12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 7
  start-page: 3466
  year: 2011
  ident: 2023080308021612300_c55
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200523a
– volume: 9
  start-page: 1568
  year: 2013
  ident: 2023080308021612300_c73
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300846m
– volume: 1
  start-page: 3122
  year: 2010
  ident: 2023080308021612300_c83
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101245s
– volume: 134
  start-page: 064113
  year: 2011
  ident: 2023080308021612300_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3544215
– volume: 108
  start-page: 2655
  year: 2010
  ident: 2023080308021612300_c96
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2010.519729
– volume: 141
  start-page: 031101
  year: 2014
  ident: 2023080308021612300_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4890314
– volume: 108
  start-page: 19896
  year: 2011
  ident: 2023080308021612300_c19
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1115123108
– volume: 110
  start-page: 2477
  year: 2012
  ident: 2023080308021612300_c87
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2012.698316
– volume: 119
  start-page: 235
  year: 2015
  ident: 2023080308021612300_c64
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp5098603
– volume: 10
  start-page: 3140
  year: 2014
  ident: 2023080308021612300_c53
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500347q
– volume: 37
  start-page: 49
  year: 2016
  ident: 2023080308021612300_c99
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23963
– volume: 135
  start-page: 194102
  year: 2011
  ident: 2023080308021612300_c44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3659142
– volume: 131
  start-page: 174105
  year: 2009
  ident: 2023080308021612300_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3244209
– volume: 133
  start-page: 134105
  year: 2010
  ident: 2023080308021612300_c106
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3484283
– volume: 112
  start-page: 559
  year: 2014
  ident: 2023080308021612300_c114
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.881634
– volume: 113
  start-page: 10146
  year: 2009
  ident: 2023080308021612300_c46
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9034375
– volume: 139
  start-page: 024110
  year: 2013
  ident: 2023080308021612300_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4812689
– volume: 8
  start-page: 3128
  year: 2012
  ident: 2023080308021612300_c69
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct3004723
– volume: 53
  start-page: 3764
  year: 1996
  ident: 2023080308021612300_c8
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.53.3764
– volume: 209
  start-page: 506
  year: 1993
  ident: 2023080308021612300_c107
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)80125-9
– volume: 15
  start-page: 15869
  year: 2013
  ident: 2023080308021612300_c111
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51826d
– volume: 113
  start-page: 8434
  year: 2009
  ident: 2023080308021612300_c78
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp904369h
– volume: 8
  start-page: 1629
  year: 2012
  ident: 2023080308021612300_c77
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200930x
– volume: 118
  start-page: 293
  year: 2014
  ident: 2023080308021612300_c79
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp410723v
– volume: 8
  start-page: 1646
  year: 2012
  ident: 2023080308021612300_c52
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300132e
– volume: 32
  start-page: 1456
  year: 2011
  ident: 2023080308021612300_c13
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 113
  start-page: 1284
  year: 2015
  ident: 2023080308021612300_c86
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.986238
– volume: 115
  start-page: 2315
  year: 2017
  ident: 2023080308021612300_c3
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2017.1333644
– volume: 123
  start-page: 062201
  year: 2005
  ident: 2023080308021612300_c4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1904565
– volume: 136
  start-page: B864
  year: 1964
  ident: 2023080308021612300_c1
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.136.b864
– volume: 7
  start-page: 291
  year: 2011
  ident: 2023080308021612300_c18
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100466k
– volume: 114
  start-page: 21
  year: 2016
  ident: 2023080308021612300_c103
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2015.1081418
– volume: 3
  start-page: 569
  year: 2007
  ident: 2023080308021612300_c102
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct600281g
– volume: 136
  start-page: 174103
  year: 2012
  ident: 2023080308021612300_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3703893
– volume: 117
  start-page: 2269
  year: 2013
  ident: 2023080308021612300_c84
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp312644t
– volume: 47
  start-page: 3649
  year: 1993
  ident: 2023080308021612300_c104
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.47.3649
– volume: 116
  start-page: 1086
  year: 2012
  ident: 2023080308021612300_c41
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp209536e
– volume: 10
  start-page: 5436
  year: 2014
  ident: 2023080308021612300_c76
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500899h
– volume: 538
  start-page: 121
  year: 2012
  ident: 2023080308021612300_c22
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2012.04.045
– volume: 7
  start-page: 3866
  year: 2011
  ident: 2023080308021612300_c34
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200644w
– volume: 113
  start-page: 184
  year: 2015
  ident: 2023080308021612300_c108
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.952696
– volume: 117
  start-page: 3118
  year: 2013
  ident: 2023080308021612300_c82
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp401429u
– volume: 72
  start-page: 012510
  year: 2005
  ident: 2023080308021612300_c14
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.72.012510
– volume: 5
  start-page: 1511
  year: 2009
  ident: 2023080308021612300_c81
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900005c
– volume: 49
  start-page: 1402
  year: 2010
  ident: 2023080308021612300_c95
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905484
– volume: 142
  start-page: 074111
  year: 2015
  ident: 2023080308021612300_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4907719
– volume: 11
  start-page: 3065
  year: 2015
  ident: 2023080308021612300_c56
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00281
– volume: 5
  start-page: 1016
  year: 2009
  ident: 2023080308021612300_c67
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800549f
SSID ssj0001724
Score 2.624653
Snippet A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241736
SubjectTerms Data analysis
Data points
Density
Electronic structure
Functionals
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mathematical analysis
Organic chemistry
Outliers (statistics)
Perturbation theory
Special Topic: Data-Enabled Theoretical Chemistry
Title Survival of the most transferable at the top of Jacob’s ladder: Defining and testing the ωB97M(2) double hybrid density functional
URI http://dx.doi.org/10.1063/1.5025226
https://www.ncbi.nlm.nih.gov/pubmed/29960332
https://www.proquest.com/docview/2088361642
https://www.proquest.com/docview/2063727169
https://www.osti.gov/servlets/purl/1477312
https://pubmed.ncbi.nlm.nih.gov/PMC5991970
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELegExovCMa_sIHMn0lDU0YTx47DWymrpqktSGulvkWOk6iTRjq1KRI88cIDH4FPxXfgk3AXJ2mqFQS8RFXiWK7v5_PvLndnQl4kzHESKVIbtpPUBoWn7YBHke1HIpIMGWqE_o7BUJyMvdMJn6wc-kV2SR4d6c8b80r-R6pwD-SKWbL_INm6U7gBv0G-cAUJw_WvZHy2hIX-0dBJJJAfZoscD30AKprMi5wok6oIBPMS25yC-ouq8IZgcXihivohrANqJy1OijABlVh5o8yi2u_29mXwJvAHQEVd9CHEsyX2PP2EuV6HMQbAY9Qn7I_Grdiku6vEs2KMuqpOYPwpNZ0fIExxu0ZtM1TzKGk6IxyJQVNlcvcq_l9l65EO7xt9VikEjo2mk9mEjOZty8D2hTk7tFbNnmxg0CRbX9H5QLLQ_XDEgb657oa62sN3YW_c74ej48noOtlywaBwW2Sr83bQP6t3bSByZcVuM7SqCpVgr-qu17hLC0R6vskuuRpeuw1sxgRWNLjL6Da5VUqAdgyC7pBrSbZDtrvVWX875EY5eXfJ1wpTdJZSAABFTNEmpqjKiweAKWxTYOrnl-8LatD0mlZYooAlWmKpeOPHN8TRgfuSGgxRgyFaYoiuMHSPjHvHo-6JXR7VYWtP8NxWvoJJjYHtRrHgKUtj7fHUa6dMJo4SIg10GkmfcS15W7VdxT3tpHEcCa10Khm7T1rZLEseEipVApMtuUyY8rh2lFKgS7RyJXYhhUUOKiGE1bTicSoXYRFPIVjohKW8LPKsbnppirdsarSLkgxRRomeaowv0zmYxL7PHNcie5WAw3LlL0IXtmYmHDDdLfK0fgwiw49tKktmS2wjGNgGjggs8sDgoR6DiyWRGIO3_TWk1A2w5vv6k-x8WtR-52DPBX7bIs9rTP3-rz368-B3yc3VGt4jrXy-TB4Dxc6jJ-Xq-AWlzNTY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+of+the+most+transferable+at+the+top+of+Jacob%E2%80%99s+ladder%3A+Defining+and+testing+the+%CF%89B97M%282%29+double+hybrid+density+functional&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Mardirossian+Narbe&rft.date=2018-06-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=148&rft.issue=24&rft_id=info:doi/10.1063%2F1.5025226&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon