Stretching-dominated deformation mechanism in a super square carbon nanotube network

Connecting straight carbon nanotube (CNT) arms with different CNT junctions, 2D CNT covalent networks can be theoretically constructed. The equivalent material properties of two kinds of 2D CNT network, the super square and super hexagon, are compared using molecular structure mechanics. Under uniax...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 47; no. 3; pp. 812 - 819
Main Authors Li, Ying, Qiu, XinMing, Yang, Fan, Yin, Yajun, Fan, Qinshan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2009
Elsevier
Subjects
Online AccessGet full text
ISSN0008-6223
1873-3891
DOI10.1016/j.carbon.2008.11.035

Cover

Loading…
Abstract Connecting straight carbon nanotube (CNT) arms with different CNT junctions, 2D CNT covalent networks can be theoretically constructed. The equivalent material properties of two kinds of 2D CNT network, the super square and super hexagon, are compared using molecular structure mechanics. Under uniaxial tensile loading in the principle direction, the super square could be regarded as a stretching-dominated network, while the super hexagon as a bending-dominated network. It is found that the super square has a higher stiffness than the super hexagon network. Similar to the super hexagon network, the aspect ratio of the CNT arm plays an important role in the properties of the super square network. Both the in-plane stiffness and Poisson’s ratio of the super square are proportional to the reciprocal of the tube aspect ratio.
AbstractList Connecting straight carbon nanotube (CNT) arms with different CNT junctions, 2D CNT covalent networks can be theoretically constructed. The equivalent material properties of two kinds of 2D CNT network, the super square and super hexagon, are compared using molecular structure mechanics. Under uniaxial tensile loading in the principle direction, the super square could be regarded as a stretching-dominated network, while the super hexagon as a bending-dominated network. It is found that the super square has a higher stiffness than the super hexagon network. Similar to the super hexagon network, the aspect ratio of the CNT arm plays an important role in the properties of the super square network. Both the in-plane stiffness and Poisson's ratio of the super square are proportional to the reciprocal of the tube aspect ratio.
Author Fan, Qinshan
Li, Ying
Yin, Yajun
Yang, Fan
Qiu, XinMing
Author_xml – sequence: 1
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
– sequence: 2
  givenname: XinMing
  surname: Qiu
  fullname: Qiu, XinMing
  organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
– sequence: 3
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
– sequence: 4
  givenname: Yajun
  surname: Yin
  fullname: Yin, Yajun
  email: yinyj@tsinghua.edu.cn
  organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
– sequence: 5
  givenname: Qinshan
  surname: Fan
  fullname: Fan, Qinshan
  organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21256615$$DView record in Pascal Francis
BookMark eNqFkc1u1TAQhS3USty2vAELb4BVgv_iOCyQUEVbpEosKGvLccbUl8S-tZ0i3h63qViwKKvR0XxnRjrnBB2FGACh15S0lFD5ft9ak8YYWkaIailtCe9eoB1VPW-4GugR2pG6aSRj_CU6yXlfpVBU7NDNt5Kg2FsffjRTXHwwBSY8gYtpMcXHgBewtyb4vGAfsMF5PUDC-W41CfD2FgcTYllHwAHKr5h-nqFjZ-YMr57mKfp-8fnm_Kq5_nr55fzTdWOF7Epjeg49cQ6Ec2JUxgoGrh_p2E0S-DSOg5GsKjKwYYSeM2WlU6PowE1K0Imfonfb3UOKdyvkohefLcyzCRDXrIcajlSCkEq-fZbkvBMdU7KCb55Ak62ZXTLB-qwPyS8m_daMsk5K2lVObJxNMecE7i9CiX4oRe_1lo5-KEVTqmsp1fbhH5v15THnkoyf_2f-uJmhZnrvIelsPQQLk09gi56if_7AH2cnrj8
CODEN CRBNAH
CitedBy_id crossref_primary_10_2472_jsms_61_149
crossref_primary_10_1016_j_carbon_2011_12_027
crossref_primary_10_1016_j_commatsci_2014_02_040
crossref_primary_10_3390_ma6020699
crossref_primary_10_1088_1361_651X_ac2b03
crossref_primary_10_1016_j_carbon_2017_09_053
crossref_primary_10_1016_j_carbon_2015_01_012
crossref_primary_10_1016_j_carbon_2016_03_020
crossref_primary_10_1016_j_physleta_2010_02_033
crossref_primary_10_3390_ma14206202
crossref_primary_10_1016_j_carbon_2018_01_082
crossref_primary_10_1016_j_commatsci_2013_04_033
crossref_primary_10_1002_pssr_202100189
crossref_primary_10_1007_s40997_019_00340_w
crossref_primary_10_1016_j_compscitech_2018_01_005
crossref_primary_10_1038_s41598_019_53222_1
crossref_primary_10_1088_2053_1591_aa7f8c
crossref_primary_10_1016_j_carbon_2011_09_019
crossref_primary_10_1016_j_commatsci_2014_11_034
crossref_primary_10_1088_0022_3727_42_15_155405
crossref_primary_10_1209_0295_5075_88_26006
crossref_primary_10_1016_j_polymer_2011_03_025
crossref_primary_10_1039_c1nr10331h
crossref_primary_10_1016_j_compositesa_2022_107066
crossref_primary_10_1021_ma202289a
crossref_primary_10_1016_j_carbon_2016_07_055
crossref_primary_10_1016_j_cma_2013_02_014
crossref_primary_10_1016_j_geomphys_2010_09_008
Cites_doi 10.1063/1.127006
10.1063/1.1610251
10.1126/science.286.5447.2148
10.1103/PhysRevLett.87.066802
10.1016/j.carbon.2005.10.049
10.1103/PhysRevB.75.075417
10.1038/4471066a
10.1103/PhysRevB.74.245413
10.1063/1.2838331
10.1016/j.jmps.2007.05.008
10.1166/jnn.2008.18382
10.1038/nmat1450
10.1016/j.ssc.2008.07.025
10.1088/0957-4484/18/7/075711
10.1021/nl070915c
10.1088/0957-4484/17/19/027
10.1023/B:NANO.0000006154.15176.0f
10.1016/j.carbon.2004.06.002
10.1063/1.1404400
10.1021/nl8012727
10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
10.1021/nl0622202
10.1126/science.1065824
10.1126/science.1149815
10.1103/PhysRevB.72.035435
10.1088/0957-4484/17/3/001
10.1103/PhysRevLett.91.145501
10.1016/S0020-7683(03)00056-8
10.1126/science.288.5465.494
10.1103/PhysRevB.42.9458
10.1103/PhysRevLett.89.075505
10.1016/j.cma.2003.12.037
10.1115/1.1646165
10.1088/0957-4484/19/16/165502
10.1088/0957-4484/19/22/225701
10.1126/science.286.5447.2056b
10.1103/PhysRevLett.79.4453
10.1016/S1359-6454(00)00379-7
10.1063/1.1432442
10.1088/0022-3727/41/15/155423
10.1088/0957-4484/18/33/335702
ContentType Journal Article
Copyright 2008 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8FD
JG9
DOI 10.1016/j.carbon.2008.11.035
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 819
ExternalDocumentID 21256615
10_1016_j_carbon_2008_11_035
S0008622308006192
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SR
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c465t-a73e70ffe4ff4b8ac42ef7b1b5d6e3dbb9a621b50929be7328c6f8b45efd841d3
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Sep 05 08:18:08 EDT 2025
Fri Sep 05 11:08:54 EDT 2025
Wed Apr 02 07:25:40 EDT 2025
Tue Jul 01 01:14:11 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Fri Feb 23 02:28:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bending
Carbon nanotubes
Deformation
Molecular structure
Mechanism
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-a73e70ffe4ff4b8ac42ef7b1b5d6e3dbb9a621b50929be7328c6f8b45efd841d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 33545286
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_901668400
proquest_miscellaneous_33545286
pascalfrancis_primary_21256615
crossref_primary_10_1016_j_carbon_2008_11_035
crossref_citationtrail_10_1016_j_carbon_2008_11_035
elsevier_sciencedirect_doi_10_1016_j_carbon_2008_11_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Carbon (New York)
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Deshpande, Ashby, Fleck (bib41) 2001; 49
Chopra, McGuire, Gothard, Rao, Pham (bib3) 2003; 83
Wang, McDowell (bib39) 2004; 126
Tai, Yeh, Liu (bib28) 2007; 42
Wang, Qiu, Zhang (bib22) 2007; 18
Qin, Feng, Zou, Yin, Yu (bib26) 2008; 8
Coluci, Pugno, Dantas, Galvao, Jorio (bib24) 2007; 18
Li, Qiu, Yang, Wang, Yin (bib27) 2008; 19
Ajayan, Schadler, Giannaris, Rubio (bib1) 2000; 12
Timoshenko (bib37) 1976
Andriotis, Menon, Srivastavaand, Chernozatonskii (bib15) 2001; 87
Li, Wen, Ren (bib9) 2001; 79
Ma, Song, Yang, Zhang, Zhao, Sun (bib20) 2007; 7
Brenner (bib45) 1990; 42
Chernozatonskii (bib14) 2003; 5
Brenner, Shenderova, Harrison, Stuart, Ni, Sinnott (bib46) 2002; 14
Gibson, Ashby (bib40) 1997
Kim, Lieber (bib7) 1999; 286
Coluci, Galvao, Jorio (bib21) 2006; 17
Fuhrer, Nygård, Shih, Forero, Yoon, Mazzoni (bib16) 2000; 288
Terrones, Banhart, Grobert, Charlier, Terrones, Ajayan (bib12) 2002; 89
Li, Qiu, Yang, Wang, Yin (bib25) 2008; 19
Li, Qiu, Yang, Wang, Yin, Fan (bib31) 2008; 41
Li, Chou (bib33) 2003; 40
Liu, Huang, Jiang, Qu, Yu, Hwang (bib35) 2005; 72
HyperChem
Yin, Chen, Yin, Huang (bib23) 2006; 17
Wang, Liew (bib42) 2008; 103
Zhang, Feng, Chen, Liu, Jiang, Li (bib32) 2008; 8
Ajayan, Tour (bib2) 2007; 447
Liu, Huang, Jiang, Qu, Hwang (bib34) 2004; 193
Meng, Shi, Xu, Yang (bib11) 2006; 44
Wu, Hwang, Huang (bib43) 2008; 56
Bachtold, Hadley, Nakanishi, Dekker (bib5) 2001; 294
Ilic, Czaplewski, Craighead, Neuzil, Campagnolo, Batt (bib4) 2000; 77
Ting, Chang (bib10) 2002; 80
.
Coluci, Dantas, Galvao, Jorio (bib30) 2007; 75
Huang, Wu, Hwang (bib44) 2006; 74
Romo-Herrera, Terrones, Terrones, Dag, Meunier (bib19) 2007; 7
Menon, Andriotis, Srivastava, Ponomareva, Chernozatonskii (bib13) 2003; 91
Li, Qiu, Yang, Wang, Yin, Fan (bib29) 2008; 148
Bandaru, Daraio, Jin, Rao (bib17) 2005; 4
Timoshenko, Woinowsky-Krieger (bib38) 1959
Hall, Coluci, Galvão, Kozlov, Zhang, Dantas (bib18) 2008; 320
Normile (bib6) 1999; 286
Menon, Srivastava (bib8) 1997; 79
Meng (10.1016/j.carbon.2008.11.035_bib11) 2006; 44
Coluci (10.1016/j.carbon.2008.11.035_bib24) 2007; 18
10.1016/j.carbon.2008.11.035_bib36
Ajayan (10.1016/j.carbon.2008.11.035_bib1) 2000; 12
Wang (10.1016/j.carbon.2008.11.035_bib39) 2004; 126
Romo-Herrera (10.1016/j.carbon.2008.11.035_bib19) 2007; 7
Li (10.1016/j.carbon.2008.11.035_bib29) 2008; 148
Chernozatonskii (10.1016/j.carbon.2008.11.035_bib14) 2003; 5
Liu (10.1016/j.carbon.2008.11.035_bib35) 2005; 72
Fuhrer (10.1016/j.carbon.2008.11.035_bib16) 2000; 288
Kim (10.1016/j.carbon.2008.11.035_bib7) 1999; 286
Menon (10.1016/j.carbon.2008.11.035_bib8) 1997; 79
Li (10.1016/j.carbon.2008.11.035_bib31) 2008; 41
Zhang (10.1016/j.carbon.2008.11.035_bib32) 2008; 8
Brenner (10.1016/j.carbon.2008.11.035_bib46) 2002; 14
Terrones (10.1016/j.carbon.2008.11.035_bib12) 2002; 89
Wang (10.1016/j.carbon.2008.11.035_bib42) 2008; 103
Deshpande (10.1016/j.carbon.2008.11.035_bib41) 2001; 49
Coluci (10.1016/j.carbon.2008.11.035_bib30) 2007; 75
Chopra (10.1016/j.carbon.2008.11.035_bib3) 2003; 83
Coluci (10.1016/j.carbon.2008.11.035_bib21) 2006; 17
Qin (10.1016/j.carbon.2008.11.035_bib26) 2008; 8
Ajayan (10.1016/j.carbon.2008.11.035_bib2) 2007; 447
Li (10.1016/j.carbon.2008.11.035_bib33) 2003; 40
Bachtold (10.1016/j.carbon.2008.11.035_bib5) 2001; 294
Normile (10.1016/j.carbon.2008.11.035_bib6) 1999; 286
Bandaru (10.1016/j.carbon.2008.11.035_bib17) 2005; 4
Andriotis (10.1016/j.carbon.2008.11.035_bib15) 2001; 87
Timoshenko (10.1016/j.carbon.2008.11.035_bib38) 1959
Li (10.1016/j.carbon.2008.11.035_bib27) 2008; 19
Timoshenko (10.1016/j.carbon.2008.11.035_bib37) 1976
Ma (10.1016/j.carbon.2008.11.035_bib20) 2007; 7
Li (10.1016/j.carbon.2008.11.035_bib25) 2008; 19
Wang (10.1016/j.carbon.2008.11.035_bib22) 2007; 18
Ilic (10.1016/j.carbon.2008.11.035_bib4) 2000; 77
Huang (10.1016/j.carbon.2008.11.035_bib44) 2006; 74
Wu (10.1016/j.carbon.2008.11.035_bib43) 2008; 56
Li (10.1016/j.carbon.2008.11.035_bib9) 2001; 79
Menon (10.1016/j.carbon.2008.11.035_bib13) 2003; 91
Hall (10.1016/j.carbon.2008.11.035_bib18) 2008; 320
Tai (10.1016/j.carbon.2008.11.035_bib28) 2007; 42
Gibson (10.1016/j.carbon.2008.11.035_bib40) 1997
Yin (10.1016/j.carbon.2008.11.035_bib23) 2006; 17
Liu (10.1016/j.carbon.2008.11.035_bib34) 2004; 193
Brenner (10.1016/j.carbon.2008.11.035_bib45) 1990; 42
Ting (10.1016/j.carbon.2008.11.035_bib10) 2002; 80
References_xml – volume: 89
  start-page: 075505
  year: 2002
  ident: bib12
  article-title: Molecular junctions by joining single-walled carbon nanotubes
  publication-title: Phys Rev Lett
– volume: 4
  start-page: 663
  year: 2005
  end-page: 666
  ident: bib17
  article-title: Novel electrical switching behavior and logic in carbon nanotube Y-junctions
  publication-title: Nat Mater
– volume: 14
  start-page: 783
  year: 2002
  end-page: 802
  ident: bib46
  article-title: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
  publication-title: J Phys: Condens Matter
– volume: 288
  start-page: 494
  year: 2000
  end-page: 497
  ident: bib16
  article-title: Crossed nanotube junctions
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2008
  end-page: 9
  ident: bib26
  article-title: Molecular dynamics simulations of deformation and rupture of super carbon nanotubes under tension
  publication-title: J Nanosci Nanotechnol
– reference: .
– volume: 5
  start-page: 473
  year: 2003
  end-page: 484
  ident: bib14
  article-title: Three-terminal junctions of carbon nanotubes: synthesis, structures, properties and applications
  publication-title: J Nanopart Res
– volume: 17
  start-page: 4941
  year: 2006
  end-page: 4945
  ident: bib23
  article-title: Geometric conservation laws for perfect Y-branched carbon nanotubes
  publication-title: Nanotechnology
– volume: 103
  start-page: 046103
  year: 2008
  ident: bib42
  article-title: Molecular mechanics modeling for properties of carbon nanotubes
  publication-title: J Appl Phys
– volume: 19
  start-page: 225701
  year: 2008
  ident: bib25
  article-title: The effective modulus of super carbon nanotubes predicted by molecular structure mechanics
  publication-title: Nanotechnology
– volume: 18
  start-page: 075711
  year: 2007
  ident: bib22
  article-title: Mechanical properties of super honeycomb structures based on carbon nanotubes
  publication-title: Nanotechnology
– volume: 8
  start-page: 2564
  year: 2008
  end-page: 2569
  ident: bib32
  article-title: Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials
  publication-title: Nanoletters
– volume: 286
  start-page: 2148
  year: 1999
  end-page: 2150
  ident: bib7
  article-title: Nanotube nanotweezers
  publication-title: Science
– volume: 87
  start-page: 066802
  year: 2001
  ident: bib15
  article-title: Rectification properties of carbon nanotube “Y-junctions”
  publication-title: Phys Rev Lett
– volume: 7
  start-page: 2307
  year: 2007
  end-page: 2311
  ident: bib20
  article-title: Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films
  publication-title: Nanoletters
– volume: 91
  start-page: 145501
  year: 2003
  ident: bib13
  article-title: Carbon nanotube “T junctions”: formation pathways and conductivity
  publication-title: Phys Rev Lett
– volume: 7
  start-page: 570
  year: 2007
  end-page: 576
  ident: bib19
  article-title: Covalent 2D and 3D networks from 1D nanostructures: designing new materials
  publication-title: Nanoletters
– volume: 126
  start-page: 137
  year: 2004
  end-page: 156
  ident: bib39
  article-title: In-plane stiffness and yield strength of periodic metal honeycombs
  publication-title: ASME J Eng Mater Technol
– volume: 40
  start-page: 2487
  year: 2003
  end-page: 2499
  ident: bib33
  article-title: A structural mechanics approach for the analysis of carbon nanotubes
  publication-title: Int J Solids Struct
– volume: 148
  start-page: 63
  year: 2008
  end-page: 68
  ident: bib29
  article-title: Chirality independence in critical buckling forces of super carbon nanotubes
  publication-title: Solid State Commun
– volume: 56
  start-page: 279
  year: 2008
  end-page: 292
  ident: bib43
  article-title: An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes
  publication-title: J Mech Phys Solids
– volume: 12
  start-page: 750
  year: 2000
  end-page: 753
  ident: bib1
  article-title: Single-walled carbon nanotube-polymer composites: strength and weakness
  publication-title: Adv Mater
– volume: 286
  start-page: 2056
  year: 1999
  end-page: 2057
  ident: bib6
  article-title: Nanotubes generate full-color displays
  publication-title: Science
– volume: 447
  start-page: 1066
  year: 2007
  end-page: 1068
  ident: bib2
  article-title: Nanotube composites
  publication-title: Nature (London)
– reference: HyperChem
– volume: 42
  start-page: 9458
  year: 1990
  end-page: 9471
  ident: bib45
  article-title: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films
  publication-title: Phys Rev B
– volume: 294
  start-page: 1317
  year: 2001
  end-page: 1320
  ident: bib5
  article-title: Logic circuits with carbon nanotube transistors
  publication-title: Science
– volume: 79
  start-page: 4453
  year: 1997
  ident: bib8
  article-title: Carbon nanotube “T junctions”: nanoscale metal–semiconductor–metal contact devices
  publication-title: Phys Rev Lett
– volume: 18
  start-page: 335702
  year: 2007
  ident: bib24
  article-title: Atomistic simulations of the mechanical properties of ‘super’ carbon nanotubes
  publication-title: Nanotechnology
– volume: 83
  start-page: 2280
  year: 2003
  ident: bib3
  article-title: Selective gas detection using a carbon nanotube sensor
  publication-title: Appl Phys Lett
– volume: 79
  start-page: 1879
  year: 2001
  ident: bib9
  article-title: Straight carbon nanotube Y junctions
  publication-title: Appl Phys Lett
– volume: 42
  start-page: 2774
  year: 2007
  end-page: 2777
  ident: bib28
  article-title: Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement
  publication-title: Carbon
– volume: 320
  start-page: 504
  year: 2008
  end-page: 507
  ident: bib18
  article-title: Sign change of Poisson’s ratio for carbon nanotube sheets
  publication-title: Science
– volume: 75
  start-page: 075417
  year: 2007
  ident: bib30
  article-title: Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations
  publication-title: Phys Rev B
– volume: 77
  start-page: 450
  year: 2000
  ident: bib4
  article-title: Mechanical resonant immunospecific biological detector
  publication-title: Appl Phys Lett
– year: 1959
  ident: bib38
  article-title: Theory of plates and shells
– volume: 49
  start-page: 1035
  year: 2001
  end-page: 1040
  ident: bib41
  article-title: Foam topology-bending versus stretching dominated architectures
  publication-title: Acta Mater
– volume: 17
  start-page: 617
  year: 2006
  end-page: 621
  ident: bib21
  article-title: Geometric and electronic structure of carbon nanotube networks: ‘super’-carbon nanotubes
  publication-title: Nanotechnology
– volume: 80
  start-page: 324
  year: 2002
  ident: bib10
  article-title: Multijunction carbon nanotube network
  publication-title: Appl Phys Lett
– volume: 41
  start-page: 155423
  year: 2008
  ident: bib31
  article-title: A comprehensive study on the mechanical properties of super carbon nanotubes
  publication-title: J Phys D: Appl Phys
– volume: 44
  start-page: 1263
  year: 2006
  end-page: 1266
  ident: bib11
  article-title: Size effect of X-shaped carbon nanotube junctions
  publication-title: Carbon
– year: 1976
  ident: bib37
  article-title: Strength of materials
– volume: 19
  start-page: 165502
  year: 2008
  ident: bib27
  article-title: Ultra-high sensitivity of super carbon-nanotube-based mass and strain sensors
  publication-title: Nanotechnology
– volume: 193
  start-page: 1849
  year: 2004
  end-page: 1864
  ident: bib34
  article-title: The atom-scale finite element method
  publication-title: Comput Method Appl M
– volume: 72
  start-page: 035435
  year: 2005
  ident: bib35
  article-title: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes
  publication-title: Phys Rev B
– year: 1997
  ident: bib40
  article-title: Cellular solids: structure and properties
– reference: .
– volume: 74
  start-page: 245413
  year: 2006
  ident: bib44
  article-title: Thickness of graphene and single-wall carbon nanotubes
  publication-title: Phys Rev B
– volume: 77
  start-page: 450
  year: 2000
  ident: 10.1016/j.carbon.2008.11.035_bib4
  article-title: Mechanical resonant immunospecific biological detector
  publication-title: Appl Phys Lett
  doi: 10.1063/1.127006
– volume: 83
  start-page: 2280
  year: 2003
  ident: 10.1016/j.carbon.2008.11.035_bib3
  article-title: Selective gas detection using a carbon nanotube sensor
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1610251
– volume: 286
  start-page: 2148
  year: 1999
  ident: 10.1016/j.carbon.2008.11.035_bib7
  article-title: Nanotube nanotweezers
  publication-title: Science
  doi: 10.1126/science.286.5447.2148
– volume: 87
  start-page: 066802
  year: 2001
  ident: 10.1016/j.carbon.2008.11.035_bib15
  article-title: Rectification properties of carbon nanotube “Y-junctions”
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.87.066802
– volume: 44
  start-page: 1263
  year: 2006
  ident: 10.1016/j.carbon.2008.11.035_bib11
  article-title: Size effect of X-shaped carbon nanotube junctions
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.10.049
– volume: 75
  start-page: 075417
  year: 2007
  ident: 10.1016/j.carbon.2008.11.035_bib30
  article-title: Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.75.075417
– year: 1959
  ident: 10.1016/j.carbon.2008.11.035_bib38
– volume: 447
  start-page: 1066
  year: 2007
  ident: 10.1016/j.carbon.2008.11.035_bib2
  article-title: Nanotube composites
  publication-title: Nature (London)
  doi: 10.1038/4471066a
– volume: 74
  start-page: 245413
  year: 2006
  ident: 10.1016/j.carbon.2008.11.035_bib44
  article-title: Thickness of graphene and single-wall carbon nanotubes
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.74.245413
– volume: 103
  start-page: 046103
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib42
  article-title: Molecular mechanics modeling for properties of carbon nanotubes
  publication-title: J Appl Phys
  doi: 10.1063/1.2838331
– volume: 56
  start-page: 279
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib43
  article-title: An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2007.05.008
– volume: 8
  start-page: 1
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib26
  article-title: Molecular dynamics simulations of deformation and rupture of super carbon nanotubes under tension
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2008.18382
– volume: 4
  start-page: 663
  year: 2005
  ident: 10.1016/j.carbon.2008.11.035_bib17
  article-title: Novel electrical switching behavior and logic in carbon nanotube Y-junctions
  publication-title: Nat Mater
  doi: 10.1038/nmat1450
– volume: 148
  start-page: 63
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib29
  article-title: Chirality independence in critical buckling forces of super carbon nanotubes
  publication-title: Solid State Commun
  doi: 10.1016/j.ssc.2008.07.025
– volume: 18
  start-page: 075711
  year: 2007
  ident: 10.1016/j.carbon.2008.11.035_bib22
  article-title: Mechanical properties of super honeycomb structures based on carbon nanotubes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/7/075711
– volume: 7
  start-page: 2307
  year: 2007
  ident: 10.1016/j.carbon.2008.11.035_bib20
  article-title: Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films
  publication-title: Nanoletters
  doi: 10.1021/nl070915c
– volume: 17
  start-page: 4941
  year: 2006
  ident: 10.1016/j.carbon.2008.11.035_bib23
  article-title: Geometric conservation laws for perfect Y-branched carbon nanotubes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/19/027
– volume: 5
  start-page: 473
  year: 2003
  ident: 10.1016/j.carbon.2008.11.035_bib14
  article-title: Three-terminal junctions of carbon nanotubes: synthesis, structures, properties and applications
  publication-title: J Nanopart Res
  doi: 10.1023/B:NANO.0000006154.15176.0f
– volume: 42
  start-page: 2774
  year: 2007
  ident: 10.1016/j.carbon.2008.11.035_bib28
  article-title: Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.06.002
– year: 1997
  ident: 10.1016/j.carbon.2008.11.035_bib40
– volume: 79
  start-page: 1879
  year: 2001
  ident: 10.1016/j.carbon.2008.11.035_bib9
  article-title: Straight carbon nanotube Y junctions
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1404400
– volume: 8
  start-page: 2564
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib32
  article-title: Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials
  publication-title: Nanoletters
  doi: 10.1021/nl8012727
– volume: 12
  start-page: 750
  year: 2000
  ident: 10.1016/j.carbon.2008.11.035_bib1
  article-title: Single-walled carbon nanotube-polymer composites: strength and weakness
  publication-title: Adv Mater
  doi: 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
– volume: 7
  start-page: 570
  year: 2007
  ident: 10.1016/j.carbon.2008.11.035_bib19
  article-title: Covalent 2D and 3D networks from 1D nanostructures: designing new materials
  publication-title: Nanoletters
  doi: 10.1021/nl0622202
– volume: 294
  start-page: 1317
  year: 2001
  ident: 10.1016/j.carbon.2008.11.035_bib5
  article-title: Logic circuits with carbon nanotube transistors
  publication-title: Science
  doi: 10.1126/science.1065824
– volume: 320
  start-page: 504
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib18
  article-title: Sign change of Poisson’s ratio for carbon nanotube sheets
  publication-title: Science
  doi: 10.1126/science.1149815
– volume: 72
  start-page: 035435
  year: 2005
  ident: 10.1016/j.carbon.2008.11.035_bib35
  article-title: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.72.035435
– volume: 17
  start-page: 617
  year: 2006
  ident: 10.1016/j.carbon.2008.11.035_bib21
  article-title: Geometric and electronic structure of carbon nanotube networks: ‘super’-carbon nanotubes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/3/001
– volume: 91
  start-page: 145501
  year: 2003
  ident: 10.1016/j.carbon.2008.11.035_bib13
  article-title: Carbon nanotube “T junctions”: formation pathways and conductivity
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.91.145501
– ident: 10.1016/j.carbon.2008.11.035_bib36
– volume: 40
  start-page: 2487
  year: 2003
  ident: 10.1016/j.carbon.2008.11.035_bib33
  article-title: A structural mechanics approach for the analysis of carbon nanotubes
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(03)00056-8
– year: 1976
  ident: 10.1016/j.carbon.2008.11.035_bib37
– volume: 288
  start-page: 494
  year: 2000
  ident: 10.1016/j.carbon.2008.11.035_bib16
  article-title: Crossed nanotube junctions
  publication-title: Science
  doi: 10.1126/science.288.5465.494
– volume: 42
  start-page: 9458
  year: 1990
  ident: 10.1016/j.carbon.2008.11.035_bib45
  article-title: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.42.9458
– volume: 89
  start-page: 075505
  year: 2002
  ident: 10.1016/j.carbon.2008.11.035_bib12
  article-title: Molecular junctions by joining single-walled carbon nanotubes
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.89.075505
– volume: 193
  start-page: 1849
  year: 2004
  ident: 10.1016/j.carbon.2008.11.035_bib34
  article-title: The atom-scale finite element method
  publication-title: Comput Method Appl M
  doi: 10.1016/j.cma.2003.12.037
– volume: 126
  start-page: 137
  year: 2004
  ident: 10.1016/j.carbon.2008.11.035_bib39
  article-title: In-plane stiffness and yield strength of periodic metal honeycombs
  publication-title: ASME J Eng Mater Technol
  doi: 10.1115/1.1646165
– volume: 19
  start-page: 165502
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib27
  article-title: Ultra-high sensitivity of super carbon-nanotube-based mass and strain sensors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/16/165502
– volume: 19
  start-page: 225701
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib25
  article-title: The effective modulus of super carbon nanotubes predicted by molecular structure mechanics
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/22/225701
– volume: 286
  start-page: 2056
  year: 1999
  ident: 10.1016/j.carbon.2008.11.035_bib6
  article-title: Nanotubes generate full-color displays
  publication-title: Science
  doi: 10.1126/science.286.5447.2056b
– volume: 79
  start-page: 4453
  year: 1997
  ident: 10.1016/j.carbon.2008.11.035_bib8
  article-title: Carbon nanotube “T junctions”: nanoscale metal–semiconductor–metal contact devices
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.79.4453
– volume: 49
  start-page: 1035
  year: 2001
  ident: 10.1016/j.carbon.2008.11.035_bib41
  article-title: Foam topology-bending versus stretching dominated architectures
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(00)00379-7
– volume: 14
  start-page: 783
  year: 2002
  ident: 10.1016/j.carbon.2008.11.035_bib46
  article-title: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
  publication-title: J Phys: Condens Matter
– volume: 80
  start-page: 324
  year: 2002
  ident: 10.1016/j.carbon.2008.11.035_bib10
  article-title: Multijunction carbon nanotube network
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1432442
– volume: 41
  start-page: 155423
  year: 2008
  ident: 10.1016/j.carbon.2008.11.035_bib31
  article-title: A comprehensive study on the mechanical properties of super carbon nanotubes
  publication-title: J Phys D: Appl Phys
  doi: 10.1088/0022-3727/41/15/155423
– volume: 18
  start-page: 335702
  year: 2007
  ident: 10.1016/j.carbon.2008.11.035_bib24
  article-title: Atomistic simulations of the mechanical properties of ‘super’ carbon nanotubes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/33/335702
SSID ssj0004814
Score 2.0995843
Snippet Connecting straight carbon nanotube (CNT) arms with different CNT junctions, 2D CNT covalent networks can be theoretically constructed. The equivalent material...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 812
SubjectTerms Aspect ratio
Carbon
Carbon nanotubes
Covalence
Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
Hexagons
Materials science
Networks
Physics
Specific materials
Stiffness
Two dimensional
Title Stretching-dominated deformation mechanism in a super square carbon nanotube network
URI https://dx.doi.org/10.1016/j.carbon.2008.11.035
https://www.proquest.com/docview/33545286
https://www.proquest.com/docview/901668400
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPiiI-InzY-bB1-rWpmn2OIYyFfc0wbeSpBeYuHSu3at_u7mmnYiK4GPLlR654-7C_e53hFyGoUoUjn0kLNYB05EOBNcy4CLrZQPkfKq49B4nfPzE7p_j5xYZNbMwCKusY7-P6VW0rt9c16d5vZjNcMYXy3FXQgvMwwOMw4wl6OtX758wDyY8vze2-VG6GZ-rMF5aLlVuPaISuTyrpW8_pqfthSzcoRm_7eJb4K6y0e0u2anLSDr0mu6RFth9sjlqtrcdkCm2m8sKKBlkOeJdXGlJM1gPK9I54NDvrJjTmaWSFqsFLGnx5lwGqNeYWmnzcqWAWg8WPyRPtzfT0TioNygEmvG4DGQSQdIzBpgxTAmpWQgmUX0VZxyiTKmB5KF76rkiSQHy9mhuhGIxmEywfhYdkbbNLRwTqrSK-xpwVbW75LBIxApkGBuVAOC1skOi5uBSXdOL45aL17TBkb2kXnm_-dLdO9xxd0iw_mrh6TX-kE8am6Rf3CR1GeCPL7tfTLj-ncvdrqTtO4GLxqapsxX2TaSFfFWkUYSL2AXvEPqLhCuqOLLm9E7-rd8p2fKNKoS3nZF2uVzBuat3StWtHLpLNoZ3D-PJB6ppAbM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADB5CekiglDZt6DZNModc3ex6Hp49lqVh2zxOG8jNzIw1sKUZb9fea397JI-9IbQh0KONjIU0SBr06RNjZ3nuCkdjH4VUPpNe-MxobzNtqnE1Jc6njkvv-kbPb-WPO3W3w2bDLAzBKvvYn2J6F637N-e9Nc9XyyXN-FI5jiW0oTw8xTj8SipREK7vy59HnIc0ieCb-vwkPszPdSAvb9eujglSSWSe3da3f-an1yvboNVCWnfxV-Tu0tHFW_amryP516TqO7YD8YDtzYb1be_ZgvrNbYeUzKqaAC9YW_IKttOK_B5o6nfZ3PNl5JY3mxWsefMbzwzwpDGPNtbtxgGPCS3-gd1efFvM5lm_QiHzUqs2s4WAYhwCyBCkM9bLHELhJk5VGkTl3NTqHJ_GWCU5IOIer4NxUkGojJxU4pDtxjrCR8add2rigXZV4y1HCqMc2FwFVwDQvXLExGC40vf84rTm4lc5AMl-lkn5tPoSLx5o7hHLtl-tEr_GC_LF4JPyyTkpMQW88OXJExduf4fJG2vaCQqcDj4t0VfUOLER6k1TCkGb2I0eMf6MBFZVmmhzxp_-W79TtjdfXF-VV99vLo_YfupaEdbtM9tt1xs4xuKndSfd4X4AiQ0DRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretching-dominated+deformation+mechanism+in+a+super+square+carbon+nanotube+network&rft.jtitle=Carbon+%28New+York%29&rft.au=YING+LI&rft.au=XINMING+QIU&rft.au=FAN+YANG&rft.au=YAJUN+YIN&rft.date=2009-03-01&rft.pub=Elsevier&rft.issn=0008-6223&rft.volume=47&rft.issue=3&rft.spage=812&rft.epage=819&rft_id=info:doi/10.1016%2Fj.carbon.2008.11.035&rft.externalDBID=n%2Fa&rft.externalDocID=21256615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon