Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives
The large-conductance Ca 2+ -activated K + (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intr...
Saved in:
Published in | Physiological genomics Vol. 49; no. 6; pp. 306 - 317 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The large-conductance Ca
2+
-activated K
+
(BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca
2+
). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis. |
---|---|
AbstractList | The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis. The large-conductance Ca -activated K (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca ). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis. The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis. The large-conductance Ca 2+ -activated K + (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca 2+ ). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis. |
Author | Tricarico, Domenico Mele, Antonietta Cetrone, Michela Maqoud, Fatima |
Author_xml | – sequence: 1 givenname: Fatima surname: Maqoud fullname: Maqoud, Fatima organization: Department of Pharmacy-Drug Science, University of Bari, Bari, Italy;, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco – sequence: 2 givenname: Michela surname: Cetrone fullname: Cetrone, Michela organization: Istituto Tumori Giovanni Paolo II, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Bari, Italy; and – sequence: 3 givenname: Antonietta surname: Mele fullname: Mele, Antonietta organization: Department of Pharmacy-Drug Science, University of Bari, Bari, Italy – sequence: 4 givenname: Domenico surname: Tricarico fullname: Tricarico, Domenico organization: Department of Pharmacy-Drug Science, University of Bari, Bari, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28455309$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT1vFDEQhi0URJKDv4AsaGj2sL322U4FiviSgmigXnm9s3cOXnvxB1IK_js-EiiuoprR6JlXo3ku0VmIARB6QcmWUsFer4e77KLfQ4iLs3lLCGV0ywjdPUIXVPS0Y2wnz1pPNO9Uz-k5usz5tnFcKvEEnTPFheiJvkC_PkcPtnqTcC6p2lITYBMmPNdgi4sBxxmPbo-t8dbVpTNt-tMUmPAai8m5zbA9mBDAZ-wCzt_BQzEeLzVbD1d4PZi0GBt93LsWgldIeYVjCuSn6PFsfIZnD3WDvr1_9_X6Y3fz5cOn67c3neU7UTqz072V0mhOGR-FHYWSkk2Ggha9VgCCzz0ZJzYSyfk0qpkYTbTYUSVHQmW_Qa_uc9cUf1TIZVhctuC9CRBrHqjSveBaKtbQlyfobawptOsGqjVjivTtmg16_kDVcYFpWJNbTLob_j62AVf3gE0x5wTzP4SS4WhxOLE4_LE4HC225Tcny9YVc7RRknH-fyJ-Aw67rUQ |
CitedBy_id | crossref_primary_10_3390_cells11192936 crossref_primary_10_3389_fphys_2024_1359560 crossref_primary_10_1016_j_bmcl_2021_128083 crossref_primary_10_1134_S1990747824700089 crossref_primary_10_3389_fphys_2017_00698 crossref_primary_10_1002_arch_21720 crossref_primary_10_3389_fphys_2019_00167 crossref_primary_10_1016_j_yjmcc_2021_05_002 crossref_primary_10_1016_j_ceca_2018_09_007 crossref_primary_10_3390_cells12060928 crossref_primary_10_3390_ijms25073802 crossref_primary_10_1093_hmg_ddy142 crossref_primary_10_31857_S0233475524030015 crossref_primary_10_1038_s41598_021_90465_3 crossref_primary_10_1096_fj_202300840RR crossref_primary_10_3390_biomedicines11082297 crossref_primary_10_1016_j_bbrc_2021_07_027 crossref_primary_10_1186_s13395_019_0213_2 crossref_primary_10_1002_jcsm_13253 crossref_primary_10_3390_ijms24076796 crossref_primary_10_51477_mejs_1087669 |
Cites_doi | 10.1161/01.RES.0000196557.93717.95 10.1113/jphysiol.2006.106922 10.1016/0006-8993(89)90191-1 10.1007/s004240050471 10.1152/jn.2001.85.2.790 10.1124/jpet.113.212662 10.1016/j.neuron.2008.05.032 10.3389/fphar.2011.00008 10.1038/bjp.2008.42 10.1046/j.1432-1327.2000.01076.x 10.1074/jbc.C000741200 10.1371/journal.pone.0072028 10.3389/fphys.2015.00104 10.1073/pnas.1205435109 10.1056/NEJM196803142781102 10.1016/0896-6273(94)90418-9 10.1085/jgp.201311072 10.1074/jbc.M910187199 10.1074/mcp.M800063-MCP200 10.1177/1087057115601677 10.1212/WNL.0b013e31823a0cb6 10.1152/ajpcell.00495.2010 10.1016/j.neuroscience.2007.03.038 10.1016/j.bbamem.2008.10.001 10.1152/ajpheart.00939.2012 10.1016/S0006-3495(04)74339-8 10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-A 10.1212/WNL.0000000000002416 10.1038/sj.jcbfm.9600536 10.1074/jbc.272.18.11710 10.1016/j.neuroscience.2007.04.019 10.1038/35073593 10.1371/journal.pone.0040235 10.1038/sj.onc.1210036 10.1152/jn.00009.2007 10.4161/chan.25485 10.1002/1531-8249(200009)48:3<304::AID-ANA4>3.0.CO;2-A 10.1016/j.cell.2004.11.049 10.1085/jgp.200409236 10.1016/j.nmd.2005.10.005 10.1172/JCI4552 10.1016/S0960-8966(01)00270-X 10.1073/pnas.1400555112 10.1038/sj.bjp.0705233 10.1146/annurev.physiol.010908.163124 10.1161/CIRCRESAHA.115.303407 10.1152/ajprenal.00140.2008 10.1002/ijc.23511 10.3389/fphys.2014.00389 10.1113/jphysiol.2009.186627 10.1371/journal.pone.0086586 10.1073/pnas.0811277106 10.1371/journal.pone.0012304 10.1097/00004872-200205000-00028 10.4161/chan.26242 10.1186/1471-2407-9-258 10.1038/nrd4254 10.1016/j.tins.2003.08.007 10.1097/HJH.0b013e32830b894a 10.1016/j.phrs.2012.07.007 10.1074/jbc.M008852200 10.1002/cmdc.201200321 10.1073/pnas.1222003110 10.1016/j.febslet.2007.01.077 10.1085/jgp.201311061 10.1016/j.nmd.2007.07.009 10.1007/s00232-007-9080-6 10.1371/journal.pone.0069551 10.1371/journal.pone.0086636 10.1113/jphysiol.2011.215533 10.3345/kjp.2014.57.10.445 10.1016/j.brainres.2009.06.008 10.1016/0028-3908(96)00131-1 10.1038/onc.2009.435 10.1126/science.280.5362.443 10.3181/0711-MR-308 10.1016/j.bcp.2014.06.023 10.1016/bs.irn.2016.02.012 10.1016/j.tins.2010.06.004 10.1016/S0168-9525(00)02176-4 10.2174/1573399810666140918121022 10.1007/s11357-013-9544-9 10.1016/S0021-9258(17)31998-1 10.1093/hmg/ddn168 10.1097/HJH.0b013e32831103d8 10.1074/jbc.M505383200 10.1016/S0960-8966(03)00095-6 10.1152/ajpcell.2001.281.1.C361 10.1016/j.neuroscience.2007.07.066 10.1073/pnas.112619799 10.2337/db16-0245 10.3389/fphys.2014.00316 10.4049/jimmunol.1102965 10.1016/j.bbrc.2008.07.161 10.1016/j.ejphar.2014.03.060 10.1124/pr.55.4.9 10.1016/j.bbamem.2004.10.002 10.1124/mol.108.046615 10.1517/14728222.2011.620607 10.3390/biom5031870 10.1038/ng1585 10.1016/j.nbd.2005.03.011 10.1002/glia.20364 10.1038/nature09162 10.1016/S0962-8924(01)02068-2 10.1113/jphysiol.2009.185835 10.3389/fphys.2014.00476 10.1016/j.ejmech.2014.01.035 10.1074/jbc.M108354200 10.1016/j.nurt.2007.01.013 10.1152/physiol.00032.2008 10.1146/annurev.ph.51.030189.002125 10.1113/jphysiol.1991.sp018861 10.1523/JNEUROSCI.07-01-00101.1987 10.1073/pnas.0404877101 10.1096/fj.03-0722fje 10.1016/j.bbamem.2015.08.005 10.1073/pnas.0302919101 10.1016/j.tcb.2009.09.008 10.1371/journal.pone.0037451 10.1016/S0962-8924(01)02241-3 |
ContentType | Journal Article |
Copyright | Copyright © 2017 the American Physiological Society. Copyright American Physiological Society Jun 2017 |
Copyright_xml | – notice: Copyright © 2017 the American Physiological Society. – notice: Copyright American Physiological Society Jun 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 |
DOI | 10.1152/physiolgenomics.00121.2016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1531-2267 |
EndPage | 317 |
ExternalDocumentID | 28455309 10_1152_physiolgenomics_00121_2016 |
Genre | Journal Article |
GroupedDBID | --- 123 29O 2WC 4.4 5VS AAFWJ AAYXX ABHWK ABJNI ABKWE ACGFS ACPRK ADBBV ADFNX AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 ITBOX KQ8 OK1 P2P R.V RAP RHI RPRKH TR2 W8F WOQ XSW CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c465t-a693c77a94124b5cb58772da1e95398ee54f30bd2b0744db8f0a90956187b0173 |
ISSN | 1094-8341 1531-2267 |
IngestDate | Fri Jul 11 11:48:01 EDT 2025 Mon Jun 30 06:18:09 EDT 2025 Thu Apr 03 07:02:16 EDT 2025 Tue Jul 01 01:03:49 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | splicing mechanism sarcolemma BK channel potassium channel openers neuromuscular disorders |
Language | English |
License | Copyright © 2017 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-a693c77a94124b5cb58772da1e95398ee54f30bd2b0744db8f0a90956187b0173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.physiology.org/doi/pdf/10.1152/physiolgenomics.00121.2016 |
PMID | 28455309 |
PQID | 1992280369 |
PQPubID | 2047828 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1893549782 proquest_journals_1992280369 pubmed_primary_28455309 crossref_primary_10_1152_physiolgenomics_00121_2016 crossref_citationtrail_10_1152_physiolgenomics_00121_2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 2017-Jun-01 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Physiological genomics |
PublicationTitleAlternate | Physiol Genomics |
PublicationYear | 2017 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 Lagrutta A (B53) 1994; 269 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B54 B55 B56 B57 B58 B59 B109 B107 B108 B105 B106 B103 B104 B101 B102 B100 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B118 B119 B116 B117 B114 B115 B112 B113 B110 B111 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 Debska-Vielhaber G (B17) 2009; 60 B123 B121 B122 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 Zahradníková A (B120) 1992; 41 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B99 B12 B13 B14 B15 B16 B18 B19 |
References_xml | – ident: B85 doi: 10.1161/01.RES.0000196557.93717.95 – ident: B48 doi: 10.1113/jphysiol.2006.106922 – ident: B8 doi: 10.1016/0006-8993(89)90191-1 – ident: B108 doi: 10.1007/s004240050471 – ident: B74 doi: 10.1152/jn.2001.85.2.790 – volume: 60 start-page: 27 year: 2009 ident: B17 publication-title: J Physiol Pharmacol – ident: B64 doi: 10.1124/jpet.113.212662 – ident: B72 doi: 10.1016/j.neuron.2008.05.032 – ident: B98 doi: 10.3389/fphar.2011.00008 – ident: B100 doi: 10.1038/bjp.2008.42 – ident: B30 doi: 10.1046/j.1432-1327.2000.01076.x – ident: B93 doi: 10.1074/jbc.C000741200 – ident: B11 doi: 10.1371/journal.pone.0072028 – ident: B3 doi: 10.3389/fphys.2015.00104 – ident: B116 doi: 10.1073/pnas.1205435109 – ident: B75 doi: 10.1056/NEJM196803142781102 – ident: B110 doi: 10.1016/0896-6273(94)90418-9 – ident: B87 doi: 10.1085/jgp.201311072 – ident: B111 doi: 10.1074/jbc.M910187199 – ident: B118 doi: 10.1074/mcp.M800063-MCP200 – ident: B37 doi: 10.1177/1087057115601677 – ident: B59 doi: 10.1212/WNL.0b013e31823a0cb6 – ident: B36 doi: 10.1152/ajpcell.00495.2010 – ident: B44 doi: 10.1016/j.neuroscience.2007.03.038 – ident: B73 doi: 10.1016/j.bbamem.2008.10.001 – volume: 41 start-page: 299 year: 1992 ident: B120 publication-title: Physiol Res – ident: B82 doi: 10.1152/ajpheart.00939.2012 – ident: B29 doi: 10.1016/S0006-3495(04)74339-8 – ident: B7 doi: 10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-A – ident: B81 doi: 10.1212/WNL.0000000000002416 – ident: B19 doi: 10.1038/sj.jcbfm.9600536 – ident: B80 doi: 10.1074/jbc.272.18.11710 – ident: B122 doi: 10.1016/j.neuroscience.2007.04.019 – ident: B114 doi: 10.1038/35073593 – ident: B18 doi: 10.1371/journal.pone.0040235 – ident: B6 doi: 10.1038/sj.onc.1210036 – ident: B45 doi: 10.1152/jn.00009.2007 – ident: B84 doi: 10.4161/chan.25485 – ident: B96 doi: 10.1002/1531-8249(200009)48:3<304::AID-ANA4>3.0.CO;2-A – ident: B4 doi: 10.1016/j.cell.2004.11.049 – ident: B68 doi: 10.1085/jgp.200409236 – ident: B104 doi: 10.1016/j.nmd.2005.10.005 – ident: B109 doi: 10.1172/JCI4552 – ident: B99 doi: 10.1016/S0960-8966(01)00270-X – ident: B113 doi: 10.1073/pnas.1400555112 – ident: B95 doi: 10.1038/sj.bjp.0705233 – ident: B23 doi: 10.1146/annurev.physiol.010908.163124 – ident: B22 doi: 10.1161/CIRCRESAHA.115.303407 – ident: B43 doi: 10.1152/ajprenal.00140.2008 – ident: B9 doi: 10.1002/ijc.23511 – ident: B5 doi: 10.3389/fphys.2014.00389 – ident: B58 doi: 10.1113/jphysiol.2009.186627 – ident: B2 doi: 10.1371/journal.pone.0086586 – ident: B41 doi: 10.1073/pnas.0811277106 – ident: B1 doi: 10.1371/journal.pone.0012304 – ident: B26 doi: 10.1097/00004872-200205000-00028 – ident: B15 doi: 10.4161/chan.26242 – ident: B42 doi: 10.1186/1471-2407-9-258 – ident: B63 doi: 10.1038/nrd4254 – ident: B92 doi: 10.1016/j.tins.2003.08.007 – ident: B66 doi: 10.1097/HJH.0b013e32830b894a – ident: B61 doi: 10.1016/j.phrs.2012.07.007 – ident: B123 doi: 10.1074/jbc.M008852200 – ident: B79 doi: 10.1002/cmdc.201200321 – ident: B33 doi: 10.1073/pnas.1222003110 – ident: B56 doi: 10.1016/j.febslet.2007.01.077 – ident: B34 doi: 10.1085/jgp.201311061 – ident: B106 doi: 10.1016/j.nmd.2007.07.009 – ident: B69 doi: 10.1007/s00232-007-9080-6 – ident: B101 doi: 10.1371/journal.pone.0069551 – ident: B76 doi: 10.1371/journal.pone.0086636 – ident: B90 doi: 10.1113/jphysiol.2011.215533 – ident: B46 doi: 10.3345/kjp.2014.57.10.445 – ident: B24 doi: 10.1016/j.brainres.2009.06.008 – ident: B21 doi: 10.1016/0028-3908(96)00131-1 – ident: B47 doi: 10.1038/onc.2009.435 – ident: B115 doi: 10.1126/science.280.5362.443 – ident: B91 doi: 10.3181/0711-MR-308 – ident: B62 doi: 10.1016/j.bcp.2014.06.023 – ident: B88 doi: 10.1016/bs.irn.2016.02.012 – ident: B55 doi: 10.1016/j.tins.2010.06.004 – ident: B27 doi: 10.1016/S0168-9525(00)02176-4 – ident: B12 doi: 10.2174/1573399810666140918121022 – ident: B71 doi: 10.1007/s11357-013-9544-9 – volume: 269 start-page: 20347 year: 1994 ident: B53 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)31998-1 – ident: B83 doi: 10.1093/hmg/ddn168 – ident: B94 doi: 10.1097/HJH.0b013e32831103d8 – ident: B13 doi: 10.1074/jbc.M505383200 – ident: B107 doi: 10.1016/S0960-8966(03)00095-6 – ident: B49 doi: 10.1152/ajpcell.2001.281.1.C361 – ident: B70 doi: 10.1016/j.neuroscience.2007.07.066 – ident: B39 doi: 10.1073/pnas.112619799 – ident: B38 doi: 10.2337/db16-0245 – ident: B51 doi: 10.3389/fphys.2014.00316 – ident: B25 doi: 10.4049/jimmunol.1102965 – ident: B31 doi: 10.1016/j.bbrc.2008.07.161 – ident: B52 doi: 10.1016/j.ejphar.2014.03.060 – ident: B28 doi: 10.1124/pr.55.4.9 – ident: B77 doi: 10.1016/j.bbamem.2004.10.002 – ident: B103 doi: 10.1124/mol.108.046615 – ident: B65 doi: 10.1517/14728222.2011.620607 – ident: B32 doi: 10.3390/biom5031870 – ident: B20 doi: 10.1038/ng1585 – ident: B105 doi: 10.1016/j.nbd.2005.03.011 – ident: B112 doi: 10.1002/glia.20364 – ident: B117 doi: 10.1038/nature09162 – ident: B89 doi: 10.1016/S0962-8924(01)02068-2 – ident: B102 doi: 10.1113/jphysiol.2009.185835 – ident: B16 doi: 10.3389/fphys.2014.00476 – ident: B78 doi: 10.1016/j.ejmech.2014.01.035 – ident: B40 doi: 10.1074/jbc.M108354200 – ident: B10 doi: 10.1016/j.nurt.2007.01.013 – ident: B35 doi: 10.1152/physiol.00032.2008 – ident: B54 doi: 10.1146/annurev.ph.51.030189.002125 – ident: B60 doi: 10.1113/jphysiol.1991.sp018861 – ident: B67 doi: 10.1523/JNEUROSCI.07-01-00101.1987 – ident: B50 doi: 10.1073/pnas.0404877101 – ident: B97 doi: 10.1096/fj.03-0722fje – ident: B119 doi: 10.1016/j.bbamem.2015.08.005 – ident: B121 doi: 10.1073/pnas.0302919101 – ident: B86 doi: 10.1016/j.tcb.2009.09.008 – ident: B57 doi: 10.1371/journal.pone.0037451 – ident: B14 doi: 10.1016/S0962-8924(01)02241-3 |
SSID | ssj0014785 |
Score | 2.2931325 |
Snippet | The large-conductance Ca
2+
-activated K
+
(BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles... The large-conductance Ca -activated K (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK),... The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK),... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 306 |
SubjectTerms | Alternative splicing Alternative Splicing - genetics Alternative Splicing - physiology Animals Calcium (intracellular) Calcium channels Calcium conductance Channel gating Cyclic AMP-Dependent Protein Kinases - genetics Cyclic AMP-Dependent Protein Kinases - metabolism Cytoplasm - genetics Cytoplasm - metabolism Drug delivery Drug development HEK293 Cells Humans Hyperkalemia Hypokalemia Intracellular Large-Conductance Calcium-Activated Potassium Channel alpha Subunits - genetics Large-Conductance Calcium-Activated Potassium Channel alpha Subunits - metabolism Large-Conductance Calcium-Activated Potassium Channels - genetics Large-Conductance Calcium-Activated Potassium Channels - metabolism Mammalian cells MCF-7 Cells Metabolites Mice Models, Biological Molecular Structure Muscle, Skeletal - metabolism Musculoskeletal system Paralysis Potassium Potassium channels Potassium channels (calcium-gated) Potassium conductance Protein interaction Skeletal muscle Structure-function relationships |
Title | Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28455309 https://www.proquest.com/docview/1992280369 https://www.proquest.com/docview/1893549782 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIIXBONWGMhIvE0pTWwnNW9TYRqg8tRJe4vs1EHVlgtqigQSv4O_yzlO7GRjlQYPjSI7iRt_X-xz7HMh5A1IoBHTPA94LKKAZzIOlJEYCTNeTU2iRM7Qd3jxJT455Z_OxNlo9HtgtbRt9CT7ea1fyf-gCmWAK3rJ_gOy_qFQAOeALxwBYTjeCOOFy2172IaBdZsBOFk5SVCvvx4CDtl6WwToxPBdoYxZVw1IzVBmPX9LmCBx4WNzDpMQekcW2w00hasFdR_a2sJZ986Zm6Fgay1J_VUY-bUY2NEv1Ldqa7l0DH-9nwrmBlfijbPfNxe-ZmFaO-cjzHG8Nk3ja5Y4csOvauX_wpRwPly8CJPeyGpi3IAbBiACJsMRuQ1i2jFvOLwyG53gmmFfYBjZun1T94oTG68Orfcu3QR9VxeWEDAzY9Ik2U-F3kDRVd0ityPQPzA1xvuPn_32FE9mootgC02_3d0wxpruHnVZ8NmhzVipZvmA3O_UEXrUcushGZlyn9xpE5T-2Cd35y4f4CPyy7ONerZRYBt1bKNVToFt9C-2Uc826thG1yV1bKMt297RK1yjQ649JqfHH5bzk6BL3hFk8Nk3gYoly5JESUxvrkWmxQw6cqVCIwWTM2MEz9lUryINQixf6Vk-VRKjYoazRANT2BOyVwIDnxGagBYNeghbaR5ykXM5nRpmQHRmKgwNz8ZEup5Nsy6yPSZYuUithiui9ApAqQUoRYDGhPl76za-y43uOnAApt14sEnRkBtzvcVyTF77agAJt-BUaaotXAPqgcCkjtGYPG2B9806ojzfWfOC3Os_ogOyB2CblyATN_qV5ecfsTrANA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+structure+and+function+of+big+calcium-activated+potassium+channels+in+skeletal+muscle%3A+pharmacological+perspectives&rft.jtitle=Physiological+genomics&rft.au=Maqoud%2C+Fatima&rft.au=Cetrone%2C+Michela&rft.au=Mele%2C+Antonietta&rft.au=Tricarico%2C+Domenico&rft.date=2017-06-01&rft.eissn=1531-2267&rft.volume=49&rft.issue=6&rft.spage=306&rft_id=info:doi/10.1152%2Fphysiolgenomics.00121.2016&rft_id=info%3Apmid%2F28455309&rft.externalDocID=28455309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon |