Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives

The large-conductance Ca 2+ -activated K + (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intr...

Full description

Saved in:
Bibliographic Details
Published inPhysiological genomics Vol. 49; no. 6; pp. 306 - 317
Main Authors Maqoud, Fatima, Cetrone, Michela, Mele, Antonietta, Tricarico, Domenico
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The large-conductance Ca 2+ -activated K + (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca 2+ ). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
AbstractList The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
The large-conductance Ca -activated K (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca ). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
The large-conductance Ca 2+ -activated K + (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca 2+ ). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
Author Tricarico, Domenico
Mele, Antonietta
Cetrone, Michela
Maqoud, Fatima
Author_xml – sequence: 1
  givenname: Fatima
  surname: Maqoud
  fullname: Maqoud, Fatima
  organization: Department of Pharmacy-Drug Science, University of Bari, Bari, Italy;, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
– sequence: 2
  givenname: Michela
  surname: Cetrone
  fullname: Cetrone, Michela
  organization: Istituto Tumori Giovanni Paolo II, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Bari, Italy; and
– sequence: 3
  givenname: Antonietta
  surname: Mele
  fullname: Mele, Antonietta
  organization: Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
– sequence: 4
  givenname: Domenico
  surname: Tricarico
  fullname: Tricarico, Domenico
  organization: Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28455309$$D View this record in MEDLINE/PubMed
BookMark eNqNkT1vFDEQhi0URJKDv4AsaGj2sL322U4FiviSgmigXnm9s3cOXnvxB1IK_js-EiiuoprR6JlXo3ku0VmIARB6QcmWUsFer4e77KLfQ4iLs3lLCGV0ywjdPUIXVPS0Y2wnz1pPNO9Uz-k5usz5tnFcKvEEnTPFheiJvkC_PkcPtnqTcC6p2lITYBMmPNdgi4sBxxmPbo-t8dbVpTNt-tMUmPAai8m5zbA9mBDAZ-wCzt_BQzEeLzVbD1d4PZi0GBt93LsWgldIeYVjCuSn6PFsfIZnD3WDvr1_9_X6Y3fz5cOn67c3neU7UTqz072V0mhOGR-FHYWSkk2Ggha9VgCCzz0ZJzYSyfk0qpkYTbTYUSVHQmW_Qa_uc9cUf1TIZVhctuC9CRBrHqjSveBaKtbQlyfobawptOsGqjVjivTtmg16_kDVcYFpWJNbTLob_j62AVf3gE0x5wTzP4SS4WhxOLE4_LE4HC225Tcny9YVc7RRknH-fyJ-Aw67rUQ
CitedBy_id crossref_primary_10_3390_cells11192936
crossref_primary_10_3389_fphys_2024_1359560
crossref_primary_10_1016_j_bmcl_2021_128083
crossref_primary_10_1134_S1990747824700089
crossref_primary_10_3389_fphys_2017_00698
crossref_primary_10_1002_arch_21720
crossref_primary_10_3389_fphys_2019_00167
crossref_primary_10_1016_j_yjmcc_2021_05_002
crossref_primary_10_1016_j_ceca_2018_09_007
crossref_primary_10_3390_cells12060928
crossref_primary_10_3390_ijms25073802
crossref_primary_10_1093_hmg_ddy142
crossref_primary_10_31857_S0233475524030015
crossref_primary_10_1038_s41598_021_90465_3
crossref_primary_10_1096_fj_202300840RR
crossref_primary_10_3390_biomedicines11082297
crossref_primary_10_1016_j_bbrc_2021_07_027
crossref_primary_10_1186_s13395_019_0213_2
crossref_primary_10_1002_jcsm_13253
crossref_primary_10_3390_ijms24076796
crossref_primary_10_51477_mejs_1087669
Cites_doi 10.1161/01.RES.0000196557.93717.95
10.1113/jphysiol.2006.106922
10.1016/0006-8993(89)90191-1
10.1007/s004240050471
10.1152/jn.2001.85.2.790
10.1124/jpet.113.212662
10.1016/j.neuron.2008.05.032
10.3389/fphar.2011.00008
10.1038/bjp.2008.42
10.1046/j.1432-1327.2000.01076.x
10.1074/jbc.C000741200
10.1371/journal.pone.0072028
10.3389/fphys.2015.00104
10.1073/pnas.1205435109
10.1056/NEJM196803142781102
10.1016/0896-6273(94)90418-9
10.1085/jgp.201311072
10.1074/jbc.M910187199
10.1074/mcp.M800063-MCP200
10.1177/1087057115601677
10.1212/WNL.0b013e31823a0cb6
10.1152/ajpcell.00495.2010
10.1016/j.neuroscience.2007.03.038
10.1016/j.bbamem.2008.10.001
10.1152/ajpheart.00939.2012
10.1016/S0006-3495(04)74339-8
10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-A
10.1212/WNL.0000000000002416
10.1038/sj.jcbfm.9600536
10.1074/jbc.272.18.11710
10.1016/j.neuroscience.2007.04.019
10.1038/35073593
10.1371/journal.pone.0040235
10.1038/sj.onc.1210036
10.1152/jn.00009.2007
10.4161/chan.25485
10.1002/1531-8249(200009)48:3<304::AID-ANA4>3.0.CO;2-A
10.1016/j.cell.2004.11.049
10.1085/jgp.200409236
10.1016/j.nmd.2005.10.005
10.1172/JCI4552
10.1016/S0960-8966(01)00270-X
10.1073/pnas.1400555112
10.1038/sj.bjp.0705233
10.1146/annurev.physiol.010908.163124
10.1161/CIRCRESAHA.115.303407
10.1152/ajprenal.00140.2008
10.1002/ijc.23511
10.3389/fphys.2014.00389
10.1113/jphysiol.2009.186627
10.1371/journal.pone.0086586
10.1073/pnas.0811277106
10.1371/journal.pone.0012304
10.1097/00004872-200205000-00028
10.4161/chan.26242
10.1186/1471-2407-9-258
10.1038/nrd4254
10.1016/j.tins.2003.08.007
10.1097/HJH.0b013e32830b894a
10.1016/j.phrs.2012.07.007
10.1074/jbc.M008852200
10.1002/cmdc.201200321
10.1073/pnas.1222003110
10.1016/j.febslet.2007.01.077
10.1085/jgp.201311061
10.1016/j.nmd.2007.07.009
10.1007/s00232-007-9080-6
10.1371/journal.pone.0069551
10.1371/journal.pone.0086636
10.1113/jphysiol.2011.215533
10.3345/kjp.2014.57.10.445
10.1016/j.brainres.2009.06.008
10.1016/0028-3908(96)00131-1
10.1038/onc.2009.435
10.1126/science.280.5362.443
10.3181/0711-MR-308
10.1016/j.bcp.2014.06.023
10.1016/bs.irn.2016.02.012
10.1016/j.tins.2010.06.004
10.1016/S0168-9525(00)02176-4
10.2174/1573399810666140918121022
10.1007/s11357-013-9544-9
10.1016/S0021-9258(17)31998-1
10.1093/hmg/ddn168
10.1097/HJH.0b013e32831103d8
10.1074/jbc.M505383200
10.1016/S0960-8966(03)00095-6
10.1152/ajpcell.2001.281.1.C361
10.1016/j.neuroscience.2007.07.066
10.1073/pnas.112619799
10.2337/db16-0245
10.3389/fphys.2014.00316
10.4049/jimmunol.1102965
10.1016/j.bbrc.2008.07.161
10.1016/j.ejphar.2014.03.060
10.1124/pr.55.4.9
10.1016/j.bbamem.2004.10.002
10.1124/mol.108.046615
10.1517/14728222.2011.620607
10.3390/biom5031870
10.1038/ng1585
10.1016/j.nbd.2005.03.011
10.1002/glia.20364
10.1038/nature09162
10.1016/S0962-8924(01)02068-2
10.1113/jphysiol.2009.185835
10.3389/fphys.2014.00476
10.1016/j.ejmech.2014.01.035
10.1074/jbc.M108354200
10.1016/j.nurt.2007.01.013
10.1152/physiol.00032.2008
10.1146/annurev.ph.51.030189.002125
10.1113/jphysiol.1991.sp018861
10.1523/JNEUROSCI.07-01-00101.1987
10.1073/pnas.0404877101
10.1096/fj.03-0722fje
10.1016/j.bbamem.2015.08.005
10.1073/pnas.0302919101
10.1016/j.tcb.2009.09.008
10.1371/journal.pone.0037451
10.1016/S0962-8924(01)02241-3
ContentType Journal Article
Copyright Copyright © 2017 the American Physiological Society.
Copyright American Physiological Society Jun 2017
Copyright_xml – notice: Copyright © 2017 the American Physiological Society.
– notice: Copyright American Physiological Society Jun 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
DOI 10.1152/physiolgenomics.00121.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1531-2267
EndPage 317
ExternalDocumentID 28455309
10_1152_physiolgenomics_00121_2016
Genre Journal Article
GroupedDBID ---
123
29O
2WC
4.4
5VS
AAFWJ
AAYXX
ABHWK
ABJNI
ABKWE
ACGFS
ACPRK
ADBBV
ADFNX
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
ITBOX
KQ8
OK1
P2P
R.V
RAP
RHI
RPRKH
TR2
W8F
WOQ
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c465t-a693c77a94124b5cb58772da1e95398ee54f30bd2b0744db8f0a90956187b0173
ISSN 1094-8341
1531-2267
IngestDate Fri Jul 11 11:48:01 EDT 2025
Mon Jun 30 06:18:09 EDT 2025
Thu Apr 03 07:02:16 EDT 2025
Tue Jul 01 01:03:49 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords splicing mechanism
sarcolemma BK channel
potassium channel openers
neuromuscular disorders
Language English
License Copyright © 2017 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-a693c77a94124b5cb58772da1e95398ee54f30bd2b0744db8f0a90956187b0173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.physiology.org/doi/pdf/10.1152/physiolgenomics.00121.2016
PMID 28455309
PQID 1992280369
PQPubID 2047828
PageCount 12
ParticipantIDs proquest_miscellaneous_1893549782
proquest_journals_1992280369
pubmed_primary_28455309
crossref_primary_10_1152_physiolgenomics_00121_2016
crossref_citationtrail_10_1152_physiolgenomics_00121_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
2017-Jun-01
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Physiological genomics
PublicationTitleAlternate Physiol Genomics
PublicationYear 2017
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
Lagrutta A (B53) 1994; 269
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B54
B55
B56
B57
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B118
B119
B116
B117
B114
B115
B112
B113
B110
B111
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
Debska-Vielhaber G (B17) 2009; 60
B123
B121
B122
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
Zahradníková A (B120) 1992; 41
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B18
B19
References_xml – ident: B85
  doi: 10.1161/01.RES.0000196557.93717.95
– ident: B48
  doi: 10.1113/jphysiol.2006.106922
– ident: B8
  doi: 10.1016/0006-8993(89)90191-1
– ident: B108
  doi: 10.1007/s004240050471
– ident: B74
  doi: 10.1152/jn.2001.85.2.790
– volume: 60
  start-page: 27
  year: 2009
  ident: B17
  publication-title: J Physiol Pharmacol
– ident: B64
  doi: 10.1124/jpet.113.212662
– ident: B72
  doi: 10.1016/j.neuron.2008.05.032
– ident: B98
  doi: 10.3389/fphar.2011.00008
– ident: B100
  doi: 10.1038/bjp.2008.42
– ident: B30
  doi: 10.1046/j.1432-1327.2000.01076.x
– ident: B93
  doi: 10.1074/jbc.C000741200
– ident: B11
  doi: 10.1371/journal.pone.0072028
– ident: B3
  doi: 10.3389/fphys.2015.00104
– ident: B116
  doi: 10.1073/pnas.1205435109
– ident: B75
  doi: 10.1056/NEJM196803142781102
– ident: B110
  doi: 10.1016/0896-6273(94)90418-9
– ident: B87
  doi: 10.1085/jgp.201311072
– ident: B111
  doi: 10.1074/jbc.M910187199
– ident: B118
  doi: 10.1074/mcp.M800063-MCP200
– ident: B37
  doi: 10.1177/1087057115601677
– ident: B59
  doi: 10.1212/WNL.0b013e31823a0cb6
– ident: B36
  doi: 10.1152/ajpcell.00495.2010
– ident: B44
  doi: 10.1016/j.neuroscience.2007.03.038
– ident: B73
  doi: 10.1016/j.bbamem.2008.10.001
– volume: 41
  start-page: 299
  year: 1992
  ident: B120
  publication-title: Physiol Res
– ident: B82
  doi: 10.1152/ajpheart.00939.2012
– ident: B29
  doi: 10.1016/S0006-3495(04)74339-8
– ident: B7
  doi: 10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-A
– ident: B81
  doi: 10.1212/WNL.0000000000002416
– ident: B19
  doi: 10.1038/sj.jcbfm.9600536
– ident: B80
  doi: 10.1074/jbc.272.18.11710
– ident: B122
  doi: 10.1016/j.neuroscience.2007.04.019
– ident: B114
  doi: 10.1038/35073593
– ident: B18
  doi: 10.1371/journal.pone.0040235
– ident: B6
  doi: 10.1038/sj.onc.1210036
– ident: B45
  doi: 10.1152/jn.00009.2007
– ident: B84
  doi: 10.4161/chan.25485
– ident: B96
  doi: 10.1002/1531-8249(200009)48:3<304::AID-ANA4>3.0.CO;2-A
– ident: B4
  doi: 10.1016/j.cell.2004.11.049
– ident: B68
  doi: 10.1085/jgp.200409236
– ident: B104
  doi: 10.1016/j.nmd.2005.10.005
– ident: B109
  doi: 10.1172/JCI4552
– ident: B99
  doi: 10.1016/S0960-8966(01)00270-X
– ident: B113
  doi: 10.1073/pnas.1400555112
– ident: B95
  doi: 10.1038/sj.bjp.0705233
– ident: B23
  doi: 10.1146/annurev.physiol.010908.163124
– ident: B22
  doi: 10.1161/CIRCRESAHA.115.303407
– ident: B43
  doi: 10.1152/ajprenal.00140.2008
– ident: B9
  doi: 10.1002/ijc.23511
– ident: B5
  doi: 10.3389/fphys.2014.00389
– ident: B58
  doi: 10.1113/jphysiol.2009.186627
– ident: B2
  doi: 10.1371/journal.pone.0086586
– ident: B41
  doi: 10.1073/pnas.0811277106
– ident: B1
  doi: 10.1371/journal.pone.0012304
– ident: B26
  doi: 10.1097/00004872-200205000-00028
– ident: B15
  doi: 10.4161/chan.26242
– ident: B42
  doi: 10.1186/1471-2407-9-258
– ident: B63
  doi: 10.1038/nrd4254
– ident: B92
  doi: 10.1016/j.tins.2003.08.007
– ident: B66
  doi: 10.1097/HJH.0b013e32830b894a
– ident: B61
  doi: 10.1016/j.phrs.2012.07.007
– ident: B123
  doi: 10.1074/jbc.M008852200
– ident: B79
  doi: 10.1002/cmdc.201200321
– ident: B33
  doi: 10.1073/pnas.1222003110
– ident: B56
  doi: 10.1016/j.febslet.2007.01.077
– ident: B34
  doi: 10.1085/jgp.201311061
– ident: B106
  doi: 10.1016/j.nmd.2007.07.009
– ident: B69
  doi: 10.1007/s00232-007-9080-6
– ident: B101
  doi: 10.1371/journal.pone.0069551
– ident: B76
  doi: 10.1371/journal.pone.0086636
– ident: B90
  doi: 10.1113/jphysiol.2011.215533
– ident: B46
  doi: 10.3345/kjp.2014.57.10.445
– ident: B24
  doi: 10.1016/j.brainres.2009.06.008
– ident: B21
  doi: 10.1016/0028-3908(96)00131-1
– ident: B47
  doi: 10.1038/onc.2009.435
– ident: B115
  doi: 10.1126/science.280.5362.443
– ident: B91
  doi: 10.3181/0711-MR-308
– ident: B62
  doi: 10.1016/j.bcp.2014.06.023
– ident: B88
  doi: 10.1016/bs.irn.2016.02.012
– ident: B55
  doi: 10.1016/j.tins.2010.06.004
– ident: B27
  doi: 10.1016/S0168-9525(00)02176-4
– ident: B12
  doi: 10.2174/1573399810666140918121022
– ident: B71
  doi: 10.1007/s11357-013-9544-9
– volume: 269
  start-page: 20347
  year: 1994
  ident: B53
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)31998-1
– ident: B83
  doi: 10.1093/hmg/ddn168
– ident: B94
  doi: 10.1097/HJH.0b013e32831103d8
– ident: B13
  doi: 10.1074/jbc.M505383200
– ident: B107
  doi: 10.1016/S0960-8966(03)00095-6
– ident: B49
  doi: 10.1152/ajpcell.2001.281.1.C361
– ident: B70
  doi: 10.1016/j.neuroscience.2007.07.066
– ident: B39
  doi: 10.1073/pnas.112619799
– ident: B38
  doi: 10.2337/db16-0245
– ident: B51
  doi: 10.3389/fphys.2014.00316
– ident: B25
  doi: 10.4049/jimmunol.1102965
– ident: B31
  doi: 10.1016/j.bbrc.2008.07.161
– ident: B52
  doi: 10.1016/j.ejphar.2014.03.060
– ident: B28
  doi: 10.1124/pr.55.4.9
– ident: B77
  doi: 10.1016/j.bbamem.2004.10.002
– ident: B103
  doi: 10.1124/mol.108.046615
– ident: B65
  doi: 10.1517/14728222.2011.620607
– ident: B32
  doi: 10.3390/biom5031870
– ident: B20
  doi: 10.1038/ng1585
– ident: B105
  doi: 10.1016/j.nbd.2005.03.011
– ident: B112
  doi: 10.1002/glia.20364
– ident: B117
  doi: 10.1038/nature09162
– ident: B89
  doi: 10.1016/S0962-8924(01)02068-2
– ident: B102
  doi: 10.1113/jphysiol.2009.185835
– ident: B16
  doi: 10.3389/fphys.2014.00476
– ident: B78
  doi: 10.1016/j.ejmech.2014.01.035
– ident: B40
  doi: 10.1074/jbc.M108354200
– ident: B10
  doi: 10.1016/j.nurt.2007.01.013
– ident: B35
  doi: 10.1152/physiol.00032.2008
– ident: B54
  doi: 10.1146/annurev.ph.51.030189.002125
– ident: B60
  doi: 10.1113/jphysiol.1991.sp018861
– ident: B67
  doi: 10.1523/JNEUROSCI.07-01-00101.1987
– ident: B50
  doi: 10.1073/pnas.0404877101
– ident: B97
  doi: 10.1096/fj.03-0722fje
– ident: B119
  doi: 10.1016/j.bbamem.2015.08.005
– ident: B121
  doi: 10.1073/pnas.0302919101
– ident: B86
  doi: 10.1016/j.tcb.2009.09.008
– ident: B57
  doi: 10.1371/journal.pone.0037451
– ident: B14
  doi: 10.1016/S0962-8924(01)02241-3
SSID ssj0014785
Score 2.2931325
Snippet The large-conductance Ca 2+ -activated K + (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles...
The large-conductance Ca -activated K (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK),...
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK),...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 306
SubjectTerms Alternative splicing
Alternative Splicing - genetics
Alternative Splicing - physiology
Animals
Calcium (intracellular)
Calcium channels
Calcium conductance
Channel gating
Cyclic AMP-Dependent Protein Kinases - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Cytoplasm - genetics
Cytoplasm - metabolism
Drug delivery
Drug development
HEK293 Cells
Humans
Hyperkalemia
Hypokalemia
Intracellular
Large-Conductance Calcium-Activated Potassium Channel alpha Subunits - genetics
Large-Conductance Calcium-Activated Potassium Channel alpha Subunits - metabolism
Large-Conductance Calcium-Activated Potassium Channels - genetics
Large-Conductance Calcium-Activated Potassium Channels - metabolism
Mammalian cells
MCF-7 Cells
Metabolites
Mice
Models, Biological
Molecular Structure
Muscle, Skeletal - metabolism
Musculoskeletal system
Paralysis
Potassium
Potassium channels
Potassium channels (calcium-gated)
Potassium conductance
Protein interaction
Skeletal muscle
Structure-function relationships
Title Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives
URI https://www.ncbi.nlm.nih.gov/pubmed/28455309
https://www.proquest.com/docview/1992280369
https://www.proquest.com/docview/1893549782
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIIXBONWGMhIvE0pTWwnNW9TYRqg8tRJe4vs1EHVlgtqigQSv4O_yzlO7GRjlQYPjSI7iRt_X-xz7HMh5A1IoBHTPA94LKKAZzIOlJEYCTNeTU2iRM7Qd3jxJT455Z_OxNlo9HtgtbRt9CT7ea1fyf-gCmWAK3rJ_gOy_qFQAOeALxwBYTjeCOOFy2172IaBdZsBOFk5SVCvvx4CDtl6WwToxPBdoYxZVw1IzVBmPX9LmCBx4WNzDpMQekcW2w00hasFdR_a2sJZ986Zm6Fgay1J_VUY-bUY2NEv1Ldqa7l0DH-9nwrmBlfijbPfNxe-ZmFaO-cjzHG8Nk3ja5Y4csOvauX_wpRwPly8CJPeyGpi3IAbBiACJsMRuQ1i2jFvOLwyG53gmmFfYBjZun1T94oTG68Orfcu3QR9VxeWEDAzY9Ik2U-F3kDRVd0ityPQPzA1xvuPn_32FE9mootgC02_3d0wxpruHnVZ8NmhzVipZvmA3O_UEXrUcushGZlyn9xpE5T-2Cd35y4f4CPyy7ONerZRYBt1bKNVToFt9C-2Uc826thG1yV1bKMt297RK1yjQ649JqfHH5bzk6BL3hFk8Nk3gYoly5JESUxvrkWmxQw6cqVCIwWTM2MEz9lUryINQixf6Vk-VRKjYoazRANT2BOyVwIDnxGagBYNeghbaR5ykXM5nRpmQHRmKgwNz8ZEup5Nsy6yPSZYuUithiui9ApAqQUoRYDGhPl76za-y43uOnAApt14sEnRkBtzvcVyTF77agAJt-BUaaotXAPqgcCkjtGYPG2B9806ojzfWfOC3Os_ogOyB2CblyATN_qV5ecfsTrANA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+structure+and+function+of+big+calcium-activated+potassium+channels+in+skeletal+muscle%3A+pharmacological+perspectives&rft.jtitle=Physiological+genomics&rft.au=Maqoud%2C+Fatima&rft.au=Cetrone%2C+Michela&rft.au=Mele%2C+Antonietta&rft.au=Tricarico%2C+Domenico&rft.date=2017-06-01&rft.eissn=1531-2267&rft.volume=49&rft.issue=6&rft.spage=306&rft_id=info:doi/10.1152%2Fphysiolgenomics.00121.2016&rft_id=info%3Apmid%2F28455309&rft.externalDocID=28455309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon