ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees

Evolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programmin...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. S6; pp. 153 - 30
Main Authors Zhang, Chao, Rabiee, Maryam, Sayyari, Erfan, Mirarab, Siavash
Format Journal Article
LanguageEnglish
Published England BioMed Central 08.05.2018
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-018-2129-y

Cover

Loading…
Abstract Evolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programming to search for the tree that shares the maximum number of quartet topologies with input gene trees, restricting itself to a predefined set of bipartitions. We introduce ASTRAL-III, which substantially improves the running time of ASTRAL-II and guarantees polynomial running time as a function of both the number of species (n) and the number of genes (k). ASTRAL-III limits the bipartition constraint set (X) to grow at most linearly with n and k. Moreover, it handles polytomies more efficiently than ASTRAL-II, exploits similarities between gene trees better, and uses several techniques to avoid searching parts of the search space that are mathematically guaranteed not to include the optimal tree. The asymptotic running time of ASTRAL-III in the presence of polytomies is [Formula: see text] where D=O(nk) is the sum of degrees of all unique nodes in input trees. The running time improvements enable us to test whether contracting low support branches in gene trees improves the accuracy by reducing noise. In extensive simulations, we show that removing branches with very low support (e.g., below 10%) improves accuracy while overly aggressive filtering is harmful. We observe on a biological avian phylogenomic dataset of 14K genes that contracting low support branches greatly improve results. ASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up to 10,000 species. With ASTRAL-III, low support branches can be removed, resulting in improved accuracy.
AbstractList Abstract Background Evolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programming to search for the tree that shares the maximum number of quartet topologies with input gene trees, restricting itself to a predefined set of bipartitions. Results We introduce ASTRAL-III, which substantially improves the running time of ASTRAL-II and guarantees polynomial running time as a function of both the number of species (n) and the number of genes (k). ASTRAL-III limits the bipartition constraint set (X) to grow at most linearly with n and k. Moreover, it handles polytomies more efficiently than ASTRAL-II, exploits similarities between gene trees better, and uses several techniques to avoid searching parts of the search space that are mathematically guaranteed not to include the optimal tree. The asymptotic running time of ASTRAL-III in the presence of polytomies is O(nk)1.726D $O\left ((nk)^{1.726} D \right)$ where D=O(nk) is the sum of degrees of all unique nodes in input trees. The running time improvements enable us to test whether contracting low support branches in gene trees improves the accuracy by reducing noise. In extensive simulations, we show that removing branches with very low support (e.g., below 10%) improves accuracy while overly aggressive filtering is harmful. We observe on a biological avian phylogenomic dataset of 14K genes that contracting low support branches greatly improve results. Conclusions ASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up to 10,000 species. With ASTRAL-III, low support branches can be removed, resulting in improved accuracy.
Evolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programming to search for the tree that shares the maximum number of quartet topologies with input gene trees, restricting itself to a predefined set of bipartitions.BACKGROUNDEvolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programming to search for the tree that shares the maximum number of quartet topologies with input gene trees, restricting itself to a predefined set of bipartitions.We introduce ASTRAL-III, which substantially improves the running time of ASTRAL-II and guarantees polynomial running time as a function of both the number of species (n) and the number of genes (k). ASTRAL-III limits the bipartition constraint set (X) to grow at most linearly with n and k. Moreover, it handles polytomies more efficiently than ASTRAL-II, exploits similarities between gene trees better, and uses several techniques to avoid searching parts of the search space that are mathematically guaranteed not to include the optimal tree. The asymptotic running time of ASTRAL-III in the presence of polytomies is [Formula: see text] where D=O(nk) is the sum of degrees of all unique nodes in input trees. The running time improvements enable us to test whether contracting low support branches in gene trees improves the accuracy by reducing noise. In extensive simulations, we show that removing branches with very low support (e.g., below 10%) improves accuracy while overly aggressive filtering is harmful. We observe on a biological avian phylogenomic dataset of 14K genes that contracting low support branches greatly improve results.RESULTSWe introduce ASTRAL-III, which substantially improves the running time of ASTRAL-II and guarantees polynomial running time as a function of both the number of species (n) and the number of genes (k). ASTRAL-III limits the bipartition constraint set (X) to grow at most linearly with n and k. Moreover, it handles polytomies more efficiently than ASTRAL-II, exploits similarities between gene trees better, and uses several techniques to avoid searching parts of the search space that are mathematically guaranteed not to include the optimal tree. The asymptotic running time of ASTRAL-III in the presence of polytomies is [Formula: see text] where D=O(nk) is the sum of degrees of all unique nodes in input trees. The running time improvements enable us to test whether contracting low support branches in gene trees improves the accuracy by reducing noise. In extensive simulations, we show that removing branches with very low support (e.g., below 10%) improves accuracy while overly aggressive filtering is harmful. We observe on a biological avian phylogenomic dataset of 14K genes that contracting low support branches greatly improve results.ASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up to 10,000 species. With ASTRAL-III, low support branches can be removed, resulting in improved accuracy.CONCLUSIONSASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up to 10,000 species. With ASTRAL-III, low support branches can be removed, resulting in improved accuracy.
Evolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programming to search for the tree that shares the maximum number of quartet topologies with input gene trees, restricting itself to a predefined set of bipartitions. We introduce ASTRAL-III, which substantially improves the running time of ASTRAL-II and guarantees polynomial running time as a function of both the number of species (n) and the number of genes (k). ASTRAL-III limits the bipartition constraint set (X) to grow at most linearly with n and k. Moreover, it handles polytomies more efficiently than ASTRAL-II, exploits similarities between gene trees better, and uses several techniques to avoid searching parts of the search space that are mathematically guaranteed not to include the optimal tree. The asymptotic running time of ASTRAL-III in the presence of polytomies is [Formula: see text] where D=O(nk) is the sum of degrees of all unique nodes in input trees. The running time improvements enable us to test whether contracting low support branches in gene trees improves the accuracy by reducing noise. In extensive simulations, we show that removing branches with very low support (e.g., below 10%) improves accuracy while overly aggressive filtering is harmful. We observe on a biological avian phylogenomic dataset of 14K genes that contracting low support branches greatly improve results. ASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up to 10,000 species. With ASTRAL-III, low support branches can be removed, resulting in improved accuracy.
ArticleNumber 153
Author Zhang, Chao
Rabiee, Maryam
Sayyari, Erfan
Mirarab, Siavash
Author_xml – sequence: 1
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
– sequence: 2
  givenname: Maryam
  surname: Rabiee
  fullname: Rabiee, Maryam
– sequence: 3
  givenname: Erfan
  surname: Sayyari
  fullname: Sayyari, Erfan
– sequence: 4
  givenname: Siavash
  surname: Mirarab
  fullname: Mirarab, Siavash
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29745866$$D View this record in MEDLINE/PubMed
BookMark eNp1kklv1TAUhS1URAf4AWxQlmwCHuLYZoFUVQUiVUKCsmFjOc71w5UTBzuvUv49Tl-LWiRWHu453_FwT9HRFCdA6DXB7wiR7ftMqOSqxkTWlFBVr8_QCWkEKSvMjx7Nj9FpzjcYEyExf4GOqRINl217gn6ef7_-dn5Vd133oZpjWKc4ehOqxY9Q5Rmsh1wtCaBKYOOUl7S3i49T5VIcq9mkpajDWqo5hlsYqh1McGfIL9FzZ0KGV_fjGfrx6fL64kt99fVzd1EybdPypTaNMJgzS1vipKVY2V5ZwiVrneyZoNS1lGMzGN5S1itw1FDcAzaidbQXnJ2h7sAdornRc_KjSauOxuu7jZh2ejumDaBZL3GjpAPV2EaBkIYYLJxl2A4KAyusjwfWvO9HGCxMSzLhCfRpZfK_9C7eaq6UlGoDvL0HpPh7D3nRo88WQjATxH3WFDOBebmvKNI3j7P-hjx8ThGIg8CmmHMCp61fzPb6JdoHTbDe2kAf2kCXNtBbG-i1OMk_zgf4_z1_ABPbtio
CitedBy_id crossref_primary_10_1093_aob_mcab139
crossref_primary_10_1093_molbev_msad013
crossref_primary_10_1093_molbev_msad255
crossref_primary_10_1111_nph_18554
crossref_primary_10_3390_plants8120547
crossref_primary_10_1093_molbev_msac168
crossref_primary_10_1111_tpj_15799
crossref_primary_10_1186_s12862_024_02309_z
crossref_primary_10_1007_s00285_024_02050_7
crossref_primary_10_1016_j_pld_2024_10_003
crossref_primary_10_3389_fpls_2019_01224
crossref_primary_10_3390_biology11071007
crossref_primary_10_3390_biology9040073
crossref_primary_10_1093_molbev_msad247
crossref_primary_10_1111_jse_13036
crossref_primary_10_1128_spectrum_03980_23
crossref_primary_10_1186_s12870_025_06238_x
crossref_primary_10_1655_Herpetologica_D_23_00048
crossref_primary_10_1038_s41559_023_02221_7
crossref_primary_10_1093_molbev_msad243
crossref_primary_10_1111_nph_17212
crossref_primary_10_1038_s41598_021_82607_4
crossref_primary_10_1002_tax_12928
crossref_primary_10_1016_j_ejop_2024_126093
crossref_primary_10_1038_s41467_023_41412_5
crossref_primary_10_3389_fmicb_2022_900312
crossref_primary_10_3390_genes13081389
crossref_primary_10_1093_bib_bbaa147
crossref_primary_10_1111_jse_13040
crossref_primary_10_1186_s13015_023_00248_w
crossref_primary_10_1002_aps3_11597
crossref_primary_10_1111_1749_4877_12931
crossref_primary_10_1073_pnas_2026029118
crossref_primary_10_1093_isd_ixac010
crossref_primary_10_1093_aob_mcac007
crossref_primary_10_1111_nph_19860
crossref_primary_10_1007_s44281_023_00026_z
crossref_primary_10_1038_s41467_024_50529_0
crossref_primary_10_1038_s41598_024_72622_6
crossref_primary_10_1126_science_adk9688
crossref_primary_10_1098_rspb_2020_1960
crossref_primary_10_24072_pci_evolbiol_100139
crossref_primary_10_1111_evo_14546
crossref_primary_10_1007_s11295_020_1424_8
crossref_primary_10_1126_science_aav6202
crossref_primary_10_1093_aob_mcac012
crossref_primary_10_1016_j_isci_2024_110300
crossref_primary_10_1093_jmammal_gyae126
crossref_primary_10_1093_molbev_msae116
crossref_primary_10_1111_nph_18521
crossref_primary_10_1093_molbev_msae114
crossref_primary_10_3897_phytokeys_240_101716
crossref_primary_10_3390_plants12173083
crossref_primary_10_1128_msystems_00562_22
crossref_primary_10_1038_s42003_024_06887_y
crossref_primary_10_1038_s42003_022_03003_w
crossref_primary_10_1111_nph_18525
crossref_primary_10_3389_fpls_2020_00258
crossref_primary_10_3389_fpls_2022_882441
crossref_primary_10_1007_s10914_021_09581_6
crossref_primary_10_1111_nph_20432
crossref_primary_10_1098_rspb_2024_1214
crossref_primary_10_3897_phytokeys_210_90391
crossref_primary_10_1111_jse_13066
crossref_primary_10_1038_s41598_024_57827_z
crossref_primary_10_1093_zoolinnean_zlab047
crossref_primary_10_1038_s42003_023_05748_4
crossref_primary_10_11646_zootaxa_5443_2_6
crossref_primary_10_1111_jbi_13542
crossref_primary_10_1016_j_cub_2023_08_026
crossref_primary_10_1016_j_molp_2024_03_009
crossref_primary_10_3389_fpls_2021_645735
crossref_primary_10_1016_j_pld_2024_11_004
crossref_primary_10_1002_aps3_11568
crossref_primary_10_1098_rspb_2021_2491
crossref_primary_10_1016_j_cub_2023_08_031
crossref_primary_10_1111_cla_12565
crossref_primary_10_1111_jse_13079
crossref_primary_10_1111_jse_13077
crossref_primary_10_1093_molbev_msad287
crossref_primary_10_1038_s41467_022_29282_9
crossref_primary_10_1098_rspb_2023_0988
crossref_primary_10_1038_s41467_022_29643_4
crossref_primary_10_1093_bioinformatics_btaa444
crossref_primary_10_1111_nph_18580
crossref_primary_10_1016_j_cub_2019_10_066
crossref_primary_10_1186_s13059_020_02180_3
crossref_primary_10_7717_peerj_10804
crossref_primary_10_1111_nph_70080
crossref_primary_10_1093_molbev_msz099
crossref_primary_10_1002_aps3_11554
crossref_primary_10_1002_aps3_11557
crossref_primary_10_1093_botlinnean_boaa099
crossref_primary_10_1111_nph_19421
crossref_primary_10_1093_aob_mcae224
crossref_primary_10_1111_cla_12597
crossref_primary_10_1111_nph_18335
crossref_primary_10_1038_s41477_022_01333_5
crossref_primary_10_1093_isd_ixae027
crossref_primary_10_1111_tpj_14641
crossref_primary_10_1093_isd_ixae028
crossref_primary_10_1093_isd_ixae025
crossref_primary_10_1098_rsbl_2020_0356
crossref_primary_10_1146_annurev_ecolsys_012121_085928
crossref_primary_10_1186_s43008_024_00154_9
crossref_primary_10_1111_jse_13059
crossref_primary_10_1111_nph_18321
crossref_primary_10_1007_s11427_024_2597_9
crossref_primary_10_1016_j_cell_2024_05_012
crossref_primary_10_1086_722474
crossref_primary_10_1093_aob_mcae214
crossref_primary_10_1111_cla_12585
crossref_primary_10_3390_biology11081212
crossref_primary_10_1093_gigascience_giz117
crossref_primary_10_1038_s42003_018_0176_6
crossref_primary_10_1016_j_isci_2022_105647
crossref_primary_10_1111_1749_4877_12915
crossref_primary_10_1111_mec_16171
crossref_primary_10_3390_genes13071167
crossref_primary_10_1111_jse_13062
crossref_primary_10_1111_jse_13061
crossref_primary_10_1093_molbev_msaf011
crossref_primary_10_1038_s41477_020_0594_6
crossref_primary_10_1038_s41559_018_0717_x
crossref_primary_10_1007_s00239_023_10115_2
crossref_primary_10_1016_j_ympev_2023_107782
crossref_primary_10_1093_isd_ixaa009
crossref_primary_10_3389_fpls_2020_582422
crossref_primary_10_1093_nargab_lqab075
crossref_primary_10_1002_ajb2_1514
crossref_primary_10_1093_g3journal_jkac182
crossref_primary_10_1073_pnas_1908289116
crossref_primary_10_1002_ajb2_16065
crossref_primary_10_1093_nar_gkaa374
crossref_primary_10_1600_036364423X16847773873134
crossref_primary_10_1093_jhered_esae017
crossref_primary_10_1016_j_ympev_2023_107787
crossref_primary_10_1016_j_ympev_2018_10_033
crossref_primary_10_1093_molbev_msy198
crossref_primary_10_1016_j_ympev_2023_107785
crossref_primary_10_1016_j_ympev_2023_107784
crossref_primary_10_3390_genes14071387
crossref_primary_10_1111_cla_12523
crossref_primary_10_11646_zootaxa_5264_2_5
crossref_primary_10_1093_g3journal_jkae119
crossref_primary_10_1600_036364421X16312067913435
crossref_primary_10_1146_annurev_ecolsys_122120_122554
crossref_primary_10_1002_ajb2_1502
crossref_primary_10_3390_d14030180
crossref_primary_10_3390_plants12213664
crossref_primary_10_1534_g3_120_401358
crossref_primary_10_1002_ajb2_16299
crossref_primary_10_1038_s41586_024_07324_0
crossref_primary_10_1111_tpj_14874
crossref_primary_10_1093_aob_mcae002
crossref_primary_10_1016_j_ympev_2023_107774
crossref_primary_10_1016_j_celrep_2022_111079
crossref_primary_10_1016_j_ympev_2022_107485
crossref_primary_10_1038_s41467_019_13443_4
crossref_primary_10_3390_d14030157
crossref_primary_10_1371_journal_pone_0240062
crossref_primary_10_3389_fpls_2021_725900
crossref_primary_10_1093_evolut_qpae039
crossref_primary_10_1007_s12228_022_09722_y
crossref_primary_10_1111_cla_12559
crossref_primary_10_1111_mec_15733
crossref_primary_10_1093_biolinnean_blae034
crossref_primary_10_1093_g3journal_jkad294
crossref_primary_10_1098_rspb_2020_0480
crossref_primary_10_3389_fpls_2023_1268546
crossref_primary_10_1016_j_toxicon_2023_107135
crossref_primary_10_1093_molbev_msz263
crossref_primary_10_1155_2019_5190425
crossref_primary_10_3389_fcimb_2022_1010244
crossref_primary_10_1016_j_ympev_2019_106611
crossref_primary_10_1038_s41559_020_01291_1
crossref_primary_10_1093_aob_mcae030
crossref_primary_10_1016_j_ympev_2022_107486
crossref_primary_10_1038_s41467_023_43964_y
crossref_primary_10_1093_evolut_qpad184
crossref_primary_10_3389_fpls_2022_827890
crossref_primary_10_1093_isd_ixaa018
crossref_primary_10_1111_pbi_13735
crossref_primary_10_1111_nph_19694
crossref_primary_10_1126_sciadv_adf6601
crossref_primary_10_1111_cla_12540
crossref_primary_10_1186_s12915_021_01087_0
crossref_primary_10_1016_j_biocontrol_2024_105529
crossref_primary_10_1002_tax_12991
crossref_primary_10_1111_icad_12579
crossref_primary_10_25226_bboc_v143i2_2023_a3
crossref_primary_10_1073_pnas_1910060117
crossref_primary_10_1016_j_cub_2024_06_080
crossref_primary_10_1073_pnas_2116841119
crossref_primary_10_1093_aob_mcad175
crossref_primary_10_1093_aob_mcae022
crossref_primary_10_1093_nar_gkz282
crossref_primary_10_3389_fpls_2019_01655
crossref_primary_10_1002_tax_12510
crossref_primary_10_1016_j_xplc_2020_100027
crossref_primary_10_1016_j_ympev_2022_107462
crossref_primary_10_1371_journal_pone_0266430
crossref_primary_10_1038_s41467_024_54719_8
crossref_primary_10_1002_evan_21940
crossref_primary_10_2139_ssrn_3986497
crossref_primary_10_1073_pnas_2305228121
crossref_primary_10_1111_jse_12814
crossref_primary_10_1093_zoolinnean_zlad062
crossref_primary_10_7717_peerj_9763
crossref_primary_10_1093_auk_ukaa016
crossref_primary_10_1038_s41588_021_00895_y
crossref_primary_10_1111_jse_12815
crossref_primary_10_3390_d12040164
crossref_primary_10_1002_tax_12503
crossref_primary_10_1016_j_ygeno_2023_110771
crossref_primary_10_1093_molbev_msz240
crossref_primary_10_1071_BT24047
crossref_primary_10_1186_s12915_024_01991_1
crossref_primary_10_1111_jipb_13573
crossref_primary_10_1111_csp2_483
crossref_primary_10_1071_SB24009
crossref_primary_10_1098_rspb_2024_0514
crossref_primary_10_1002_ajb2_1703
crossref_primary_10_1002_ajb2_1702
crossref_primary_10_1371_journal_pgen_1009095
crossref_primary_10_1002_ajb2_1701
crossref_primary_10_1002_ajb2_1700
crossref_primary_10_1093_bioinformatics_btac224
crossref_primary_10_1111_mec_14851
crossref_primary_10_7554_eLife_88366
crossref_primary_10_1093_botlinnean_boae092
crossref_primary_10_1111_jse_12829
crossref_primary_10_1016_j_ympev_2023_107978
crossref_primary_10_1016_j_ympev_2023_107977
crossref_primary_10_1093_aob_mcae043
crossref_primary_10_1371_journal_pone_0274292
crossref_primary_10_1016_j_ympev_2022_107682
crossref_primary_10_1093_botlinnean_boae059
crossref_primary_10_3389_fpls_2021_659275
crossref_primary_10_7554_eLife_78579
crossref_primary_10_1016_j_cub_2024_11_065
crossref_primary_10_1016_j_ympev_2021_107161
crossref_primary_10_1111_1755_0998_13146
crossref_primary_10_1007_s13127_020_00445_0
crossref_primary_10_1093_zoolinnean_zlae174
crossref_primary_10_1186_s12870_022_03491_2
crossref_primary_10_3390_microorganisms9020301
crossref_primary_10_1099_ijsem_0_004213
crossref_primary_10_1126_science_abn8153
crossref_primary_10_1093_gbe_evae027
crossref_primary_10_1093_gbe_evae026
crossref_primary_10_3389_fpls_2022_1006904
crossref_primary_10_3389_fmicb_2022_962856
crossref_primary_10_1016_j_cub_2024_04_066
crossref_primary_10_1038_s41467_023_36631_9
crossref_primary_10_1093_gbe_evac083
crossref_primary_10_1186_s12915_020_00797_1
crossref_primary_10_1016_j_xplc_2022_100410
crossref_primary_10_1007_s00227_025_04600_z
crossref_primary_10_1016_j_ympev_2021_107169
crossref_primary_10_1080_07060661_2022_2061605
crossref_primary_10_1016_j_ympev_2021_107151
crossref_primary_10_1111_1755_0998_13150
crossref_primary_10_1093_evolinnean_kzae026
crossref_primary_10_1111_cla_12507
crossref_primary_10_1093_bioinformatics_btad332
crossref_primary_10_1093_bioinformatics_btz344
crossref_primary_10_1126_sciadv_abn1099
crossref_primary_10_1016_j_isci_2021_103324
crossref_primary_10_1111_jse_12806
crossref_primary_10_1093_gbe_evae034
crossref_primary_10_3390_insects13070603
crossref_primary_10_1016_j_cub_2021_08_054
crossref_primary_10_1016_j_ympev_2023_107999
crossref_primary_10_1186_s12862_021_01797_7
crossref_primary_10_1186_s12864_023_09430_1
crossref_primary_10_1016_j_ympev_2023_107753
crossref_primary_10_1093_aob_mcae065
crossref_primary_10_1080_00275514_2024_2354149
crossref_primary_10_1093_ornithology_ukab042
crossref_primary_10_1093_ornithology_ukab041
crossref_primary_10_1093_sysbio_syad018
crossref_primary_10_3390_plants12112213
crossref_primary_10_7554_eLife_88366_3
crossref_primary_10_1186_s12862_023_02151_9
crossref_primary_10_3389_fpls_2022_982852
crossref_primary_10_1186_s12864_021_07627_w
crossref_primary_10_1038_s41467_024_53141_4
crossref_primary_10_1093_bioinformatics_btad221
crossref_primary_10_1038_s42003_022_03292_1
crossref_primary_10_1126_science_abn6919
crossref_primary_10_1093_sysbio_syad015
crossref_primary_10_1093_sysbio_syab077
crossref_primary_10_3389_fpls_2024_1394244
crossref_primary_10_1098_rsos_221348
crossref_primary_10_1002_ajb2_16226
crossref_primary_10_1093_sysbio_syad014
crossref_primary_10_1099_ijsem_0_005323
crossref_primary_10_1016_j_ympev_2023_107708
crossref_primary_10_1093_gbe_evac067
crossref_primary_10_1093_gbe_evae002
crossref_primary_10_1111_nph_15842
crossref_primary_10_1016_j_ympev_2022_107427
crossref_primary_10_1016_j_ympev_2023_107702
crossref_primary_10_3389_fpls_2020_607893
crossref_primary_10_7554_eLife_65394
crossref_primary_10_1126_science_aba4674
crossref_primary_10_1111_jipb_13773
crossref_primary_10_1073_pnas_2006659117
crossref_primary_10_1016_j_ympev_2022_107671
crossref_primary_10_1093_sysbio_syad008
crossref_primary_10_1016_j_ympev_2022_107430
crossref_primary_10_1093_sysbio_syad009
crossref_primary_10_1111_syen_12505
crossref_primary_10_1016_j_ympev_2021_107374
crossref_primary_10_1111_syen_12508
crossref_primary_10_1002_ajb2_1469
crossref_primary_10_1073_pnas_2222035120
crossref_primary_10_1111_jse_12745
crossref_primary_10_1002_ajb2_1468
crossref_primary_10_1093_sysbio_syab064
crossref_primary_10_1186_s12862_025_02353_3
crossref_primary_10_1093_sysbio_syab068
crossref_primary_10_1002_ajb2_16451
crossref_primary_10_1002_tax_13103
crossref_primary_10_1093_molbev_msz215
crossref_primary_10_1016_j_ympev_2023_107938
crossref_primary_10_1016_j_ympev_2020_106904
crossref_primary_10_3389_fevo_2020_616741
crossref_primary_10_3389_fpls_2022_967456
crossref_primary_10_1016_j_ympev_2024_108083
crossref_primary_10_1109_TCBB_2022_3177956
crossref_primary_10_3897_phytokeys_251_136373
crossref_primary_10_1016_j_ympev_2021_107379
crossref_primary_10_1016_j_ympev_2025_108342
crossref_primary_10_1016_j_ympev_2024_108088
crossref_primary_10_1093_gbe_evae251
crossref_primary_10_1016_j_ympev_2024_108089
crossref_primary_10_1016_j_ympev_2021_107375
crossref_primary_10_1093_molbev_msz213
crossref_primary_10_1094_MPMI_06_20_0145_R
crossref_primary_10_1111_jipb_13760
crossref_primary_10_1016_j_ympev_2022_107432
crossref_primary_10_1016_j_ympev_2021_107361
crossref_primary_10_5091_plecevo_85589
crossref_primary_10_1038_s41598_024_83292_9
crossref_primary_10_1098_rsbl_2022_0360
crossref_primary_10_1016_j_heliyon_2024_e39430
crossref_primary_10_1093_sysbio_syab097
crossref_primary_10_1098_rspb_2023_1107
crossref_primary_10_1021_acssynbio_4c00199
crossref_primary_10_1093_sysbio_syad038
crossref_primary_10_1111_jse_12711
crossref_primary_10_1111_nph_18098
crossref_primary_10_1002_ajb2_16249
crossref_primary_10_1093_gbe_evae218
crossref_primary_10_1111_jse_12950
crossref_primary_10_1111_mec_15458
crossref_primary_10_1093_gbe_evad138
crossref_primary_10_1186_s12915_022_01436_7
crossref_primary_10_3389_fpls_2022_889988
crossref_primary_10_1016_j_ympev_2024_108093
crossref_primary_10_1002_ece3_10190
crossref_primary_10_1016_j_ympev_2023_107727
crossref_primary_10_1016_j_ympev_2023_107969
crossref_primary_10_1093_sysbio_syab094
crossref_primary_10_1093_gbe_evae222
crossref_primary_10_1111_syen_12530
crossref_primary_10_1002_advs_202309990
crossref_primary_10_1016_j_ympev_2023_107962
crossref_primary_10_1016_j_ympev_2023_107960
crossref_primary_10_1038_s41467_023_38567_6
crossref_primary_10_1016_j_cub_2021_09_059
crossref_primary_10_1016_j_ympev_2025_108327
crossref_primary_10_1016_j_ympev_2022_107650
crossref_primary_10_1600_036364423X17000842213632
crossref_primary_10_1016_j_ympev_2025_108325
crossref_primary_10_1093_sysbio_syad029
crossref_primary_10_1007_s11103_021_01155_7
crossref_primary_10_1109_TSP_2024_3457529
crossref_primary_10_1093_sysbio_syab086
crossref_primary_10_1038_s41588_023_01546_0
crossref_primary_10_1093_sysbio_syad026
crossref_primary_10_1111_jse_12721
crossref_primary_10_1111_nph_19175
crossref_primary_10_1093_sysbio_syad024
crossref_primary_10_1016_j_molp_2023_12_019
crossref_primary_10_1186_s12915_021_01166_2
crossref_primary_10_1371_journal_pcbi_1010303
crossref_primary_10_1093_g3journal_jkae096
crossref_primary_10_1111_zsc_12441
crossref_primary_10_11646_zootaxa_4712_2_3
crossref_primary_10_1002_tax_13323
crossref_primary_10_1038_s41559_024_02596_1
crossref_primary_10_1016_j_ympev_2023_107956
crossref_primary_10_1016_j_ympev_2023_107955
crossref_primary_10_1093_gbe_evad142
crossref_primary_10_1111_geb_13521
crossref_primary_10_1093_ornithology_ukad005
crossref_primary_10_1111_jbi_15055
crossref_primary_10_3390_genes13030452
crossref_primary_10_1016_j_ympev_2025_108323
crossref_primary_10_1016_j_ympev_2021_107356
crossref_primary_10_1111_syen_12525
crossref_primary_10_1038_s41467_024_50852_6
crossref_primary_10_1016_j_ympev_2021_107341
crossref_primary_10_1038_s41597_022_01680_0
crossref_primary_10_1038_s41467_024_51028_y
crossref_primary_10_1126_sciadv_abq3713
crossref_primary_10_1002_ajb2_1678
crossref_primary_10_1016_j_ympev_2023_107909
crossref_primary_10_1093_gbe_evab179
crossref_primary_10_1002_ajb2_1682
crossref_primary_10_1016_j_ympev_2023_107908
crossref_primary_10_1002_ajb2_16025
crossref_primary_10_1093_evolut_qpae011
crossref_primary_10_1128_msystems_01401_24
crossref_primary_10_3390_ijms21155247
crossref_primary_10_1093_bioinformatics_btab093
crossref_primary_10_24349_pjye_gkeo
crossref_primary_10_1093_bioinformatics_btab096
crossref_primary_10_1093_gbe_evae200
crossref_primary_10_1016_j_ympev_2022_107620
crossref_primary_10_1016_j_ympev_2021_107342
crossref_primary_10_1016_j_ympev_2022_107621
crossref_primary_10_1016_j_ympev_2024_108277
crossref_primary_10_1016_j_ympev_2021_107344
crossref_primary_10_1126_sciadv_adl0989
crossref_primary_10_1016_j_ympev_2021_107330
crossref_primary_10_1093_molbev_msaa334
crossref_primary_10_3897_phytokeys_205_76790
crossref_primary_10_1111_jzs_12433
crossref_primary_10_1093_sysbio_syad043
crossref_primary_10_1186_s12862_020_01615_6
crossref_primary_10_1038_s41559_022_01813_z
crossref_primary_10_1016_j_ympev_2020_106945
crossref_primary_10_1002_tax_13300
crossref_primary_10_1016_j_ympev_2020_106943
crossref_primary_10_1038_s41467_022_28359_9
crossref_primary_10_1016_j_ympev_2020_106949
crossref_primary_10_1600_036364424X17323182682762
crossref_primary_10_1016_j_ympev_2021_107339
crossref_primary_10_1016_j_ympev_2024_108280
crossref_primary_10_1016_j_ympev_2024_108282
crossref_primary_10_7554_eLife_63167
crossref_primary_10_1016_j_ympev_2022_107635
crossref_primary_10_1016_j_ympev_2024_108283
crossref_primary_10_1002_tax_13308
crossref_primary_10_1093_gbe_evaa090
crossref_primary_10_1016_j_watbs_2024_100328
crossref_primary_10_1038_s42003_023_05620_5
crossref_primary_10_1007_s11103_024_01440_1
crossref_primary_10_1093_sysbio_syad077
crossref_primary_10_1371_journal_pone_0279924
crossref_primary_10_1093_sysbio_syad078
crossref_primary_10_1093_sysbio_syad076
crossref_primary_10_1111_jse_12757
crossref_primary_10_1002_ajb2_1698
crossref_primary_10_1002_ajb2_1697
crossref_primary_10_1002_ajb2_1696
crossref_primary_10_1002_ajb2_1695
crossref_primary_10_1080_00275514_2022_2045116
crossref_primary_10_1590_1982_0224_2021_0160
crossref_primary_10_1016_j_ympev_2023_107928
crossref_primary_10_1016_j_ympev_2022_107606
crossref_primary_10_1016_j_ympev_2023_107924
crossref_primary_10_1016_j_ympev_2021_107327
crossref_primary_10_1016_j_ympev_2024_108054
crossref_primary_10_1002_ajb2_16280
crossref_primary_10_1016_j_ympev_2021_107326
crossref_primary_10_1086_733931
crossref_primary_10_1038_s41598_020_79620_4
crossref_primary_10_1016_j_cub_2022_02_027
crossref_primary_10_1038_s41467_024_46459_6
crossref_primary_10_1038_s41594_022_00783_x
crossref_primary_10_1038_s41437_024_00700_6
crossref_primary_10_1093_sysbio_syad067
crossref_primary_10_1098_rspb_2020_2192
crossref_primary_10_1093_sysbio_syad065
crossref_primary_10_1186_s12915_023_01718_8
crossref_primary_10_1002_ajb2_16276
crossref_primary_10_1002_ajb2_1693
crossref_primary_10_1016_j_jgg_2024_03_012
crossref_primary_10_1038_s41467_021_22949_9
crossref_primary_10_1093_sysbio_syad062
crossref_primary_10_1016_j_ympev_2021_107317
crossref_primary_10_1016_j_ympev_2023_107915
crossref_primary_10_1600_036364424X17267811220489
crossref_primary_10_1007_s10441_023_09475_5
crossref_primary_10_1016_j_ympev_2023_107914
crossref_primary_10_1016_j_ympev_2022_107616
crossref_primary_10_1093_gbe_evac012
crossref_primary_10_1093_sysbio_syad061
crossref_primary_10_1016_j_ympev_2021_107314
crossref_primary_10_1016_j_ympev_2023_107912
crossref_primary_10_1016_j_ympev_2024_108064
crossref_primary_10_1093_ornithology_ukab025
crossref_primary_10_1016_j_ympev_2023_107910
crossref_primary_10_1016_j_ympev_2021_107315
crossref_primary_10_1093_gbe_evab161
crossref_primary_10_1016_j_ympev_2020_106963
crossref_primary_10_1016_j_ympev_2024_108068
crossref_primary_10_1016_j_ympev_2021_107311
crossref_primary_10_1186_s12915_024_01848_7
crossref_primary_10_1016_j_ympev_2024_108236
crossref_primary_10_1073_pnas_2205986119
crossref_primary_10_1016_j_cell_2022_03_034
crossref_primary_10_2478_jofnem_2022_0059
crossref_primary_10_1111_tpj_15399
crossref_primary_10_1093_sysbio_syz056
crossref_primary_10_1111_mec_16168
crossref_primary_10_1186_s12864_020_6519_y
crossref_primary_10_1080_00222933_2020_1762941
crossref_primary_10_3390_biology12020263
crossref_primary_10_1093_bioinformatics_btaa1010
crossref_primary_10_1371_journal_pgen_1010964
crossref_primary_10_3897_vz_73_e94063
crossref_primary_10_1111_syen_12591
crossref_primary_10_1111_syen_12592
crossref_primary_10_1111_1755_0998_13806
crossref_primary_10_1111_syen_12594
crossref_primary_10_3389_fmicb_2019_03124
crossref_primary_10_1111_syen_12595
crossref_primary_10_1016_j_cub_2022_06_057
crossref_primary_10_1016_j_ympev_2024_108233
crossref_primary_10_1016_j_ympev_2024_108234
crossref_primary_10_1111_tpj_16480
crossref_primary_10_1016_j_ympev_2024_108235
crossref_primary_10_1016_j_ympev_2024_108249
crossref_primary_10_1093_molbev_msaa139
crossref_primary_10_1073_pnas_2220389120
crossref_primary_10_1093_sysbio_syz068
crossref_primary_10_3390_ijms26031370
crossref_primary_10_1111_1440_1703_12442
crossref_primary_10_1002_tpg2_20019
crossref_primary_10_1111_syen_12582
crossref_primary_10_1016_j_exppara_2020_108015
crossref_primary_10_1098_rspb_2024_2101
crossref_primary_10_1093_isd_ixae034
crossref_primary_10_1016_j_ympev_2020_106982
crossref_primary_10_1016_j_ympev_2024_108246
crossref_primary_10_1016_j_cub_2023_12_069
crossref_primary_10_1093_sysbio_syab016
crossref_primary_10_3897_phytokeys_251_130409
crossref_primary_10_1093_sysbio_syab018
crossref_primary_10_1093_molbev_msab251
crossref_primary_10_7717_peerj_12104
crossref_primary_10_7717_peerj_14526
crossref_primary_10_1126_science_abn7829
crossref_primary_10_7717_peerj_14525
crossref_primary_10_1002_ajb2_16404
crossref_primary_10_1038_s41587_020_00777_4
crossref_primary_10_1093_sysbio_syab012
crossref_primary_10_1093_sysbio_syab011
crossref_primary_10_1186_s12711_024_00904_8
crossref_primary_10_1093_sysbio_syab013
crossref_primary_10_1038_s42003_021_02105_1
crossref_primary_10_1016_j_ympev_2020_106998
crossref_primary_10_1093_sysbio_syz073
crossref_primary_10_1016_j_cub_2024_08_009
crossref_primary_10_1016_j_ympev_2024_108250
crossref_primary_10_1016_j_cub_2022_06_036
crossref_primary_10_1016_j_ympev_2024_108254
crossref_primary_10_1126_sciadv_adh0474
crossref_primary_10_1016_j_ympev_2024_108014
crossref_primary_10_1038_s41467_020_17827_9
crossref_primary_10_1146_annurev_ecolsys_012121_095340
crossref_primary_10_3390_insects12100857
crossref_primary_10_1093_evlett_qrad026
crossref_primary_10_7717_peerj_10155
crossref_primary_10_1016_j_ympev_2020_106769
crossref_primary_10_1002_tax_13167
crossref_primary_10_1016_j_cub_2022_05_001
crossref_primary_10_1093_gbe_evz269
crossref_primary_10_1093_gbe_evab120
crossref_primary_10_1002_tax_13163
crossref_primary_10_1111_1744_7917_13034
crossref_primary_10_1186_s43008_020_00051_x
crossref_primary_10_1186_s12864_022_09011_8
crossref_primary_10_1016_j_ympev_2024_108024
crossref_primary_10_1093_molbev_msaa160
crossref_primary_10_1016_j_ympev_2024_108026
crossref_primary_10_1038_s41396_023_01432_x
crossref_primary_10_1111_syen_12559
crossref_primary_10_1128_mBio_01111_21
crossref_primary_10_1206_0003_0090_454_1_1
crossref_primary_10_1093_molbev_msab038
crossref_primary_10_1098_rsos_240064
crossref_primary_10_3389_fpls_2021_759460
crossref_primary_10_3389_fpls_2022_910362
crossref_primary_10_1038_s42003_022_03483_w
crossref_primary_10_1093_botlinnean_boab008
crossref_primary_10_1093_sysbio_syab032
crossref_primary_10_3389_fpls_2023_1114579
crossref_primary_10_1093_sysbio_syab036
crossref_primary_10_1093_dnares_dsae011
crossref_primary_10_1093_sysbio_syab035
crossref_primary_10_1111_jzs_12262
crossref_primary_10_1111_evo_14562
crossref_primary_10_1016_j_ympev_2020_106771
crossref_primary_10_1111_nph_19849
crossref_primary_10_1111_syen_12557
crossref_primary_10_1016_j_ympev_2025_108311
crossref_primary_10_1038_s41467_020_16338_x
crossref_primary_10_1093_molbev_msaa191
crossref_primary_10_1093_molbev_msac112
crossref_primary_10_1093_sysbio_syab026
crossref_primary_10_7554_eLife_72460
crossref_primary_10_1016_j_ympev_2024_108206
crossref_primary_10_1016_j_ympev_2024_108207
crossref_primary_10_1016_j_ympev_2025_108309
crossref_primary_10_1093_botlinnean_boab018
crossref_primary_10_1371_journal_pgen_1009530
crossref_primary_10_1093_gbe_evab101
crossref_primary_10_1007_s13225_020_00447_5
crossref_primary_10_1111_mms_13047
crossref_primary_10_1111_syen_12542
crossref_primary_10_3389_fevo_2022_930356
crossref_primary_10_1111_syen_12545
crossref_primary_10_1016_j_ympev_2024_108201
crossref_primary_10_1093_molbev_msaa181
crossref_primary_10_1016_j_ympev_2024_108202
crossref_primary_10_1093_molbev_msab055
crossref_primary_10_1016_j_ympev_2024_108218
crossref_primary_10_1038_s41598_024_54744_z
crossref_primary_10_1086_724824
crossref_primary_10_1093_plcell_koab026
crossref_primary_10_1093_molbev_msad234
crossref_primary_10_1093_sysbio_syab051
crossref_primary_10_1007_s13127_022_00548_w
crossref_primary_10_1073_pnas_2101486118
crossref_primary_10_1093_sysbio_syab053
crossref_primary_10_1093_sysbio_syab056
crossref_primary_10_1016_j_funbio_2023_11_003
crossref_primary_10_12688_f1000research_134814_1
crossref_primary_10_1098_rsbl_2024_0692
crossref_primary_10_1111_jse_12599
crossref_primary_10_1016_j_cub_2024_09_084
crossref_primary_10_1016_j_pld_2024_07_008
crossref_primary_10_1086_730262
crossref_primary_10_1016_j_pld_2024_07_001
crossref_primary_10_1093_sysbio_syz030
crossref_primary_10_1111_zsc_12477
crossref_primary_10_1111_ibi_13305
crossref_primary_10_1111_syen_12573
crossref_primary_10_1128_msystems_00892_22
crossref_primary_10_3389_fpls_2023_1274337
crossref_primary_10_1016_j_ympev_2024_108210
crossref_primary_10_1080_00275514_2021_1950456
crossref_primary_10_1111_syen_12577
crossref_primary_10_1111_syen_12578
crossref_primary_10_1111_nph_17649
crossref_primary_10_1038_s42003_024_06660_1
crossref_primary_10_1093_bioinformatics_btaa868
crossref_primary_10_1093_sysbio_syz044
crossref_primary_10_1093_sysbio_syab043
crossref_primary_10_1093_sysbio_syz045
crossref_primary_10_1186_s12915_021_01081_6
crossref_primary_10_1098_rsbl_2024_0464
crossref_primary_10_1093_sysbio_syab044
crossref_primary_10_1002_tax_13122
crossref_primary_10_1038_s41467_020_20680_5
crossref_primary_10_1111_evo_14592
crossref_primary_10_1600_036364422X16512572274990
crossref_primary_10_1093_hr_uhae103
crossref_primary_10_1002_aps3_11295
crossref_primary_10_1111_mec_15483
crossref_primary_10_1038_s41598_019_44772_5
crossref_primary_10_1111_syen_12563
crossref_primary_10_1016_j_ympev_2024_108222
crossref_primary_10_1111_syen_12569
crossref_primary_10_1016_j_chom_2020_05_005
crossref_primary_10_1093_molbev_msae226
crossref_primary_10_1186_s12862_019_1479_z
crossref_primary_10_1038_s41467_023_41764_y
crossref_primary_10_1093_molbev_msad133
crossref_primary_10_1098_rsbl_2023_0307
crossref_primary_10_1111_jse_13141
crossref_primary_10_1038_s41598_021_99178_z
crossref_primary_10_3389_fpls_2022_1059379
crossref_primary_10_7554_eLife_97552
crossref_primary_10_1016_j_syapm_2021_126185
crossref_primary_10_1186_s12864_021_07894_7
crossref_primary_10_1038_s41586_020_2930_4
crossref_primary_10_1016_j_ygeno_2024_110979
crossref_primary_10_3389_fevo_2022_787560
crossref_primary_10_1038_s41477_022_01129_7
crossref_primary_10_3897_phytokeys_205_85866
crossref_primary_10_3897_phytokeys_233_103096
crossref_primary_10_1093_molbev_msab188
crossref_primary_10_1093_molbev_msae214
crossref_primary_10_1093_molbev_msac274
crossref_primary_10_3389_fpls_2022_869583
crossref_primary_10_1002_ece3_10736
crossref_primary_10_1111_jse_13154
crossref_primary_10_1111_jse_13151
crossref_primary_10_1111_1755_0998_13099
crossref_primary_10_1038_s41598_020_58279_x
crossref_primary_10_1186_s12862_022_02062_1
crossref_primary_10_1038_s41576_023_00620_x
crossref_primary_10_1086_724310
crossref_primary_10_1101_gr_277118_122
crossref_primary_10_1016_j_ympev_2019_05_001
crossref_primary_10_3100_hpib_v29iss1_2024_n18
crossref_primary_10_1016_j_pld_2024_09_004
crossref_primary_10_3390_genes13040707
crossref_primary_10_1038_s41598_023_34059_1
crossref_primary_10_1111_cla_12493
crossref_primary_10_1111_nph_18429
crossref_primary_10_1016_j_xplc_2022_100320
crossref_primary_10_1111_cla_12491
crossref_primary_10_1139_cjz_2023_0054
crossref_primary_10_1016_j_isci_2024_109444
crossref_primary_10_1093_molbev_msae007
crossref_primary_10_1093_molbev_msac065
crossref_primary_10_1111_nph_19744
crossref_primary_10_1111_tpj_15650
crossref_primary_10_1186_s40657_020_00194_w
crossref_primary_10_1002_ajp_23167
crossref_primary_10_1038_s41477_023_01464_3
crossref_primary_10_1093_genetics_iyab066
crossref_primary_10_1007_s00035_021_00268_5
crossref_primary_10_1080_00275514_2021_1889276
crossref_primary_10_1111_jse_13127
crossref_primary_10_1016_j_tree_2023_11_002
crossref_primary_10_7554_eLife_63753
crossref_primary_10_1093_molbev_msae250
crossref_primary_10_1111_nph_19504
crossref_primary_10_1206_0003_0090_468_1_1
crossref_primary_10_1093_g3journal_jkac001
crossref_primary_10_1093_isd_ixad012
crossref_primary_10_1111_jpy_13168
crossref_primary_10_1007_s11427_023_2516_9
crossref_primary_10_1038_s41467_021_26918_0
crossref_primary_10_1093_bioinformatics_btab875
crossref_primary_10_1093_aob_mcac117
crossref_primary_10_3389_fpls_2022_850521
crossref_primary_10_1038_s41467_021_22044_z
crossref_primary_10_1093_molbev_msae239
crossref_primary_10_1111_jse_13131
crossref_primary_10_3389_ffunb_2021_716385
crossref_primary_10_1038_s42003_022_04371_z
crossref_primary_10_1093_zoolinnean_zlae024
crossref_primary_10_1002_ece3_5991
crossref_primary_10_1038_s41477_023_01562_2
crossref_primary_10_1186_s12870_020_02518_w
crossref_primary_10_1038_s41559_022_01885_x
crossref_primary_10_1186_s12870_019_1896_6
crossref_primary_10_1111_jse_13138
crossref_primary_10_1086_715636
crossref_primary_10_3389_fpls_2024_1340056
crossref_primary_10_1186_s12870_021_03413_8
crossref_primary_10_1007_s12225_024_10205_4
crossref_primary_10_1002_aps3_11254
crossref_primary_10_1126_sciadv_abo4400
crossref_primary_10_1093_g3journal_jkac231
crossref_primary_10_1093_g3journal_jkab140
crossref_primary_10_1186_s40168_023_01545_7
crossref_primary_10_1080_00275514_2024_2425583
crossref_primary_10_1093_sysbio_syaa102
crossref_primary_10_1093_zoolinnean_zlad107
crossref_primary_10_1093_sysbio_syaa103
crossref_primary_10_1093_zoolinnean_zlad108
crossref_primary_10_1038_s41438_020_0269_5
crossref_primary_10_1093_botlinnean_boad024
crossref_primary_10_1600_036364424X17194277229638
crossref_primary_10_1093_gbe_evz013
crossref_primary_10_1093_sysbio_syaa101
crossref_primary_10_1186_s12915_024_01898_x
crossref_primary_10_1007_s13127_023_00609_8
crossref_primary_10_1093_gbe_evz258
crossref_primary_10_3390_ani12060681
crossref_primary_10_1002_aps3_11441
crossref_primary_10_1071_IS20044
crossref_primary_10_1002_aps3_11442
crossref_primary_10_1111_cla_12461
crossref_primary_10_1094_MPMI_34_2
crossref_primary_10_1016_j_protis_2023_125994
crossref_primary_10_1093_bioinformatics_btab414
crossref_primary_10_1186_s13015_019_0151_x
crossref_primary_10_1093_jcbiol_ruab073
crossref_primary_10_1643_CH2020009
crossref_primary_10_3897_phytokeys_205_79144
crossref_primary_10_1111_cla_12443
crossref_primary_10_1093_molbev_msad168
crossref_primary_10_1073_pnas_2201040119
crossref_primary_10_1016_j_cub_2019_07_059
crossref_primary_10_1111_tpj_15889
crossref_primary_10_3897_asp_83_e142332
crossref_primary_10_1016_j_avrs_2023_100095
crossref_primary_10_1093_isd_ixad024
crossref_primary_10_1007_s00606_024_01929_8
crossref_primary_10_1093_molbev_msad175
crossref_primary_10_1093_botlinnean_boad045
crossref_primary_10_1093_molbev_msac085
crossref_primary_10_1093_aob_mcad018
crossref_primary_10_1093_bioinformatics_btab428
crossref_primary_10_1016_j_ijpara_2022_03_005
crossref_primary_10_1093_hr_uhae194
crossref_primary_10_3389_fgene_2024_1456644
crossref_primary_10_4289_0013_8797_126_1_21
crossref_primary_10_1002_tax_13098
crossref_primary_10_1093_aob_mcad022
crossref_primary_10_1093_botlinnean_boab071
crossref_primary_10_1111_nph_18219
crossref_primary_10_1038_s42003_022_03364_2
crossref_primary_10_3897_phytokeys_205_82775
crossref_primary_10_1016_j_ympev_2019_05_018
crossref_primary_10_1093_aob_mcad008
crossref_primary_10_1016_j_jtbi_2021_110924
crossref_primary_10_1093_botlinnean_boad015
crossref_primary_10_1093_botlinnean_boad014
crossref_primary_10_1002_tax_13083
crossref_primary_10_1126_science_ade3984
crossref_primary_10_3389_fmicb_2021_732575
crossref_primary_10_1111_2041_210X_13145
crossref_primary_10_1186_s13015_024_00266_2
crossref_primary_10_1093_botlinnean_boab086
crossref_primary_10_1093_molbev_msad190
crossref_primary_10_1093_botlinnean_boad022
crossref_primary_10_1016_j_cub_2021_01_074
crossref_primary_10_1098_rspb_2021_2168
crossref_primary_10_1111_nph_20351
crossref_primary_10_1600_036364421X16312067913543
crossref_primary_10_1073_pnas_2318622122
crossref_primary_10_1093_biolinnean_blad093
crossref_primary_10_1093_sysbio_syae065
crossref_primary_10_1093_icb_icae056
crossref_primary_10_1111_1755_0998_13006
crossref_primary_10_1111_cla_12416
crossref_primary_10_1038_s42003_023_05083_8
crossref_primary_10_1016_j_cels_2022_06_007
crossref_primary_10_1016_j_tig_2020_08_012
crossref_primary_10_1093_botlinnean_boz049
crossref_primary_10_1093_sysbio_syae061
crossref_primary_10_1093_genetics_iyae155
crossref_primary_10_3389_fpls_2022_823190
crossref_primary_10_1016_j_ympev_2022_107389
crossref_primary_10_1186_s12864_022_08523_7
crossref_primary_10_1093_molbev_msz166
crossref_primary_10_1098_rsbl_2023_0398
crossref_primary_10_1098_rsbl_2023_0399
crossref_primary_10_7554_eLife_51712
crossref_primary_10_1016_j_ympev_2022_107397
crossref_primary_10_1016_j_ympev_2023_107892
crossref_primary_10_1016_j_ympev_2023_107891
crossref_primary_10_1016_j_ympev_2023_107890
crossref_primary_10_1016_j_ympev_2021_107092
crossref_primary_10_1126_science_adp3437
crossref_primary_10_3389_fpls_2019_01761
crossref_primary_10_1002_ajb2_1624
crossref_primary_10_1111_jse_12902
crossref_primary_10_1371_journal_pbio_3001365
crossref_primary_10_1093_dnares_dsaa021
crossref_primary_10_1600_036364423X16758873924135
crossref_primary_10_1002_ajb2_1860
crossref_primary_10_1371_journal_pone_0304144
crossref_primary_10_1093_sysbio_syae052
crossref_primary_10_1093_sysbio_syae053
crossref_primary_10_1111_jse_12906
crossref_primary_10_7554_eLife_97552_3
crossref_primary_10_1073_pnas_2406494121
crossref_primary_10_1016_j_ympev_2020_107036
crossref_primary_10_1093_aob_mcad033
crossref_primary_10_1111_tpj_14993
crossref_primary_10_1111_jipb_13246
crossref_primary_10_1093_aob_mcab092
crossref_primary_10_1080_14772000_2024_2436572
crossref_primary_10_1093_g3journal_jkae231
crossref_primary_10_3390_microorganisms10101991
crossref_primary_10_1111_mec_15616
crossref_primary_10_1186_s12862_021_01772_2
crossref_primary_10_1093_jhered_esz076
crossref_primary_10_1038_s42003_024_06296_1
crossref_primary_10_1186_s12864_025_11354_x
crossref_primary_10_1111_nph_19580
crossref_primary_10_1371_journal_pone_0293715
crossref_primary_10_1186_s13015_024_00257_3
crossref_primary_10_1016_j_aquaculture_2024_742059
crossref_primary_10_1016_j_ympev_2025_108293
crossref_primary_10_1016_j_ympev_2025_108297
crossref_primary_10_1093_biolinnean_blz195
crossref_primary_10_1002_aps3_11422
crossref_primary_10_1016_j_ympev_2020_107044
crossref_primary_10_1093_aob_mcae156
crossref_primary_10_1093_gbe_evad092
crossref_primary_10_1186_s43008_021_00068_w
crossref_primary_10_1002_tax_12643
crossref_primary_10_1093_molbev_msae093
crossref_primary_10_1016_j_ympev_2025_108299
crossref_primary_10_1111_evo_13976
crossref_primary_10_1073_pnas_2319679121
crossref_primary_10_1002_aps3_11416
crossref_primary_10_1016_j_isci_2023_108440
crossref_primary_10_1080_09670262_2022_2035825
crossref_primary_10_1016_j_ympev_2019_106727
crossref_primary_10_1073_pnas_2122486119
crossref_primary_10_1111_cla_12423
crossref_primary_10_1093_aob_mcad047
crossref_primary_10_1111_tpj_16914
crossref_primary_10_3389_fpls_2021_767478
crossref_primary_10_1071_SB23011
crossref_primary_10_1038_s41467_020_20005_6
crossref_primary_10_1093_sysbio_syae070
crossref_primary_10_1371_journal_pgen_1011223
crossref_primary_10_1093_gigascience_giae124
crossref_primary_10_1093_sysbio_syae073
crossref_primary_10_1016_j_ympev_2025_108286
crossref_primary_10_1016_j_ympev_2025_108285
crossref_primary_10_3389_fpls_2022_882960
crossref_primary_10_1093_gbe_evae191
crossref_primary_10_1016_j_ympev_2025_108289
crossref_primary_10_1093_ismejo_wrae048
crossref_primary_10_1093_molbev_msae084
crossref_primary_10_3897_zookeys_1167_103463
crossref_primary_10_1007_s00606_019_01615_0
crossref_primary_10_1016_j_ympev_2020_107065
crossref_primary_10_1073_pnas_2015579118
crossref_primary_10_1093_isd_ixab016
crossref_primary_10_1093_zoolinnean_zlae039
crossref_primary_10_1093_bioinformatics_btz211
crossref_primary_10_1371_journal_pone_0212769
crossref_primary_10_1093_gbe_evaf017
crossref_primary_10_1093_aob_mcae170
crossref_primary_10_1016_j_ympev_2023_107869
crossref_primary_10_1016_j_ympev_2020_107067
crossref_primary_10_1016_j_ympev_2023_107866
crossref_primary_10_1093_aob_mcae179
crossref_primary_10_1093_isd_ixab014
crossref_primary_10_1038_s41597_020_00684_y
crossref_primary_10_3897_asp_81_e86793
crossref_primary_10_1093_gbe_evad070
crossref_primary_10_1016_j_ympev_2021_107068
crossref_primary_10_1016_j_ympev_2023_107863
crossref_primary_10_1038_s41437_024_00683_4
crossref_primary_10_1186_s12864_022_08503_x
crossref_primary_10_1093_bioinformatics_btac349
crossref_primary_10_1016_j_ympev_2021_107296
crossref_primary_10_1016_j_ympev_2022_107592
crossref_primary_10_1016_j_ympev_2021_107297
crossref_primary_10_1002_ajb2_1827
crossref_primary_10_1111_1755_0998_13296
crossref_primary_10_1016_j_isci_2024_109852
crossref_primary_10_1111_cla_12604
crossref_primary_10_1371_journal_pone_0292619
crossref_primary_10_1016_j_isci_2021_103226
crossref_primary_10_1186_s12864_024_10722_3
crossref_primary_10_1093_jhered_esad074
crossref_primary_10_1038_s41598_019_56728_w
crossref_primary_10_1111_jse_12948
crossref_primary_10_1093_gbe_evaf023
crossref_primary_10_1016_j_ympev_2023_107853
crossref_primary_10_1093_aob_mcae161
crossref_primary_10_1093_nar_gkad573
crossref_primary_10_1098_rspb_2019_0122
crossref_primary_10_1186_s13015_023_00249_9
crossref_primary_10_1016_j_xgen_2024_100586
crossref_primary_10_1038_s41564_024_01766_y
crossref_primary_10_1111_1462_2920_15112
crossref_primary_10_1038_s41586_019_1398_6
crossref_primary_10_1111_jse_12912
crossref_primary_10_3390_biology13050305
crossref_primary_10_1126_science_adh2449
crossref_primary_10_3389_fpls_2024_1414636
crossref_primary_10_3390_d14040284
crossref_primary_10_3390_insects14090775
crossref_primary_10_1186_s12915_023_01579_1
crossref_primary_10_1038_s41467_021_26931_3
crossref_primary_10_17660_ActaHortic_2021_1309_17
crossref_primary_10_1093_g3journal_jkad133
crossref_primary_10_3390_genes13050774
crossref_primary_10_3389_fmolb_2022_784419
crossref_primary_10_1093_isd_ixab027
crossref_primary_10_1093_isd_ixab026
crossref_primary_10_1002_ajb2_1847
crossref_primary_10_1016_j_ympev_2021_107270
crossref_primary_10_1111_nph_18284
crossref_primary_10_1111_jse_12920
crossref_primary_10_1098_rspb_2020_2102
crossref_primary_10_1093_gbe_evae157
crossref_primary_10_1371_journal_pgen_1011266
crossref_primary_10_1093_aob_mcad099
crossref_primary_10_1093_isd_ixab023
crossref_primary_10_1093_g3journal_jkac038
crossref_primary_10_3897_phytokeys_229_103888
crossref_primary_10_1093_g3journal_jkac277
crossref_primary_10_1111_jipb_13466
crossref_primary_10_3389_fpls_2020_584981
crossref_primary_10_1016_j_ympev_2022_107576
crossref_primary_10_1093_aob_mcae183
crossref_primary_10_1002_tax_12831
crossref_primary_10_1111_jipb_13462
crossref_primary_10_1016_j_ympev_2021_107263
crossref_primary_10_3897_mycokeys_50_32432
crossref_primary_10_7554_eLife_70990
crossref_primary_10_1016_j_ympev_2019_02_022
crossref_primary_10_1111_jse_12855
crossref_primary_10_1093_sysbio_syac043
crossref_primary_10_1002_ajb2_16103
crossref_primary_10_1002_ppp3_70012
crossref_primary_10_1093_sysbio_syac047
crossref_primary_10_1111_1755_0998_13523
crossref_primary_10_1038_s41559_024_02586_3
crossref_primary_10_2139_ssrn_3502312
crossref_primary_10_1111_1755_0998_13527
crossref_primary_10_1093_gbe_evad034
crossref_primary_10_1016_j_ympev_2023_107826
crossref_primary_10_1016_j_ympev_2024_108193
crossref_primary_10_1093_gigascience_giac011
crossref_primary_10_1093_sysbio_syac040
crossref_primary_10_3390_jof10040266
crossref_primary_10_1016_j_cub_2018_10_019
crossref_primary_10_1093_gbe_evac183
crossref_primary_10_1128_msystems_00785_24
crossref_primary_10_1016_j_ympev_2022_107548
crossref_primary_10_1016_j_ympev_2022_107545
crossref_primary_10_1016_j_ympev_2024_108197
crossref_primary_10_1093_gbe_evac185
crossref_primary_10_1111_syen_12630
crossref_primary_10_1016_j_ympev_2021_107265
crossref_primary_10_1016_j_ympev_2022_107543
crossref_primary_10_1073_pnas_2022302118
crossref_primary_10_1016_j_ympev_2021_107266
crossref_primary_10_1016_j_ympev_2022_107544
crossref_primary_10_1016_j_ympev_2022_107542
crossref_primary_10_1016_j_ympev_2022_107550
crossref_primary_10_48130_tp_0024_0031
crossref_primary_10_1093_bioinformatics_btac265
crossref_primary_10_1093_sysbio_syaa097
crossref_primary_10_1093_sysbio_syac032
crossref_primary_10_1093_sysbio_syaa098
crossref_primary_10_1016_j_ympev_2019_02_016
crossref_primary_10_1093_sysbio_syaa099
crossref_primary_10_1093_sysbio_syac034
crossref_primary_10_1126_science_abq4257
crossref_primary_10_1126_science_adj4503
crossref_primary_10_1016_j_cub_2023_05_003
crossref_primary_10_1038_s41467_022_28312_w
crossref_primary_10_1038_s41467_023_43556_w
crossref_primary_10_1038_s42003_024_06376_2
crossref_primary_10_1002_tax_12372
crossref_primary_10_1016_j_ympev_2018_07_012
crossref_primary_10_1016_j_ympev_2021_107258
crossref_primary_10_1016_j_ympev_2023_107812
crossref_primary_10_1016_j_ympev_2023_107811
crossref_primary_10_1016_j_ympev_2019_106668
crossref_primary_10_1186_s12915_023_01772_2
crossref_primary_10_1080_23818107_2024_2414981
crossref_primary_10_1093_sysbio_syae008
crossref_primary_10_1093_sysbio_syac064
crossref_primary_10_1093_sysbio_syae002
crossref_primary_10_3390_vetsci9050247
crossref_primary_10_1093_isd_ixz016
crossref_primary_10_1111_1755_0998_13986
crossref_primary_10_1002_tax_12365
crossref_primary_10_1016_j_cub_2022_11_014
crossref_primary_10_1016_j_molp_2022_10_018
crossref_primary_10_1038_s41559_022_01803_1
crossref_primary_10_1080_09670262_2019_1663269
crossref_primary_10_1111_jse_12838
crossref_primary_10_1016_j_ympev_2022_107526
crossref_primary_10_1007_s10592_023_01561_y
crossref_primary_10_1016_j_ympev_2023_107844
crossref_primary_10_1111_syen_12413
crossref_primary_10_1186_s12864_019_6007_4
crossref_primary_10_1016_j_ympev_2022_107520
crossref_primary_10_1111_mec_16417
crossref_primary_10_1111_syen_12406
crossref_primary_10_3897_jhr_94_91001
crossref_primary_10_1093_isd_ixz020
crossref_primary_10_1093_isd_ixz024
crossref_primary_10_1093_sysbio_syac054
crossref_primary_10_1600_036364424X17110456120677
crossref_primary_10_1016_j_csbj_2024_10_032
crossref_primary_10_1002_ajb2_16116
crossref_primary_10_1186_s12864_021_08079_y
crossref_primary_10_1002_ajb2_16352
crossref_primary_10_1093_mollus_eyab019
crossref_primary_10_3897_zookeys_1158_94152
crossref_primary_10_1016_j_ympev_2023_107837
crossref_primary_10_1093_sysbio_syac051
crossref_primary_10_1002_ajb2_16350
crossref_primary_10_1038_s41588_024_01683_0
crossref_primary_10_1016_j_ympev_2021_107239
crossref_primary_10_3389_fevo_2022_893088
crossref_primary_10_1007_s00572_022_01091_4
crossref_primary_10_1111_syen_12643
crossref_primary_10_1109_TCBB_2019_2917204
crossref_primary_10_1111_syen_12646
crossref_primary_10_1016_j_cub_2022_12_001
crossref_primary_10_1016_j_xplc_2024_100878
crossref_primary_10_1111_tpj_17255
crossref_primary_10_1016_j_ympev_2019_106638
crossref_primary_10_1016_j_ympev_2021_107220
crossref_primary_10_1093_molbev_msab311
crossref_primary_10_1111_1462_2920_15890
crossref_primary_10_3390_plants12030478
crossref_primary_10_1093_sysbio_syae023
crossref_primary_10_1093_sysbio_syae024
crossref_primary_10_1016_j_heliyon_2023_e20231
crossref_primary_10_1093_molbev_msab314
crossref_primary_10_1093_sysbio_syae022
crossref_primary_10_1002_ajb2_16389
crossref_primary_10_1111_1755_0998_13327
crossref_primary_10_1093_evolut_qpae132
crossref_primary_10_1093_sysbio_syac080
crossref_primary_10_1016_j_xplc_2023_100591
crossref_primary_10_1093_sysbio_syae020
crossref_primary_10_7717_peerj_7747
crossref_primary_10_1093_gbe_evab052
crossref_primary_10_3390_biology10060451
crossref_primary_10_1111_jipb_13609
crossref_primary_10_1093_sysbio_syae018
crossref_primary_10_3389_fpls_2023_1114284
crossref_primary_10_1093_molbev_msab300
crossref_primary_10_1093_sysbio_syae012
crossref_primary_10_1093_sysbio_syae010
crossref_primary_10_1093_sysbio_syac078
crossref_primary_10_1111_1755_0998_13334
crossref_primary_10_1111_mec_15786
crossref_primary_10_1186_s12915_022_01297_0
crossref_primary_10_7554_eLife_66797
crossref_primary_10_1002_ajb2_1790
crossref_primary_10_1016_j_ympev_2022_107518
crossref_primary_10_1016_j_ympev_2024_108160
crossref_primary_10_1093_gbe_evad002
crossref_primary_10_1093_sysbio_syac072
crossref_primary_10_1016_j_ympev_2021_107214
crossref_primary_10_1016_j_ympev_2022_107514
crossref_primary_10_1016_j_ympev_2024_108162
crossref_primary_10_3389_fpls_2025_1511582
crossref_primary_10_7554_eLife_71895
crossref_primary_10_3389_fpls_2023_999887
crossref_primary_10_1016_j_ympev_2024_108165
crossref_primary_10_1016_j_cell_2023_07_003
crossref_primary_10_1016_j_ympev_2024_108169
crossref_primary_10_1111_syen_12614
crossref_primary_10_1089_cmb_2021_0543
crossref_primary_10_1093_molbev_msaa240
crossref_primary_10_1111_mec_17717
crossref_primary_10_31857_S2686738922600820
crossref_primary_10_1111_jipb_13638
crossref_primary_10_1111_syen_12618
crossref_primary_10_1111_syen_12619
crossref_primary_10_1038_s41467_024_51158_3
crossref_primary_10_1093_sysbio_syae046
crossref_primary_10_1016_j_isci_2023_107307
crossref_primary_10_1093_gbe_evac125
crossref_primary_10_1134_S0012496623700308
crossref_primary_10_1073_pnas_1907847116
crossref_primary_10_1093_gbe_evad213
crossref_primary_10_1371_journal_pone_0207564
crossref_primary_10_3389_fpls_2022_813177
crossref_primary_10_3897_zookeys_1111_85361
crossref_primary_10_1016_j_ympev_2020_106839
crossref_primary_10_1093_gbe_evac123
crossref_primary_10_5852_ejt_2024_935_2539
crossref_primary_10_1016_j_xplc_2024_100851
crossref_primary_10_1016_j_ympev_2023_107801
crossref_primary_10_1111_jbi_14055
crossref_primary_10_1016_j_ympev_2024_108177
crossref_primary_10_1007_s10482_021_01558_y
crossref_primary_10_1016_j_ympev_2021_107202
crossref_primary_10_1038_s41467_023_41137_5
crossref_primary_10_1111_syen_12613
crossref_primary_10_1111_syen_12604
crossref_primary_10_3389_fpls_2021_743643
crossref_primary_10_3390_genes13091569
crossref_primary_10_1186_s12870_023_04363_z
crossref_primary_10_3389_fpls_2021_824672
crossref_primary_10_1038_s41597_024_03625_1
crossref_primary_10_1093_evolinnean_kzac001
crossref_primary_10_1111_syen_12609
crossref_primary_10_1002_ajb2_1568
crossref_primary_10_1093_molbev_msaa237
crossref_primary_10_1093_gbe_evac129
crossref_primary_10_1093_sysbio_syae038
crossref_primary_10_1111_1755_0998_13555
crossref_primary_10_1093_sysbio_syae036
crossref_primary_10_1371_journal_pone_0306586
crossref_primary_10_1093_g3journal_jkaf022
crossref_primary_10_1093_gbe_evab047
crossref_primary_10_1093_aesa_saae037
crossref_primary_10_1126_sciadv_ade4954
crossref_primary_10_1038_s41467_024_53943_6
crossref_primary_10_1093_gigascience_giac021
crossref_primary_10_1093_sysbio_syae031
crossref_primary_10_1016_j_ympev_2024_108182
crossref_primary_10_1016_j_ympev_2020_106847
crossref_primary_10_1016_j_ympev_2024_108184
crossref_primary_10_1111_ppl_14474
crossref_primary_10_1371_journal_pone_0261047
crossref_primary_10_1093_evolut_qpad035
crossref_primary_10_1073_pnas_2106080118
crossref_primary_10_1016_j_xplc_2020_100105
crossref_primary_10_1002_tax_12797
crossref_primary_10_1002_tax_12314
crossref_primary_10_1111_syen_12602
crossref_primary_10_1038_s41467_022_28917_1
crossref_primary_10_1111_jse_12695
crossref_primary_10_1111_jse_12694
crossref_primary_10_2139_ssrn_4019720
crossref_primary_10_1111_nph_17743
crossref_primary_10_1038_s41477_020_0618_2
crossref_primary_10_1111_mec_15199
crossref_primary_10_3390_biology10080816
crossref_primary_10_1016_j_ijbiomac_2024_131796
crossref_primary_10_1093_molbev_msab358
crossref_primary_10_1093_ornithology_ukae030
crossref_primary_10_1098_rspb_2023_0797
crossref_primary_10_1111_jse_12698
crossref_primary_10_1111_1755_0998_13921
crossref_primary_10_1371_journal_pone_0316148
crossref_primary_10_1093_gbe_evab010
crossref_primary_10_1093_hr_uhad124
crossref_primary_10_3897_zookeys_1137_94217
crossref_primary_10_1093_bioadv_vbae014
crossref_primary_10_1111_syen_12475
crossref_primary_10_1093_plphys_kiac467
crossref_primary_10_1080_24701394_2024_2345663
crossref_primary_10_1016_j_ympev_2024_108113
crossref_primary_10_1600_036364423X17000842213579
crossref_primary_10_1371_journal_pbio_3000954
crossref_primary_10_1093_molbev_msab106
crossref_primary_10_1093_sysbio_syaa013
crossref_primary_10_3389_fvets_2021_687084
crossref_primary_10_1073_pnas_1817794116
crossref_primary_10_1038_s41467_024_49769_x
crossref_primary_10_1111_syen_12468
crossref_primary_10_1016_j_ympev_2020_106862
crossref_primary_10_3389_fpls_2022_874322
crossref_primary_10_1186_s12864_020_6605_1
crossref_primary_10_1093_molbev_msac223
crossref_primary_10_1093_sysbio_syaa040
crossref_primary_10_3389_fpls_2023_1205683
crossref_primary_10_3390_pathogens12121409
crossref_primary_10_1038_s41598_024_70018_0
crossref_primary_10_1016_j_ympev_2019_04_017
crossref_primary_10_1038_s41559_022_01823_x
crossref_primary_10_1007_s13225_021_00476_8
crossref_primary_10_1093_sysbio_syaa046
crossref_primary_10_1016_j_ympev_2019_03_007
crossref_primary_10_1073_pnas_2020457119
crossref_primary_10_1016_j_ympev_2020_106878
crossref_primary_10_1016_j_ympev_2024_108131
crossref_primary_10_1038_s41598_020_73397_2
crossref_primary_10_1093_conphys_coaa136
crossref_primary_10_1016_j_ympev_2024_108136
crossref_primary_10_1186_s12862_023_02121_1
crossref_primary_10_1016_j_cell_2023_05_030
crossref_primary_10_1111_jse_12683
crossref_primary_10_1038_s41598_023_35210_8
crossref_primary_10_1093_molbev_msac215
crossref_primary_10_1111_jse_12681
crossref_primary_10_1016_j_scienta_2025_113988
crossref_primary_10_1093_molbev_msaa277
crossref_primary_10_3389_fevo_2021_794977
crossref_primary_10_1093_molbev_msab365
crossref_primary_10_1016_j_molp_2021_02_006
crossref_primary_10_1038_s41477_021_00964_4
crossref_primary_10_1093_jisesa_ieae029
crossref_primary_10_1186_s12915_022_01420_1
crossref_primary_10_1111_mec_17347
crossref_primary_10_1002_tax_13289
crossref_primary_10_3390_d11080126
crossref_primary_10_1093_gbe_evab001
crossref_primary_10_1111_1749_4877_12676
crossref_primary_10_1186_s12864_020_6607_z
crossref_primary_10_3389_fevo_2021_769565
crossref_primary_10_1016_j_ympev_2024_108144
crossref_primary_10_1016_j_cub_2021_04_033
crossref_primary_10_3389_fmicb_2022_977454
crossref_primary_10_1093_sysbio_syaa069
crossref_primary_10_1093_sysbio_syac006
crossref_primary_10_1111_2041_210X_14041
crossref_primary_10_1093_sysbio_syac007
crossref_primary_10_3389_fmicb_2021_679936
crossref_primary_10_1073_pnas_2319628121
crossref_primary_10_1093_sysbio_syaa063
crossref_primary_10_1093_sysbio_syaa065
crossref_primary_10_1093_sysbio_syaa066
crossref_primary_10_3897_asp_81_e110014
crossref_primary_10_1186_s13015_023_00230_6
crossref_primary_10_1016_j_ympev_2020_106899
crossref_primary_10_1643_h2020027
crossref_primary_10_1038_s41467_022_28806_7
crossref_primary_10_1002_ece3_9728
crossref_primary_10_1073_pnas_2313921121
crossref_primary_10_1111_syen_12670
crossref_primary_10_1186_s12915_024_01878_1
crossref_primary_10_1093_gpbjnl_qzad002
crossref_primary_10_1098_rspb_2021_2650
crossref_primary_10_1111_syen_12433
crossref_primary_10_1089_cmb_2022_0212
crossref_primary_10_25226_bboc_v144i4_2024_a6
crossref_primary_10_1111_syen_12669
crossref_primary_10_1093_evlett_qrae013
crossref_primary_10_1186_s12862_020_01695_4
crossref_primary_10_1002_tax_13260
crossref_primary_10_1186_s12862_021_01822_9
crossref_primary_10_1093_sysbio_syaa054
crossref_primary_10_1111_jse_13118
crossref_primary_10_3390_genes11010115
crossref_primary_10_1002_ajb2_70005
crossref_primary_10_1002_aps3_11394
crossref_primary_10_1016_j_isci_2022_105025
crossref_primary_10_1111_syen_12661
crossref_primary_10_1111_jbi_14461
crossref_primary_10_1111_syen_12423
crossref_primary_10_1111_syen_12665
crossref_primary_10_1111_syen_12666
crossref_primary_10_3390_genes13030399
crossref_primary_10_1038_s41598_021_92727_6
crossref_primary_10_1093_botlinnean_boaa052
crossref_primary_10_1111_syen_12668
crossref_primary_10_3389_fgene_2022_1085692
crossref_primary_10_3390_d17010061
crossref_primary_10_1093_molbev_msac021
crossref_primary_10_1093_sysbio_syac029
crossref_primary_10_1002_arch_21957
crossref_primary_10_3390_microorganisms9081662
crossref_primary_10_1016_j_pld_2023_06_001
crossref_primary_10_1093_sysbio_syy064
crossref_primary_10_1038_s41598_021_03300_0
crossref_primary_10_1093_sysbio_syaa085
crossref_primary_10_1093_sysbio_syac024
crossref_primary_10_1111_mec_16226
crossref_primary_10_1093_molbev_msae208
crossref_primary_10_1093_sysbio_syaa088
crossref_primary_10_1128_jb_00398_23
crossref_primary_10_1093_molbev_msae209
crossref_primary_10_1002_ajb2_70016
crossref_primary_10_1111_zsc_12353
crossref_primary_10_1371_journal_pgen_1009872
crossref_primary_10_3390_genes13020350
crossref_primary_10_1071_IS24021
crossref_primary_10_1111_syen_12451
crossref_primary_10_1640_0002_8444_113_3_191
crossref_primary_10_2139_ssrn_4071016
crossref_primary_10_3897_zookeys_1217_134940
crossref_primary_10_1186_s12936_022_04130_9
crossref_primary_10_1111_nph_17991
crossref_primary_10_1111_syen_12449
crossref_primary_10_1038_s41477_019_0486_9
crossref_primary_10_1093_molbev_msac012
crossref_primary_10_1177_1176934319874792
crossref_primary_10_1186_s12915_023_01692_1
crossref_primary_10_3389_fpls_2024_1297499
crossref_primary_10_1093_sysbio_syac019
crossref_primary_10_1093_sysbio_syac018
crossref_primary_10_1016_j_ympev_2024_108109
crossref_primary_10_3389_fgene_2024_1414074
crossref_primary_10_3389_fpls_2022_876779
crossref_primary_10_1016_j_gene_2023_147716
crossref_primary_10_1093_molbev_msac256
crossref_primary_10_1073_pnas_2311245121
crossref_primary_10_1093_sysbio_syaa074
crossref_primary_10_1111_mec_17304
crossref_primary_10_1093_sysbio_syac012
crossref_primary_10_1645_24_135
crossref_primary_10_1111_mec_16691
crossref_primary_10_1002_ajb2_70022
crossref_primary_10_1093_sysbio_syy074
crossref_primary_10_1002_ajb2_70021
crossref_primary_10_1038_s41586_025_08619_6
crossref_primary_10_1111_syen_12443
crossref_primary_10_1038_s41598_024_58253_x
crossref_primary_10_1111_nph_18845
crossref_primary_10_1093_auk_ukz046
crossref_primary_10_1016_j_ympev_2024_108103
Cites_doi 10.1073/pnas.1211733109
10.7554/eLife.05503
10.1093/bioinformatics/btv184
10.1093/molbev/msp274
10.1093/bioinformatics/btv234
10.1186/1471-2164-16-S10-S1
10.1111/j.1558-5646.2008.00549.x
10.1016/0025-5564(81)90043-2
10.1038/s41559-017-0126
10.1371/journal.pone.0009490
10.1371/journal.pone.0129183
10.1016/j.tree.2009.01.009
10.1089/cmb.2011.0174
10.1126/science.1250463
10.1073/pnas.1323926111
10.1016/j.ympev.2015.10.027
10.1093/genetics/164.4.1645
10.1093/sysbio/syr027
10.1186/s12864-016-3098-z
10.1093/sysbio/syv016
10.1093/gbe/evv261
10.1038/nature02053
10.1016/j.jtbi.2011.08.006
10.1093/sysbio/syu063
10.1093/sysbio/syw014
10.37236/6797
10.1093/sysbio/syp031
10.1109/TCBB.2008.66
10.1093/molbev/msw079
10.1093/bioinformatics/btq243
10.1016/j.ympev.2015.07.018
10.1093/bioinformatics/btu462
10.1109/TCBB.2017.2757930
10.1093/sysbio/46.3.523
10.1093/molbev/msp098
10.4172/2329-9002.1000110
10.1109/TSSC.1968.300136
10.1016/j.ympev.2014.08.013
10.1093/sysbio/syv082
10.1186/1471-2148-10-302
10.1126/science.1253451
10.1093/bioinformatics/btu033
10.1186/1471-2164-16-S10-S3
ContentType Journal Article
Copyright The Author(s) 2018
Copyright_xml – notice: The Author(s) 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12859-018-2129-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 30
ExternalDocumentID oai_doaj_org_article_3b80498fe94c49e78a1a07fc30cd90e3
PMC5998893
29745866
10_1186_s12859_018_2129_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c465t-a47a053c261f8c209cb9c15836f8b3722f6250ada5623b9ef2a20be0a76f2b753
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:28:46 EDT 2025
Thu Aug 21 18:32:48 EDT 2025
Mon Jul 21 09:53:33 EDT 2025
Mon Jul 21 05:25:52 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 03:38:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S6
Keywords Incomplete lineage sorting
ASTRAL
Phylogenomics
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-a47a053c261f8c209cb9c15836f8b3722f6250ada5623b9ef2a20be0a76f2b753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/3b80498fe94c49e78a1a07fc30cd90e3
PMID 29745866
PQID 2037050537
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_3b80498fe94c49e78a1a07fc30cd90e3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5998893
proquest_miscellaneous_2037050537
pubmed_primary_29745866
crossref_citationtrail_10_1186_s12859_018_2129_y
crossref_primary_10_1186_s12859_018_2129_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-08
PublicationDateYYYYMMDD 2018-05-08
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References JE Tarver (2129_CR7) 2016; 8
S Patel (2129_CR36) 2013; 01
2129_CR26
J Gatesy (2129_CR37) 2014; 80
2129_CR6
S Roch (2129_CR25) 2015; 64
S Mirarab (2129_CR22) 2015; 31
PE Hart (2129_CR39) 1968; 4
W Fletcher (2129_CR43) 2009; 26
MN Price (2129_CR32) 2010; 5
E Sayyari (2129_CR20) 2016; 17
ED Jarvis (2129_CR5) 2014; 346
M. S Bayzid (2129_CR34) 2015; 10
Y Yu (2129_CR38) 2011; 18
C Zhang (2129_CR40) 2017
R Davidson (2129_CR30) 2015; 16
A Rokas (2129_CR8) 2003; 425
J Heled (2129_CR13) 2010; 27
NJ Wickett (2129_CR4) 2014; 111
KA Meiklejohn (2129_CR10) 2016; 65
S Shekhar (2129_CR29) 2017; 99
S Mirarab (2129_CR33) 2014; 346
S Mirarab (2129_CR21) 2014; 30
T Junier (2129_CR45) 2010; 26
SV Edwards (2129_CR11) 2016; 94
L Liu (2129_CR23) 2009; 58
WP Maddison (2129_CR1) 1997; 46
L Liu (2129_CR18) 2011; 60
JH Degnan (2129_CR2) 2009; 24
MS Springer (2129_CR9) 2016; 94
P Vachaspati (2129_CR19) 2015; 16
A Stamatakis (2129_CR41) 2014; 30
E Sayyari (2129_CR31) 2016; 33
D Robinson (2129_CR46) 1981; 53
P Pamilo (2129_CR15) 1988; 5
S Mirarab (2129_CR35) 2016; 65
B Rannala (2129_CR16) 2003; 164
ES Allman (2129_CR27) 2011; 289
D Kane (2129_CR28) 2017; 24
E Mossel (2129_CR24) 2010; 7
S Tavaré (2129_CR44) 1986; 17
D Mallo (2129_CR42) 2016; 65
AM Kozlov (2129_CR47) 2015; 31
X-X Shen (2129_CR12) 2017; 1
SV Edwards (2129_CR14) 2009; 63
S Song (2129_CR3) 2012; 109
L Liu (2129_CR17) 2010; 10
References_xml – volume: 109
  start-page: 14942
  issue: 37
  year: 2012
  ident: 2129_CR3
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1211733109
– ident: 2129_CR6
  doi: 10.7554/eLife.05503
– volume: 31
  start-page: 2577
  issue: 15
  year: 2015
  ident: 2129_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv184
– volume: 27
  start-page: 570
  issue: 3
  year: 2010
  ident: 2129_CR13
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp274
– volume: 31
  start-page: 44
  issue: 12
  year: 2015
  ident: 2129_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv234
– ident: 2129_CR26
– volume: 16
  start-page: 1
  issue: Suppl 10
  year: 2015
  ident: 2129_CR30
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-16-S10-S1
– volume: 63
  start-page: 1
  issue: 1
  year: 2009
  ident: 2129_CR14
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2008.00549.x
– volume: 5
  start-page: 568
  issue: 5
  year: 1988
  ident: 2129_CR15
  publication-title: Mol Biol Evol
– volume: 53
  start-page: 131
  issue: 1-2
  year: 1981
  ident: 2129_CR46
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(81)90043-2
– volume: 1
  start-page: 0126
  issue: 5
  year: 2017
  ident: 2129_CR12
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-017-0126
– volume: 5
  start-page: 9490
  issue: 3
  year: 2010
  ident: 2129_CR32
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009490
– volume: 10
  start-page: 0129183
  issue: 6
  year: 2015
  ident: 2129_CR34
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0129183
– volume: 24
  start-page: 332
  issue: 6
  year: 2009
  ident: 2129_CR2
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2009.01.009
– volume: 18
  start-page: 1543
  issue: 11
  year: 2011
  ident: 2129_CR38
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2011.0174
– volume: 346
  start-page: 1250463
  issue: 6215
  year: 2014
  ident: 2129_CR33
  publication-title: Science
  doi: 10.1126/science.1250463
– volume: 111
  start-page: 4859
  issue: 45
  year: 2014
  ident: 2129_CR4
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1323926111
– volume: 94
  start-page: 447
  year: 2016
  ident: 2129_CR11
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2015.10.027
– volume: 164
  start-page: 1645
  issue: 4
  year: 2003
  ident: 2129_CR16
  publication-title: Genetics
  doi: 10.1093/genetics/164.4.1645
– volume: 60
  start-page: 661
  year: 2011
  ident: 2129_CR18
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syr027
– volume: 17
  start-page: 101
  issue: S10
  year: 2016
  ident: 2129_CR20
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3098-z
– volume: 64
  start-page: 663
  issue: 4
  year: 2015
  ident: 2129_CR25
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syv016
– volume: 8
  start-page: 330
  issue: 2
  year: 2016
  ident: 2129_CR7
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evv261
– volume: 425
  start-page: 798
  issue: 6960
  year: 2003
  ident: 2129_CR8
  publication-title: Nature
  doi: 10.1038/nature02053
– volume: 289
  start-page: 96
  issue: 1
  year: 2011
  ident: 2129_CR27
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2011.08.006
– volume: 65
  start-page: 366
  issue: 3
  year: 2016
  ident: 2129_CR35
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syu063
– volume: 65
  start-page: 612
  issue: 4
  year: 2016
  ident: 2129_CR10
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syw014
– volume: 24
  start-page: P2.31
  year: 2017
  ident: 2129_CR28
  publication-title: Electr J Comb
  doi: 10.37236/6797
– volume: 58
  start-page: 468
  issue: 5
  year: 2009
  ident: 2129_CR23
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syp031
– volume: 7
  start-page: 166
  issue: 1
  year: 2010
  ident: 2129_CR24
  publication-title: IEEE/ACM Trans Comput Biol Bioinformatics (TCBB)
  doi: 10.1109/TCBB.2008.66
– volume: 33
  start-page: 1654
  issue: 7
  year: 2016
  ident: 2129_CR31
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw079
– volume: 26
  start-page: 1669
  issue: 13
  year: 2010
  ident: 2129_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq243
– volume: 94
  start-page: 1
  issue: Part A
  year: 2016
  ident: 2129_CR9
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2015.07.018
– volume: 30
  start-page: 541
  issue: 17
  year: 2014
  ident: 2129_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu462
– volume: 99
  start-page: 1
  year: 2017
  ident: 2129_CR29
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2757930
– volume: 46
  start-page: 523
  issue: 3
  year: 1997
  ident: 2129_CR1
  publication-title: Syst Biol
  doi: 10.1093/sysbio/46.3.523
– volume-title: Lecture Notes in Computer Science. vol. 10562 LNBI
  year: 2017
  ident: 2129_CR40
– volume: 26
  start-page: 1879
  issue: 8
  year: 2009
  ident: 2129_CR43
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp098
– volume: 01
  start-page: 110
  issue: 02
  year: 2013
  ident: 2129_CR36
  publication-title: J Phylogenet Evol Biol
  doi: 10.4172/2329-9002.1000110
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 2129_CR39
  publication-title: IEEE Trans Syst Sci Cybernet
  doi: 10.1109/TSSC.1968.300136
– volume: 80
  start-page: 231
  year: 2014
  ident: 2129_CR37
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2014.08.013
– volume: 65
  start-page: 334
  issue: 2
  year: 2016
  ident: 2129_CR42
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syv082
– volume: 10
  start-page: 302
  issue: 1
  year: 2010
  ident: 2129_CR17
  publication-title: BMC Evol Bioly
  doi: 10.1186/1471-2148-10-302
– volume: 346
  start-page: 1320
  issue: 6215
  year: 2014
  ident: 2129_CR5
  publication-title: Science
  doi: 10.1126/science.1253451
– volume: 17
  start-page: 57
  year: 1986
  ident: 2129_CR44
  publication-title: Lect Math Life Sci
– volume: 30
  start-page: 1312
  issue: 9
  year: 2014
  ident: 2129_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 16
  start-page: 3
  issue: Suppl 10
  year: 2015
  ident: 2129_CR19
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-16-S10-S3
SSID ssj0017805
Score 2.7042437
Snippet Evolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one...
Abstract Background Evolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 153
SubjectTerms Algorithms
Animals
ASTRAL
Birds - classification
Birds - genetics
Computer Simulation
Databases, Genetic
Incomplete lineage sorting
Models, Genetic
Phylogenomics
Phylogeny
Species Specificity
Time Factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVhIZBLaT7aOm2CAjkFzMqSLcu5bUNCNpCcEgi9CEke08LiXdhNwP--M7J3yZbSXnK1JCxmnph5jPSGsfM6AGZBCsgDkOaNKlKfySytHSKkdkh94q3K-wd9-5TfPRfPb1p90Z2wXh64N9xYeYNJrGmgykNeQWlc5kTZBCVCXQmIOp8Y89ZkaqgfkFL_UMPMjB4vM9JpQ9qMqMAAl3ZbUSiK9f8tw_zzouSbyHPzkX0YUkY-6be6z3agPWC7fRPJ7pD9mMS-x-l0Or3ki_mso4fGOJ-6xnN6SIlcmFPtmUfyuxGM5fSyhC_IAm4263AUYfgKNUdIQVywPGJPN9ePV7fp0DEhDbkuVqnLS4enKiAtakxAuwRfhawwSjfGq1LKBumOcOgDzHp8BY10UngQrtSN9MhcPrFRO2_hC-OSZF20MKArleN45X1wMvPI7wCQ1iRMrC1owyAnTl0tZjbSCqNtb3SLRrdkdNsl7GKzZNFrafxr8ndyy2YiyWDHDwgOO4DD_g8cCTtbO9XisaFaiGth_rK0UqiSmvipMmGfeydvfiWRYxVG64SVW-7f2sv2SPvrZ5TmLpC9YgZ4_B6b_8r2JCGWbleab2yE8IATzIBW_jSC_TekhAOF
  priority: 102
  providerName: Directory of Open Access Journals
Title ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees
URI https://www.ncbi.nlm.nih.gov/pubmed/29745866
https://www.proquest.com/docview/2037050537
https://pubmed.ncbi.nlm.nih.gov/PMC5998893
https://doaj.org/article/3b80498fe94c49e78a1a07fc30cd90e3
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ri9NAEB_ugeCXw7fxUSL4SYhudpPsRhDpydVr4Q5RC8Uvy-5mo0JIe9dTzH_vzDbtWal-aaC7m4R5MPPL7P4G4HnlPGZBwpMGfJLVIk9sytOkMmghlUHoE3ZVnp0Xp9NsMstne7Bub9ULcLkT2lE_qell8_LXRfcWHf5NcHhVvFqmxMKGoBh1juEr6fbhEAOTJD89y66LCkTf3xc2dy4jYmBMr3MVKBOvo1Qg89-Vgf69kfKPyDS6BUd9ShkPVzZwG_Z8ewdurJpMdnfhyzD0RU7G4_HreDFvOjqIjPOpq3xMBy0RK8dUm44DON4QysZ08iRekGmZpulwFM30p69iNDkfFizvwXR08vndadJ3VEhcVuRXicmkQa9zCJtq5TgrnS1dmitR1MoKyXmNcIgZ1BFmRbb0NTecWc-MLGpuEdnch4N23vqHEHOifSmY8kUpMhwvrXWGpxbxn_cIeyJgawlq19ONU9eLRgfYoQq9kr9G-WuSv-4ieLFZslhxbfxv8jGpZTORaLLDH_PLr7r3Oi2sQgSkal9mLiu9VCY1TNZOMFeVzIsInq2VqtGtqFZiWj__sdScCUlN_oSM4MFKyZtHrY0kArml_q132R5pv38L1N05olvMEB_9856P4SYni6QtleoJHKDO_VNMe67sAPblTOKvGr0fwOFwOPk0wevxyfmHj4PwKWEQzP03PYgD9w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASTRAL-III%3A+polynomial+time+species+tree+reconstruction+from+partially+resolved+gene+trees&rft.jtitle=BMC+bioinformatics&rft.au=Zhang%2C+Chao&rft.au=Rabiee%2C+Maryam&rft.au=Sayyari%2C+Erfan&rft.au=Mirarab%2C+Siavash&rft.date=2018-05-08&rft.eissn=1471-2105&rft.volume=19&rft.issue=Suppl+6&rft.spage=153&rft_id=info:doi/10.1186%2Fs12859-018-2129-y&rft_id=info%3Apmid%2F29745866&rft.externalDocID=29745866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon