The Influence of Metal-Doped Graphitic Carbon Nitride on Photocatalytic Conversion of Acetic Acid to Carbon Dioxide
Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-C N CN). In this study, the effects of metal dopants on the physic...
Saved in:
Published in | Frontiers in chemistry Vol. 10; p. 825786 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
23.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-C
N
CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO
evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO
evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO
evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO
evolution obtained, higher than 0.15 μmol/min
, or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO
evolution
photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV). |
---|---|
AbstractList | Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-C
N
CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO
evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO
evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO
evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO
evolution obtained, higher than 0.15 μmol/min
, or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO
evolution
photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV). Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV–visible irradiation and are superior to pristine carbon nitride (g-C 3 N 4 , CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO 2 evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO 2 evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO 2 evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO 2 evolution obtained, higher than 0.15 μmol/min −1 , or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO 2 evolution via photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV). Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV–visible irradiation and are superior to pristine carbon nitride (g-C3N4, CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO2 evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO2 evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO2 evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO2 evolution obtained, higher than 0.15 μmol/min−1, or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO2 evolution via photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV). |
Author | Ketwong, Pradudnet Ohtani, Bunsho Kobkeatthawin, Thawanrat Trakulmututa, Jirawat Smith, Siwaporn Meejoo Luengnaruemitchai, Apanee Sakuna, Pichnaree |
AuthorAffiliation | 1 Center of Sustainable Energy and Green Materials and Department of Chemistry , Faculty of Science , Mahidol University , Nakhon Pathom , Thailand 3 The Petroleum and Petrochemical College , Chulalongkorn University , Bangkok , Thailand 2 Institute for Catalysis , Hokkaido University , Sapporo , Japan |
AuthorAffiliation_xml | – name: 2 Institute for Catalysis , Hokkaido University , Sapporo , Japan – name: 1 Center of Sustainable Energy and Green Materials and Department of Chemistry , Faculty of Science , Mahidol University , Nakhon Pathom , Thailand – name: 3 The Petroleum and Petrochemical College , Chulalongkorn University , Bangkok , Thailand |
Author_xml | – sequence: 1 givenname: Pichnaree surname: Sakuna fullname: Sakuna, Pichnaree organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand – sequence: 2 givenname: Pradudnet surname: Ketwong fullname: Ketwong, Pradudnet organization: Institute for Catalysis, Hokkaido University, Sapporo, Japan – sequence: 3 givenname: Bunsho surname: Ohtani fullname: Ohtani, Bunsho organization: Institute for Catalysis, Hokkaido University, Sapporo, Japan – sequence: 4 givenname: Jirawat surname: Trakulmututa fullname: Trakulmututa, Jirawat organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand – sequence: 5 givenname: Thawanrat surname: Kobkeatthawin fullname: Kobkeatthawin, Thawanrat organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand – sequence: 6 givenname: Apanee surname: Luengnaruemitchai fullname: Luengnaruemitchai, Apanee organization: The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand – sequence: 7 givenname: Siwaporn Meejoo surname: Smith fullname: Smith, Siwaporn Meejoo organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35402383$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1PGzEQhq2KqlDKD-il2mMvG-zxR7yXSlFoIRL9ONCz5fWOWaPNOrU3CP59nQQQnGzNvO8zY78fydEYRyTkM6MzznVz7l2P6xlQgJkGOdfqHTkBaFQNSqijV_djcpbzHaWUAeMC6AdyzKWgwDU_Ifmmx2o1-mGLo8Mq-uonTnaoL-IGu-oy2U0fpuCqpU1tHKtfYUqhK7qx-tPHKTpbxI97QRzvMeVQOgWycLgrLlzoqik-uy9CfCjuT-S9t0PGs6fzlPz98f1meVVf_75cLRfXtRNKTrUF37aA0HLBpOZKlSd0rG1a6W3LhGd-biV4gE4BSnBCSM2oYk0DnWVe8FOyOnC7aO_MJoW1TY8m2mD2hZhujU1lzQHNvC2fYxGFpkpI5iwTwDsr5pZSx70vrG8H1mbbrrFzOE7JDm-gbztj6M1tvDe60VzLpgC-PgFS_LfFPJl1yA6HwY4Yt9mUpBqQZTgvUnaQuhRzTuhfxjBqdtmbffZml705ZF88X17v9-J4Tpr_BwIRrVE |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2022_10_179 crossref_primary_10_1016_j_mtsust_2023_100595 crossref_primary_10_1016_j_arabjc_2023_104542 crossref_primary_10_3390_catal12101254 crossref_primary_10_1016_j_nanoen_2024_109320 crossref_primary_10_3390_polym15071688 crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_3390_catal14030189 crossref_primary_10_3389_fchem_2022_1050046 crossref_primary_10_3390_catal12101196 crossref_primary_10_1016_j_nxnano_2024_100074 crossref_primary_10_3389_fchem_2022_972496 |
Cites_doi | 10.1016/j.jmst.2020.03.086 10.1016/S0254-0584(01)00373-X 10.1021/acsomega.8b01933 10.1021/cr00033a003 10.1039/C3TA15358D 10.1021/la9509615 10.1016/0921-3449(92)90017-V 10.1038/s41598-019-48069-5 10.3390/polym12091963 10.1039/C6RA03982K 10.1016/j.apsusc.2017.06.054 10.1016/j.apsusc.2019.05.064 10.1002/cssc.202001317 10.1038/s41598-019-49949-6 10.1002/anie.201806514 10.1021/jp5085857 10.1007/s11164-012-0619-5 10.1016/j.matchemphys.2020.124023 10.1016/j.jcis.2013.03.034 10.1016/j.jlumin.2015.07.025 10.1016/j.matchemphys.2018.09.068 10.1016/j.jphotochem.2010.09.016 10.1002/adfm.202103978 10.1016/j.electacta.2017.12.160 10.1039/C2EE03447F 10.1016/j.ultsonch.2018.09.032 10.1016/j.chemosphere.2020.129503 10.1039/C6TC01831A 10.1002/aic.690371112 10.1186/s13068-020-01784-y 10.1007/s13204-013-0226-9 10.1016/S1872-5813(18)30036-7 10.1021/jacs.9b10476 10.1016/j.apsusc.2020.147086 10.1021/cr00033a004 10.1038/srep02163 10.1016/j.surfrep.2008.10.001 10.1039/C9TA05112K 10.1021/acsaem.0c02964 10.1016/j.cattod.2017.12.020 10.1039/C9CC09988C 10.5796/electrochemistry.76.147 10.1002/cey2.48 10.1016/j.apcatb.2016.12.028 10.1002/elan.201800076 10.1016/S1389-5567(00)00002-2 10.1021/acs.jpcc.5b09469 10.1088/2515-7655/abda9b 10.1002/cctc.201901314 10.1016/j.nanoen.2019.03.010 10.1016/j.apsusc.2014.05.036 10.3762/bjoc.14.153 10.1039/C3CP44687E 10.1016/j.jcis.2020.05.064 10.1016/j.jcis.2007.12.025 10.1002/adma.200802627 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith. Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith. 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith |
Copyright_xml | – notice: Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith. – notice: Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith. 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fchem.2022.825786 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Sakuna et al |
EISSN | 2296-2646 |
EndPage | 825786 |
ExternalDocumentID | oai_doaj_org_article_7b121aee4806451ca1423da47a00c3ff 10_3389_fchem_2022_825786 35402383 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: BRF1-046/2565 |
GroupedDBID | 53G 5VS 9T4 AAFWJ ABDBF ACGFS ACXDI ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV GROUPED_DOAJ HYE IAO IEA IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RPM AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c465t-a2fbb2e2b34158366000d1b9b5fab14f1f7a52f22d62e52c44581061992da1f43 |
IEDL.DBID | RPM |
ISSN | 2296-2646 |
IngestDate | Tue Oct 22 15:15:17 EDT 2024 Tue Sep 17 21:08:35 EDT 2024 Fri Oct 25 05:00:34 EDT 2024 Thu Sep 26 18:37:16 EDT 2024 Wed Oct 16 00:40:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | electron spin resonance metal doping energy-resolved distribution of electron traps carbon nitride photocatalysis |
Language | English |
License | Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-a2fbb2e2b34158366000d1b9b5fab14f1f7a52f22d62e52c44581061992da1f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Quanjun Xiang, University of Electronic Science and Technology of China, China Lutfi Kurnianditia Putri, Monash University Malaysia, Malaysia Edited by: Gwendoline Lafaye, University of Poitiers, France This article was submitted to Catalysis and Photocatalysis, a section of the journal Frontiers in Chemistry |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983859/ |
PMID | 35402383 |
PQID | 2649256453 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b121aee4806451ca1423da47a00c3ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_8983859 proquest_miscellaneous_2649256453 crossref_primary_10_3389_fchem_2022_825786 pubmed_primary_35402383 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-23 |
PublicationDateYYYYMMDD | 2022-03-23 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in chemistry |
PublicationTitleAlternate | Front Chem |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Dong (B15) 2013; 401 Zhou (B57) 2012; 5 Zhang (B53) 2018; 46 Guan (B18) 2019; 11 Katsumata (B25) 2019; 9 Li (B29) 2018; 430 Anantachaisilp (B2) 2015; 168 Hu (B22) 2014; 311 Praus (B40) 2020; 529 Li (B28) 1991; 37 Nosaka (B38) 1996; 12 Volokh (B45) 2019; 58 Dante (B13) 2021; 258 Lin (B31) 2021; 65 Ohtani (B39) 2008; 76 Hagfeldt (B20) 1995; 95 Zhang (B54) 2018; 3 Fujishima (B16) 2000; 1 Chuaicham (B10) 2020; 577 Zhang (B55) 2013; 3 Arizaga (B3) 2008; 320 Anantachaisilp (B1) 2014; 118 Jones (B24) 2019; 9 Yang (B51) 2021; 271 Wang (B48) 2009; 21 Mozia (B34) 2010; 216 Li (B27) 2019; 7 Huang (B23) 2020; 13 Li (B30) 2016; 120 Fujishima (B17) 2008; 63 Nitta (B36) 2018; 264 Nguyen Van (B35) 2020; 12 Yuan (B52) 2002; 73 Le (B26) 2016; 6 Nitta (B37) 2019 Guo (B19) 2016; 4 Dinesh (B14) 2019; 50 Zheng (B56) 2018; 30 Choudhury (B8) 2014; 4 Dante (B12) 2019; 221 Liu (B32) 2017; 205 Ruan (B42) 2020; 142 Tonda (B44) 2014; 2 Wang (B46) 2020; 2 Chen (B7) 2019; 59 Xia (B49) 2019; 487 Xu (B50) 2013; 15 Badawi (B4) 1992; 7 Barrio (B5) 2021; 4 Maeda (B33) 2018; 14 Srikhaow (B43) 2013; 39 Cui (B11) 2021; 3 Budsberg (B6) 2020; 13 Wang (B47) 2021; 31 Hoffmann (B21) 1995; 95 Chuaicham (B9) 2020; 56 |
References_xml | – volume: 65 start-page: 164 year: 2021 ident: B31 article-title: Increasing π-electron Availability in Benzene Ring Incorporated Graphitic Carbon Nitride for Increased Photocatalytic Hydrogen Generation publication-title: J. Mater. Sci. Tech. doi: 10.1016/j.jmst.2020.03.086 contributor: fullname: Lin – volume: 73 start-page: 323 year: 2002 ident: B52 article-title: Influence of Co-doping of Zn(II)+Fe(III) on the Photocatalytic Activity of TiO2 for Phenol Degradation publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(01)00373-X contributor: fullname: Yuan – volume: 3 start-page: 15009 year: 2018 ident: B54 article-title: Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping publication-title: ACS Omega doi: 10.1021/acsomega.8b01933 contributor: fullname: Zhang – volume: 95 start-page: 49 year: 1995 ident: B20 article-title: Light-induced Redox Reactions in Nanocrystalline Systems publication-title: Chem. Rev. doi: 10.1021/cr00033a003 contributor: fullname: Hagfeldt – volume: 2 start-page: 6772 year: 2014 ident: B44 article-title: Fe-doped and -mediated Graphitic Carbon Nitride Nanosheets for Enhanced Photocatalytic Performance under Natural Sunlight publication-title: J. Mater. Chem. A. doi: 10.1039/C3TA15358D contributor: fullname: Tonda – volume: 12 start-page: 736 year: 1996 ident: B38 article-title: Reaction Mechanism of the Decomposition of Acetic Acid on Illuminated TiO2 Powder Studied by Means of In Situ Electron Spin Resonance Measurements publication-title: Langmuir doi: 10.1021/la9509615 contributor: fullname: Nosaka – volume: 7 start-page: 201 year: 1992 ident: B4 article-title: Production of Acetic Acid from Thermally Treated Sewage Sludge in an Upflow Anaerobic Reactor publication-title: Resour. Conservation Recycling doi: 10.1016/0921-3449(92)90017-V contributor: fullname: Badawi – volume: 9 start-page: 11573 year: 2019 ident: B24 article-title: Photocapacitive CdS/WOx Nanostructures for Solar Energy Storage publication-title: Sci. Rep. doi: 10.1038/s41598-019-48069-5 contributor: fullname: Jones – volume: 12 start-page: 1963 year: 2020 ident: B35 article-title: Fe-Doped G-C3n4: High-Performance Photocatalysts in Rhodamine B Decomposition publication-title: Polymers doi: 10.3390/polym12091963 contributor: fullname: Nguyen Van – volume: 6 start-page: 38811 year: 2016 ident: B26 article-title: Cu-doped Mesoporous Graphitic Carbon Nitride for Enhanced Visible-Light Driven Photocatalysis publication-title: RSC Adv. doi: 10.1039/C6RA03982K contributor: fullname: Le – volume: 430 start-page: 380 year: 2018 ident: B29 article-title: Carbon Vacancy-Induced Enhancement of the Visible Light-Driven Photocatalytic Oxidation of NO over G-C 3 N 4 Nanosheets publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.054 contributor: fullname: Li – volume: 487 start-page: 335 year: 2019 ident: B49 article-title: Localized π-conjugated Structure and EPR Investigation of G-C3n4 Photocatalyst publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.064 contributor: fullname: Xia – volume: 13 start-page: 5041 year: 2020 ident: B23 article-title: Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution publication-title: ChemSusChem doi: 10.1002/cssc.202001317 contributor: fullname: Huang – volume: 9 start-page: 14873 year: 2019 ident: B25 article-title: Dual-defect-modified Graphitic Carbon Nitride with Boosted Photocatalytic Activity under Visible Light publication-title: Sci. Rep. doi: 10.1038/s41598-019-49949-6 contributor: fullname: Katsumata – volume: 58 start-page: 6138 year: 2019 ident: B45 article-title: Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806514 contributor: fullname: Volokh – volume: 118 start-page: 27150 year: 2014 ident: B1 article-title: Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing publication-title: J. Phys. Chem. C doi: 10.1021/jp5085857 contributor: fullname: Anantachaisilp – volume: 39 start-page: 1545 year: 2013 ident: B43 article-title: Photocatalytic Activity of Flower-like ZnO Derived by a D-Glucose-Assisted Sonochemical Method publication-title: Res. Chem. Intermed doi: 10.1007/s11164-012-0619-5 contributor: fullname: Srikhaow – volume: 258 start-page: 124023 year: 2021 ident: B13 article-title: A Solid-State Glucose Sensor Based on Cu and Fe-Doped Carbon Nitride publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.124023 contributor: fullname: Dante – volume: 401 start-page: 70 year: 2013 ident: B15 article-title: Engineering the Nanoarchitecture and Texture of Polymeric Carbon Nitride Semiconductor for Enhanced Visible Light Photocatalytic Activity publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2013.03.034 contributor: fullname: Dong – volume: 168 start-page: 20 year: 2015 ident: B2 article-title: Nature of Red Luminescence in Oxygen Treated Hydrothermally Grown Zinc Oxide Nanorods publication-title: J. Lumin. doi: 10.1016/j.jlumin.2015.07.025 contributor: fullname: Anantachaisilp – volume: 221 start-page: 397 year: 2019 ident: B12 article-title: Comparison of the Activities of C2N and BCNO towards Congo Red Degradation publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.09.068 contributor: fullname: Dante – volume: 216 start-page: 275 year: 2010 ident: B34 article-title: Preparation of Fe-Modified Photocatalysts and Their Application for Generation of Useful Hydrocarbons during Photocatalytic Decomposition of Acetic Acid publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/j.jphotochem.2010.09.016 contributor: fullname: Mozia – volume: 31 start-page: 2103978 year: 2021 ident: B47 article-title: Near‐Field Drives Long‐Lived Shallow Trapping of Polymeric C 3 N 4 for Efficient Photocatalytic Hydrogen Evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103978 contributor: fullname: Wang – volume: 264 start-page: 83 year: 2018 ident: B36 article-title: Reversed Double-Beam Photoacoustic Spectroscopy of Metal-Oxide Powders for Estimation of Their Energy-Resolved Distribution of Electron Traps and Electronic-Band Structure publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2017.12.160 contributor: fullname: Nitta – volume: 5 start-page: 6732 year: 2012 ident: B57 article-title: Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures publication-title: Energy Environ. Sci. doi: 10.1039/C2EE03447F contributor: fullname: Zhou – volume: 50 start-page: 311 year: 2019 ident: B14 article-title: Mechanistic Investigation in Degradation Mechanism of 5-Fluorouracil Using Graphitic Carbon Nitride publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.09.032 contributor: fullname: Dinesh – volume: 271 start-page: 129503 year: 2021 ident: B51 article-title: Facile Synthesis of Highly Crystalline G-C3n4 Nanosheets with Remarkable Visible Light Photocatalytic Activity for Antibiotics Removal publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129503 contributor: fullname: Yang – volume: 4 start-page: 6839 year: 2016 ident: B19 article-title: Engineering the Electronic Structure and Optical Properties of G-C3n4 by Non-metal Ion Doping publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01831A contributor: fullname: Guo – volume: 37 start-page: 1687 year: 1991 ident: B28 article-title: Generalized Kinetic Model for Wet Oxidation of Organic Compounds publication-title: Aiche J. doi: 10.1002/aic.690371112 contributor: fullname: Li – volume: 13 start-page: 154 year: 2020 ident: B6 article-title: Production Routes to Bio-Acetic Acid: Life Cycle Assessment publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-020-01784-y contributor: fullname: Budsberg – volume: 4 start-page: 499 year: 2014 ident: B8 article-title: Shallow and Deep Trap Emission and Luminescence Quenching of TiO2 Nanoparticles on Cu Doping publication-title: Appl. Nanosci doi: 10.1007/s13204-013-0226-9 contributor: fullname: Choudhury – volume: 46 start-page: 871 year: 2018 ident: B53 article-title: Preparation of Graphitic Carbon Nitride with Nitrogen-Defects and its Photocatalytic Performance in the Degradation of Organic Pollutants under Visible Light publication-title: J. Fuel Chem. Tech. doi: 10.1016/S1872-5813(18)30036-7 contributor: fullname: Zhang – volume: 142 start-page: 2795 year: 2020 ident: B42 article-title: Insight on Shallow Trap States-Introduced Photocathodic Performance in N-type Polymer Photocatalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10476 contributor: fullname: Ruan – volume: 529 start-page: 147086 year: 2020 ident: B40 article-title: The Presence and Effect of Oxygen in Graphitic Carbon Nitride Synthetized in Air and Nitrogen Atmosphere publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147086 contributor: fullname: Praus – volume: 95 start-page: 69 year: 1995 ident: B21 article-title: Environmental Applications of Semiconductor Photocatalysis publication-title: Chem. Rev. doi: 10.1021/cr00033a004 contributor: fullname: Hoffmann – volume: 3 start-page: 2163 year: 2013 ident: B55 article-title: Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material publication-title: Sci. Rep. doi: 10.1038/srep02163 contributor: fullname: Zhang – volume: 63 start-page: 515 year: 2008 ident: B17 article-title: TiO2 Photocatalysis and Related Surface Phenomena publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2008.10.001 contributor: fullname: Fujishima – volume: 7 start-page: 17014 year: 2019 ident: B27 article-title: Cu Supported on Polymeric Carbon Nitride for Selective CO2 Reduction into CH4: a Combined Kinetics and Thermodynamics Investigation publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA05112K contributor: fullname: Li – volume: 4 start-page: 1868 year: 2021 ident: B5 article-title: Synergistic Doping and Surface Decoration of Carbon Nitride Macrostructures by Single Crystal Design publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.0c02964 contributor: fullname: Barrio – start-page: 2 year: 2019 ident: B37 article-title: Identification and Characterization of Titania Photocatalyst Powders Using Their Energy-Resolved Distribution of Electron Traps as a Fingerprint publication-title: Catal. Today doi: 10.1016/j.cattod.2017.12.020 contributor: fullname: Nitta – volume: 56 start-page: 3793 year: 2020 ident: B9 article-title: Energy-resolved Distribution of Electron Traps for O/S-Doped Carbon Nitrides by Reversed Double-Beam Photoacoustic Spectroscopy and the Photocatalytic Reduction of Cr(VI) publication-title: Chem. Commun. doi: 10.1039/C9CC09988C contributor: fullname: Chuaicham – volume: 76 start-page: 147 year: 2008 ident: B39 article-title: Role of Molecular Oxygen in Photocatalytic Oxidative Decomposition of Acetic Acid by Metal Oxide Particulate Suspensions and Thin Film Electrodes publication-title: Electrochemistry doi: 10.5796/electrochemistry.76.147 contributor: fullname: Ohtani – volume: 2 start-page: 223 year: 2020 ident: B46 article-title: Graphitic Carbon Nitride (g‐C3N4)‐based Nanosized Heteroarrays: Promising Materials for Photoelectrochemical Water Splitting publication-title: Carbon Energy doi: 10.1002/cey2.48 contributor: fullname: Wang – volume: 205 start-page: 173 year: 2017 ident: B32 article-title: Grafting Fe(III) Species on Carbon nanodots/Fe-Doped G-C3n4 via Interfacial Charge Transfer Effect for Highly Improved Photocatalytic Performance publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.12.028 contributor: fullname: Liu – volume: 30 start-page: 1446 year: 2018 ident: B56 article-title: Cu2+ -doped Carbon Nitride/MWCNT as an Electrochemical Glucose Sensor publication-title: Electroanalysis doi: 10.1002/elan.201800076 contributor: fullname: Zheng – volume: 1 start-page: 1 year: 2000 ident: B16 article-title: Titanium Dioxide Photocatalysis publication-title: J. Photochem. Photobiol. C: Photochem. Rev. doi: 10.1016/S1389-5567(00)00002-2 contributor: fullname: Fujishima – volume: 120 start-page: 56 year: 2016 ident: B30 article-title: Visible Photocatalytic Water Splitting and Photocatalytic Two-Electron Oxygen Formation over Cu- and Fe-Doped G-C3n4 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09469 contributor: fullname: Li – volume: 3 start-page: 032008 year: 2021 ident: B11 article-title: Alkali/alkaline-earth Metal Intercalated G-C3n4 Induced Charge Redistribution and Optimized Photocatalysis: Status and Challenges publication-title: J. Phys. Energ. doi: 10.1088/2515-7655/abda9b contributor: fullname: Cui – volume: 11 start-page: 5633 year: 2019 ident: B18 article-title: Delocalization of π‐Electron in Graphitic Carbon Nitride to Promote its Photocatalytic Activity for Hydrogen Evolution publication-title: ChemCatChem doi: 10.1002/cctc.201901314 contributor: fullname: Guan – volume: 59 start-page: 644 year: 2019 ident: B7 article-title: Three-dimensional Porous G-C3n4 for Highly Efficient Photocatalytic Overall Water Splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.010 contributor: fullname: Chen – volume: 311 start-page: 164 year: 2014 ident: B22 article-title: Enhanced Visible Light Photocatalytic Performance of G-C3n4 Photocatalysts Co-doped with Iron and Phosphorus publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.05.036 contributor: fullname: Hu – volume: 14 start-page: 1806 year: 2018 ident: B33 article-title: Graphitic Carbon Nitride Prepared from Urea as a Photocatalyst for Visible-Light Carbon Dioxide Reduction with the Aid of a Mononuclear Ruthenium(II) Complex publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.14.153 contributor: fullname: Maeda – volume: 15 start-page: 7657 year: 2013 ident: B50 article-title: Eosin Y-Sensitized Graphitic Carbon Nitride Fabricated by Heating Urea for Visible Light Photocatalytic Hydrogen Evolution: the Effect of the Pyrolysis Temperature of Urea publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP44687E contributor: fullname: Xu – volume: 577 start-page: 397 year: 2020 ident: B10 article-title: Fabrication and Characterization of Ternary Sepiolite/g-C3N4/Pd Composites for Improvement of Photocatalytic Degradation of Ciprofloxacin under Visible Light Irradiation publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2020.05.064 contributor: fullname: Chuaicham – volume: 320 start-page: 238 year: 2008 ident: B3 article-title: Cu2+ Ions as a Paramagnetic Probe to Study the Surface Chemical Modification Process of Layered Double Hydroxides and Hydroxide Salts with Nitrate and Carboxylate Anions publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2007.12.025 contributor: fullname: Arizaga – volume: 21 start-page: 1609 year: 2009 ident: B48 article-title: Metal-Containing Carbon Nitride Compounds: A New Functional Organic-Metal Hybrid Material publication-title: Adv. Mater. doi: 10.1002/adma.200802627 contributor: fullname: Wang |
SSID | ssj0001213420 |
Score | 2.3406157 |
Snippet | Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 825786 |
SubjectTerms | carbon nitride Chemistry electron spin resonance energy-resolved distribution of electron traps metal doping photocatalysis |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RS2vS1aRpU6KngxnpZ0jHdNE0LCT00kJuRZIn4YoWNA-2_z4y8Drsl0EtPBkuyxXyDNDMafUPIR2u4Vk7oynHjK-mlrHywpgrgbanIbFABA_rnF83Zpfxxpa42Sn1hTthEDzwJ7kh7xpmLURpkVmPBMTAAOie1q-sgUiqrb203nKkpusKE5OtjTPDC7FECGeDNc84_G1TTZmsjKnz9jxmZf-dKbmw-p8_Js7XVSI-n2b4gT-KwR3aXc7G2l-QW4Kbf54IjNCd6HsGsrk7yTezoN2SlxjQ3unQrnwd60Y-rvoN-A_15ncdcgjh_SgfMQi8hNPzIccA7jvDoOzrmefRJn3_D6Ffk8vTrr-VZta6nUAXZqBHgSN7zyD3sXMqIBmydumPeepWcZzKxpJ3iifOu4VHxIKUy6DFayzvHkhSvyc6Qh_iWUPBKYkxNnZD9vrbaC60F97B8ugjLq1yQT7Nw25uJNqMFdwORaAsSLSLRTkgsyBcU_0NHZLwuL0AP2rUetP_SgwX5MIPXguzx2MMNMd_dtmDyWY6kOWJB3kxgPvwKo15gtECL3oJ5ay7bLUN_XVi4jTXCKLv_Pyb_jjxFeWBuGxcHZGdc3cX3YOyM_rDo9T1ISPx4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcAF8WbLQ0bihJSS-BHbB4TKllKQWnFgpd4sO7HbSCih2VRq_z0zTlKxaA-cIiW2E_sbxzPj8TeEvDOaKem4yhzTPhNeiMxXRmcVWFsyFKaSFTr0T07L45X4fibPdsic3moawPVW0w7zSa36X_vXlzefYMJ_RIsT1tsPEbqHh8oZ29cogeUdcpcJMNQxkm_S9keXS8FFImpkzJQY21WO-5zbW9lYqRKh_zYt9N9gyr9Wp6OH5MGkVtKDUQ4ekZ3QPib3lnM2tydkDfJAv80ZSWgX6UmALmeH0N2afkXaaoyDo0vX-66lp83QNzWUa-mPi27okpfnJhXAMPXkY8NGDio8BAmXpqZDN9c-bLprqP2UrI6-_FweZ1PChawSpRwAr-g9C8zD0iY1L0EZyuvCGy-j84WIRVROsshYXbIgWSWE1GhSGsNqV0TBn5HdtmvDC0LBbAkhlnlEevzcKM-V4szD_9UF-P-KBXk_D679PfJqWLBHEAmbkLCIhB2RWJDPOPy3BZESO93o-nM7zTCrPODrQhAaKfiKyhWgKdZOKJfnFY9xQd7O4FkYe9wXcW3ortYWBMEwZNXhC_J8BPP2VegWA60GnqgNmDe-ZfNJ21wkmm5tNNfS7P3He1-S-9hdjG1j_BXZHfqr8BqUncG_SSL8B6EM-9k priority: 102 providerName: Scholars Portal |
Title | The Influence of Metal-Doped Graphitic Carbon Nitride on Photocatalytic Conversion of Acetic Acid to Carbon Dioxide |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35402383 https://search.proquest.com/docview/2649256453 https://pubmed.ncbi.nlm.nih.gov/PMC8983859 https://doaj.org/article/7b121aee4806451ca1423da47a00c3ff |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaXuCCeBMelZE4IWU38SOxj2VLKUhb9UCl3iLbsWkkGq-2qQT_nhknqbqIE5dESuzEmW8Uz4zH3xDyQStWS8Pr3DBlc2GFyK3TKnfgbUlfaicdBvTXZ9Xphfh2KS_3iJz3wqSkfWe7Rf_zetF3Vym3cnPtlnOe2PJ8vVJacSX1cp_sg4Lec9HHwErJBZtWMMEB08sAn4-bzhlbKNRQLFuE4Q6YrfjOdJRY-_9lav6dMXlvCjp5TB5NtiM9Gsf4hOz5_il5sJpLtj0jNwA6_TqXHaEx0LUH4zo_jhvf0i_ITY3JbnRltjb29Kwbtl0L7Xp6fhWHmEI5v1MDzEVPgTR8yJHDnY5w6lo6xLn3cRd_Qe_n5OLk8_fVaT5VVcidqOQAoARrmWcW5i-peAUWT9GWVlsZjC1FKENtJAuMtRXzkjkhpEK_UWvWmjII_oIc9LH3rwgF38T7UBUBOfALXVte15xZ-IkaDz9ZkZGPs3CbzUie0YDTgaA0CZQGQWlGUDLyCcV_1xB5r9OFuP3RTOg3tQV4jfdCIc9e6UwJ5mBrRG2KwvEQMvJ-Bq8B2ePih-l9vL1pwPDTDKlzeEZejmDevWpWhozUOzDvjGX3Dqhm4uKeVPH1f_d8Qx6iEDCtjfG35GDY3vp3YOcM9jDFB-C4Fuow6fgf5Vv--g |
link.rule.ids | 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQL4k3KK0ickLKb-LGJj2VL2UJ31UMr9WbZjk0j0Xi1TaXy75lxkqqLOHGKlNiJNd_EnhmPvyHkk6xoKTQrM00rk3HDeWasrDIL3pZwhbTCYkB_uZotzvn3C3GxQ8R4FiYm7VvTTNpfV5O2uYy5lesrOx3zxKany3klK1YJOX1AHsL_mvN7TnofWikYp8MeJrhgcupBAHjsnNJJhTqKhYsw4AHrFdtakCJv_7-Mzb9zJu8tQkdPyOPBekwP-lE-JTuufUb25mPRtufkGmBPj8fCI2nw6dKBeZ0dhrWr02_ITo3pbulcb0xo01XTbZoa2rXp6WXoQgzm_I4NMBs9htLwJQcWzzrCpanTLoy9D5twC71fkPOjr2fzRTbUVcgsn4kOYPHGUEcNrGCiYjOwefK6MNIIr03BfeFLLaintJ5RJ6jlXFToOUpJa114zl6S3Ta07jVJwTtxzs9yjyz4uSwNK0tGDUyj2sE0yxPyeRSuWvf0GQrcDgRFRVAUgqJ6UBLyBcV_1xCZr-ONsPmpBvxVaQBe7RyvkGmvsLoAg7DWvNR5bpn3Cfk4gqdA9rj9oVsXbq4VmH6SInkOS8irHsy7T43KkJByC-atsWw_AeWMbNyDMu7_d88PZG9xtjxRJ8erH2_IIxQIJrlR9pbsdpsb9w6sns68jzr-B3Z3AJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMAF8SblZSROSNlN_EjiY9llaYFd7YFKvUW2Y7eRaLLaplL598w4SbWLOHGKlNiJNd_EnhmPvyHkoypYLjXPY80KEwsjRGysKmIL3pZ0qbLSYkB_ucqOT8W3M3m2U-orJO1bU0-aX5eTpr4IuZWbSzsd88Sm6-WsUAUvpJpuKj-9S-7BP5tkO456H15JuWDDPia4YWrqQQh49JyxSYF6isWLMOgBaxbfW5QCd_-_DM6_8yZ3FqLFY_JosCDpUT_SJ-SOa56SB7OxcNszcgXQ05Ox-AhtPV06MLHjebtxFf2KDNWY8kZnemvahq7qbltX0K6h64u2a0NA53dogBnpIZyGLzmyeN4RLnVFu3bsPa_bG-j9nJwuvvycHcdDbYXYikx2AI03hjlmYBWTBc_A7kmq1CgjvTap8KnPtWSesSpjTjIrhCzQe1SKVTr1gr8gB03buFeEgofinM8Sj0z4icoNz3PODEyl2sFUKyLyaRRuuekpNEpwPRCUMoBSIihlD0pEPqP4bxsi-3W40W7Py0EHytwAvNo5USDbXmp1CkZhpUWuk8Ry7yPyYQSvBNnjFohuXHt9VYL5pxgS6PCIvOzBvP3UqAwRyfdg3hvL_hNQ0MDIPSjk4X_3fE_ur-eL8sfJ6vtr8hDlgXlujL8hB9322r0Fw6cz74KK_wEmwAGj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Influence+of+Metal-Doped+Graphitic+Carbon+Nitride+on+Photocatalytic+Conversion+of+Acetic+Acid+to+Carbon+Dioxide&rft.jtitle=Frontiers+in+chemistry&rft.au=Sakuna%2C+Pichnaree&rft.au=Ketwong%2C+Pradudnet&rft.au=Ohtani%2C+Bunsho&rft.au=Trakulmututa%2C+Jirawat&rft.date=2022-03-23&rft.issn=2296-2646&rft.eissn=2296-2646&rft.volume=10&rft.spage=825786&rft.epage=825786&rft_id=info:doi/10.3389%2Ffchem.2022.825786&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2646&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2646&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2646&client=summon |