The Influence of Metal-Doped Graphitic Carbon Nitride on Photocatalytic Conversion of Acetic Acid to Carbon Dioxide

Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-C N CN). In this study, the effects of metal dopants on the physic...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in chemistry Vol. 10; p. 825786
Main Authors Sakuna, Pichnaree, Ketwong, Pradudnet, Ohtani, Bunsho, Trakulmututa, Jirawat, Kobkeatthawin, Thawanrat, Luengnaruemitchai, Apanee, Smith, Siwaporn Meejoo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 23.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-C N CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO evolution obtained, higher than 0.15 μmol/min , or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO evolution photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV).
AbstractList Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-C N CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO evolution obtained, higher than 0.15 μmol/min , or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO evolution photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV).
Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV–visible irradiation and are superior to pristine carbon nitride (g-C 3 N 4 , CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO 2 evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO 2 evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO 2 evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO 2 evolution obtained, higher than 0.15 μmol/min −1 , or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO 2 evolution via photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV).
Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV–visible irradiation and are superior to pristine carbon nitride (g-C3N4, CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO2 evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO2 evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO2 evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO2 evolution obtained, higher than 0.15 μmol/min−1, or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO2 evolution via photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV).
Author Ketwong, Pradudnet
Ohtani, Bunsho
Kobkeatthawin, Thawanrat
Trakulmututa, Jirawat
Smith, Siwaporn Meejoo
Luengnaruemitchai, Apanee
Sakuna, Pichnaree
AuthorAffiliation 1 Center of Sustainable Energy and Green Materials and Department of Chemistry , Faculty of Science , Mahidol University , Nakhon Pathom , Thailand
3 The Petroleum and Petrochemical College , Chulalongkorn University , Bangkok , Thailand
2 Institute for Catalysis , Hokkaido University , Sapporo , Japan
AuthorAffiliation_xml – name: 2 Institute for Catalysis , Hokkaido University , Sapporo , Japan
– name: 1 Center of Sustainable Energy and Green Materials and Department of Chemistry , Faculty of Science , Mahidol University , Nakhon Pathom , Thailand
– name: 3 The Petroleum and Petrochemical College , Chulalongkorn University , Bangkok , Thailand
Author_xml – sequence: 1
  givenname: Pichnaree
  surname: Sakuna
  fullname: Sakuna, Pichnaree
  organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
– sequence: 2
  givenname: Pradudnet
  surname: Ketwong
  fullname: Ketwong, Pradudnet
  organization: Institute for Catalysis, Hokkaido University, Sapporo, Japan
– sequence: 3
  givenname: Bunsho
  surname: Ohtani
  fullname: Ohtani, Bunsho
  organization: Institute for Catalysis, Hokkaido University, Sapporo, Japan
– sequence: 4
  givenname: Jirawat
  surname: Trakulmututa
  fullname: Trakulmututa, Jirawat
  organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
– sequence: 5
  givenname: Thawanrat
  surname: Kobkeatthawin
  fullname: Kobkeatthawin, Thawanrat
  organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
– sequence: 6
  givenname: Apanee
  surname: Luengnaruemitchai
  fullname: Luengnaruemitchai, Apanee
  organization: The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
– sequence: 7
  givenname: Siwaporn Meejoo
  surname: Smith
  fullname: Smith, Siwaporn Meejoo
  organization: Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35402383$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1PGzEQhq2KqlDKD-il2mMvG-zxR7yXSlFoIRL9ONCz5fWOWaPNOrU3CP59nQQQnGzNvO8zY78fydEYRyTkM6MzznVz7l2P6xlQgJkGOdfqHTkBaFQNSqijV_djcpbzHaWUAeMC6AdyzKWgwDU_Ifmmx2o1-mGLo8Mq-uonTnaoL-IGu-oy2U0fpuCqpU1tHKtfYUqhK7qx-tPHKTpbxI97QRzvMeVQOgWycLgrLlzoqik-uy9CfCjuT-S9t0PGs6fzlPz98f1meVVf_75cLRfXtRNKTrUF37aA0HLBpOZKlSd0rG1a6W3LhGd-biV4gE4BSnBCSM2oYk0DnWVe8FOyOnC7aO_MJoW1TY8m2mD2hZhujU1lzQHNvC2fYxGFpkpI5iwTwDsr5pZSx70vrG8H1mbbrrFzOE7JDm-gbztj6M1tvDe60VzLpgC-PgFS_LfFPJl1yA6HwY4Yt9mUpBqQZTgvUnaQuhRzTuhfxjBqdtmbffZml705ZF88X17v9-J4Tpr_BwIRrVE
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2022_10_179
crossref_primary_10_1016_j_mtsust_2023_100595
crossref_primary_10_1016_j_arabjc_2023_104542
crossref_primary_10_3390_catal12101254
crossref_primary_10_1016_j_nanoen_2024_109320
crossref_primary_10_3390_polym15071688
crossref_primary_10_1080_01614940_2023_2250652
crossref_primary_10_3390_catal14030189
crossref_primary_10_3389_fchem_2022_1050046
crossref_primary_10_3390_catal12101196
crossref_primary_10_1016_j_nxnano_2024_100074
crossref_primary_10_3389_fchem_2022_972496
Cites_doi 10.1016/j.jmst.2020.03.086
10.1016/S0254-0584(01)00373-X
10.1021/acsomega.8b01933
10.1021/cr00033a003
10.1039/C3TA15358D
10.1021/la9509615
10.1016/0921-3449(92)90017-V
10.1038/s41598-019-48069-5
10.3390/polym12091963
10.1039/C6RA03982K
10.1016/j.apsusc.2017.06.054
10.1016/j.apsusc.2019.05.064
10.1002/cssc.202001317
10.1038/s41598-019-49949-6
10.1002/anie.201806514
10.1021/jp5085857
10.1007/s11164-012-0619-5
10.1016/j.matchemphys.2020.124023
10.1016/j.jcis.2013.03.034
10.1016/j.jlumin.2015.07.025
10.1016/j.matchemphys.2018.09.068
10.1016/j.jphotochem.2010.09.016
10.1002/adfm.202103978
10.1016/j.electacta.2017.12.160
10.1039/C2EE03447F
10.1016/j.ultsonch.2018.09.032
10.1016/j.chemosphere.2020.129503
10.1039/C6TC01831A
10.1002/aic.690371112
10.1186/s13068-020-01784-y
10.1007/s13204-013-0226-9
10.1016/S1872-5813(18)30036-7
10.1021/jacs.9b10476
10.1016/j.apsusc.2020.147086
10.1021/cr00033a004
10.1038/srep02163
10.1016/j.surfrep.2008.10.001
10.1039/C9TA05112K
10.1021/acsaem.0c02964
10.1016/j.cattod.2017.12.020
10.1039/C9CC09988C
10.5796/electrochemistry.76.147
10.1002/cey2.48
10.1016/j.apcatb.2016.12.028
10.1002/elan.201800076
10.1016/S1389-5567(00)00002-2
10.1021/acs.jpcc.5b09469
10.1088/2515-7655/abda9b
10.1002/cctc.201901314
10.1016/j.nanoen.2019.03.010
10.1016/j.apsusc.2014.05.036
10.3762/bjoc.14.153
10.1039/C3CP44687E
10.1016/j.jcis.2020.05.064
10.1016/j.jcis.2007.12.025
10.1002/adma.200802627
ContentType Journal Article
Copyright Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith.
Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith. 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith
Copyright_xml – notice: Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith.
– notice: Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith. 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fchem.2022.825786
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Sakuna et al
EISSN 2296-2646
EndPage 825786
ExternalDocumentID oai_doaj_org_article_7b121aee4806451ca1423da47a00c3ff
10_3389_fchem_2022_825786
35402383
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: BRF1-046/2565
GroupedDBID 53G
5VS
9T4
AAFWJ
ABDBF
ACGFS
ACXDI
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
GROUPED_DOAJ
HYE
IAO
IEA
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RPM
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c465t-a2fbb2e2b34158366000d1b9b5fab14f1f7a52f22d62e52c44581061992da1f43
IEDL.DBID RPM
ISSN 2296-2646
IngestDate Tue Oct 22 15:15:17 EDT 2024
Tue Sep 17 21:08:35 EDT 2024
Fri Oct 25 05:00:34 EDT 2024
Thu Sep 26 18:37:16 EDT 2024
Wed Oct 16 00:40:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords electron spin resonance
metal doping
energy-resolved distribution of electron traps
carbon nitride
photocatalysis
Language English
License Copyright © 2022 Sakuna, Ketwong, Ohtani, Trakulmututa, Kobkeatthawin, Luengnaruemitchai and Smith.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-a2fbb2e2b34158366000d1b9b5fab14f1f7a52f22d62e52c44581061992da1f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Quanjun Xiang, University of Electronic Science and Technology of China, China
Lutfi Kurnianditia Putri, Monash University Malaysia, Malaysia
Edited by: Gwendoline Lafaye, University of Poitiers, France
This article was submitted to Catalysis and Photocatalysis, a section of the journal Frontiers in Chemistry
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983859/
PMID 35402383
PQID 2649256453
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_7b121aee4806451ca1423da47a00c3ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8983859
proquest_miscellaneous_2649256453
crossref_primary_10_3389_fchem_2022_825786
pubmed_primary_35402383
PublicationCentury 2000
PublicationDate 2022-03-23
PublicationDateYYYYMMDD 2022-03-23
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-23
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in chemistry
PublicationTitleAlternate Front Chem
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Dong (B15) 2013; 401
Zhou (B57) 2012; 5
Zhang (B53) 2018; 46
Guan (B18) 2019; 11
Katsumata (B25) 2019; 9
Li (B29) 2018; 430
Anantachaisilp (B2) 2015; 168
Hu (B22) 2014; 311
Praus (B40) 2020; 529
Li (B28) 1991; 37
Nosaka (B38) 1996; 12
Volokh (B45) 2019; 58
Dante (B13) 2021; 258
Lin (B31) 2021; 65
Ohtani (B39) 2008; 76
Hagfeldt (B20) 1995; 95
Zhang (B54) 2018; 3
Fujishima (B16) 2000; 1
Chuaicham (B10) 2020; 577
Zhang (B55) 2013; 3
Arizaga (B3) 2008; 320
Anantachaisilp (B1) 2014; 118
Jones (B24) 2019; 9
Yang (B51) 2021; 271
Wang (B48) 2009; 21
Mozia (B34) 2010; 216
Li (B27) 2019; 7
Huang (B23) 2020; 13
Li (B30) 2016; 120
Fujishima (B17) 2008; 63
Nitta (B36) 2018; 264
Nguyen Van (B35) 2020; 12
Yuan (B52) 2002; 73
Le (B26) 2016; 6
Nitta (B37) 2019
Guo (B19) 2016; 4
Dinesh (B14) 2019; 50
Zheng (B56) 2018; 30
Choudhury (B8) 2014; 4
Dante (B12) 2019; 221
Liu (B32) 2017; 205
Ruan (B42) 2020; 142
Tonda (B44) 2014; 2
Wang (B46) 2020; 2
Chen (B7) 2019; 59
Xia (B49) 2019; 487
Xu (B50) 2013; 15
Badawi (B4) 1992; 7
Barrio (B5) 2021; 4
Maeda (B33) 2018; 14
Srikhaow (B43) 2013; 39
Cui (B11) 2021; 3
Budsberg (B6) 2020; 13
Wang (B47) 2021; 31
Hoffmann (B21) 1995; 95
Chuaicham (B9) 2020; 56
References_xml – volume: 65
  start-page: 164
  year: 2021
  ident: B31
  article-title: Increasing π-electron Availability in Benzene Ring Incorporated Graphitic Carbon Nitride for Increased Photocatalytic Hydrogen Generation
  publication-title: J. Mater. Sci. Tech.
  doi: 10.1016/j.jmst.2020.03.086
  contributor:
    fullname: Lin
– volume: 73
  start-page: 323
  year: 2002
  ident: B52
  article-title: Influence of Co-doping of Zn(II)+Fe(III) on the Photocatalytic Activity of TiO2 for Phenol Degradation
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(01)00373-X
  contributor:
    fullname: Yuan
– volume: 3
  start-page: 15009
  year: 2018
  ident: B54
  article-title: Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01933
  contributor:
    fullname: Zhang
– volume: 95
  start-page: 49
  year: 1995
  ident: B20
  article-title: Light-induced Redox Reactions in Nanocrystalline Systems
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a003
  contributor:
    fullname: Hagfeldt
– volume: 2
  start-page: 6772
  year: 2014
  ident: B44
  article-title: Fe-doped and -mediated Graphitic Carbon Nitride Nanosheets for Enhanced Photocatalytic Performance under Natural Sunlight
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C3TA15358D
  contributor:
    fullname: Tonda
– volume: 12
  start-page: 736
  year: 1996
  ident: B38
  article-title: Reaction Mechanism of the Decomposition of Acetic Acid on Illuminated TiO2 Powder Studied by Means of In Situ Electron Spin Resonance Measurements
  publication-title: Langmuir
  doi: 10.1021/la9509615
  contributor:
    fullname: Nosaka
– volume: 7
  start-page: 201
  year: 1992
  ident: B4
  article-title: Production of Acetic Acid from Thermally Treated Sewage Sludge in an Upflow Anaerobic Reactor
  publication-title: Resour. Conservation Recycling
  doi: 10.1016/0921-3449(92)90017-V
  contributor:
    fullname: Badawi
– volume: 9
  start-page: 11573
  year: 2019
  ident: B24
  article-title: Photocapacitive CdS/WOx Nanostructures for Solar Energy Storage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48069-5
  contributor:
    fullname: Jones
– volume: 12
  start-page: 1963
  year: 2020
  ident: B35
  article-title: Fe-Doped G-C3n4: High-Performance Photocatalysts in Rhodamine B Decomposition
  publication-title: Polymers
  doi: 10.3390/polym12091963
  contributor:
    fullname: Nguyen Van
– volume: 6
  start-page: 38811
  year: 2016
  ident: B26
  article-title: Cu-doped Mesoporous Graphitic Carbon Nitride for Enhanced Visible-Light Driven Photocatalysis
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03982K
  contributor:
    fullname: Le
– volume: 430
  start-page: 380
  year: 2018
  ident: B29
  article-title: Carbon Vacancy-Induced Enhancement of the Visible Light-Driven Photocatalytic Oxidation of NO over G-C 3 N 4 Nanosheets
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.054
  contributor:
    fullname: Li
– volume: 487
  start-page: 335
  year: 2019
  ident: B49
  article-title: Localized π-conjugated Structure and EPR Investigation of G-C3n4 Photocatalyst
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.064
  contributor:
    fullname: Xia
– volume: 13
  start-page: 5041
  year: 2020
  ident: B23
  article-title: Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001317
  contributor:
    fullname: Huang
– volume: 9
  start-page: 14873
  year: 2019
  ident: B25
  article-title: Dual-defect-modified Graphitic Carbon Nitride with Boosted Photocatalytic Activity under Visible Light
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49949-6
  contributor:
    fullname: Katsumata
– volume: 58
  start-page: 6138
  year: 2019
  ident: B45
  article-title: Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806514
  contributor:
    fullname: Volokh
– volume: 118
  start-page: 27150
  year: 2014
  ident: B1
  article-title: Tailoring Deep Level Surface Defects in ZnO Nanorods for High Sensitivity Ammonia Gas Sensing
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5085857
  contributor:
    fullname: Anantachaisilp
– volume: 39
  start-page: 1545
  year: 2013
  ident: B43
  article-title: Photocatalytic Activity of Flower-like ZnO Derived by a D-Glucose-Assisted Sonochemical Method
  publication-title: Res. Chem. Intermed
  doi: 10.1007/s11164-012-0619-5
  contributor:
    fullname: Srikhaow
– volume: 258
  start-page: 124023
  year: 2021
  ident: B13
  article-title: A Solid-State Glucose Sensor Based on Cu and Fe-Doped Carbon Nitride
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.124023
  contributor:
    fullname: Dante
– volume: 401
  start-page: 70
  year: 2013
  ident: B15
  article-title: Engineering the Nanoarchitecture and Texture of Polymeric Carbon Nitride Semiconductor for Enhanced Visible Light Photocatalytic Activity
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2013.03.034
  contributor:
    fullname: Dong
– volume: 168
  start-page: 20
  year: 2015
  ident: B2
  article-title: Nature of Red Luminescence in Oxygen Treated Hydrothermally Grown Zinc Oxide Nanorods
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2015.07.025
  contributor:
    fullname: Anantachaisilp
– volume: 221
  start-page: 397
  year: 2019
  ident: B12
  article-title: Comparison of the Activities of C2N and BCNO towards Congo Red Degradation
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.09.068
  contributor:
    fullname: Dante
– volume: 216
  start-page: 275
  year: 2010
  ident: B34
  article-title: Preparation of Fe-Modified Photocatalysts and Their Application for Generation of Useful Hydrocarbons during Photocatalytic Decomposition of Acetic Acid
  publication-title: J. Photochem. Photobiol. A: Chem.
  doi: 10.1016/j.jphotochem.2010.09.016
  contributor:
    fullname: Mozia
– volume: 31
  start-page: 2103978
  year: 2021
  ident: B47
  article-title: Near‐Field Drives Long‐Lived Shallow Trapping of Polymeric C 3 N 4 for Efficient Photocatalytic Hydrogen Evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103978
  contributor:
    fullname: Wang
– volume: 264
  start-page: 83
  year: 2018
  ident: B36
  article-title: Reversed Double-Beam Photoacoustic Spectroscopy of Metal-Oxide Powders for Estimation of Their Energy-Resolved Distribution of Electron Traps and Electronic-Band Structure
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2017.12.160
  contributor:
    fullname: Nitta
– volume: 5
  start-page: 6732
  year: 2012
  ident: B57
  article-title: Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE03447F
  contributor:
    fullname: Zhou
– volume: 50
  start-page: 311
  year: 2019
  ident: B14
  article-title: Mechanistic Investigation in Degradation Mechanism of 5-Fluorouracil Using Graphitic Carbon Nitride
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.09.032
  contributor:
    fullname: Dinesh
– volume: 271
  start-page: 129503
  year: 2021
  ident: B51
  article-title: Facile Synthesis of Highly Crystalline G-C3n4 Nanosheets with Remarkable Visible Light Photocatalytic Activity for Antibiotics Removal
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129503
  contributor:
    fullname: Yang
– volume: 4
  start-page: 6839
  year: 2016
  ident: B19
  article-title: Engineering the Electronic Structure and Optical Properties of G-C3n4 by Non-metal Ion Doping
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01831A
  contributor:
    fullname: Guo
– volume: 37
  start-page: 1687
  year: 1991
  ident: B28
  article-title: Generalized Kinetic Model for Wet Oxidation of Organic Compounds
  publication-title: Aiche J.
  doi: 10.1002/aic.690371112
  contributor:
    fullname: Li
– volume: 13
  start-page: 154
  year: 2020
  ident: B6
  article-title: Production Routes to Bio-Acetic Acid: Life Cycle Assessment
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-020-01784-y
  contributor:
    fullname: Budsberg
– volume: 4
  start-page: 499
  year: 2014
  ident: B8
  article-title: Shallow and Deep Trap Emission and Luminescence Quenching of TiO2 Nanoparticles on Cu Doping
  publication-title: Appl. Nanosci
  doi: 10.1007/s13204-013-0226-9
  contributor:
    fullname: Choudhury
– volume: 46
  start-page: 871
  year: 2018
  ident: B53
  article-title: Preparation of Graphitic Carbon Nitride with Nitrogen-Defects and its Photocatalytic Performance in the Degradation of Organic Pollutants under Visible Light
  publication-title: J. Fuel Chem. Tech.
  doi: 10.1016/S1872-5813(18)30036-7
  contributor:
    fullname: Zhang
– volume: 142
  start-page: 2795
  year: 2020
  ident: B42
  article-title: Insight on Shallow Trap States-Introduced Photocathodic Performance in N-type Polymer Photocatalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10476
  contributor:
    fullname: Ruan
– volume: 529
  start-page: 147086
  year: 2020
  ident: B40
  article-title: The Presence and Effect of Oxygen in Graphitic Carbon Nitride Synthetized in Air and Nitrogen Atmosphere
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147086
  contributor:
    fullname: Praus
– volume: 95
  start-page: 69
  year: 1995
  ident: B21
  article-title: Environmental Applications of Semiconductor Photocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
  contributor:
    fullname: Hoffmann
– volume: 3
  start-page: 2163
  year: 2013
  ident: B55
  article-title: Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material
  publication-title: Sci. Rep.
  doi: 10.1038/srep02163
  contributor:
    fullname: Zhang
– volume: 63
  start-page: 515
  year: 2008
  ident: B17
  article-title: TiO2 Photocatalysis and Related Surface Phenomena
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2008.10.001
  contributor:
    fullname: Fujishima
– volume: 7
  start-page: 17014
  year: 2019
  ident: B27
  article-title: Cu Supported on Polymeric Carbon Nitride for Selective CO2 Reduction into CH4: a Combined Kinetics and Thermodynamics Investigation
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA05112K
  contributor:
    fullname: Li
– volume: 4
  start-page: 1868
  year: 2021
  ident: B5
  article-title: Synergistic Doping and Surface Decoration of Carbon Nitride Macrostructures by Single Crystal Design
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.0c02964
  contributor:
    fullname: Barrio
– start-page: 2
  year: 2019
  ident: B37
  article-title: Identification and Characterization of Titania Photocatalyst Powders Using Their Energy-Resolved Distribution of Electron Traps as a Fingerprint
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.12.020
  contributor:
    fullname: Nitta
– volume: 56
  start-page: 3793
  year: 2020
  ident: B9
  article-title: Energy-resolved Distribution of Electron Traps for O/S-Doped Carbon Nitrides by Reversed Double-Beam Photoacoustic Spectroscopy and the Photocatalytic Reduction of Cr(VI)
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC09988C
  contributor:
    fullname: Chuaicham
– volume: 76
  start-page: 147
  year: 2008
  ident: B39
  article-title: Role of Molecular Oxygen in Photocatalytic Oxidative Decomposition of Acetic Acid by Metal Oxide Particulate Suspensions and Thin Film Electrodes
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.76.147
  contributor:
    fullname: Ohtani
– volume: 2
  start-page: 223
  year: 2020
  ident: B46
  article-title: Graphitic Carbon Nitride (g‐C3N4)‐based Nanosized Heteroarrays: Promising Materials for Photoelectrochemical Water Splitting
  publication-title: Carbon Energy
  doi: 10.1002/cey2.48
  contributor:
    fullname: Wang
– volume: 205
  start-page: 173
  year: 2017
  ident: B32
  article-title: Grafting Fe(III) Species on Carbon nanodots/Fe-Doped G-C3n4 via Interfacial Charge Transfer Effect for Highly Improved Photocatalytic Performance
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.12.028
  contributor:
    fullname: Liu
– volume: 30
  start-page: 1446
  year: 2018
  ident: B56
  article-title: Cu2+ -doped Carbon Nitride/MWCNT as an Electrochemical Glucose Sensor
  publication-title: Electroanalysis
  doi: 10.1002/elan.201800076
  contributor:
    fullname: Zheng
– volume: 1
  start-page: 1
  year: 2000
  ident: B16
  article-title: Titanium Dioxide Photocatalysis
  publication-title: J. Photochem. Photobiol. C: Photochem. Rev.
  doi: 10.1016/S1389-5567(00)00002-2
  contributor:
    fullname: Fujishima
– volume: 120
  start-page: 56
  year: 2016
  ident: B30
  article-title: Visible Photocatalytic Water Splitting and Photocatalytic Two-Electron Oxygen Formation over Cu- and Fe-Doped G-C3n4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09469
  contributor:
    fullname: Li
– volume: 3
  start-page: 032008
  year: 2021
  ident: B11
  article-title: Alkali/alkaline-earth Metal Intercalated G-C3n4 Induced Charge Redistribution and Optimized Photocatalysis: Status and Challenges
  publication-title: J. Phys. Energ.
  doi: 10.1088/2515-7655/abda9b
  contributor:
    fullname: Cui
– volume: 11
  start-page: 5633
  year: 2019
  ident: B18
  article-title: Delocalization of π‐Electron in Graphitic Carbon Nitride to Promote its Photocatalytic Activity for Hydrogen Evolution
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901314
  contributor:
    fullname: Guan
– volume: 59
  start-page: 644
  year: 2019
  ident: B7
  article-title: Three-dimensional Porous G-C3n4 for Highly Efficient Photocatalytic Overall Water Splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.010
  contributor:
    fullname: Chen
– volume: 311
  start-page: 164
  year: 2014
  ident: B22
  article-title: Enhanced Visible Light Photocatalytic Performance of G-C3n4 Photocatalysts Co-doped with Iron and Phosphorus
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.05.036
  contributor:
    fullname: Hu
– volume: 14
  start-page: 1806
  year: 2018
  ident: B33
  article-title: Graphitic Carbon Nitride Prepared from Urea as a Photocatalyst for Visible-Light Carbon Dioxide Reduction with the Aid of a Mononuclear Ruthenium(II) Complex
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.14.153
  contributor:
    fullname: Maeda
– volume: 15
  start-page: 7657
  year: 2013
  ident: B50
  article-title: Eosin Y-Sensitized Graphitic Carbon Nitride Fabricated by Heating Urea for Visible Light Photocatalytic Hydrogen Evolution: the Effect of the Pyrolysis Temperature of Urea
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP44687E
  contributor:
    fullname: Xu
– volume: 577
  start-page: 397
  year: 2020
  ident: B10
  article-title: Fabrication and Characterization of Ternary Sepiolite/g-C3N4/Pd Composites for Improvement of Photocatalytic Degradation of Ciprofloxacin under Visible Light Irradiation
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2020.05.064
  contributor:
    fullname: Chuaicham
– volume: 320
  start-page: 238
  year: 2008
  ident: B3
  article-title: Cu2+ Ions as a Paramagnetic Probe to Study the Surface Chemical Modification Process of Layered Double Hydroxides and Hydroxide Salts with Nitrate and Carboxylate Anions
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2007.12.025
  contributor:
    fullname: Arizaga
– volume: 21
  start-page: 1609
  year: 2009
  ident: B48
  article-title: Metal-Containing Carbon Nitride Compounds: A New Functional Organic-Metal Hybrid Material
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802627
  contributor:
    fullname: Wang
SSID ssj0001213420
Score 2.3406157
Snippet Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 825786
SubjectTerms carbon nitride
Chemistry
electron spin resonance
energy-resolved distribution of electron traps
metal doping
photocatalysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RS2vS1aRpU6KngxnpZ0jHdNE0LCT00kJuRZIn4YoWNA-2_z4y8Drsl0EtPBkuyxXyDNDMafUPIR2u4Vk7oynHjK-mlrHywpgrgbanIbFABA_rnF83Zpfxxpa42Sn1hTthEDzwJ7kh7xpmLURpkVmPBMTAAOie1q-sgUiqrb203nKkpusKE5OtjTPDC7FECGeDNc84_G1TTZmsjKnz9jxmZf-dKbmw-p8_Js7XVSI-n2b4gT-KwR3aXc7G2l-QW4Kbf54IjNCd6HsGsrk7yTezoN2SlxjQ3unQrnwd60Y-rvoN-A_15ncdcgjh_SgfMQi8hNPzIccA7jvDoOzrmefRJn3_D6Ffk8vTrr-VZta6nUAXZqBHgSN7zyD3sXMqIBmydumPeepWcZzKxpJ3iifOu4VHxIKUy6DFayzvHkhSvyc6Qh_iWUPBKYkxNnZD9vrbaC60F97B8ugjLq1yQT7Nw25uJNqMFdwORaAsSLSLRTkgsyBcU_0NHZLwuL0AP2rUetP_SgwX5MIPXguzx2MMNMd_dtmDyWY6kOWJB3kxgPvwKo15gtECL3oJ5ay7bLUN_XVi4jTXCKLv_Pyb_jjxFeWBuGxcHZGdc3cX3YOyM_rDo9T1ISPx4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcAF8WbLQ0bihJSS-BHbB4TKllKQWnFgpd4sO7HbSCih2VRq_z0zTlKxaA-cIiW2E_sbxzPj8TeEvDOaKem4yhzTPhNeiMxXRmcVWFsyFKaSFTr0T07L45X4fibPdsic3moawPVW0w7zSa36X_vXlzefYMJ_RIsT1tsPEbqHh8oZ29cogeUdcpcJMNQxkm_S9keXS8FFImpkzJQY21WO-5zbW9lYqRKh_zYt9N9gyr9Wp6OH5MGkVtKDUQ4ekZ3QPib3lnM2tydkDfJAv80ZSWgX6UmALmeH0N2afkXaaoyDo0vX-66lp83QNzWUa-mPi27okpfnJhXAMPXkY8NGDio8BAmXpqZDN9c-bLprqP2UrI6-_FweZ1PChawSpRwAr-g9C8zD0iY1L0EZyuvCGy-j84WIRVROsshYXbIgWSWE1GhSGsNqV0TBn5HdtmvDC0LBbAkhlnlEevzcKM-V4szD_9UF-P-KBXk_D679PfJqWLBHEAmbkLCIhB2RWJDPOPy3BZESO93o-nM7zTCrPODrQhAaKfiKyhWgKdZOKJfnFY9xQd7O4FkYe9wXcW3ortYWBMEwZNXhC_J8BPP2VegWA60GnqgNmDe-ZfNJ21wkmm5tNNfS7P3He1-S-9hdjG1j_BXZHfqr8BqUncG_SSL8B6EM-9k
  priority: 102
  providerName: Scholars Portal
Title The Influence of Metal-Doped Graphitic Carbon Nitride on Photocatalytic Conversion of Acetic Acid to Carbon Dioxide
URI https://www.ncbi.nlm.nih.gov/pubmed/35402383
https://search.proquest.com/docview/2649256453
https://pubmed.ncbi.nlm.nih.gov/PMC8983859
https://doaj.org/article/7b121aee4806451ca1423da47a00c3ff
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaXuCCeBMelZE4IWU38SOxj2VLKUhb9UCl3iLbsWkkGq-2qQT_nhknqbqIE5dESuzEmW8Uz4zH3xDyQStWS8Pr3DBlc2GFyK3TKnfgbUlfaicdBvTXZ9Xphfh2KS_3iJz3wqSkfWe7Rf_zetF3Vym3cnPtlnOe2PJ8vVJacSX1cp_sg4Lec9HHwErJBZtWMMEB08sAn4-bzhlbKNRQLFuE4Q6YrfjOdJRY-_9lav6dMXlvCjp5TB5NtiM9Gsf4hOz5_il5sJpLtj0jNwA6_TqXHaEx0LUH4zo_jhvf0i_ITY3JbnRltjb29Kwbtl0L7Xp6fhWHmEI5v1MDzEVPgTR8yJHDnY5w6lo6xLn3cRd_Qe_n5OLk8_fVaT5VVcidqOQAoARrmWcW5i-peAUWT9GWVlsZjC1FKENtJAuMtRXzkjkhpEK_UWvWmjII_oIc9LH3rwgF38T7UBUBOfALXVte15xZ-IkaDz9ZkZGPs3CbzUie0YDTgaA0CZQGQWlGUDLyCcV_1xB5r9OFuP3RTOg3tQV4jfdCIc9e6UwJ5mBrRG2KwvEQMvJ-Bq8B2ePih-l9vL1pwPDTDKlzeEZejmDevWpWhozUOzDvjGX3Dqhm4uKeVPH1f_d8Qx6iEDCtjfG35GDY3vp3YOcM9jDFB-C4Fuow6fgf5Vv--g
link.rule.ids 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQL4k3KK0ickLKb-LGJj2VL2UJ31UMr9WbZjk0j0Xi1TaXy75lxkqqLOHGKlNiJNd_EnhmPvyHkk6xoKTQrM00rk3HDeWasrDIL3pZwhbTCYkB_uZotzvn3C3GxQ8R4FiYm7VvTTNpfV5O2uYy5lesrOx3zxKany3klK1YJOX1AHsL_mvN7TnofWikYp8MeJrhgcupBAHjsnNJJhTqKhYsw4AHrFdtakCJv_7-Mzb9zJu8tQkdPyOPBekwP-lE-JTuufUb25mPRtufkGmBPj8fCI2nw6dKBeZ0dhrWr02_ITo3pbulcb0xo01XTbZoa2rXp6WXoQgzm_I4NMBs9htLwJQcWzzrCpanTLoy9D5twC71fkPOjr2fzRTbUVcgsn4kOYPHGUEcNrGCiYjOwefK6MNIIr03BfeFLLaintJ5RJ6jlXFToOUpJa114zl6S3Ta07jVJwTtxzs9yjyz4uSwNK0tGDUyj2sE0yxPyeRSuWvf0GQrcDgRFRVAUgqJ6UBLyBcV_1xCZr-ONsPmpBvxVaQBe7RyvkGmvsLoAg7DWvNR5bpn3Cfk4gqdA9rj9oVsXbq4VmH6SInkOS8irHsy7T43KkJByC-atsWw_AeWMbNyDMu7_d88PZG9xtjxRJ8erH2_IIxQIJrlR9pbsdpsb9w6sns68jzr-B3Z3AJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMAF8SblZSROSNlN_EjiY9llaYFd7YFKvUW2Y7eRaLLaplL598w4SbWLOHGKlNiJNd_EnhmPvyHkoypYLjXPY80KEwsjRGysKmIL3pZ0qbLSYkB_ucqOT8W3M3m2U-orJO1bU0-aX5eTpr4IuZWbSzsd88Sm6-WsUAUvpJpuKj-9S-7BP5tkO456H15JuWDDPia4YWrqQQh49JyxSYF6isWLMOgBaxbfW5QCd_-_DM6_8yZ3FqLFY_JosCDpUT_SJ-SOa56SB7OxcNszcgXQ05Ox-AhtPV06MLHjebtxFf2KDNWY8kZnemvahq7qbltX0K6h64u2a0NA53dogBnpIZyGLzmyeN4RLnVFu3bsPa_bG-j9nJwuvvycHcdDbYXYikx2AI03hjlmYBWTBc_A7kmq1CgjvTap8KnPtWSesSpjTjIrhCzQe1SKVTr1gr8gB03buFeEgofinM8Sj0z4icoNz3PODEyl2sFUKyLyaRRuuekpNEpwPRCUMoBSIihlD0pEPqP4bxsi-3W40W7Py0EHytwAvNo5USDbXmp1CkZhpUWuk8Ry7yPyYQSvBNnjFohuXHt9VYL5pxgS6PCIvOzBvP3UqAwRyfdg3hvL_hNQ0MDIPSjk4X_3fE_ur-eL8sfJ6vtr8hDlgXlujL8hB9322r0Fw6cz74KK_wEmwAGj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Influence+of+Metal-Doped+Graphitic+Carbon+Nitride+on+Photocatalytic+Conversion+of+Acetic+Acid+to+Carbon+Dioxide&rft.jtitle=Frontiers+in+chemistry&rft.au=Sakuna%2C+Pichnaree&rft.au=Ketwong%2C+Pradudnet&rft.au=Ohtani%2C+Bunsho&rft.au=Trakulmututa%2C+Jirawat&rft.date=2022-03-23&rft.issn=2296-2646&rft.eissn=2296-2646&rft.volume=10&rft.spage=825786&rft.epage=825786&rft_id=info:doi/10.3389%2Ffchem.2022.825786&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2646&client=summon