Estimation of Cortical Connectivity From EEG Using State-Space Models

A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 57; no. 9; pp. 2122 - 2134
Main Authors Cheung, Bing Leung Patrick, Riedner, Brady Alexander, Tononi, Giulio, Van Veen, Barry D.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie.
AbstractList A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie.
A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp recorded EEG. A state equation represents the MVAR model of cortical dynamics while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume the cortical signals originate from known regions of cortex, but that the spatial distribution of activity within each region is unknown. An expectation maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie.
A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie.A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie.
Author Riedner, Brady Alexander
Tononi, Giulio
Van Veen, Barry D.
Cheung, Bing Leung Patrick
Author_xml – sequence: 1
  givenname: Bing Leung Patrick
  surname: Cheung
  fullname: Cheung, Bing Leung Patrick
  email: bcheung@wisc.edu
  organization: Department of Electrical and Computer Engineering, University of Wisconsin, Madison, USA
– sequence: 2
  givenname: Brady Alexander
  surname: Riedner
  fullname: Riedner, Brady Alexander
  email: riedner@wisc.edu
  organization: Department of Psychiatry, University of Wisconsin, Madison, USA
– sequence: 3
  givenname: Giulio
  surname: Tononi
  fullname: Tononi, Giulio
  email: gtononi@wisc.edu
  organization: Department of Psychiatry, University of Wisconsin, Madison, USA
– sequence: 4
  givenname: Barry D.
  surname: Van Veen
  fullname: Van Veen, Barry D.
  email: vanveen@engr.wisc.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Wisconsin, Madison, WI, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23213012$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20501341$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9PFDEQxxuDkQP9A4yJ2cQQnxY7bfdHX0j0sqAJxAfguel2Z7Fkrz3bHgn_vV3uQOVBn9pJP9_vzHTmgOw575CQt0CPAaj8dPXlojtmNIeMVpSDfEEWUFVtySoOe2RBKbSlZFLsk4MYb3MoWlG_IvszDlzAgnRdTHalk_Wu8GOx9CFZo6d8cQ5Nsnc23Renwa-KrjsrrqN1N8Vl0gnLy7U2WFz4Aaf4mrwc9RTxze48JNen3dXya3n-_ezb8vN5aURdpVIO1PCWjphTs572Ug-mqQeDBnXVDFygkWxgokXaN7xhhmk-yGGAhmVhL_ghOdn6rjf9CrPQpaAntQ65hXCvvLbq7xdnf6gbf6eYZLxuZTb4uDMI_ucGY1IrGw1Ok3boN1E1VQUcBKP_J0Ura-By9vzwjLz1m-DyPyigrJGctaLN1Ps_S3-q-XEUGTjaATrmCYxBO2Pjb44z4BRY5potZ4KPMeCojE0PA8wd2ynnVPNyqHk51LwcarccWQnPlI_m_9K822osIj7xlWgAhOC_AIZQwt0
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_neuroimage_2013_04_103
crossref_primary_10_1162_neco_a_01415
crossref_primary_10_3390_e26030220
crossref_primary_10_1016_j_procs_2017_12_061
crossref_primary_10_1016_j_jneumeth_2019_02_016
crossref_primary_10_1109_TBME_2017_2739824
crossref_primary_10_1162_NECO_a_00838
crossref_primary_10_1109_TSP_2012_2186443
crossref_primary_10_1109_JSTSP_2016_2600023
crossref_primary_10_1089_brain_2011_0058
crossref_primary_10_1109_JPROC_2012_2185009
crossref_primary_10_1109_TMI_2016_2595329
crossref_primary_10_1088_1741_2560_12_6_066011
crossref_primary_10_1016_j_neuroimage_2012_10_001
crossref_primary_10_1016_j_neuroimage_2014_05_081
crossref_primary_10_1016_j_bspc_2022_104083
crossref_primary_10_1109_TNSRE_2015_2432835
crossref_primary_10_1007_s10548_019_00705_z
crossref_primary_10_1007_s10548_016_0538_7
crossref_primary_10_1080_01621459_2020_1865985
crossref_primary_10_1111_biom_13742
crossref_primary_10_1371_journal_pbio_3001686
crossref_primary_10_1109_TNNLS_2021_3096642
crossref_primary_10_1093_biomtc_ujae130
crossref_primary_10_1007_s11517_019_02006_w
crossref_primary_10_1002_sim_10154
crossref_primary_10_1016_j_neuroimage_2013_06_056
crossref_primary_10_15302_J_ENG_2015078
crossref_primary_10_1016_j_neuroimage_2014_09_066
crossref_primary_10_1016_j_jneumeth_2018_11_006
crossref_primary_10_1111_jtsa_12534
crossref_primary_10_1016_j_neuroimage_2018_10_073
crossref_primary_10_1109_TSP_2018_2881665
crossref_primary_10_1016_j_neuroimage_2015_04_001
crossref_primary_10_1007_s11571_013_9274_9
crossref_primary_10_1088_1741_2552_ad9ee0
crossref_primary_10_1016_j_jneumeth_2020_108758
crossref_primary_10_1016_j_neuroimage_2022_119496
crossref_primary_10_1109_TBME_2016_2616474
crossref_primary_10_1088_1361_6420_ab67dc
crossref_primary_10_1002_hbm_23220
crossref_primary_10_3109_02699052_2014_920525
crossref_primary_10_1109_MSP_2012_2219675
crossref_primary_10_1109_TSP_2011_2166392
crossref_primary_10_1109_ACCESS_2020_2984776
crossref_primary_10_1016_j_neuroimage_2011_11_005
crossref_primary_10_1109_TBME_2016_2580738
crossref_primary_10_1109_TBME_2011_2174991
crossref_primary_10_1007_s00422_015_0665_3
crossref_primary_10_1038_s41467_023_42088_7
crossref_primary_10_1016_j_neuroimage_2023_120458
crossref_primary_10_1016_j_nicl_2015_07_014
Cites_doi 10.1016/j.jspi.2005.12.005
10.2514/3.3166
10.1007/PL00007990
10.1002/9783527609970.ch17
10.1007/BF02480194
10.1016/j.jneumeth.2005.06.011
10.1007/s004220000235
10.1109/TSP.2007.912248
10.1109/10.623056
10.1109/MSP.2007.273053
10.1007/978-3-642-61695-2
10.1007/s004220050556
10.1002/sim.2935
10.1198/108571107X197977
10.1093/cercor/bhh087
10.1016/j.sigpro.2005.07.011
10.1080/01621459.1984.10477110
10.1109/79.962275
10.1016/j.cogbrainres.2004.02.012
10.1111/j.1467-9892.1982.tb00349.x
10.1016/j.neuroimage.2006.09.042
10.1109/IEMBS.2009.5335049
10.1016/j.neuroimage.2009.01.056
10.1115/1.3662552
10.1073/pnas.0308538101
10.1002/hbm.20263
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.neuroimage.2009.10.078
10.1109/TBME.2006.873743
10.1109/TBME.2007.905419
10.2307/1912791
10.1016/j.neuroimage.2004.09.036
10.1080/01621459.1982.10477803
10.1109/TAC.1974.1100714
10.1016/j.jneumeth.2009.01.013
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7TK
5PM
DOI 10.1109/TBME.2010.2050319
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Engineering Research Database

MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1558-2531
EndPage 2134
ExternalDocumentID PMC2923689
2721426491
20501341
23213012
10_1109_TBME_2010_2050319
5471144
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB009749
– fundername: NIBIB NIH HHS
  grantid: R21EB009749
– fundername: NIBIB NIH HHS
  grantid: R21EB005473
– fundername: NIBIB NIH HHS
  grantid: R21 EB005473
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7TK
5PM
ID FETCH-LOGICAL-c465t-9d0c380fe3412b0b9adc76dcecea57d34ec92d248e0b7372c2a3d9dd1720c3b43
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 13:51:09 EDT 2025
Fri Jul 11 09:18:23 EDT 2025
Thu Jul 10 18:07:46 EDT 2025
Mon Jun 30 09:07:47 EDT 2025
Sat May 31 02:09:21 EDT 2025
Mon Jul 21 09:17:06 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Wed Aug 20 07:40:56 EDT 2025
Wed Aug 27 02:27:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Human
expectation-maximization (EM) algorithm
Multivariate process
Cerebral cortex
Central nervous system
Electrophysiology
Electroencephalography
Autoregressive model
state-space models
State space method
Modeling
Encephalon
multivariate autoregressive (MVAR) models
Connectedness
Causality
EM algorithm
Granger causality
Biomedical engineering
Effective connectivity
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-9d0c380fe3412b0b9adc76dcecea57d34ec92d248e0b7372c2a3d9dd1720c3b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20501341
PQID 1027932848
PQPubID 85474
PageCount 13
ParticipantIDs proquest_miscellaneous_755131420
ieee_primary_5471144
crossref_citationtrail_10_1109_TBME_2010_2050319
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923689
pubmed_primary_20501341
proquest_journals_1027932848
crossref_primary_10_1109_TBME_2010_2050319
proquest_miscellaneous_748961399
pascalfrancis_primary_23213012
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
dempster (ref26) 1977; 39
ref32
ref10
ref2
ref1
ref17
ref19
ref18
ref24
ref23
ref25
kay (ref16) 1993
ref20
ref22
ref21
(ref38) 0
ref28
ref27
ref29
miller (ref34) 1977
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1016/j.jspi.2005.12.005
– ident: ref36
  doi: 10.2514/3.3166
– year: 1993
  ident: ref16
  publication-title: Fundamentals of Statistical Signal Processing Estimation Theory
– ident: ref10
  doi: 10.1007/PL00007990
– ident: ref3
  doi: 10.1002/9783527609970.ch17
– ident: ref33
  doi: 10.1007/BF02480194
– ident: ref30
  doi: 10.1016/j.jneumeth.2005.06.011
– ident: ref9
  doi: 10.1007/s004220000235
– ident: ref37
  doi: 10.1109/TSP.2007.912248
– ident: ref23
  doi: 10.1109/10.623056
– ident: ref19
  doi: 10.1109/MSP.2007.273053
– ident: ref1
  doi: 10.1007/978-3-642-61695-2
– ident: ref4
  doi: 10.1007/s004220050556
– ident: ref2
  doi: 10.1002/sim.2935
– year: 1977
  ident: ref34
  publication-title: Probability and statistics for engineers
– ident: ref17
  doi: 10.1198/108571107X197977
– ident: ref32
  doi: 10.1093/cercor/bhh087
– ident: ref6
  doi: 10.1016/j.sigpro.2005.07.011
– ident: ref8
  doi: 10.1080/01621459.1984.10477110
– ident: ref24
  doi: 10.1109/79.962275
– ident: ref31
  doi: 10.1016/j.cogbrainres.2004.02.012
– ident: ref21
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– ident: ref11
  doi: 10.1016/j.neuroimage.2006.09.042
– ident: ref22
  doi: 10.1109/IEMBS.2009.5335049
– ident: ref35
  doi: 10.1016/j.neuroimage.2009.01.056
– ident: ref27
  doi: 10.1115/1.3662552
– ident: ref5
  doi: 10.1073/pnas.0308538101
– ident: ref13
  doi: 10.1002/hbm.20263
– volume: 39
  start-page: 1
  year: 1977
  ident: ref26
  article-title: maximum likelihood from incomplete data via the em algorithm
  publication-title: J Roy Statist Soc B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref15
  doi: 10.1016/j.neuroimage.2009.10.078
– ident: ref25
  doi: 10.1109/TBME.2006.873743
– ident: ref14
  doi: 10.1109/TBME.2007.905419
– ident: ref29
  doi: 10.2307/1912791
– ident: ref12
  doi: 10.1016/j.neuroimage.2004.09.036
– ident: ref7
  doi: 10.1080/01621459.1982.10477803
– year: 0
  ident: ref38
– ident: ref28
  doi: 10.1109/TAC.1974.1100714
– ident: ref20
  doi: 10.1016/j.jneumeth.2009.01.013
SSID ssj0014846
Score 2.2706275
Snippet A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A...
A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp recorded EEG. A...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2122
SubjectTerms Algorithms
Analytical models
Biological and medical sciences
Brain modeling
Cerebral Cortex - physiology
Computer Simulation
Computerized, statistical medical data processing and models in biomedicine
Covariance matrix
Economic models
Effective connectivity
Electrodiagnosis. Electric activity recording
Electroencephalography
Electroencephalography - methods
Equations
expectation-maximization (EM) algorithm
Expectation-maximization algorithms
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Granger causality
Humans
Integrated approach
Investigative techniques, diagnostic techniques (general aspects)
Medical management aid. Diagnosis aid
Medical sciences
Models, Neurological
Multivariate Analysis
multivariate autoregressive (MVAR) models
Nervous system
Noise
Noise measurement
Physics
Regression Analysis
Signal analysis
Signal Processing, Computer-Assisted
Spatial distribution
State estimation
state-space models
Studies
Vertebrates: nervous system and sense organs
Title Estimation of Cortical Connectivity From EEG Using State-Space Models
URI https://ieeexplore.ieee.org/document/5471144
https://www.ncbi.nlm.nih.gov/pubmed/20501341
https://www.proquest.com/docview/1027932848
https://www.proquest.com/docview/748961399
https://www.proquest.com/docview/755131420
https://pubmed.ncbi.nlm.nih.gov/PMC2923689
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BElV7aOnSRwpFPnCqmsVxHhsfC8oWIW0vgMQtih-rotKk2uxe-us7Y3sDixDqLZKdRB6P7W_sz98AHOMSn2stVGwx3ohplowxBEMgVyitlNSlaGgfcvajOL_OLm7ymy34OtyFsdY68pkd06M7yzedXtFW2UmOMykGANuwjYGbv6s1nBhkpb-UwxMcwEJm4QQz4fLk6nRWeRKXIPWThJRC6Ym0zDaWI5dfhdiRTY8GmvvMFk9Bz8cMygdL0vQNzNaN8UyUX-PVUo3130c6j__b2j14HbAp--ad6S1s2XYErx4oFo7gxSycxY9g15FHdb8PVYXzhL8Cybo5O-sWboOcORKN9ukp2HTR_WZV9Z05kgJzIDe-xIjdMsrHdte_g-tpdXV2Hof0DLHOinwZS8N1WvK5RTMKxZVsjJ4UaBJtm3xi0sxqKYzISssVJcPRokmNNAYhE76osvQ97LRdaz8CSxXCUKMmvDT4bQSlCuM4oRqEO4ng5TwCvu6lWgftckqhcVe7GIbLmvq4pj6uQx9H8GV45Y8X7niu8j7Zf6gYTB_B0YYrDOUIQ9GrExHB4do36jD2e_yLwEkPl_0yAjYU46ilo5imtd2qr0nzh9opn6lCqXeSTPAIPnhnu_99cN4IJhtuOFQgzfDNkvb2p9MOFwjoi1J-errBB_DSsyOIQ3cIO8vFyn5G0LVUR260_QO_xiST
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIigceGx5BErxgRMiW8d5bHyEKssCTS9spd6i-LEC0SZos3vh1zNjZ0O3qipukewk8njs-cbzeQbgHZr4VGuhQov-Rki7ZIguGAK5TGmlpM5FTeeQ5Wk2O0u-nqfnO_BhuAtjrXXkMzumRxfLN61e01HZUYo7KToAd-Au2v008re1hphBkvtrOTzCJSxk0scwIy6P5p_KwtO4BOU_iShXKD1RNrMtg-QqrBA_su5QRAtf2-Im8HmdQ3nFKE0fQ7kZjuei_BqvV2qs_1zL9Pi_430Cj3p0yj56dXoKO7YZwcMrOQtHcL_so_EjuOfoo7rbh6LAncJfgmTtgh23S3dEzhyNRvsCFWy6bC9ZUXxmjqbAHMwNv6PPbhlVZLvonsHZtJgfz8K-QEOokyxdhdJwHed8YVGMQnEla6MnGYpE2zqdmDixWgojktxyReVwtKhjI41B0IQvqiR-DrtN29iXwGKFQNSoCc8NfhthqUJPTqgaAU8keL4IgG9mqdJ99nIqonFROS-Gy4rmuKI5rvo5DuD98Mpvn7rjts77JP-hYy_6AA63VGFoRyCKeh2JAA42ulH1q7_Dvwjc9tDw5wGwoRnXLQVj6sa2666irD80TnlLFyq-EyWCB_DCK9u_3_fKG8BkSw2HDpQ1fLul-fnDZQ8XCOmzXL66ecBvYW82L0-qky-n317DA8-VIEbdAeyulmv7BiHYSh26lfcXHTAn3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Cortical+Connectivity+From+EEG+Using+State-Space+Models&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Cheung%2C+Bing+Leung+Patrick&rft.au=Riedner%2C+Brady&rft.au=Tononi%2C+Giulio&rft.au=Van+Veen%2C+Barry+D.&rft.date=2010-09-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=57&rft.issue=9&rft.spage=2122&rft.epage=2134&rft_id=info:doi/10.1109%2FTBME.2010.2050319&rft_id=info%3Apmid%2F20501341&rft.externalDocID=PMC2923689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon