Estimation of Cortical Connectivity From EEG Using State-Space Models
A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 57; no. 9; pp. 2122 - 2134 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie. |
---|---|
AbstractList | A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie. A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp recorded EEG. A state equation represents the MVAR model of cortical dynamics while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume the cortical signals originate from known regions of cortex, but that the spatial distribution of activity within each region is unknown. An expectation maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie. A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie.A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie. |
Author | Riedner, Brady Alexander Tononi, Giulio Van Veen, Barry D. Cheung, Bing Leung Patrick |
Author_xml | – sequence: 1 givenname: Bing Leung Patrick surname: Cheung fullname: Cheung, Bing Leung Patrick email: bcheung@wisc.edu organization: Department of Electrical and Computer Engineering, University of Wisconsin, Madison, USA – sequence: 2 givenname: Brady Alexander surname: Riedner fullname: Riedner, Brady Alexander email: riedner@wisc.edu organization: Department of Psychiatry, University of Wisconsin, Madison, USA – sequence: 3 givenname: Giulio surname: Tononi fullname: Tononi, Giulio email: gtononi@wisc.edu organization: Department of Psychiatry, University of Wisconsin, Madison, USA – sequence: 4 givenname: Barry D. surname: Van Veen fullname: Van Veen, Barry D. email: vanveen@engr.wisc.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Wisconsin, Madison, WI, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23213012$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20501341$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9PFDEQxxuDkQP9A4yJ2cQQnxY7bfdHX0j0sqAJxAfguel2Z7Fkrz3bHgn_vV3uQOVBn9pJP9_vzHTmgOw575CQt0CPAaj8dPXlojtmNIeMVpSDfEEWUFVtySoOe2RBKbSlZFLsk4MYb3MoWlG_IvszDlzAgnRdTHalk_Wu8GOx9CFZo6d8cQ5Nsnc23Renwa-KrjsrrqN1N8Vl0gnLy7U2WFz4Aaf4mrwc9RTxze48JNen3dXya3n-_ezb8vN5aURdpVIO1PCWjphTs572Ug-mqQeDBnXVDFygkWxgokXaN7xhhmk-yGGAhmVhL_ghOdn6rjf9CrPQpaAntQ65hXCvvLbq7xdnf6gbf6eYZLxuZTb4uDMI_ucGY1IrGw1Ok3boN1E1VQUcBKP_J0Ura-By9vzwjLz1m-DyPyigrJGctaLN1Ps_S3-q-XEUGTjaATrmCYxBO2Pjb44z4BRY5potZ4KPMeCojE0PA8wd2ynnVPNyqHk51LwcarccWQnPlI_m_9K822osIj7xlWgAhOC_AIZQwt0 |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2013_04_103 crossref_primary_10_1162_neco_a_01415 crossref_primary_10_3390_e26030220 crossref_primary_10_1016_j_procs_2017_12_061 crossref_primary_10_1016_j_jneumeth_2019_02_016 crossref_primary_10_1109_TBME_2017_2739824 crossref_primary_10_1162_NECO_a_00838 crossref_primary_10_1109_TSP_2012_2186443 crossref_primary_10_1109_JSTSP_2016_2600023 crossref_primary_10_1089_brain_2011_0058 crossref_primary_10_1109_JPROC_2012_2185009 crossref_primary_10_1109_TMI_2016_2595329 crossref_primary_10_1088_1741_2560_12_6_066011 crossref_primary_10_1016_j_neuroimage_2012_10_001 crossref_primary_10_1016_j_neuroimage_2014_05_081 crossref_primary_10_1016_j_bspc_2022_104083 crossref_primary_10_1109_TNSRE_2015_2432835 crossref_primary_10_1007_s10548_019_00705_z crossref_primary_10_1007_s10548_016_0538_7 crossref_primary_10_1080_01621459_2020_1865985 crossref_primary_10_1111_biom_13742 crossref_primary_10_1371_journal_pbio_3001686 crossref_primary_10_1109_TNNLS_2021_3096642 crossref_primary_10_1093_biomtc_ujae130 crossref_primary_10_1007_s11517_019_02006_w crossref_primary_10_1002_sim_10154 crossref_primary_10_1016_j_neuroimage_2013_06_056 crossref_primary_10_15302_J_ENG_2015078 crossref_primary_10_1016_j_neuroimage_2014_09_066 crossref_primary_10_1016_j_jneumeth_2018_11_006 crossref_primary_10_1111_jtsa_12534 crossref_primary_10_1016_j_neuroimage_2018_10_073 crossref_primary_10_1109_TSP_2018_2881665 crossref_primary_10_1016_j_neuroimage_2015_04_001 crossref_primary_10_1007_s11571_013_9274_9 crossref_primary_10_1088_1741_2552_ad9ee0 crossref_primary_10_1016_j_jneumeth_2020_108758 crossref_primary_10_1016_j_neuroimage_2022_119496 crossref_primary_10_1109_TBME_2016_2616474 crossref_primary_10_1088_1361_6420_ab67dc crossref_primary_10_1002_hbm_23220 crossref_primary_10_3109_02699052_2014_920525 crossref_primary_10_1109_MSP_2012_2219675 crossref_primary_10_1109_TSP_2011_2166392 crossref_primary_10_1109_ACCESS_2020_2984776 crossref_primary_10_1016_j_neuroimage_2011_11_005 crossref_primary_10_1109_TBME_2016_2580738 crossref_primary_10_1109_TBME_2011_2174991 crossref_primary_10_1007_s00422_015_0665_3 crossref_primary_10_1038_s41467_023_42088_7 crossref_primary_10_1016_j_neuroimage_2023_120458 crossref_primary_10_1016_j_nicl_2015_07_014 |
Cites_doi | 10.1016/j.jspi.2005.12.005 10.2514/3.3166 10.1007/PL00007990 10.1002/9783527609970.ch17 10.1007/BF02480194 10.1016/j.jneumeth.2005.06.011 10.1007/s004220000235 10.1109/TSP.2007.912248 10.1109/10.623056 10.1109/MSP.2007.273053 10.1007/978-3-642-61695-2 10.1007/s004220050556 10.1002/sim.2935 10.1198/108571107X197977 10.1093/cercor/bhh087 10.1016/j.sigpro.2005.07.011 10.1080/01621459.1984.10477110 10.1109/79.962275 10.1016/j.cogbrainres.2004.02.012 10.1111/j.1467-9892.1982.tb00349.x 10.1016/j.neuroimage.2006.09.042 10.1109/IEMBS.2009.5335049 10.1016/j.neuroimage.2009.01.056 10.1115/1.3662552 10.1073/pnas.0308538101 10.1002/hbm.20263 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.neuroimage.2009.10.078 10.1109/TBME.2006.873743 10.1109/TBME.2007.905419 10.2307/1912791 10.1016/j.neuroimage.2004.09.036 10.1080/01621459.1982.10477803 10.1109/TAC.1974.1100714 10.1016/j.jneumeth.2009.01.013 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7TK 5PM |
DOI | 10.1109/TBME.2010.2050319 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Physics |
EISSN | 1558-2531 |
EndPage | 2134 |
ExternalDocumentID | PMC2923689 2721426491 20501341 23213012 10_1109_TBME_2010_2050319 5471144 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R21 EB009749 – fundername: NIBIB NIH HHS grantid: R21EB009749 – fundername: NIBIB NIH HHS grantid: R21EB005473 – fundername: NIBIB NIH HHS grantid: R21 EB005473 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c465t-9d0c380fe3412b0b9adc76dcecea57d34ec92d248e0b7372c2a3d9dd1720c3b43 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 13:51:09 EDT 2025 Fri Jul 11 09:18:23 EDT 2025 Thu Jul 10 18:07:46 EDT 2025 Mon Jun 30 09:07:47 EDT 2025 Sat May 31 02:09:21 EDT 2025 Mon Jul 21 09:17:06 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Wed Aug 20 07:40:56 EDT 2025 Wed Aug 27 02:27:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Human expectation-maximization (EM) algorithm Multivariate process Cerebral cortex Central nervous system Electrophysiology Electroencephalography Autoregressive model state-space models State space method Modeling Encephalon multivariate autoregressive (MVAR) models Connectedness Causality EM algorithm Granger causality Biomedical engineering Effective connectivity |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-9d0c380fe3412b0b9adc76dcecea57d34ec92d248e0b7372c2a3d9dd1720c3b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20501341 |
PQID | 1027932848 |
PQPubID | 85474 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_755131420 ieee_primary_5471144 crossref_citationtrail_10_1109_TBME_2010_2050319 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923689 pubmed_primary_20501341 proquest_journals_1027932848 crossref_primary_10_1109_TBME_2010_2050319 proquest_miscellaneous_748961399 pascalfrancis_primary_23213012 |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2010 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 dempster (ref26) 1977; 39 ref32 ref10 ref2 ref1 ref17 ref19 ref18 ref24 ref23 ref25 kay (ref16) 1993 ref20 ref22 ref21 (ref38) 0 ref28 ref27 ref29 miller (ref34) 1977 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1016/j.jspi.2005.12.005 – ident: ref36 doi: 10.2514/3.3166 – year: 1993 ident: ref16 publication-title: Fundamentals of Statistical Signal Processing Estimation Theory – ident: ref10 doi: 10.1007/PL00007990 – ident: ref3 doi: 10.1002/9783527609970.ch17 – ident: ref33 doi: 10.1007/BF02480194 – ident: ref30 doi: 10.1016/j.jneumeth.2005.06.011 – ident: ref9 doi: 10.1007/s004220000235 – ident: ref37 doi: 10.1109/TSP.2007.912248 – ident: ref23 doi: 10.1109/10.623056 – ident: ref19 doi: 10.1109/MSP.2007.273053 – ident: ref1 doi: 10.1007/978-3-642-61695-2 – ident: ref4 doi: 10.1007/s004220050556 – ident: ref2 doi: 10.1002/sim.2935 – year: 1977 ident: ref34 publication-title: Probability and statistics for engineers – ident: ref17 doi: 10.1198/108571107X197977 – ident: ref32 doi: 10.1093/cercor/bhh087 – ident: ref6 doi: 10.1016/j.sigpro.2005.07.011 – ident: ref8 doi: 10.1080/01621459.1984.10477110 – ident: ref24 doi: 10.1109/79.962275 – ident: ref31 doi: 10.1016/j.cogbrainres.2004.02.012 – ident: ref21 doi: 10.1111/j.1467-9892.1982.tb00349.x – ident: ref11 doi: 10.1016/j.neuroimage.2006.09.042 – ident: ref22 doi: 10.1109/IEMBS.2009.5335049 – ident: ref35 doi: 10.1016/j.neuroimage.2009.01.056 – ident: ref27 doi: 10.1115/1.3662552 – ident: ref5 doi: 10.1073/pnas.0308538101 – ident: ref13 doi: 10.1002/hbm.20263 – volume: 39 start-page: 1 year: 1977 ident: ref26 article-title: maximum likelihood from incomplete data via the em algorithm publication-title: J Roy Statist Soc B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref15 doi: 10.1016/j.neuroimage.2009.10.078 – ident: ref25 doi: 10.1109/TBME.2006.873743 – ident: ref14 doi: 10.1109/TBME.2007.905419 – ident: ref29 doi: 10.2307/1912791 – ident: ref12 doi: 10.1016/j.neuroimage.2004.09.036 – ident: ref7 doi: 10.1080/01621459.1982.10477803 – year: 0 ident: ref38 – ident: ref28 doi: 10.1109/TAC.1974.1100714 – ident: ref20 doi: 10.1016/j.jneumeth.2009.01.013 |
SSID | ssj0014846 |
Score | 2.2706275 |
Snippet | A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A... A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp recorded EEG. A... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2122 |
SubjectTerms | Algorithms Analytical models Biological and medical sciences Brain modeling Cerebral Cortex - physiology Computer Simulation Computerized, statistical medical data processing and models in biomedicine Covariance matrix Economic models Effective connectivity Electrodiagnosis. Electric activity recording Electroencephalography Electroencephalography - methods Equations expectation-maximization (EM) algorithm Expectation-maximization algorithms Fundamental and applied biological sciences. Psychology General aspects. Models. Methods Granger causality Humans Integrated approach Investigative techniques, diagnostic techniques (general aspects) Medical management aid. Diagnosis aid Medical sciences Models, Neurological Multivariate Analysis multivariate autoregressive (MVAR) models Nervous system Noise Noise measurement Physics Regression Analysis Signal analysis Signal Processing, Computer-Assisted Spatial distribution State estimation state-space models Studies Vertebrates: nervous system and sense organs |
Title | Estimation of Cortical Connectivity From EEG Using State-Space Models |
URI | https://ieeexplore.ieee.org/document/5471144 https://www.ncbi.nlm.nih.gov/pubmed/20501341 https://www.proquest.com/docview/1027932848 https://www.proquest.com/docview/748961399 https://www.proquest.com/docview/755131420 https://pubmed.ncbi.nlm.nih.gov/PMC2923689 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BElV7aOnSRwpFPnCqmsVxHhsfC8oWIW0vgMQtih-rotKk2uxe-us7Y3sDixDqLZKdRB6P7W_sz98AHOMSn2stVGwx3ohplowxBEMgVyitlNSlaGgfcvajOL_OLm7ymy34OtyFsdY68pkd06M7yzedXtFW2UmOMykGANuwjYGbv6s1nBhkpb-UwxMcwEJm4QQz4fLk6nRWeRKXIPWThJRC6Ym0zDaWI5dfhdiRTY8GmvvMFk9Bz8cMygdL0vQNzNaN8UyUX-PVUo3130c6j__b2j14HbAp--ad6S1s2XYErx4oFo7gxSycxY9g15FHdb8PVYXzhL8Cybo5O-sWboOcORKN9ukp2HTR_WZV9Z05kgJzIDe-xIjdMsrHdte_g-tpdXV2Hof0DLHOinwZS8N1WvK5RTMKxZVsjJ4UaBJtm3xi0sxqKYzISssVJcPRokmNNAYhE76osvQ97LRdaz8CSxXCUKMmvDT4bQSlCuM4oRqEO4ng5TwCvu6lWgftckqhcVe7GIbLmvq4pj6uQx9H8GV45Y8X7niu8j7Zf6gYTB_B0YYrDOUIQ9GrExHB4do36jD2e_yLwEkPl_0yAjYU46ilo5imtd2qr0nzh9opn6lCqXeSTPAIPnhnu_99cN4IJhtuOFQgzfDNkvb2p9MOFwjoi1J-errBB_DSsyOIQ3cIO8vFyn5G0LVUR260_QO_xiST |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIigceGx5BErxgRMiW8d5bHyEKssCTS9spd6i-LEC0SZos3vh1zNjZ0O3qipukewk8njs-cbzeQbgHZr4VGuhQov-Rki7ZIguGAK5TGmlpM5FTeeQ5Wk2O0u-nqfnO_BhuAtjrXXkMzumRxfLN61e01HZUYo7KToAd-Au2v008re1hphBkvtrOTzCJSxk0scwIy6P5p_KwtO4BOU_iShXKD1RNrMtg-QqrBA_su5QRAtf2-Im8HmdQ3nFKE0fQ7kZjuei_BqvV2qs_1zL9Pi_430Cj3p0yj56dXoKO7YZwcMrOQtHcL_so_EjuOfoo7rbh6LAncJfgmTtgh23S3dEzhyNRvsCFWy6bC9ZUXxmjqbAHMwNv6PPbhlVZLvonsHZtJgfz8K-QEOokyxdhdJwHed8YVGMQnEla6MnGYpE2zqdmDixWgojktxyReVwtKhjI41B0IQvqiR-DrtN29iXwGKFQNSoCc8NfhthqUJPTqgaAU8keL4IgG9mqdJ99nIqonFROS-Gy4rmuKI5rvo5DuD98Mpvn7rjts77JP-hYy_6AA63VGFoRyCKeh2JAA42ulH1q7_Dvwjc9tDw5wGwoRnXLQVj6sa2666irD80TnlLFyq-EyWCB_DCK9u_3_fKG8BkSw2HDpQ1fLul-fnDZQ8XCOmzXL66ecBvYW82L0-qky-n317DA8-VIEbdAeyulmv7BiHYSh26lfcXHTAn3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Cortical+Connectivity+From+EEG+Using+State-Space+Models&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Cheung%2C+Bing+Leung+Patrick&rft.au=Riedner%2C+Brady&rft.au=Tononi%2C+Giulio&rft.au=Van+Veen%2C+Barry+D.&rft.date=2010-09-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=57&rft.issue=9&rft.spage=2122&rft.epage=2134&rft_id=info:doi/10.1109%2FTBME.2010.2050319&rft_id=info%3Apmid%2F20501341&rft.externalDocID=PMC2923689 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |