Allosteric Inhibition of a Zinc-Sensing Transcriptional Repressor: Insights into the Arsenic Repressor (ArsR) Family
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of op...
Saved in:
Published in | Journal of molecular biology Vol. 425; no. 7; pp. 1143 - 1157 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
12.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2836 1089-8638 1089-8638 |
DOI | 10.1016/j.jmb.2013.01.018 |
Cover
Loading…
Abstract | The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHε2•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
[Display omitted]
► The molecular basis of allosteric regulation or linkage remains a subject of intense interest. ► A zinc-regulated repressor, CzrA, is used to investigate the underpinnings of allostery. ► Selective excision of a quaternary structural hydrogen bond nearly blocks linkage in CzrA. ► Introduction of a “cavity” just below this hydrogen bond also compromises linkage in the absence of a global structural change. ► A statistical coupling analysis reveals a sector that links the DNA binding site and the zinc-sensing site through an allosteric “hot-spot” defined by cavity residues. |
---|---|
AbstractList | The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHε2•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
[Display omitted]
► The molecular basis of allosteric regulation or linkage remains a subject of intense interest. ► A zinc-regulated repressor, CzrA, is used to investigate the underpinnings of allostery. ► Selective excision of a quaternary structural hydrogen bond nearly blocks linkage in CzrA. ► Introduction of a “cavity” just below this hydrogen bond also compromises linkage in the absence of a global structural change. ► A statistical coupling analysis reveals a sector that links the DNA binding site and the zinc-sensing site through an allosteric “hot-spot” defined by cavity residues. The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal sensing proteins, and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97’ NHε2•••O=C-His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, Δ G c . A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a dramatic loss of regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild-type. The energetics of Zn(II) binding and heterotropic coupling free energies (Δ H c , − T Δ S c ) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II) sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins results from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression. The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression. The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHᵋ²•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression. The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHε2•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression. The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression. |
Author | Dann, Charles E. DiMarchi, Richard D. Giedroc, David P. Ward, Brian P. Ma, Zhen Grossoehme, Nicholas E. Guerra, Alfredo J. Campanello, Gregory C. Ye, Yuzhen |
AuthorAffiliation | 2 Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA 3 School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA 1 Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA 4 Department of Microbiology, Cornell University, Ithaca, NY 14853 USA |
AuthorAffiliation_xml | – name: 1 Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA – name: 2 Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA – name: 3 School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA – name: 4 Department of Microbiology, Cornell University, Ithaca, NY 14853 USA |
Author_xml | – sequence: 1 givenname: Gregory C. surname: Campanello fullname: Campanello, Gregory C. organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA – sequence: 2 givenname: Zhen surname: Ma fullname: Ma, Zhen organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA – sequence: 3 givenname: Nicholas E. surname: Grossoehme fullname: Grossoehme, Nicholas E. organization: Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA – sequence: 4 givenname: Alfredo J. surname: Guerra fullname: Guerra, Alfredo J. organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA – sequence: 5 givenname: Brian P. surname: Ward fullname: Ward, Brian P. organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA – sequence: 6 givenname: Richard D. surname: DiMarchi fullname: DiMarchi, Richard D. organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA – sequence: 7 givenname: Yuzhen surname: Ye fullname: Ye, Yuzhen organization: School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA – sequence: 8 givenname: Charles E. surname: Dann fullname: Dann, Charles E. organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA – sequence: 9 givenname: David P. surname: Giedroc fullname: Giedroc, David P. email: giedroc@indiana.edu organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23353829$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl9rFDEUxYNU7Lb6AXzRPNaHWfNnJpMoCEuxWigI7friS8hkMrt3mU22SbbQb2-GbYv6UOFCIPd3DoecnKAjH7xD6C0lc0qo-LiZb7bdnBHK54SWkS_QjBKpKim4PEIzQhirmOTiGJ2ktCGENLyWr9Ax47zhkqkZyotxDCm7CBZf-jV0kCF4HAZs8C_wtrpxPoFf4WU0PtkIu2lvRnztdtGlFOKnokuwWueEweeA89rhRUzOF8cnCJ-Vq-sP-MJsYbx_jV4OZkzuzcN5ipYXX5fn36urH98uzxdXla1Fkyulho6atqW1UZIRKZ3kVAytMS2hSpleCGp4b4dBsp7YVjS16RyzrJOGDT0_RV8Otrt9t3W9dT5HM-pdhK2J9zoY0H9vPKz1KtxpLgjjDSsGZw8GMdzuXcp6C8m6cTTehX3SVLQlFpeN-j_KaSubWvEJffdnrKc8j6UUoD0ANoaUohu0hWymdy8pYdSU6Kl-vdGlfj3VrwktI4uS_qN8NH9O8_6gGUzQZhUh6Z83BWjKd6kbRUUhPh8IV7q6Axd1suC8dT1EZ7PuAzzj_xt7kdKJ |
CitedBy_id | crossref_primary_10_1016_j_csbj_2022_12_015 crossref_primary_10_1074_jbc_REV119_011444 crossref_primary_10_1016_j_cbpa_2013_12_021 crossref_primary_10_1107_S2059798316009153 crossref_primary_10_1002_ange_201506349 crossref_primary_10_1042_EBC20160076 crossref_primary_10_1073_pnas_1708563115 crossref_primary_10_1021_jacs_6b08458 crossref_primary_10_1002_pro_3449 crossref_primary_10_1016_j_chom_2016_05_007 crossref_primary_10_1038_s41589_018_0211_4 crossref_primary_10_1002_pro_2612 crossref_primary_10_1021_acs_biochem_5b00085 crossref_primary_10_1021_bi401132w crossref_primary_10_1007_s10534_017_0020_3 crossref_primary_10_1016_j_bbagen_2015_08_018 crossref_primary_10_1016_j_jinorgbio_2019_110882 crossref_primary_10_1021_acs_inorgchem_9b01096 crossref_primary_10_7554_eLife_37268 crossref_primary_10_1039_C4OB00995A crossref_primary_10_1021_acs_biochem_3c00679 crossref_primary_10_1246_cl_130965 crossref_primary_10_1016_j_jbc_2024_105672 crossref_primary_10_1021_jacs_8b05812 crossref_primary_10_1002_anie_201506349 crossref_primary_10_1021_jacs_8b02129 crossref_primary_10_1007_s10858_013_9729_7 crossref_primary_10_1016_j_tim_2020_08_001 crossref_primary_10_1021_acs_chemrev_4c00264 crossref_primary_10_1021_ar500182d crossref_primary_10_1007_s10295_017_1983_3 crossref_primary_10_1016_j_jbc_2022_102785 crossref_primary_10_1073_pnas_1620665114 |
Cites_doi | 10.1021/ja0119806 10.1016/S0021-9258(17)32094-X 10.1021/ja0546828 10.1021/bi3001402 10.1016/S0022-2836(02)00299-1 10.1016/j.str.2011.04.009 10.1073/pnas.0906510106 10.1016/0003-2697(90)90465-L 10.1038/nchembio844 10.1021/bi00865a047 10.1038/nsmb.1990 10.1038/nsb881 10.1016/j.jmb.2005.12.019 10.1002/pro.692 10.1021/bi100490u 10.1021/ja105852y 10.1039/b706769k 10.1128/JB.187.12.4214-4221.2005 10.1111/j.1348-0421.1999.tb02382.x 10.1073/pnas.0636943100 10.1016/0076-6879(91)08018-D 10.1074/jbc.M701119200 10.1007/s12104-007-9027-y 10.1021/bi0201771 10.1016/j.bpc.2011.05.020 10.1007/BF00197809 10.1016/j.jmb.2003.09.007 10.1016/j.jmb.2008.06.040 10.1073/pnas.1835919100 10.1093/nar/gkh340 10.1039/b906682a 10.1038/msb.2010.65 10.1006/abio.1996.0238 10.1107/S0907444904019158 10.1021/cr900077w 10.1107/S0907444909052925 10.1021/bi020178t 10.1016/j.bpj.2010.01.039 10.1016/S0022-2836(65)80285-6 10.1074/jbc.M703451200 10.1038/nature06407 10.1016/j.str.2009.06.008 10.1021/ja906131b 10.1038/nsmb1132 10.1093/nar/21.4.921 10.1016/j.cell.2009.07.038 10.1021/bi900115w 10.1021/ja208047b 10.1093/nar/gkr625 10.1074/jbc.M111.234039 10.1038/nature06522 10.1073/pnas.96.18.10068 10.1146/annurev-biophys-050511-102319 10.1021/bi050094v 10.1038/nature06410 10.1146/annurev.biophys.31.082901.134215 10.1021/ja908372b 10.1038/nature08560 10.1007/s12104-012-9397-7 10.1021/ja2080532 10.1126/science.286.5438.295 10.1073/pnas.0905558106 10.1016/j.jmb.2010.08.030 10.1016/j.tibs.2008.05.009 10.1128/JB.184.8.2300-2304.2002 10.1021/ja9642121 10.1126/science.1169377 10.1038/nature05959 10.1093/nar/gkr1316 10.1016/S0076-6879(04)80009-0 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. 2012 Elsevier Ltd. All rights reserved. 2012 |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. – notice: 2012 Elsevier Ltd. All rights reserved. 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jmb.2013.01.018 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
EndPage | 1157 |
ExternalDocumentID | PMC3602352 23353829 10_1016_j_jmb_2013_01_018 US201500045916 S002228361300034X |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM042569 – fundername: NIGMS NIH HHS grantid: R01 GM094472 – fundername: NIGMS NIH HHS grantid: GM042569 – fundername: NIGMS NIH HHS grantid: GM094472 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM042569 || GM |
GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HLW HMG IH2 IHE J1W K-O KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 29L 3O- AAHBH AAQXK AATTM AAXKI ABDPE ABEFU ABWVN ACKIV ACRPL ADFGL ADIYS ADMUD ADNMO ADVLN AEIPS AFJKZ AGHFR AGRDE AI. AKRWK ANKPU ASPBG AVWKF AZFZN BNPGV CAG COF FBQ FEDTE FGOYB G-2 HVGLF HX~ HZ~ H~9 MVM NEJ R2- SBG SEW SIN SSH UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c465t-99fb1a7714a982088e8316f7aa70199ad661a3dcff82d0c7654abe2c2b8a2fd3 |
IEDL.DBID | .~1 |
ISSN | 0022-2836 1089-8638 |
IngestDate | Thu Aug 21 17:56:09 EDT 2025 Fri Jul 11 02:51:45 EDT 2025 Mon Jul 21 10:22:48 EDT 2025 Mon Jul 21 06:03:25 EDT 2025 Tue Jul 01 03:50:07 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Thu Apr 03 09:44:50 EDT 2025 Fri Feb 23 02:26:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | SCA TROSY statistical coupling analysis zinc sensor ITC metal homeostasis HSQC TCEP allostery ArsR |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-99fb1a7714a982088e8316f7aa70199ad661a3dcff82d0c7654abe2c2b8a2fd3 |
Notes | http://dx.doi.org/10.1016/j.jmb.2013.01.018 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23353829 |
PQID | 1317854939 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3602352 proquest_miscellaneous_1672083859 proquest_miscellaneous_1317854939 pubmed_primary_23353829 crossref_citationtrail_10_1016_j_jmb_2013_01_018 crossref_primary_10_1016_j_jmb_2013_01_018 fao_agris_US201500045916 elsevier_sciencedirect_doi_10_1016_j_jmb_2013_01_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-12 |
PublicationDateYYYYMMDD | 2013-04-12 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Ramesh, Ma, Ward, Zhang, George (bb0065) 2007; 3 Goddard, T. D. and Kneller, D. G. Sparky 3, University of California, San Francisco. Lee, Dorwart, Hazlett, Deka, Norgard, Radolf (bb0310) 2002; 184 Frederick, Marlow, Valentine, Wand (bb0235) 2007; 448 Toncrova, McLeish (bb0010) 2010; 98 Wrabl, Gu, Liu, Schrank, Whitten, Hilser (bb0260) 2011; 159 Guimaraes, Barbosa, Soprano, Campos, de Souza, Tonoli (bb0125) 2011; 286 Smock, Rivoire, Russ, Swain, Leibler, Ranganathan (bb0280) 2010; 6 Lockless, Ranganathan (bb0165) 1999; 286 Ye, Kandegedara, Martin, Rosen (bb0285) 2005; 187 England (bb0055) 2011; 19 Lee, Arunkumar, Chen, Giedroc (bb0190) 2006; 128 Shen, Lupardus, Gersch, Puri, Albrow, Garcia (bb0255) 2011; 18 VanZile, Chen, Giedroc (bb0290) 2002; 41 Guerra, Dann, Giedroc (bb0080) 2011; 133 Emsley, Cowtan (bb0350) 2004; 60 Luque, Leavitt, Freire (bb0050) 2002; 31 Diehl, Engstrom, Delaine, Hakansson, Genheden, Modig (bb0245) 2010; 132 Schrank, Bolen, Hilser (bb0060) 2009; 106 Fenton (bb0200) 2008; 33 Reyes-Caballero, Guerra, Jacobsen, Kazmierczak, Cowart, Koppolu (bb0315) 2010; 403 Suel, Lockless, Wall, Ranganathan (bb0170) 2003; 10 Hackeng, Griffin, Dawson (bb0185) 1999; 96 Lee, Giedroc (bb0335) 2012 Grossoehme, Giedroc (bb0150) 2009; 131 Ma, Gabriel, Helmann (bb0320) 2011; 39 Morby, Turner, Huckle, Robinson (bb0095) 1993; 21 Monod, Wyman, Changeux (bb0020) 1965; 12 Walkup, Imperiali (bb0300) 1997; 119 del Sol, Tsai, Ma, Nussinov (bb0270) 2009; 17 Koshland, Nemethy, Filmer (bb0025) 1966; 5 Delaglio, Grzesiek, Vuister, Zhu, Pfeifer, Bax (bb0325) 1995; 6 Lee, Chakravorty, Chang, Reyes-Caballero, Ye, Merz (bb0085) 2012; 51 Campbell, Chapman, Waldron, Tottey, Kendall, Cavallaro (bb0100) 2007; 282 Arunkumar, Pennella, Kong, Giedroc (bb0195) 2007; 1 Hilser, Wrabl, Motlagh (bb0265) 2012; 41 Ma, Jacobsen, Giedroc (bb0115) 2009; 109 Henzler-Wildman, Lei, Thai, Kerns, Karplus, Kern (bb0030) 2007; 450 Arunkumar, Campanello, Giedroc (bb0075) 2009; 106 Popovych, Sun, Ebright, Kalodimos (bb0045) 2006; 13 Tzeng, Kalodimos (bb0230) 2009; 462 VanZile, Chen, Giedroc (bb0135) 2002; 41 Edgar (bb0355) 2004; 32 Olsson, Ladbury, Pitt, Williams (bb0240) 2011; 20 Chakravorty, Wang, Lee, Giedroc, Merz (bb0155) 2012; 134 Otwinowski (bb0340) 1993 Mulder, Hon, Mittermaier, Dahlquist, Kay (bb0160) 2002; 124 Hatley, Lockless, Gibson, Gilman, Ranganathan (bb0275) 2003; 100 Giedroc, Arunkumar (bb0365) 2007; 29 Pennella, Arunkumar, Giedroc (bb0175) 2006; 356 Ma, Cowart, Ward, Arnold, DiMarchi, Zhang (bb0180) 2009; 131 Osman, Cavet (bb0105) 2010; 27 Shi, Wu, Rosen (bb0090) 1994; 269 Record, Ha, Fisher (bb0205) 1991; 208 Henzler-Wildman, Kern (bb0040) 2007; 450 Reinhart (bb0005) 2004; 380 Palm, Khanh Chi, Waack, Gronau, Becher, Albrecht (bb0120) 2012; 40 Adams, Afonine, Bunkoczi, Chen, Davis, Echols (bb0345) 2010; 66 Wang, Hemmingsen, Giedroc (bb0220) 2005; 44 Pennella, Shokes, Cosper, Scott, Giedroc (bb0145) 2003; 100 Kuzmic (bb0305) 1996; 237 Wang, Kendall, Cavet, Giedroc (bb0110) 2010; 49 Henzler-Wildman, Thai, Lei, Ott, Wolf-Watz, Fenn (bb0035) 2007; 450 Jefferson, Hunt, Ginsburg (bb0295) 1990; 187 Banci, Bertini, Cantini, Ciofi-Baffoni, Cavet, Dennison (bb0225) 2007; 282 Ma, Cowart, Scott, Giedroc (bb0070) 2009; 48 Datta, Scheer, Romanowski, Wells (bb0250) 2008; 381 Halabi, Rivoire, Leibler, Ranganathan (bb0360) 2009; 138 Eicken, Pennella, Chen, Koshlap, VanZile, Sacchettini (bb0140) 2003; 333 Busenlehner, Weng, Penner-Hahn, Giedroc (bb0210) 2002; 319 Smock, Gierasch (bb0015) 2009; 324 Kuroda, Hayashi, Ohta (bb0130) 1999; 43 Pennella (10.1016/j.jmb.2013.01.018_bb0145) 2003; 100 Datta (10.1016/j.jmb.2013.01.018_bb0250) 2008; 381 Lockless (10.1016/j.jmb.2013.01.018_bb0165) 1999; 286 Liu (10.1016/j.jmb.2013.01.018_bb0065) 2007; 3 Tzeng (10.1016/j.jmb.2013.01.018_bb0230) 2009; 462 Wrabl (10.1016/j.jmb.2013.01.018_bb0260) 2011; 159 Kuzmic (10.1016/j.jmb.2013.01.018_bb0305) 1996; 237 Lee (10.1016/j.jmb.2013.01.018_bb0335) 2012 Lee (10.1016/j.jmb.2013.01.018_bb0190) 2006; 128 Wang (10.1016/j.jmb.2013.01.018_bb0220) 2005; 44 Popovych (10.1016/j.jmb.2013.01.018_bb0045) 2006; 13 Arunkumar (10.1016/j.jmb.2013.01.018_bb0195) 2007; 1 VanZile (10.1016/j.jmb.2013.01.018_bb0290) 2002; 41 Hatley (10.1016/j.jmb.2013.01.018_bb0275) 2003; 100 Walkup (10.1016/j.jmb.2013.01.018_bb0300) 1997; 119 Mulder (10.1016/j.jmb.2013.01.018_bb0160) 2002; 124 Ma (10.1016/j.jmb.2013.01.018_bb0070) 2009; 48 Lee (10.1016/j.jmb.2013.01.018_bb0085) 2012; 51 Smock (10.1016/j.jmb.2013.01.018_bb0015) 2009; 324 Halabi (10.1016/j.jmb.2013.01.018_bb0360) 2009; 138 Guerra (10.1016/j.jmb.2013.01.018_bb0080) 2011; 133 Eicken (10.1016/j.jmb.2013.01.018_bb0140) 2003; 333 Ma (10.1016/j.jmb.2013.01.018_bb0180) 2009; 131 Reyes-Caballero (10.1016/j.jmb.2013.01.018_bb0315) 2010; 403 Frederick (10.1016/j.jmb.2013.01.018_bb0235) 2007; 448 Henzler-Wildman (10.1016/j.jmb.2013.01.018_bb0030) 2007; 450 Guimaraes (10.1016/j.jmb.2013.01.018_bb0125) 2011; 286 Pennella (10.1016/j.jmb.2013.01.018_bb0175) 2006; 356 Henzler-Wildman (10.1016/j.jmb.2013.01.018_bb0040) 2007; 450 Edgar (10.1016/j.jmb.2013.01.018_bb0355) 2004; 32 Wang (10.1016/j.jmb.2013.01.018_bb0110) 2010; 49 10.1016/j.jmb.2013.01.018_bb0330 Adams (10.1016/j.jmb.2013.01.018_bb0345) 2010; 66 Schrank (10.1016/j.jmb.2013.01.018_bb0060) 2009; 106 Kuroda (10.1016/j.jmb.2013.01.018_bb0130) 1999; 43 Luque (10.1016/j.jmb.2013.01.018_bb0050) 2002; 31 Campbell (10.1016/j.jmb.2013.01.018_bb0100) 2007; 282 Arunkumar (10.1016/j.jmb.2013.01.018_bb0075) 2009; 106 Delaglio (10.1016/j.jmb.2013.01.018_bb0325) 1995; 6 Suel (10.1016/j.jmb.2013.01.018_bb0170) 2003; 10 Olsson (10.1016/j.jmb.2013.01.018_bb0240) 2011; 20 Diehl (10.1016/j.jmb.2013.01.018_bb0245) 2010; 132 Koshland (10.1016/j.jmb.2013.01.018_bb0025) 1966; 5 del Sol (10.1016/j.jmb.2013.01.018_bb0270) 2009; 17 Smock (10.1016/j.jmb.2013.01.018_bb0280) 2010; 6 Monod (10.1016/j.jmb.2013.01.018_bb0020) 1965; 12 Ma (10.1016/j.jmb.2013.01.018_bb0115) 2009; 109 Jefferson (10.1016/j.jmb.2013.01.018_bb0295) 1990; 187 Giedroc (10.1016/j.jmb.2013.01.018_bb0365) 2007; 29 Lee (10.1016/j.jmb.2013.01.018_bb0310) 2002; 184 Reinhart (10.1016/j.jmb.2013.01.018_bb0005) 2004; 380 Hilser (10.1016/j.jmb.2013.01.018_bb0265) 2012; 41 Grossoehme (10.1016/j.jmb.2013.01.018_bb0150) 2009; 131 Palm (10.1016/j.jmb.2013.01.018_bb0120) 2012; 40 Toncrova (10.1016/j.jmb.2013.01.018_bb0010) 2010; 98 Banci (10.1016/j.jmb.2013.01.018_bb0225) 2007; 282 Shen (10.1016/j.jmb.2013.01.018_bb0255) 2011; 18 Emsley (10.1016/j.jmb.2013.01.018_bb0350) 2004; 60 Osman (10.1016/j.jmb.2013.01.018_bb0105) 2010; 27 Ye (10.1016/j.jmb.2013.01.018_bb0285) 2005; 187 Otwinowski (10.1016/j.jmb.2013.01.018_bb0340) 1993 Hackeng (10.1016/j.jmb.2013.01.018_bb0185) 1999; 96 Ma (10.1016/j.jmb.2013.01.018_bb0320) 2011; 39 Fenton (10.1016/j.jmb.2013.01.018_bb0200) 2008; 33 Busenlehner (10.1016/j.jmb.2013.01.018_bb0210) 2002; 319 Record (10.1016/j.jmb.2013.01.018_bb0205) 1991; 208 Chakravorty (10.1016/j.jmb.2013.01.018_bb0155) 2012; 134 VanZile (10.1016/j.jmb.2013.01.018_bb0135) 2002; 41 Henzler-Wildman (10.1016/j.jmb.2013.01.018_bb0035) 2007; 450 Shi (10.1016/j.jmb.2013.01.018_bb0090) 1994; 269 Morby (10.1016/j.jmb.2013.01.018_bb0095) 1993; 21 England (10.1016/j.jmb.2013.01.018_bb0055) 2011; 19 19928961 - J Am Chem Soc. 2009 Dec 23;131(50):18044-5 20873837 - J Am Chem Soc. 2010 Oct 20;132(41):14577-89 21317893 - Nat Struct Mol Biol. 2011 Mar;18(3):364-71 22618866 - Biomol NMR Assign. 2013 Oct;7(2):145-8 12146943 - Biochemistry. 2002 Aug 6;41(31):9776-86 17637663 - Nature. 2007 Jul 19;448(7151):325-9 22238377 - Nucleic Acids Res. 2012 May;40(9):4178-92 14343300 - J Mol Biol. 1965 May;12:88-118 19636838 - Biomol NMR Assign. 2007 Jul;1(1):99-101 15937183 - J Bacteriol. 2005 Jun;187(12):4214-21 16906160 - Nat Struct Mol Biol. 2006 Sep;13(9):831-8 17637984 - Dalton Trans. 2007 Aug 7;(29):3107-20 12651949 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3713-8 17726022 - J Biol Chem. 2007 Nov 2;282(44):32298-310 12054863 - J Mol Biol. 2002 Jun 7;319(3):685-701 10468563 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10068-73 17143269 - Nat Chem Biol. 2007 Jan;3(1):60-8 10229265 - Microbiol Immunol. 1999;43(2):115-25 19822742 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18177-82 15051338 - Methods Enzymol. 2004;380:187-203 18026086 - Nature. 2007 Dec 6;450(7171):838-44 19359576 - Science. 2009 Apr 10;324(5924):198-203 21739503 - Protein Sci. 2011 Sep;20(9):1607-18 16464095 - J Am Chem Soc. 2006 Feb 15;128(6):1937-47 20865007 - Mol Syst Biol. 2010 Sep 21;6:414 21632538 - J Biol Chem. 2011 Jul 22;286(29):26148-57 19679084 - Structure. 2009 Aug 12;17(8):1042-50 19788177 - Chem Rev. 2009 Oct;109(10):4644-81 11914363 - J Bacteriol. 2002 Apr;184(8):2300-4 10514373 - Science. 1999 Oct 8;286(5438):295-9 19924217 - Nature. 2009 Nov 19;462(7271):368-72 8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73 20804771 - J Mol Biol. 2010 Oct 22;403(2):197-216 8520220 - J Biomol NMR. 1995 Nov;6(3):277-93 17599915 - J Biol Chem. 2007 Oct 12;282(41):30181-8 18706817 - Trends Biochem Sci. 2008 Sep;33(9):420-5 19995076 - J Am Chem Soc. 2009 Dec 16;131(49):17860-70 18026087 - Nature. 2007 Dec 6;450(7171):913-6 2116741 - Anal Biochem. 1990 Jun;187(2):328-36 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 22394357 - Biochemistry. 2012 Mar 27;51(12):2619-29 11988469 - Annu Rev Biophys Biomol Struct. 2002;31:235-56 22007899 - J Am Chem Soc. 2012 Feb 22;134(7):3367-76 16406068 - J Mol Biol. 2006 Mar 10;356(5):1124-36 14568530 - J Mol Biol. 2003 Oct 31;333(4):683-95 21742263 - Structure. 2011 Jul 13;19(7):967-75 11841314 - J Am Chem Soc. 2002 Feb 20;124(7):1443-51 8451191 - Nucleic Acids Res. 1993 Feb 25;21(4):921-5 12483203 - Nat Struct Biol. 2003 Jan;10(1):59-69 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 20586430 - Biochemistry. 2010 Aug 10;49(31):6617-26 19249860 - Biochemistry. 2009 Apr 21;48(15):3325-34 14623969 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14445-50 19703402 - Cell. 2009 Aug 21;138(4):774-86 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 15966722 - Biochemistry. 2005 Jun 28;44(25):8976-88 8051064 - J Biol Chem. 1994 Aug 5;269(31):19826-9 18590738 - J Mol Biol. 2008 Sep 19;381(5):1157-67 5938952 - Biochemistry. 1966 Jan;5(1):365-85 1779839 - Methods Enzymol. 1991;208:291-343 21821657 - Nucleic Acids Res. 2011 Nov;39(21):9130-8 22577828 - Annu Rev Biophys. 2012;41:585-609 19805185 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16984-9 21684672 - Biophys Chem. 2011 Nov;159(1):129-41 18075575 - Nature. 2007 Dec 13;450(7172):964-72 20483341 - Biophys J. 2010 May 19;98(10):2317-26 22085181 - J Am Chem Soc. 2011 Dec 14;133(49):19614-7 12146942 - Biochemistry. 2002 Aug 6;41(31):9765-75 20442958 - Nat Prod Rep. 2010 May;27(5):668-80 |
References_xml | – volume: 51 start-page: 2619 year: 2012 end-page: 2629 ident: bb0085 article-title: Solution structure of publication-title: Biochemistry – volume: 48 start-page: 3325 year: 2009 end-page: 3334 ident: bb0070 article-title: Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from publication-title: Biochemistry – volume: 324 start-page: 198 year: 2009 end-page: 203 ident: bb0015 article-title: Sending signals dynamically publication-title: Science – volume: 39 start-page: 9130 year: 2011 end-page: 9138 ident: bb0320 article-title: Sequential binding and sensing of Zn(II) by publication-title: Nucleic Acids Res. – volume: 10 start-page: 59 year: 2003 end-page: 69 ident: bb0170 article-title: Evolutionarily conserved networks of residues mediate allosteric communication in proteins publication-title: Nat. Struct. Biol. – volume: 5 start-page: 365 year: 1966 end-page: 385 ident: bb0025 article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits publication-title: Biochemistry – volume: 128 start-page: 1937 year: 2006 end-page: 1947 ident: bb0190 article-title: Structural insights into homo- and heterotropic allosteric coupling in the zinc sensor publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 3367 year: 2012 end-page: 3376 ident: bb0155 article-title: Simulations of allosteric motions in the zinc sensor CzrA publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 99 year: 2007 end-page: 101 ident: bb0195 article-title: Resonance assignments of the metal sensor protein CzrA in the apo-. Zn2- and DNA-bound (42 kD) states publication-title: Biomol. NMR Assignments – volume: 100 start-page: 14445 year: 2003 end-page: 14450 ident: bb0275 article-title: Allosteric determinants in guanine nucleotide-binding proteins publication-title: Proc. Natl Acad. Sci. USA – volume: 19 start-page: 967 year: 2011 end-page: 975 ident: bb0055 article-title: Allostery in protein domains reflects a balance of steric and hydrophobic effects publication-title: Structure – volume: 100 start-page: 3713 year: 2003 end-page: 3718 ident: bb0145 article-title: Structural elements of metal selectivity in metal sensor proteins publication-title: Proc. Natl Acad. Sci. USA – volume: 17 start-page: 1042 year: 2009 end-page: 1050 ident: bb0270 article-title: The origin of allosteric functional modulation: multiple pre-existing pathways publication-title: Structure – volume: 184 start-page: 2300 year: 2002 end-page: 2304 ident: bb0310 article-title: The crystal structure of Zn(II)-free publication-title: J. Bacteriol. – volume: 41 start-page: 9765 year: 2002 end-page: 9775 ident: bb0135 article-title: Structural characterization of distinct α3N and α5 metal sites in the cyanobacterial zinc sensor SmtB publication-title: Biochemistry – volume: 450 start-page: 913 year: 2007 end-page: 916 ident: bb0030 article-title: A hierarchy of timescales in protein dynamics is linked to enzyme catalysis publication-title: Nature – volume: 106 start-page: 16984 year: 2009 end-page: 16989 ident: bb0060 article-title: Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins publication-title: Proc. Natl Acad. Sci. USA – volume: 286 start-page: 26148 year: 2011 end-page: 26157 ident: bb0125 article-title: Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia publication-title: J. Biol. Chem. – volume: 187 start-page: 4214 year: 2005 end-page: 4221 ident: bb0285 article-title: Crystal structure of the publication-title: J. Bacteriol. – volume: 448 start-page: 325 year: 2007 end-page: 329 ident: bb0235 article-title: Conformational entropy in molecular recognition by proteins publication-title: Nature – start-page: 56 year: 1993 end-page: 62 ident: bb0340 article-title: Oscillation data reduction program publication-title: Proceedings of the CCP4 Study Weekend: Data Collection and Processing – volume: 20 start-page: 1607 year: 2011 end-page: 1618 ident: bb0240 article-title: Extent of enthalpy–entropy compensation in protein–ligand interactions publication-title: Protein Sci. – volume: 12 start-page: 88 year: 1965 end-page: 118 ident: bb0020 article-title: On the nature of allosteric transitions: a plausible model publication-title: J. Mol. Biol. – volume: 119 start-page: 3443 year: 1997 end-page: 3450 ident: bb0300 article-title: Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 414 year: 2010 ident: bb0280 article-title: An interdomain sector mediating allostery in Hsp70 molecular chaperones publication-title: Mol. Syst. Biol. – volume: 450 start-page: 964 year: 2007 end-page: 972 ident: bb0040 article-title: Dynamic personalities of proteins publication-title: Nature – volume: 269 start-page: 19826 year: 1994 end-page: 19829 ident: bb0090 article-title: Identification of a putative metal binding site in a new family of metalloregulatory proteins publication-title: J. Biol. Chem. – volume: 208 start-page: 291 year: 1991 end-page: 343 ident: bb0205 article-title: Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA publication-title: Methods Enzymol. – volume: 286 start-page: 295 year: 1999 end-page: 299 ident: bb0165 article-title: Evolutionarily conserved pathways of energetic connectivity in protein families publication-title: Science – volume: 49 start-page: 6617 year: 2010 end-page: 6626 ident: bb0110 article-title: Elucidation of the functional metal binding profile of a Cd(II)/Pb(II) sensor CmtR(Sc) from publication-title: Biochemistry – volume: 282 start-page: 30181 year: 2007 end-page: 30188 ident: bb0225 article-title: NMR structural analysis of cadmium sensing by winged helix repressor CmtR publication-title: J. Biol. Chem. – volume: 18 start-page: 364 year: 2011 end-page: 371 ident: bb0255 article-title: Defining an allosteric circuit in the cysteine protease domain of publication-title: Nat. Struct. Mol. Biol. – volume: 106 start-page: 18177 year: 2009 end-page: 18182 ident: bb0075 article-title: Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state publication-title: Proc. Natl Acad. Sci. USA – volume: 98 start-page: 2317 year: 2010 end-page: 2326 ident: bb0010 article-title: Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP publication-title: Biophys. J. – volume: 29 start-page: 3107 year: 2007 end-page: 3120 ident: bb0365 article-title: Metal sensor proteins: nature's metalloregulated allosteric switches publication-title: Dalton Trans. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bb0350 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. – volume: 96 start-page: 10068 year: 1999 end-page: 10073 ident: bb0185 article-title: Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology publication-title: Proc. Natl Acad. Sci. USA – year: 2012 ident: bb0335 article-title: H, publication-title: Biomol. NMR Assignments – volume: 21 start-page: 921 year: 1993 end-page: 925 ident: bb0095 article-title: SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene publication-title: Nucleic Acids Res. – volume: 131 start-page: 18044 year: 2009 end-page: 18045 ident: bb0180 article-title: Unnatural amino acid substitution as a probe of the allosteric coupling pathway in a mycobacterial Cu(I) sensor publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 14577 year: 2010 end-page: 14589 ident: bb0245 article-title: Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3 publication-title: J. Am. Chem. Soc. – volume: 237 start-page: 260 year: 1996 end-page: 273 ident: bb0305 article-title: Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase publication-title: Anal. Biochem. – volume: 462 start-page: 368 year: 2009 end-page: 372 ident: bb0230 article-title: Dynamic activation of an allosteric regulatory protein publication-title: Nature – volume: 159 start-page: 129 year: 2011 end-page: 141 ident: bb0260 article-title: The role of protein conformational fluctuations in allostery, function, and evolution publication-title: Biophys. Chem. – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: bb0355 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. – volume: 133 start-page: 19614 year: 2011 end-page: 19617 ident: bb0080 article-title: Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state publication-title: J. Am. Chem. Soc. – volume: 380 start-page: 187 year: 2004 end-page: 203 ident: bb0005 article-title: Quantitative analysis and interpretation of allosteric behavior publication-title: Methods Enzymol. – volume: 450 start-page: 838 year: 2007 end-page: 844 ident: bb0035 article-title: Intrinsic motions along an enzymatic reaction trajectory publication-title: Nature – volume: 124 start-page: 1443 year: 2002 end-page: 1451 ident: bb0160 article-title: Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 4644 year: 2009 end-page: 4681 ident: bb0115 article-title: Coordination chemistry of bacterial metal transport and sensing publication-title: Chem. Rev. – volume: 138 start-page: 774 year: 2009 end-page: 786 ident: bb0360 article-title: Protein sectors: evolutionary units of three-dimensional structure publication-title: Cell – volume: 31 start-page: 235 year: 2002 end-page: 256 ident: bb0050 article-title: The linkage between protein folding and functional cooperativity: two sides of the same coin? publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 43 start-page: 115 year: 1999 end-page: 125 ident: bb0130 article-title: Chromosome-determined zinc-responsible operon publication-title: Microbiol. Immunol. – volume: 41 start-page: 9776 year: 2002 end-page: 9786 ident: bb0290 article-title: Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis publication-title: Biochemistry – volume: 282 start-page: 32298 year: 2007 end-page: 32310 ident: bb0100 article-title: Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent publication-title: J. Biol. Chem. – volume: 403 start-page: 197 year: 2010 end-page: 216 ident: bb0315 article-title: The metalloregulatory zinc site in publication-title: J. Mol. Biol. – volume: 44 start-page: 8976 year: 2005 end-page: 8988 ident: bb0220 article-title: Structural and functional characterization of publication-title: Biochemistry – volume: 319 start-page: 685 year: 2002 end-page: 701 ident: bb0210 article-title: Elucidation of primary (a3N) and vestigial (a5) heavy metal-binding sites in publication-title: J. Mol. Biol. – volume: 27 start-page: 668 year: 2010 end-page: 680 ident: bb0105 article-title: Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors publication-title: Nat. Prod. Rep. – volume: 131 start-page: 17860 year: 2009 end-page: 17870 ident: bb0150 article-title: Energetics of allosteric negative coupling in the zinc sensor publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 585 year: 2012 end-page: 609 ident: bb0265 article-title: Structural and energetic basis of allostery publication-title: Annu. Rev. Biophys. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bb0345 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. – volume: 3 start-page: 60 year: 2007 end-page: 68 ident: bb0065 article-title: CsoR is a novel publication-title: Nat. Chem. Biol. – volume: 33 start-page: 420 year: 2008 end-page: 425 ident: bb0200 article-title: Allostery: an illustrated definition for the “second secret of life” publication-title: Trends Biochem. Sci. – volume: 6 start-page: 277 year: 1995 end-page: 293 ident: bb0325 article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes publication-title: J. Biomol. NMR – volume: 333 start-page: 683 year: 2003 end-page: 695 ident: bb0140 article-title: A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins publication-title: J. Mol. Biol. – volume: 13 start-page: 831 year: 2006 end-page: 838 ident: bb0045 article-title: Dynamically driven protein allostery publication-title: Nat. Struct. Mol. Biol. – volume: 187 start-page: 328 year: 1990 end-page: 336 ident: bb0295 article-title: Characterization of indo-1 and quin-2 as spectroscopic probes for Zn publication-title: Anal. Biochem. – volume: 356 start-page: 1124 year: 2006 end-page: 1136 ident: bb0175 article-title: Individual metal ligands play distinct functional roles in the zinc sensor publication-title: J. Mol. Biol. – volume: 381 start-page: 1157 year: 2008 end-page: 1167 ident: bb0250 article-title: An allosteric circuit in caspase-1 publication-title: J. Mol. Biol. – reference: Goddard, T. D. and Kneller, D. G. Sparky 3, University of California, San Francisco. – volume: 40 start-page: 4178 year: 2012 end-page: 4192 ident: bb0120 article-title: Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR publication-title: Nucleic Acids Res. – volume: 124 start-page: 1443 year: 2002 ident: 10.1016/j.jmb.2013.01.018_bb0160 article-title: Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0119806 – volume: 269 start-page: 19826 year: 1994 ident: 10.1016/j.jmb.2013.01.018_bb0090 article-title: Identification of a putative metal binding site in a new family of metalloregulatory proteins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)32094-X – volume: 128 start-page: 1937 year: 2006 ident: 10.1016/j.jmb.2013.01.018_bb0190 article-title: Structural insights into homo- and heterotropic allosteric coupling in the zinc sensor S. aureus CzrA from covalently fused dimers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0546828 – volume: 51 start-page: 2619 year: 2012 ident: 10.1016/j.jmb.2013.01.018_bb0085 article-title: Solution structure of Mycobacterium tuberculosis NmtR in the apo state: insights into Ni(II)-mediated allostery publication-title: Biochemistry doi: 10.1021/bi3001402 – volume: 319 start-page: 685 year: 2002 ident: 10.1016/j.jmb.2013.01.018_bb0210 article-title: Elucidation of primary (a3N) and vestigial (a5) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00299-1 – volume: 19 start-page: 967 year: 2011 ident: 10.1016/j.jmb.2013.01.018_bb0055 article-title: Allostery in protein domains reflects a balance of steric and hydrophobic effects publication-title: Structure doi: 10.1016/j.str.2011.04.009 – volume: 106 start-page: 16984 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0060 article-title: Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0906510106 – volume: 187 start-page: 328 year: 1990 ident: 10.1016/j.jmb.2013.01.018_bb0295 article-title: Characterization of indo-1 and quin-2 as spectroscopic probes for Zn2+–protein interactions publication-title: Anal. Biochem. doi: 10.1016/0003-2697(90)90465-L – volume: 3 start-page: 60 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0065 article-title: CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio844 – volume: 5 start-page: 365 year: 1966 ident: 10.1016/j.jmb.2013.01.018_bb0025 article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits publication-title: Biochemistry doi: 10.1021/bi00865a047 – volume: 18 start-page: 364 year: 2011 ident: 10.1016/j.jmb.2013.01.018_bb0255 article-title: Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1990 – volume: 10 start-page: 59 year: 2003 ident: 10.1016/j.jmb.2013.01.018_bb0170 article-title: Evolutionarily conserved networks of residues mediate allosteric communication in proteins publication-title: Nat. Struct. Biol. doi: 10.1038/nsb881 – volume: 356 start-page: 1124 year: 2006 ident: 10.1016/j.jmb.2013.01.018_bb0175 article-title: Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.12.019 – volume: 20 start-page: 1607 year: 2011 ident: 10.1016/j.jmb.2013.01.018_bb0240 article-title: Extent of enthalpy–entropy compensation in protein–ligand interactions publication-title: Protein Sci. doi: 10.1002/pro.692 – ident: 10.1016/j.jmb.2013.01.018_bb0330 – volume: 49 start-page: 6617 year: 2010 ident: 10.1016/j.jmb.2013.01.018_bb0110 article-title: Elucidation of the functional metal binding profile of a Cd(II)/Pb(II) sensor CmtR(Sc) from Streptomyces coelicolor publication-title: Biochemistry doi: 10.1021/bi100490u – volume: 132 start-page: 14577 year: 2010 ident: 10.1016/j.jmb.2013.01.018_bb0245 article-title: Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105852y – volume: 29 start-page: 3107 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0365 article-title: Metal sensor proteins: nature's metalloregulated allosteric switches publication-title: Dalton Trans. doi: 10.1039/b706769k – start-page: 56 year: 1993 ident: 10.1016/j.jmb.2013.01.018_bb0340 article-title: Oscillation data reduction program – volume: 187 start-page: 4214 year: 2005 ident: 10.1016/j.jmb.2013.01.018_bb0285 article-title: Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor publication-title: J. Bacteriol. doi: 10.1128/JB.187.12.4214-4221.2005 – volume: 43 start-page: 115 year: 1999 ident: 10.1016/j.jmb.2013.01.018_bb0130 article-title: Chromosome-determined zinc-responsible operon czr in Staphylococcus aureus strain 912 publication-title: Microbiol. Immunol. doi: 10.1111/j.1348-0421.1999.tb02382.x – volume: 100 start-page: 3713 year: 2003 ident: 10.1016/j.jmb.2013.01.018_bb0145 article-title: Structural elements of metal selectivity in metal sensor proteins publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0636943100 – volume: 208 start-page: 291 year: 1991 ident: 10.1016/j.jmb.2013.01.018_bb0205 article-title: Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA publication-title: Methods Enzymol. doi: 10.1016/0076-6879(91)08018-D – volume: 282 start-page: 30181 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0225 article-title: NMR structural analysis of cadmium sensing by winged helix repressor CmtR publication-title: J. Biol. Chem. doi: 10.1074/jbc.M701119200 – volume: 1 start-page: 99 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0195 article-title: Resonance assignments of the metal sensor protein CzrA in the apo-. Zn2- and DNA-bound (42 kD) states publication-title: Biomol. NMR Assignments doi: 10.1007/s12104-007-9027-y – volume: 41 start-page: 9765 year: 2002 ident: 10.1016/j.jmb.2013.01.018_bb0135 article-title: Structural characterization of distinct α3N and α5 metal sites in the cyanobacterial zinc sensor SmtB publication-title: Biochemistry doi: 10.1021/bi0201771 – volume: 159 start-page: 129 year: 2011 ident: 10.1016/j.jmb.2013.01.018_bb0260 article-title: The role of protein conformational fluctuations in allostery, function, and evolution publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2011.05.020 – volume: 6 start-page: 277 year: 1995 ident: 10.1016/j.jmb.2013.01.018_bb0325 article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes publication-title: J. Biomol. NMR doi: 10.1007/BF00197809 – volume: 333 start-page: 683 year: 2003 ident: 10.1016/j.jmb.2013.01.018_bb0140 article-title: A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.09.007 – volume: 381 start-page: 1157 year: 2008 ident: 10.1016/j.jmb.2013.01.018_bb0250 article-title: An allosteric circuit in caspase-1 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.06.040 – volume: 100 start-page: 14445 year: 2003 ident: 10.1016/j.jmb.2013.01.018_bb0275 article-title: Allosteric determinants in guanine nucleotide-binding proteins publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1835919100 – volume: 32 start-page: 1792 year: 2004 ident: 10.1016/j.jmb.2013.01.018_bb0355 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 27 start-page: 668 year: 2010 ident: 10.1016/j.jmb.2013.01.018_bb0105 article-title: Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors publication-title: Nat. Prod. Rep. doi: 10.1039/b906682a – volume: 6 start-page: 414 year: 2010 ident: 10.1016/j.jmb.2013.01.018_bb0280 article-title: An interdomain sector mediating allostery in Hsp70 molecular chaperones publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.65 – volume: 237 start-page: 260 year: 1996 ident: 10.1016/j.jmb.2013.01.018_bb0305 article-title: Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase publication-title: Anal. Biochem. doi: 10.1006/abio.1996.0238 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.jmb.2013.01.018_bb0350 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 109 start-page: 4644 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0115 article-title: Coordination chemistry of bacterial metal transport and sensing publication-title: Chem. Rev. doi: 10.1021/cr900077w – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.jmb.2013.01.018_bb0345 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 41 start-page: 9776 year: 2002 ident: 10.1016/j.jmb.2013.01.018_bb0290 article-title: Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis publication-title: Biochemistry doi: 10.1021/bi020178t – volume: 98 start-page: 2317 year: 2010 ident: 10.1016/j.jmb.2013.01.018_bb0010 article-title: Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.01.039 – volume: 12 start-page: 88 year: 1965 ident: 10.1016/j.jmb.2013.01.018_bb0020 article-title: On the nature of allosteric transitions: a plausible model publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(65)80285-6 – volume: 282 start-page: 32298 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0100 article-title: Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent publication-title: J. Biol. Chem. doi: 10.1074/jbc.M703451200 – volume: 450 start-page: 913 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0030 article-title: A hierarchy of timescales in protein dynamics is linked to enzyme catalysis publication-title: Nature doi: 10.1038/nature06407 – volume: 17 start-page: 1042 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0270 article-title: The origin of allosteric functional modulation: multiple pre-existing pathways publication-title: Structure doi: 10.1016/j.str.2009.06.008 – volume: 131 start-page: 17860 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0150 article-title: Energetics of allosteric negative coupling in the zinc sensor S. aureus CzrA publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906131b – volume: 13 start-page: 831 year: 2006 ident: 10.1016/j.jmb.2013.01.018_bb0045 article-title: Dynamically driven protein allostery publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1132 – volume: 21 start-page: 921 year: 1993 ident: 10.1016/j.jmb.2013.01.018_bb0095 article-title: SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA–protein complex publication-title: Nucleic Acids Res. doi: 10.1093/nar/21.4.921 – volume: 138 start-page: 774 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0360 article-title: Protein sectors: evolutionary units of three-dimensional structure publication-title: Cell doi: 10.1016/j.cell.2009.07.038 – volume: 48 start-page: 3325 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0070 article-title: Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis publication-title: Biochemistry doi: 10.1021/bi900115w – volume: 134 start-page: 3367 year: 2012 ident: 10.1016/j.jmb.2013.01.018_bb0155 article-title: Simulations of allosteric motions in the zinc sensor CzrA publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208047b – volume: 39 start-page: 9130 year: 2011 ident: 10.1016/j.jmb.2013.01.018_bb0320 article-title: Sequential binding and sensing of Zn(II) by Bacillus subtilis Zur publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr625 – volume: 286 start-page: 26148 year: 2011 ident: 10.1016/j.jmb.2013.01.018_bb0125 article-title: Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.234039 – volume: 450 start-page: 964 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0040 article-title: Dynamic personalities of proteins publication-title: Nature doi: 10.1038/nature06522 – volume: 96 start-page: 10068 year: 1999 ident: 10.1016/j.jmb.2013.01.018_bb0185 article-title: Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.18.10068 – volume: 41 start-page: 585 year: 2012 ident: 10.1016/j.jmb.2013.01.018_bb0265 article-title: Structural and energetic basis of allostery publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-050511-102319 – volume: 44 start-page: 8976 year: 2005 ident: 10.1016/j.jmb.2013.01.018_bb0220 article-title: Structural and functional characterization of Mycobacterium tuberculosis CmtR, a PbII/CdII-sensing SmtB/ArsR metalloregulatory repressor publication-title: Biochemistry doi: 10.1021/bi050094v – volume: 450 start-page: 838 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0035 article-title: Intrinsic motions along an enzymatic reaction trajectory publication-title: Nature doi: 10.1038/nature06410 – volume: 31 start-page: 235 year: 2002 ident: 10.1016/j.jmb.2013.01.018_bb0050 article-title: The linkage between protein folding and functional cooperativity: two sides of the same coin? publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.31.082901.134215 – volume: 131 start-page: 18044 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0180 article-title: Unnatural amino acid substitution as a probe of the allosteric coupling pathway in a mycobacterial Cu(I) sensor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908372b – volume: 462 start-page: 368 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0230 article-title: Dynamic activation of an allosteric regulatory protein publication-title: Nature doi: 10.1038/nature08560 – year: 2012 ident: 10.1016/j.jmb.2013.01.018_bb0335 article-title: 1H, 13C, and 15N resonance assignments of NmtR, a Ni(II)/Co(II) metalloregulatory protein of Mycobacterium tuberculosis publication-title: Biomol. NMR Assignments doi: 10.1007/s12104-012-9397-7 – volume: 133 start-page: 19614 year: 2011 ident: 10.1016/j.jmb.2013.01.018_bb0080 article-title: Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2080532 – volume: 286 start-page: 295 year: 1999 ident: 10.1016/j.jmb.2013.01.018_bb0165 article-title: Evolutionarily conserved pathways of energetic connectivity in protein families publication-title: Science doi: 10.1126/science.286.5438.295 – volume: 106 start-page: 18177 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0075 article-title: Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905558106 – volume: 403 start-page: 197 year: 2010 ident: 10.1016/j.jmb.2013.01.018_bb0315 article-title: The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.08.030 – volume: 33 start-page: 420 year: 2008 ident: 10.1016/j.jmb.2013.01.018_bb0200 article-title: Allostery: an illustrated definition for the “second secret of life” publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2008.05.009 – volume: 184 start-page: 2300 year: 2002 ident: 10.1016/j.jmb.2013.01.018_bb0310 article-title: The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation publication-title: J. Bacteriol. doi: 10.1128/JB.184.8.2300-2304.2002 – volume: 119 start-page: 3443 year: 1997 ident: 10.1016/j.jmb.2013.01.018_bb0300 article-title: Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9642121 – volume: 324 start-page: 198 year: 2009 ident: 10.1016/j.jmb.2013.01.018_bb0015 article-title: Sending signals dynamically publication-title: Science doi: 10.1126/science.1169377 – volume: 448 start-page: 325 year: 2007 ident: 10.1016/j.jmb.2013.01.018_bb0235 article-title: Conformational entropy in molecular recognition by proteins publication-title: Nature doi: 10.1038/nature05959 – volume: 40 start-page: 4178 year: 2012 ident: 10.1016/j.jmb.2013.01.018_bb0120 article-title: Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1316 – volume: 380 start-page: 187 year: 2004 ident: 10.1016/j.jmb.2013.01.018_bb0005 article-title: Quantitative analysis and interpretation of allosteric behavior publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(04)80009-0 – reference: 17637984 - Dalton Trans. 2007 Aug 7;(29):3107-20 – reference: 8520220 - J Biomol NMR. 1995 Nov;6(3):277-93 – reference: 19359576 - Science. 2009 Apr 10;324(5924):198-203 – reference: 15051338 - Methods Enzymol. 2004;380:187-203 – reference: 10229265 - Microbiol Immunol. 1999;43(2):115-25 – reference: 19249860 - Biochemistry. 2009 Apr 21;48(15):3325-34 – reference: 22577828 - Annu Rev Biophys. 2012;41:585-609 – reference: 19928961 - J Am Chem Soc. 2009 Dec 23;131(50):18044-5 – reference: 12146942 - Biochemistry. 2002 Aug 6;41(31):9765-75 – reference: 12651949 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3713-8 – reference: 18075575 - Nature. 2007 Dec 13;450(7172):964-72 – reference: 19788177 - Chem Rev. 2009 Oct;109(10):4644-81 – reference: 21317893 - Nat Struct Mol Biol. 2011 Mar;18(3):364-71 – reference: 2116741 - Anal Biochem. 1990 Jun;187(2):328-36 – reference: 18590738 - J Mol Biol. 2008 Sep 19;381(5):1157-67 – reference: 21739503 - Protein Sci. 2011 Sep;20(9):1607-18 – reference: 16906160 - Nat Struct Mol Biol. 2006 Sep;13(9):831-8 – reference: 11988469 - Annu Rev Biophys Biomol Struct. 2002;31:235-56 – reference: 14568530 - J Mol Biol. 2003 Oct 31;333(4):683-95 – reference: 18706817 - Trends Biochem Sci. 2008 Sep;33(9):420-5 – reference: 22238377 - Nucleic Acids Res. 2012 May;40(9):4178-92 – reference: 12483203 - Nat Struct Biol. 2003 Jan;10(1):59-69 – reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 – reference: 22618866 - Biomol NMR Assign. 2013 Oct;7(2):145-8 – reference: 19679084 - Structure. 2009 Aug 12;17(8):1042-50 – reference: 10468563 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10068-73 – reference: 14623969 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14445-50 – reference: 21632538 - J Biol Chem. 2011 Jul 22;286(29):26148-57 – reference: 16464095 - J Am Chem Soc. 2006 Feb 15;128(6):1937-47 – reference: 12146943 - Biochemistry. 2002 Aug 6;41(31):9776-86 – reference: 16406068 - J Mol Biol. 2006 Mar 10;356(5):1124-36 – reference: 17143269 - Nat Chem Biol. 2007 Jan;3(1):60-8 – reference: 18026087 - Nature. 2007 Dec 6;450(7171):913-6 – reference: 20483341 - Biophys J. 2010 May 19;98(10):2317-26 – reference: 21742263 - Structure. 2011 Jul 13;19(7):967-75 – reference: 20873837 - J Am Chem Soc. 2010 Oct 20;132(41):14577-89 – reference: 11841314 - J Am Chem Soc. 2002 Feb 20;124(7):1443-51 – reference: 20442958 - Nat Prod Rep. 2010 May;27(5):668-80 – reference: 20586430 - Biochemistry. 2010 Aug 10;49(31):6617-26 – reference: 11914363 - J Bacteriol. 2002 Apr;184(8):2300-4 – reference: 22007899 - J Am Chem Soc. 2012 Feb 22;134(7):3367-76 – reference: 17599915 - J Biol Chem. 2007 Oct 12;282(41):30181-8 – reference: 22394357 - Biochemistry. 2012 Mar 27;51(12):2619-29 – reference: 14343300 - J Mol Biol. 1965 May;12:88-118 – reference: 5938952 - Biochemistry. 1966 Jan;5(1):365-85 – reference: 8051064 - J Biol Chem. 1994 Aug 5;269(31):19826-9 – reference: 19995076 - J Am Chem Soc. 2009 Dec 16;131(49):17860-70 – reference: 17726022 - J Biol Chem. 2007 Nov 2;282(44):32298-310 – reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 – reference: 8451191 - Nucleic Acids Res. 1993 Feb 25;21(4):921-5 – reference: 19924217 - Nature. 2009 Nov 19;462(7271):368-72 – reference: 20804771 - J Mol Biol. 2010 Oct 22;403(2):197-216 – reference: 19805185 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16984-9 – reference: 17637663 - Nature. 2007 Jul 19;448(7151):325-9 – reference: 12054863 - J Mol Biol. 2002 Jun 7;319(3):685-701 – reference: 19636838 - Biomol NMR Assign. 2007 Jul;1(1):99-101 – reference: 22085181 - J Am Chem Soc. 2011 Dec 14;133(49):19614-7 – reference: 8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73 – reference: 15966722 - Biochemistry. 2005 Jun 28;44(25):8976-88 – reference: 18026086 - Nature. 2007 Dec 6;450(7171):838-44 – reference: 20865007 - Mol Syst Biol. 2010 Sep 21;6:414 – reference: 1779839 - Methods Enzymol. 1991;208:291-343 – reference: 21821657 - Nucleic Acids Res. 2011 Nov;39(21):9130-8 – reference: 10514373 - Science. 1999 Oct 8;286(5438):295-9 – reference: 19703402 - Cell. 2009 Aug 21;138(4):774-86 – reference: 19822742 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18177-82 – reference: 15937183 - J Bacteriol. 2005 Jun;187(12):4214-21 – reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 – reference: 21684672 - Biophys Chem. 2011 Nov;159(1):129-41 |
SSID | ssj0005348 |
Score | 2.2671912 |
Snippet | The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor... The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1143 |
SubjectTerms | Allosteric Regulation allostery Amino Acid Substitution ArsR Bacterial Proteins Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding Sites Binding Sites - genetics Binding, Competitive chemistry Crystallography, X-Ray DNA DNA-Binding Proteins DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism energy evolution genetics Hydrogen Bonding Kinetics metabolism metal homeostasis metal ions Models, Molecular mutants Mutation Protein Binding Protein Multimerization Protein Structure, Secondary Protein Structure, Tertiary proteins Repressor Proteins Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism Staphylococcus aureus Staphylococcus aureus - genetics Staphylococcus aureus - metabolism statistical coupling analysis Thermodynamics transcription (genetics) Transcription, Genetic zinc Zinc - chemistry Zinc - metabolism zinc sensor |
Title | Allosteric Inhibition of a Zinc-Sensing Transcriptional Repressor: Insights into the Arsenic Repressor (ArsR) Family |
URI | https://dx.doi.org/10.1016/j.jmb.2013.01.018 https://www.ncbi.nlm.nih.gov/pubmed/23353829 https://www.proquest.com/docview/1317854939 https://www.proquest.com/docview/1672083859 https://pubmed.ncbi.nlm.nih.gov/PMC3602352 |
Volume | 425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILgvLo8qiMxAGQQje2EzvcViuqLYge-pBWXCzbcdpUi1N10wMXfjszTrLqomoPSDkl4zw8k5nPycw3hLzPM8t8IXki09ImIlcuUcamSckLg4xS3MQq1x9H-exMfJtn8y0yHWphMK2y9_2dT4_eut-z38_m_lVdY40vfr3gCICRZWWOFexCopV__nMrzYMLNTCGo_TwZzPmeF3-spjdxSNzJ_b9uDs23atMcxcC_TeR8lZkOnhCHveQkk66u35KtnzYIQ-6JpO_d8jD6dDT7RlpJ4sFVnWA86OH4aK2MWGLNhU19GcdXHKC-ezhnMYQNjgUOPlxlzDbXH-BcUtc0C9pHdqGAn6EKy99gDOuhOgH2HX8kXZdNZ6T04Ovp9NZ0vddSJzIszYpisqmRspUmAIAglJe8TSvpDHI3V6YEmK64aWrKsXKsZN5Joz1zDGrDKtK_oJshyb4XUKtcEVuYKEqUy8yL413gDitAhTEbSXdiIyHCdeu5yTH1hgLPSSfXWrQkUYd6XEKmxqRT6shVx0hxyZhMWhRr1mVhoCxadguaFybc_Cz-uyE4VchxL4ApUfk3WAGGnSHf1dM8M3NUqeAxBSstnmxQSaXMJ9cZSDzsjOd1UMwziH4MDgi14xqJYBE4OtHQn0RCcF5jqxF7NX_Pe1r8ojFHh9IYPmGbLfXN_4tIK3W7sVXaY_cnxx-nx39BQcBJrI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2TmhcJhiwdXwZiQMgRWvsJHa4VRVTy7Yetk6quFi242yZijOt2YH_nvfyUSiaekDKKXnOh5_z3s_Jz79HyMckNsylggcizEwQJdIGUpswyHiqUVGK63qV6_k0GV9F3-fxfIuMurUwSKtsY38T0-to3e45bnvz-K4ocI0vfr3gCIBRZWW-TXZQnSrukZ3h5HQ8_cP04JHsRMOxQfdzs6Z53f40SPDitXgnlv54PD1t57p8DIT-y6X8KzmdPCN7Laqkw-bGn5Mt5_fJk6bO5K99sjvqyrq9INVwscCFHRD_6MTfFKbmbNEyp5r-KLwNLpHS7q9pncW6mAInv2g4s-X9V2i3xDn9kha-KilASLjy0nk448qIfoJdF59pU1jjJZmdfJuNxkFbeiGwURJXQZrmJtRChJFOASNI6SQPk1xojfLtqc4grWue2TyXLBtYkcSRNo5ZZqRmecZfkZ4vvTsk1EQ2TTTMVUXootgJ7SyATiMBCHGTC9sng67DlW1lybE6xkJ1_LNbBT5S6CM1CGGTffJl1eSu0eTYZBx1XlRrA0tBztjU7BA8rvQ1hFp1dcnwwxDCX0DTffKhGwYKfIc_WLR35cNShQDGJEy4ebrBJhHQn1zGYHPQDJ3VQzDOIf8wOCLWBtXKALXA14_44qbWBOcJChexo_972vdkdzw7P1Nnk-npa_KU1SU_UM_yDelV9w_uLQCvyrxrX6zfC2EpYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allosteric+Inhibition+of+a+Zinc-Sensing+Transcriptional+Repressor%3A+Insights+into+the+Arsenic+Repressor+%28ArsR%29+Family&rft.jtitle=Journal+of+molecular+biology&rft.au=Campanello%2C+Gregory+C&rft.au=Ma%2C+Zhen&rft.au=Grossoehme%2C+Nicholas+E&rft.au=Guerra%2C+Alfredo+J&rft.date=2013-04-12&rft.pub=Elsevier+Ltd&rft.issn=0022-2836&rft.volume=425&rft.issue=7&rft.spage=1143&rft.epage=1157&rft_id=info:doi/10.1016%2Fj.jmb.2013.01.018&rft.externalDocID=US201500045916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |