Allosteric Inhibition of a Zinc-Sensing Transcriptional Repressor: Insights into the Arsenic Repressor (ArsR) Family

The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of op...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 425; no. 7; pp. 1143 - 1157
Main Authors Campanello, Gregory C., Ma, Zhen, Grossoehme, Nicholas E., Guerra, Alfredo J., Ward, Brian P., DiMarchi, Richard D., Ye, Yuzhen, Dann, Charles E., Giedroc, David P.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 12.04.2013
Subjects
Online AccessGet full text
ISSN0022-2836
1089-8638
1089-8638
DOI10.1016/j.jmb.2013.01.018

Cover

Loading…
Abstract The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHε2•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression. [Display omitted] ► The molecular basis of allosteric regulation or linkage remains a subject of intense interest. ► A zinc-regulated repressor, CzrA, is used to investigate the underpinnings of allostery. ► Selective excision of a quaternary structural hydrogen bond nearly blocks linkage in CzrA. ► Introduction of a “cavity” just below this hydrogen bond also compromises linkage in the absence of a global structural change. ► A statistical coupling analysis reveals a sector that links the DNA binding site and the zinc-sensing site through an allosteric “hot-spot” defined by cavity residues.
AbstractList The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHε2•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression. [Display omitted] ► The molecular basis of allosteric regulation or linkage remains a subject of intense interest. ► A zinc-regulated repressor, CzrA, is used to investigate the underpinnings of allostery. ► Selective excision of a quaternary structural hydrogen bond nearly blocks linkage in CzrA. ► Introduction of a “cavity” just below this hydrogen bond also compromises linkage in the absence of a global structural change. ► A statistical coupling analysis reveals a sector that links the DNA binding site and the zinc-sensing site through an allosteric “hot-spot” defined by cavity residues.
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal sensing proteins, and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97’ NHε2•••O=C-His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, Δ G c . A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a dramatic loss of regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild-type. The energetics of Zn(II) binding and heterotropic coupling free energies (Δ H c , − T Δ S c ) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II) sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins results from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHᵋ²•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97′ NHε2•••O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A “cavity” introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, −T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
Author Dann, Charles E.
DiMarchi, Richard D.
Giedroc, David P.
Ward, Brian P.
Ma, Zhen
Grossoehme, Nicholas E.
Guerra, Alfredo J.
Campanello, Gregory C.
Ye, Yuzhen
AuthorAffiliation 2 Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA
3 School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
1 Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
4 Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
AuthorAffiliation_xml – name: 1 Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
– name: 2 Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA
– name: 3 School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
– name: 4 Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
Author_xml – sequence: 1
  givenname: Gregory C.
  surname: Campanello
  fullname: Campanello, Gregory C.
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA
– sequence: 2
  givenname: Zhen
  surname: Ma
  fullname: Ma, Zhen
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA
– sequence: 3
  givenname: Nicholas E.
  surname: Grossoehme
  fullname: Grossoehme, Nicholas E.
  organization: Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA
– sequence: 4
  givenname: Alfredo J.
  surname: Guerra
  fullname: Guerra, Alfredo J.
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA
– sequence: 5
  givenname: Brian P.
  surname: Ward
  fullname: Ward, Brian P.
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA
– sequence: 6
  givenname: Richard D.
  surname: DiMarchi
  fullname: DiMarchi, Richard D.
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA
– sequence: 7
  givenname: Yuzhen
  surname: Ye
  fullname: Ye, Yuzhen
  organization: School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
– sequence: 8
  givenname: Charles E.
  surname: Dann
  fullname: Dann, Charles E.
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA
– sequence: 9
  givenname: David P.
  surname: Giedroc
  fullname: Giedroc, David P.
  email: giedroc@indiana.edu
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405–7102, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23353829$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9rFDEUxYNU7Lb6AXzRPNaHWfNnJpMoCEuxWigI7friS8hkMrt3mU22SbbQb2-GbYv6UOFCIPd3DoecnKAjH7xD6C0lc0qo-LiZb7bdnBHK54SWkS_QjBKpKim4PEIzQhirmOTiGJ2ktCGENLyWr9Ax47zhkqkZyotxDCm7CBZf-jV0kCF4HAZs8C_wtrpxPoFf4WU0PtkIu2lvRnztdtGlFOKnokuwWueEweeA89rhRUzOF8cnCJ-Vq-sP-MJsYbx_jV4OZkzuzcN5ipYXX5fn36urH98uzxdXla1Fkyulho6atqW1UZIRKZ3kVAytMS2hSpleCGp4b4dBsp7YVjS16RyzrJOGDT0_RV8Otrt9t3W9dT5HM-pdhK2J9zoY0H9vPKz1KtxpLgjjDSsGZw8GMdzuXcp6C8m6cTTehX3SVLQlFpeN-j_KaSubWvEJffdnrKc8j6UUoD0ANoaUohu0hWymdy8pYdSU6Kl-vdGlfj3VrwktI4uS_qN8NH9O8_6gGUzQZhUh6Z83BWjKd6kbRUUhPh8IV7q6Axd1suC8dT1EZ7PuAzzj_xt7kdKJ
CitedBy_id crossref_primary_10_1016_j_csbj_2022_12_015
crossref_primary_10_1074_jbc_REV119_011444
crossref_primary_10_1016_j_cbpa_2013_12_021
crossref_primary_10_1107_S2059798316009153
crossref_primary_10_1002_ange_201506349
crossref_primary_10_1042_EBC20160076
crossref_primary_10_1073_pnas_1708563115
crossref_primary_10_1021_jacs_6b08458
crossref_primary_10_1002_pro_3449
crossref_primary_10_1016_j_chom_2016_05_007
crossref_primary_10_1038_s41589_018_0211_4
crossref_primary_10_1002_pro_2612
crossref_primary_10_1021_acs_biochem_5b00085
crossref_primary_10_1021_bi401132w
crossref_primary_10_1007_s10534_017_0020_3
crossref_primary_10_1016_j_bbagen_2015_08_018
crossref_primary_10_1016_j_jinorgbio_2019_110882
crossref_primary_10_1021_acs_inorgchem_9b01096
crossref_primary_10_7554_eLife_37268
crossref_primary_10_1039_C4OB00995A
crossref_primary_10_1021_acs_biochem_3c00679
crossref_primary_10_1246_cl_130965
crossref_primary_10_1016_j_jbc_2024_105672
crossref_primary_10_1021_jacs_8b05812
crossref_primary_10_1002_anie_201506349
crossref_primary_10_1021_jacs_8b02129
crossref_primary_10_1007_s10858_013_9729_7
crossref_primary_10_1016_j_tim_2020_08_001
crossref_primary_10_1021_acs_chemrev_4c00264
crossref_primary_10_1021_ar500182d
crossref_primary_10_1007_s10295_017_1983_3
crossref_primary_10_1016_j_jbc_2022_102785
crossref_primary_10_1073_pnas_1620665114
Cites_doi 10.1021/ja0119806
10.1016/S0021-9258(17)32094-X
10.1021/ja0546828
10.1021/bi3001402
10.1016/S0022-2836(02)00299-1
10.1016/j.str.2011.04.009
10.1073/pnas.0906510106
10.1016/0003-2697(90)90465-L
10.1038/nchembio844
10.1021/bi00865a047
10.1038/nsmb.1990
10.1038/nsb881
10.1016/j.jmb.2005.12.019
10.1002/pro.692
10.1021/bi100490u
10.1021/ja105852y
10.1039/b706769k
10.1128/JB.187.12.4214-4221.2005
10.1111/j.1348-0421.1999.tb02382.x
10.1073/pnas.0636943100
10.1016/0076-6879(91)08018-D
10.1074/jbc.M701119200
10.1007/s12104-007-9027-y
10.1021/bi0201771
10.1016/j.bpc.2011.05.020
10.1007/BF00197809
10.1016/j.jmb.2003.09.007
10.1016/j.jmb.2008.06.040
10.1073/pnas.1835919100
10.1093/nar/gkh340
10.1039/b906682a
10.1038/msb.2010.65
10.1006/abio.1996.0238
10.1107/S0907444904019158
10.1021/cr900077w
10.1107/S0907444909052925
10.1021/bi020178t
10.1016/j.bpj.2010.01.039
10.1016/S0022-2836(65)80285-6
10.1074/jbc.M703451200
10.1038/nature06407
10.1016/j.str.2009.06.008
10.1021/ja906131b
10.1038/nsmb1132
10.1093/nar/21.4.921
10.1016/j.cell.2009.07.038
10.1021/bi900115w
10.1021/ja208047b
10.1093/nar/gkr625
10.1074/jbc.M111.234039
10.1038/nature06522
10.1073/pnas.96.18.10068
10.1146/annurev-biophys-050511-102319
10.1021/bi050094v
10.1038/nature06410
10.1146/annurev.biophys.31.082901.134215
10.1021/ja908372b
10.1038/nature08560
10.1007/s12104-012-9397-7
10.1021/ja2080532
10.1126/science.286.5438.295
10.1073/pnas.0905558106
10.1016/j.jmb.2010.08.030
10.1016/j.tibs.2008.05.009
10.1128/JB.184.8.2300-2304.2002
10.1021/ja9642121
10.1126/science.1169377
10.1038/nature05959
10.1093/nar/gkr1316
10.1016/S0076-6879(04)80009-0
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright © 2013 Elsevier Ltd. All rights reserved.
2012 Elsevier Ltd. All rights reserved. 2012
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
– notice: 2012 Elsevier Ltd. All rights reserved. 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jmb.2013.01.018
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 1157
ExternalDocumentID PMC3602352
23353829
10_1016_j_jmb_2013_01_018
US201500045916
S002228361300034X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM042569
– fundername: NIGMS NIH HHS
  grantid: R01 GM094472
– fundername: NIGMS NIH HHS
  grantid: GM042569
– fundername: NIGMS NIH HHS
  grantid: GM094472
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM042569 || GM
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HLW
HMG
IH2
IHE
J1W
K-O
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSI
SSU
SSZ
T5K
TWZ
VQA
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
29L
3O-
AAHBH
AAQXK
AATTM
AAXKI
ABDPE
ABEFU
ABWVN
ACKIV
ACRPL
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGHFR
AGRDE
AI.
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
CAG
COF
FBQ
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
MVM
NEJ
R2-
SBG
SEW
SIN
SSH
UQL
VH1
WUQ
X7M
XJT
XOL
Y6R
YYP
ZGI
ZKB
~KM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c465t-99fb1a7714a982088e8316f7aa70199ad661a3dcff82d0c7654abe2c2b8a2fd3
IEDL.DBID .~1
ISSN 0022-2836
1089-8638
IngestDate Thu Aug 21 17:56:09 EDT 2025
Fri Jul 11 02:51:45 EDT 2025
Mon Jul 21 10:22:48 EDT 2025
Mon Jul 21 06:03:25 EDT 2025
Tue Jul 01 03:50:07 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Thu Apr 03 09:44:50 EDT 2025
Fri Feb 23 02:26:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords SCA
TROSY
statistical coupling analysis
zinc sensor
ITC
metal homeostasis
HSQC
TCEP
allostery
ArsR
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-99fb1a7714a982088e8316f7aa70199ad661a3dcff82d0c7654abe2c2b8a2fd3
Notes http://dx.doi.org/10.1016/j.jmb.2013.01.018
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23353829
PQID 1317854939
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3602352
proquest_miscellaneous_1672083859
proquest_miscellaneous_1317854939
pubmed_primary_23353829
crossref_citationtrail_10_1016_j_jmb_2013_01_018
crossref_primary_10_1016_j_jmb_2013_01_018
fao_agris_US201500045916
elsevier_sciencedirect_doi_10_1016_j_jmb_2013_01_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-12
PublicationDateYYYYMMDD 2013-04-12
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-12
  day: 12
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Ramesh, Ma, Ward, Zhang, George (bb0065) 2007; 3
Goddard, T. D. and Kneller, D. G. Sparky 3, University of California, San Francisco.
Lee, Dorwart, Hazlett, Deka, Norgard, Radolf (bb0310) 2002; 184
Frederick, Marlow, Valentine, Wand (bb0235) 2007; 448
Toncrova, McLeish (bb0010) 2010; 98
Wrabl, Gu, Liu, Schrank, Whitten, Hilser (bb0260) 2011; 159
Guimaraes, Barbosa, Soprano, Campos, de Souza, Tonoli (bb0125) 2011; 286
Smock, Rivoire, Russ, Swain, Leibler, Ranganathan (bb0280) 2010; 6
Lockless, Ranganathan (bb0165) 1999; 286
Ye, Kandegedara, Martin, Rosen (bb0285) 2005; 187
England (bb0055) 2011; 19
Lee, Arunkumar, Chen, Giedroc (bb0190) 2006; 128
Shen, Lupardus, Gersch, Puri, Albrow, Garcia (bb0255) 2011; 18
VanZile, Chen, Giedroc (bb0290) 2002; 41
Guerra, Dann, Giedroc (bb0080) 2011; 133
Emsley, Cowtan (bb0350) 2004; 60
Luque, Leavitt, Freire (bb0050) 2002; 31
Diehl, Engstrom, Delaine, Hakansson, Genheden, Modig (bb0245) 2010; 132
Schrank, Bolen, Hilser (bb0060) 2009; 106
Fenton (bb0200) 2008; 33
Reyes-Caballero, Guerra, Jacobsen, Kazmierczak, Cowart, Koppolu (bb0315) 2010; 403
Suel, Lockless, Wall, Ranganathan (bb0170) 2003; 10
Hackeng, Griffin, Dawson (bb0185) 1999; 96
Lee, Giedroc (bb0335) 2012
Grossoehme, Giedroc (bb0150) 2009; 131
Ma, Gabriel, Helmann (bb0320) 2011; 39
Morby, Turner, Huckle, Robinson (bb0095) 1993; 21
Monod, Wyman, Changeux (bb0020) 1965; 12
Walkup, Imperiali (bb0300) 1997; 119
del Sol, Tsai, Ma, Nussinov (bb0270) 2009; 17
Koshland, Nemethy, Filmer (bb0025) 1966; 5
Delaglio, Grzesiek, Vuister, Zhu, Pfeifer, Bax (bb0325) 1995; 6
Lee, Chakravorty, Chang, Reyes-Caballero, Ye, Merz (bb0085) 2012; 51
Campbell, Chapman, Waldron, Tottey, Kendall, Cavallaro (bb0100) 2007; 282
Arunkumar, Pennella, Kong, Giedroc (bb0195) 2007; 1
Hilser, Wrabl, Motlagh (bb0265) 2012; 41
Ma, Jacobsen, Giedroc (bb0115) 2009; 109
Henzler-Wildman, Lei, Thai, Kerns, Karplus, Kern (bb0030) 2007; 450
Arunkumar, Campanello, Giedroc (bb0075) 2009; 106
Popovych, Sun, Ebright, Kalodimos (bb0045) 2006; 13
Tzeng, Kalodimos (bb0230) 2009; 462
VanZile, Chen, Giedroc (bb0135) 2002; 41
Edgar (bb0355) 2004; 32
Olsson, Ladbury, Pitt, Williams (bb0240) 2011; 20
Chakravorty, Wang, Lee, Giedroc, Merz (bb0155) 2012; 134
Otwinowski (bb0340) 1993
Mulder, Hon, Mittermaier, Dahlquist, Kay (bb0160) 2002; 124
Hatley, Lockless, Gibson, Gilman, Ranganathan (bb0275) 2003; 100
Giedroc, Arunkumar (bb0365) 2007; 29
Pennella, Arunkumar, Giedroc (bb0175) 2006; 356
Ma, Cowart, Ward, Arnold, DiMarchi, Zhang (bb0180) 2009; 131
Osman, Cavet (bb0105) 2010; 27
Shi, Wu, Rosen (bb0090) 1994; 269
Record, Ha, Fisher (bb0205) 1991; 208
Henzler-Wildman, Kern (bb0040) 2007; 450
Reinhart (bb0005) 2004; 380
Palm, Khanh Chi, Waack, Gronau, Becher, Albrecht (bb0120) 2012; 40
Adams, Afonine, Bunkoczi, Chen, Davis, Echols (bb0345) 2010; 66
Wang, Hemmingsen, Giedroc (bb0220) 2005; 44
Pennella, Shokes, Cosper, Scott, Giedroc (bb0145) 2003; 100
Kuzmic (bb0305) 1996; 237
Wang, Kendall, Cavet, Giedroc (bb0110) 2010; 49
Henzler-Wildman, Thai, Lei, Ott, Wolf-Watz, Fenn (bb0035) 2007; 450
Jefferson, Hunt, Ginsburg (bb0295) 1990; 187
Banci, Bertini, Cantini, Ciofi-Baffoni, Cavet, Dennison (bb0225) 2007; 282
Ma, Cowart, Scott, Giedroc (bb0070) 2009; 48
Datta, Scheer, Romanowski, Wells (bb0250) 2008; 381
Halabi, Rivoire, Leibler, Ranganathan (bb0360) 2009; 138
Eicken, Pennella, Chen, Koshlap, VanZile, Sacchettini (bb0140) 2003; 333
Busenlehner, Weng, Penner-Hahn, Giedroc (bb0210) 2002; 319
Smock, Gierasch (bb0015) 2009; 324
Kuroda, Hayashi, Ohta (bb0130) 1999; 43
Pennella (10.1016/j.jmb.2013.01.018_bb0145) 2003; 100
Datta (10.1016/j.jmb.2013.01.018_bb0250) 2008; 381
Lockless (10.1016/j.jmb.2013.01.018_bb0165) 1999; 286
Liu (10.1016/j.jmb.2013.01.018_bb0065) 2007; 3
Tzeng (10.1016/j.jmb.2013.01.018_bb0230) 2009; 462
Wrabl (10.1016/j.jmb.2013.01.018_bb0260) 2011; 159
Kuzmic (10.1016/j.jmb.2013.01.018_bb0305) 1996; 237
Lee (10.1016/j.jmb.2013.01.018_bb0335) 2012
Lee (10.1016/j.jmb.2013.01.018_bb0190) 2006; 128
Wang (10.1016/j.jmb.2013.01.018_bb0220) 2005; 44
Popovych (10.1016/j.jmb.2013.01.018_bb0045) 2006; 13
Arunkumar (10.1016/j.jmb.2013.01.018_bb0195) 2007; 1
VanZile (10.1016/j.jmb.2013.01.018_bb0290) 2002; 41
Hatley (10.1016/j.jmb.2013.01.018_bb0275) 2003; 100
Walkup (10.1016/j.jmb.2013.01.018_bb0300) 1997; 119
Mulder (10.1016/j.jmb.2013.01.018_bb0160) 2002; 124
Ma (10.1016/j.jmb.2013.01.018_bb0070) 2009; 48
Lee (10.1016/j.jmb.2013.01.018_bb0085) 2012; 51
Smock (10.1016/j.jmb.2013.01.018_bb0015) 2009; 324
Halabi (10.1016/j.jmb.2013.01.018_bb0360) 2009; 138
Guerra (10.1016/j.jmb.2013.01.018_bb0080) 2011; 133
Eicken (10.1016/j.jmb.2013.01.018_bb0140) 2003; 333
Ma (10.1016/j.jmb.2013.01.018_bb0180) 2009; 131
Reyes-Caballero (10.1016/j.jmb.2013.01.018_bb0315) 2010; 403
Frederick (10.1016/j.jmb.2013.01.018_bb0235) 2007; 448
Henzler-Wildman (10.1016/j.jmb.2013.01.018_bb0030) 2007; 450
Guimaraes (10.1016/j.jmb.2013.01.018_bb0125) 2011; 286
Pennella (10.1016/j.jmb.2013.01.018_bb0175) 2006; 356
Henzler-Wildman (10.1016/j.jmb.2013.01.018_bb0040) 2007; 450
Edgar (10.1016/j.jmb.2013.01.018_bb0355) 2004; 32
Wang (10.1016/j.jmb.2013.01.018_bb0110) 2010; 49
10.1016/j.jmb.2013.01.018_bb0330
Adams (10.1016/j.jmb.2013.01.018_bb0345) 2010; 66
Schrank (10.1016/j.jmb.2013.01.018_bb0060) 2009; 106
Kuroda (10.1016/j.jmb.2013.01.018_bb0130) 1999; 43
Luque (10.1016/j.jmb.2013.01.018_bb0050) 2002; 31
Campbell (10.1016/j.jmb.2013.01.018_bb0100) 2007; 282
Arunkumar (10.1016/j.jmb.2013.01.018_bb0075) 2009; 106
Delaglio (10.1016/j.jmb.2013.01.018_bb0325) 1995; 6
Suel (10.1016/j.jmb.2013.01.018_bb0170) 2003; 10
Olsson (10.1016/j.jmb.2013.01.018_bb0240) 2011; 20
Diehl (10.1016/j.jmb.2013.01.018_bb0245) 2010; 132
Koshland (10.1016/j.jmb.2013.01.018_bb0025) 1966; 5
del Sol (10.1016/j.jmb.2013.01.018_bb0270) 2009; 17
Smock (10.1016/j.jmb.2013.01.018_bb0280) 2010; 6
Monod (10.1016/j.jmb.2013.01.018_bb0020) 1965; 12
Ma (10.1016/j.jmb.2013.01.018_bb0115) 2009; 109
Jefferson (10.1016/j.jmb.2013.01.018_bb0295) 1990; 187
Giedroc (10.1016/j.jmb.2013.01.018_bb0365) 2007; 29
Lee (10.1016/j.jmb.2013.01.018_bb0310) 2002; 184
Reinhart (10.1016/j.jmb.2013.01.018_bb0005) 2004; 380
Hilser (10.1016/j.jmb.2013.01.018_bb0265) 2012; 41
Grossoehme (10.1016/j.jmb.2013.01.018_bb0150) 2009; 131
Palm (10.1016/j.jmb.2013.01.018_bb0120) 2012; 40
Toncrova (10.1016/j.jmb.2013.01.018_bb0010) 2010; 98
Banci (10.1016/j.jmb.2013.01.018_bb0225) 2007; 282
Shen (10.1016/j.jmb.2013.01.018_bb0255) 2011; 18
Emsley (10.1016/j.jmb.2013.01.018_bb0350) 2004; 60
Osman (10.1016/j.jmb.2013.01.018_bb0105) 2010; 27
Ye (10.1016/j.jmb.2013.01.018_bb0285) 2005; 187
Otwinowski (10.1016/j.jmb.2013.01.018_bb0340) 1993
Hackeng (10.1016/j.jmb.2013.01.018_bb0185) 1999; 96
Ma (10.1016/j.jmb.2013.01.018_bb0320) 2011; 39
Fenton (10.1016/j.jmb.2013.01.018_bb0200) 2008; 33
Busenlehner (10.1016/j.jmb.2013.01.018_bb0210) 2002; 319
Record (10.1016/j.jmb.2013.01.018_bb0205) 1991; 208
Chakravorty (10.1016/j.jmb.2013.01.018_bb0155) 2012; 134
VanZile (10.1016/j.jmb.2013.01.018_bb0135) 2002; 41
Henzler-Wildman (10.1016/j.jmb.2013.01.018_bb0035) 2007; 450
Shi (10.1016/j.jmb.2013.01.018_bb0090) 1994; 269
Morby (10.1016/j.jmb.2013.01.018_bb0095) 1993; 21
England (10.1016/j.jmb.2013.01.018_bb0055) 2011; 19
19928961 - J Am Chem Soc. 2009 Dec 23;131(50):18044-5
20873837 - J Am Chem Soc. 2010 Oct 20;132(41):14577-89
21317893 - Nat Struct Mol Biol. 2011 Mar;18(3):364-71
22618866 - Biomol NMR Assign. 2013 Oct;7(2):145-8
12146943 - Biochemistry. 2002 Aug 6;41(31):9776-86
17637663 - Nature. 2007 Jul 19;448(7151):325-9
22238377 - Nucleic Acids Res. 2012 May;40(9):4178-92
14343300 - J Mol Biol. 1965 May;12:88-118
19636838 - Biomol NMR Assign. 2007 Jul;1(1):99-101
15937183 - J Bacteriol. 2005 Jun;187(12):4214-21
16906160 - Nat Struct Mol Biol. 2006 Sep;13(9):831-8
17637984 - Dalton Trans. 2007 Aug 7;(29):3107-20
12651949 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3713-8
17726022 - J Biol Chem. 2007 Nov 2;282(44):32298-310
12054863 - J Mol Biol. 2002 Jun 7;319(3):685-701
10468563 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10068-73
17143269 - Nat Chem Biol. 2007 Jan;3(1):60-8
10229265 - Microbiol Immunol. 1999;43(2):115-25
19822742 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18177-82
15051338 - Methods Enzymol. 2004;380:187-203
18026086 - Nature. 2007 Dec 6;450(7171):838-44
19359576 - Science. 2009 Apr 10;324(5924):198-203
21739503 - Protein Sci. 2011 Sep;20(9):1607-18
16464095 - J Am Chem Soc. 2006 Feb 15;128(6):1937-47
20865007 - Mol Syst Biol. 2010 Sep 21;6:414
21632538 - J Biol Chem. 2011 Jul 22;286(29):26148-57
19679084 - Structure. 2009 Aug 12;17(8):1042-50
19788177 - Chem Rev. 2009 Oct;109(10):4644-81
11914363 - J Bacteriol. 2002 Apr;184(8):2300-4
10514373 - Science. 1999 Oct 8;286(5438):295-9
19924217 - Nature. 2009 Nov 19;462(7271):368-72
8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73
20804771 - J Mol Biol. 2010 Oct 22;403(2):197-216
8520220 - J Biomol NMR. 1995 Nov;6(3):277-93
17599915 - J Biol Chem. 2007 Oct 12;282(41):30181-8
18706817 - Trends Biochem Sci. 2008 Sep;33(9):420-5
19995076 - J Am Chem Soc. 2009 Dec 16;131(49):17860-70
18026087 - Nature. 2007 Dec 6;450(7171):913-6
2116741 - Anal Biochem. 1990 Jun;187(2):328-36
15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
22394357 - Biochemistry. 2012 Mar 27;51(12):2619-29
11988469 - Annu Rev Biophys Biomol Struct. 2002;31:235-56
22007899 - J Am Chem Soc. 2012 Feb 22;134(7):3367-76
16406068 - J Mol Biol. 2006 Mar 10;356(5):1124-36
14568530 - J Mol Biol. 2003 Oct 31;333(4):683-95
21742263 - Structure. 2011 Jul 13;19(7):967-75
11841314 - J Am Chem Soc. 2002 Feb 20;124(7):1443-51
8451191 - Nucleic Acids Res. 1993 Feb 25;21(4):921-5
12483203 - Nat Struct Biol. 2003 Jan;10(1):59-69
15034147 - Nucleic Acids Res. 2004;32(5):1792-7
20586430 - Biochemistry. 2010 Aug 10;49(31):6617-26
19249860 - Biochemistry. 2009 Apr 21;48(15):3325-34
14623969 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14445-50
19703402 - Cell. 2009 Aug 21;138(4):774-86
20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
15966722 - Biochemistry. 2005 Jun 28;44(25):8976-88
8051064 - J Biol Chem. 1994 Aug 5;269(31):19826-9
18590738 - J Mol Biol. 2008 Sep 19;381(5):1157-67
5938952 - Biochemistry. 1966 Jan;5(1):365-85
1779839 - Methods Enzymol. 1991;208:291-343
21821657 - Nucleic Acids Res. 2011 Nov;39(21):9130-8
22577828 - Annu Rev Biophys. 2012;41:585-609
19805185 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16984-9
21684672 - Biophys Chem. 2011 Nov;159(1):129-41
18075575 - Nature. 2007 Dec 13;450(7172):964-72
20483341 - Biophys J. 2010 May 19;98(10):2317-26
22085181 - J Am Chem Soc. 2011 Dec 14;133(49):19614-7
12146942 - Biochemistry. 2002 Aug 6;41(31):9765-75
20442958 - Nat Prod Rep. 2010 May;27(5):668-80
References_xml – volume: 51
  start-page: 2619
  year: 2012
  end-page: 2629
  ident: bb0085
  article-title: Solution structure of
  publication-title: Biochemistry
– volume: 48
  start-page: 3325
  year: 2009
  end-page: 3334
  ident: bb0070
  article-title: Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from
  publication-title: Biochemistry
– volume: 324
  start-page: 198
  year: 2009
  end-page: 203
  ident: bb0015
  article-title: Sending signals dynamically
  publication-title: Science
– volume: 39
  start-page: 9130
  year: 2011
  end-page: 9138
  ident: bb0320
  article-title: Sequential binding and sensing of Zn(II) by
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 59
  year: 2003
  end-page: 69
  ident: bb0170
  article-title: Evolutionarily conserved networks of residues mediate allosteric communication in proteins
  publication-title: Nat. Struct. Biol.
– volume: 5
  start-page: 365
  year: 1966
  end-page: 385
  ident: bb0025
  article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits
  publication-title: Biochemistry
– volume: 128
  start-page: 1937
  year: 2006
  end-page: 1947
  ident: bb0190
  article-title: Structural insights into homo- and heterotropic allosteric coupling in the zinc sensor
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 3367
  year: 2012
  end-page: 3376
  ident: bb0155
  article-title: Simulations of allosteric motions in the zinc sensor CzrA
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 99
  year: 2007
  end-page: 101
  ident: bb0195
  article-title: Resonance assignments of the metal sensor protein CzrA in the apo-. Zn2- and DNA-bound (42 kD) states
  publication-title: Biomol. NMR Assignments
– volume: 100
  start-page: 14445
  year: 2003
  end-page: 14450
  ident: bb0275
  article-title: Allosteric determinants in guanine nucleotide-binding proteins
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 19
  start-page: 967
  year: 2011
  end-page: 975
  ident: bb0055
  article-title: Allostery in protein domains reflects a balance of steric and hydrophobic effects
  publication-title: Structure
– volume: 100
  start-page: 3713
  year: 2003
  end-page: 3718
  ident: bb0145
  article-title: Structural elements of metal selectivity in metal sensor proteins
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 17
  start-page: 1042
  year: 2009
  end-page: 1050
  ident: bb0270
  article-title: The origin of allosteric functional modulation: multiple pre-existing pathways
  publication-title: Structure
– volume: 184
  start-page: 2300
  year: 2002
  end-page: 2304
  ident: bb0310
  article-title: The crystal structure of Zn(II)-free
  publication-title: J. Bacteriol.
– volume: 41
  start-page: 9765
  year: 2002
  end-page: 9775
  ident: bb0135
  article-title: Structural characterization of distinct α3N and α5 metal sites in the cyanobacterial zinc sensor SmtB
  publication-title: Biochemistry
– volume: 450
  start-page: 913
  year: 2007
  end-page: 916
  ident: bb0030
  article-title: A hierarchy of timescales in protein dynamics is linked to enzyme catalysis
  publication-title: Nature
– volume: 106
  start-page: 16984
  year: 2009
  end-page: 16989
  ident: bb0060
  article-title: Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 286
  start-page: 26148
  year: 2011
  end-page: 26157
  ident: bb0125
  article-title: Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia
  publication-title: J. Biol. Chem.
– volume: 187
  start-page: 4214
  year: 2005
  end-page: 4221
  ident: bb0285
  article-title: Crystal structure of the
  publication-title: J. Bacteriol.
– volume: 448
  start-page: 325
  year: 2007
  end-page: 329
  ident: bb0235
  article-title: Conformational entropy in molecular recognition by proteins
  publication-title: Nature
– start-page: 56
  year: 1993
  end-page: 62
  ident: bb0340
  article-title: Oscillation data reduction program
  publication-title: Proceedings of the CCP4 Study Weekend: Data Collection and Processing
– volume: 20
  start-page: 1607
  year: 2011
  end-page: 1618
  ident: bb0240
  article-title: Extent of enthalpy–entropy compensation in protein–ligand interactions
  publication-title: Protein Sci.
– volume: 12
  start-page: 88
  year: 1965
  end-page: 118
  ident: bb0020
  article-title: On the nature of allosteric transitions: a plausible model
  publication-title: J. Mol. Biol.
– volume: 119
  start-page: 3443
  year: 1997
  end-page: 3450
  ident: bb0300
  article-title: Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 414
  year: 2010
  ident: bb0280
  article-title: An interdomain sector mediating allostery in Hsp70 molecular chaperones
  publication-title: Mol. Syst. Biol.
– volume: 450
  start-page: 964
  year: 2007
  end-page: 972
  ident: bb0040
  article-title: Dynamic personalities of proteins
  publication-title: Nature
– volume: 269
  start-page: 19826
  year: 1994
  end-page: 19829
  ident: bb0090
  article-title: Identification of a putative metal binding site in a new family of metalloregulatory proteins
  publication-title: J. Biol. Chem.
– volume: 208
  start-page: 291
  year: 1991
  end-page: 343
  ident: bb0205
  article-title: Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA
  publication-title: Methods Enzymol.
– volume: 286
  start-page: 295
  year: 1999
  end-page: 299
  ident: bb0165
  article-title: Evolutionarily conserved pathways of energetic connectivity in protein families
  publication-title: Science
– volume: 49
  start-page: 6617
  year: 2010
  end-page: 6626
  ident: bb0110
  article-title: Elucidation of the functional metal binding profile of a Cd(II)/Pb(II) sensor CmtR(Sc) from
  publication-title: Biochemistry
– volume: 282
  start-page: 30181
  year: 2007
  end-page: 30188
  ident: bb0225
  article-title: NMR structural analysis of cadmium sensing by winged helix repressor CmtR
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 364
  year: 2011
  end-page: 371
  ident: bb0255
  article-title: Defining an allosteric circuit in the cysteine protease domain of
  publication-title: Nat. Struct. Mol. Biol.
– volume: 106
  start-page: 18177
  year: 2009
  end-page: 18182
  ident: bb0075
  article-title: Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 98
  start-page: 2317
  year: 2010
  end-page: 2326
  ident: bb0010
  article-title: Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP
  publication-title: Biophys. J.
– volume: 29
  start-page: 3107
  year: 2007
  end-page: 3120
  ident: bb0365
  article-title: Metal sensor proteins: nature's metalloregulated allosteric switches
  publication-title: Dalton Trans.
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bb0350
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
– volume: 96
  start-page: 10068
  year: 1999
  end-page: 10073
  ident: bb0185
  article-title: Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology
  publication-title: Proc. Natl Acad. Sci. USA
– year: 2012
  ident: bb0335
  article-title: H,
  publication-title: Biomol. NMR Assignments
– volume: 21
  start-page: 921
  year: 1993
  end-page: 925
  ident: bb0095
  article-title: SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene
  publication-title: Nucleic Acids Res.
– volume: 131
  start-page: 18044
  year: 2009
  end-page: 18045
  ident: bb0180
  article-title: Unnatural amino acid substitution as a probe of the allosteric coupling pathway in a mycobacterial Cu(I) sensor
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 14577
  year: 2010
  end-page: 14589
  ident: bb0245
  article-title: Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3
  publication-title: J. Am. Chem. Soc.
– volume: 237
  start-page: 260
  year: 1996
  end-page: 273
  ident: bb0305
  article-title: Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase
  publication-title: Anal. Biochem.
– volume: 462
  start-page: 368
  year: 2009
  end-page: 372
  ident: bb0230
  article-title: Dynamic activation of an allosteric regulatory protein
  publication-title: Nature
– volume: 159
  start-page: 129
  year: 2011
  end-page: 141
  ident: bb0260
  article-title: The role of protein conformational fluctuations in allostery, function, and evolution
  publication-title: Biophys. Chem.
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  ident: bb0355
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
– volume: 133
  start-page: 19614
  year: 2011
  end-page: 19617
  ident: bb0080
  article-title: Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state
  publication-title: J. Am. Chem. Soc.
– volume: 380
  start-page: 187
  year: 2004
  end-page: 203
  ident: bb0005
  article-title: Quantitative analysis and interpretation of allosteric behavior
  publication-title: Methods Enzymol.
– volume: 450
  start-page: 838
  year: 2007
  end-page: 844
  ident: bb0035
  article-title: Intrinsic motions along an enzymatic reaction trajectory
  publication-title: Nature
– volume: 124
  start-page: 1443
  year: 2002
  end-page: 1451
  ident: bb0160
  article-title: Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 4644
  year: 2009
  end-page: 4681
  ident: bb0115
  article-title: Coordination chemistry of bacterial metal transport and sensing
  publication-title: Chem. Rev.
– volume: 138
  start-page: 774
  year: 2009
  end-page: 786
  ident: bb0360
  article-title: Protein sectors: evolutionary units of three-dimensional structure
  publication-title: Cell
– volume: 31
  start-page: 235
  year: 2002
  end-page: 256
  ident: bb0050
  article-title: The linkage between protein folding and functional cooperativity: two sides of the same coin?
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 43
  start-page: 115
  year: 1999
  end-page: 125
  ident: bb0130
  article-title: Chromosome-determined zinc-responsible operon
  publication-title: Microbiol. Immunol.
– volume: 41
  start-page: 9776
  year: 2002
  end-page: 9786
  ident: bb0290
  article-title: Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis
  publication-title: Biochemistry
– volume: 282
  start-page: 32298
  year: 2007
  end-page: 32310
  ident: bb0100
  article-title: Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent
  publication-title: J. Biol. Chem.
– volume: 403
  start-page: 197
  year: 2010
  end-page: 216
  ident: bb0315
  article-title: The metalloregulatory zinc site in
  publication-title: J. Mol. Biol.
– volume: 44
  start-page: 8976
  year: 2005
  end-page: 8988
  ident: bb0220
  article-title: Structural and functional characterization of
  publication-title: Biochemistry
– volume: 319
  start-page: 685
  year: 2002
  end-page: 701
  ident: bb0210
  article-title: Elucidation of primary (a3N) and vestigial (a5) heavy metal-binding sites in
  publication-title: J. Mol. Biol.
– volume: 27
  start-page: 668
  year: 2010
  end-page: 680
  ident: bb0105
  article-title: Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors
  publication-title: Nat. Prod. Rep.
– volume: 131
  start-page: 17860
  year: 2009
  end-page: 17870
  ident: bb0150
  article-title: Energetics of allosteric negative coupling in the zinc sensor
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 585
  year: 2012
  end-page: 609
  ident: bb0265
  article-title: Structural and energetic basis of allostery
  publication-title: Annu. Rev. Biophys.
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bb0345
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
– volume: 3
  start-page: 60
  year: 2007
  end-page: 68
  ident: bb0065
  article-title: CsoR is a novel
  publication-title: Nat. Chem. Biol.
– volume: 33
  start-page: 420
  year: 2008
  end-page: 425
  ident: bb0200
  article-title: Allostery: an illustrated definition for the “second secret of life”
  publication-title: Trends Biochem. Sci.
– volume: 6
  start-page: 277
  year: 1995
  end-page: 293
  ident: bb0325
  article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes
  publication-title: J. Biomol. NMR
– volume: 333
  start-page: 683
  year: 2003
  end-page: 695
  ident: bb0140
  article-title: A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins
  publication-title: J. Mol. Biol.
– volume: 13
  start-page: 831
  year: 2006
  end-page: 838
  ident: bb0045
  article-title: Dynamically driven protein allostery
  publication-title: Nat. Struct. Mol. Biol.
– volume: 187
  start-page: 328
  year: 1990
  end-page: 336
  ident: bb0295
  article-title: Characterization of indo-1 and quin-2 as spectroscopic probes for Zn
  publication-title: Anal. Biochem.
– volume: 356
  start-page: 1124
  year: 2006
  end-page: 1136
  ident: bb0175
  article-title: Individual metal ligands play distinct functional roles in the zinc sensor
  publication-title: J. Mol. Biol.
– volume: 381
  start-page: 1157
  year: 2008
  end-page: 1167
  ident: bb0250
  article-title: An allosteric circuit in caspase-1
  publication-title: J. Mol. Biol.
– reference: Goddard, T. D. and Kneller, D. G. Sparky 3, University of California, San Francisco.
– volume: 40
  start-page: 4178
  year: 2012
  end-page: 4192
  ident: bb0120
  article-title: Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR
  publication-title: Nucleic Acids Res.
– volume: 124
  start-page: 1443
  year: 2002
  ident: 10.1016/j.jmb.2013.01.018_bb0160
  article-title: Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0119806
– volume: 269
  start-page: 19826
  year: 1994
  ident: 10.1016/j.jmb.2013.01.018_bb0090
  article-title: Identification of a putative metal binding site in a new family of metalloregulatory proteins
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)32094-X
– volume: 128
  start-page: 1937
  year: 2006
  ident: 10.1016/j.jmb.2013.01.018_bb0190
  article-title: Structural insights into homo- and heterotropic allosteric coupling in the zinc sensor S. aureus CzrA from covalently fused dimers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0546828
– volume: 51
  start-page: 2619
  year: 2012
  ident: 10.1016/j.jmb.2013.01.018_bb0085
  article-title: Solution structure of Mycobacterium tuberculosis NmtR in the apo state: insights into Ni(II)-mediated allostery
  publication-title: Biochemistry
  doi: 10.1021/bi3001402
– volume: 319
  start-page: 685
  year: 2002
  ident: 10.1016/j.jmb.2013.01.018_bb0210
  article-title: Elucidation of primary (a3N) and vestigial (a5) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00299-1
– volume: 19
  start-page: 967
  year: 2011
  ident: 10.1016/j.jmb.2013.01.018_bb0055
  article-title: Allostery in protein domains reflects a balance of steric and hydrophobic effects
  publication-title: Structure
  doi: 10.1016/j.str.2011.04.009
– volume: 106
  start-page: 16984
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0060
  article-title: Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0906510106
– volume: 187
  start-page: 328
  year: 1990
  ident: 10.1016/j.jmb.2013.01.018_bb0295
  article-title: Characterization of indo-1 and quin-2 as spectroscopic probes for Zn2+–protein interactions
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(90)90465-L
– volume: 3
  start-page: 60
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0065
  article-title: CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio844
– volume: 5
  start-page: 365
  year: 1966
  ident: 10.1016/j.jmb.2013.01.018_bb0025
  article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits
  publication-title: Biochemistry
  doi: 10.1021/bi00865a047
– volume: 18
  start-page: 364
  year: 2011
  ident: 10.1016/j.jmb.2013.01.018_bb0255
  article-title: Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1990
– volume: 10
  start-page: 59
  year: 2003
  ident: 10.1016/j.jmb.2013.01.018_bb0170
  article-title: Evolutionarily conserved networks of residues mediate allosteric communication in proteins
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb881
– volume: 356
  start-page: 1124
  year: 2006
  ident: 10.1016/j.jmb.2013.01.018_bb0175
  article-title: Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.12.019
– volume: 20
  start-page: 1607
  year: 2011
  ident: 10.1016/j.jmb.2013.01.018_bb0240
  article-title: Extent of enthalpy–entropy compensation in protein–ligand interactions
  publication-title: Protein Sci.
  doi: 10.1002/pro.692
– ident: 10.1016/j.jmb.2013.01.018_bb0330
– volume: 49
  start-page: 6617
  year: 2010
  ident: 10.1016/j.jmb.2013.01.018_bb0110
  article-title: Elucidation of the functional metal binding profile of a Cd(II)/Pb(II) sensor CmtR(Sc) from Streptomyces coelicolor
  publication-title: Biochemistry
  doi: 10.1021/bi100490u
– volume: 132
  start-page: 14577
  year: 2010
  ident: 10.1016/j.jmb.2013.01.018_bb0245
  article-title: Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105852y
– volume: 29
  start-page: 3107
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0365
  article-title: Metal sensor proteins: nature's metalloregulated allosteric switches
  publication-title: Dalton Trans.
  doi: 10.1039/b706769k
– start-page: 56
  year: 1993
  ident: 10.1016/j.jmb.2013.01.018_bb0340
  article-title: Oscillation data reduction program
– volume: 187
  start-page: 4214
  year: 2005
  ident: 10.1016/j.jmb.2013.01.018_bb0285
  article-title: Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.12.4214-4221.2005
– volume: 43
  start-page: 115
  year: 1999
  ident: 10.1016/j.jmb.2013.01.018_bb0130
  article-title: Chromosome-determined zinc-responsible operon czr in Staphylococcus aureus strain 912
  publication-title: Microbiol. Immunol.
  doi: 10.1111/j.1348-0421.1999.tb02382.x
– volume: 100
  start-page: 3713
  year: 2003
  ident: 10.1016/j.jmb.2013.01.018_bb0145
  article-title: Structural elements of metal selectivity in metal sensor proteins
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0636943100
– volume: 208
  start-page: 291
  year: 1991
  ident: 10.1016/j.jmb.2013.01.018_bb0205
  article-title: Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(91)08018-D
– volume: 282
  start-page: 30181
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0225
  article-title: NMR structural analysis of cadmium sensing by winged helix repressor CmtR
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M701119200
– volume: 1
  start-page: 99
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0195
  article-title: Resonance assignments of the metal sensor protein CzrA in the apo-. Zn2- and DNA-bound (42 kD) states
  publication-title: Biomol. NMR Assignments
  doi: 10.1007/s12104-007-9027-y
– volume: 41
  start-page: 9765
  year: 2002
  ident: 10.1016/j.jmb.2013.01.018_bb0135
  article-title: Structural characterization of distinct α3N and α5 metal sites in the cyanobacterial zinc sensor SmtB
  publication-title: Biochemistry
  doi: 10.1021/bi0201771
– volume: 159
  start-page: 129
  year: 2011
  ident: 10.1016/j.jmb.2013.01.018_bb0260
  article-title: The role of protein conformational fluctuations in allostery, function, and evolution
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2011.05.020
– volume: 6
  start-page: 277
  year: 1995
  ident: 10.1016/j.jmb.2013.01.018_bb0325
  article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00197809
– volume: 333
  start-page: 683
  year: 2003
  ident: 10.1016/j.jmb.2013.01.018_bb0140
  article-title: A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2003.09.007
– volume: 381
  start-page: 1157
  year: 2008
  ident: 10.1016/j.jmb.2013.01.018_bb0250
  article-title: An allosteric circuit in caspase-1
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.06.040
– volume: 100
  start-page: 14445
  year: 2003
  ident: 10.1016/j.jmb.2013.01.018_bb0275
  article-title: Allosteric determinants in guanine nucleotide-binding proteins
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1835919100
– volume: 32
  start-page: 1792
  year: 2004
  ident: 10.1016/j.jmb.2013.01.018_bb0355
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh340
– volume: 27
  start-page: 668
  year: 2010
  ident: 10.1016/j.jmb.2013.01.018_bb0105
  article-title: Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b906682a
– volume: 6
  start-page: 414
  year: 2010
  ident: 10.1016/j.jmb.2013.01.018_bb0280
  article-title: An interdomain sector mediating allostery in Hsp70 molecular chaperones
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.65
– volume: 237
  start-page: 260
  year: 1996
  ident: 10.1016/j.jmb.2013.01.018_bb0305
  article-title: Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1996.0238
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1016/j.jmb.2013.01.018_bb0350
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 109
  start-page: 4644
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0115
  article-title: Coordination chemistry of bacterial metal transport and sensing
  publication-title: Chem. Rev.
  doi: 10.1021/cr900077w
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.jmb.2013.01.018_bb0345
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 41
  start-page: 9776
  year: 2002
  ident: 10.1016/j.jmb.2013.01.018_bb0290
  article-title: Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis
  publication-title: Biochemistry
  doi: 10.1021/bi020178t
– volume: 98
  start-page: 2317
  year: 2010
  ident: 10.1016/j.jmb.2013.01.018_bb0010
  article-title: Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.01.039
– volume: 12
  start-page: 88
  year: 1965
  ident: 10.1016/j.jmb.2013.01.018_bb0020
  article-title: On the nature of allosteric transitions: a plausible model
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(65)80285-6
– volume: 282
  start-page: 32298
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0100
  article-title: Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M703451200
– volume: 450
  start-page: 913
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0030
  article-title: A hierarchy of timescales in protein dynamics is linked to enzyme catalysis
  publication-title: Nature
  doi: 10.1038/nature06407
– volume: 17
  start-page: 1042
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0270
  article-title: The origin of allosteric functional modulation: multiple pre-existing pathways
  publication-title: Structure
  doi: 10.1016/j.str.2009.06.008
– volume: 131
  start-page: 17860
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0150
  article-title: Energetics of allosteric negative coupling in the zinc sensor S. aureus CzrA
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906131b
– volume: 13
  start-page: 831
  year: 2006
  ident: 10.1016/j.jmb.2013.01.018_bb0045
  article-title: Dynamically driven protein allostery
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1132
– volume: 21
  start-page: 921
  year: 1993
  ident: 10.1016/j.jmb.2013.01.018_bb0095
  article-title: SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA–protein complex
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/21.4.921
– volume: 138
  start-page: 774
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0360
  article-title: Protein sectors: evolutionary units of three-dimensional structure
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.038
– volume: 48
  start-page: 3325
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0070
  article-title: Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis
  publication-title: Biochemistry
  doi: 10.1021/bi900115w
– volume: 134
  start-page: 3367
  year: 2012
  ident: 10.1016/j.jmb.2013.01.018_bb0155
  article-title: Simulations of allosteric motions in the zinc sensor CzrA
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208047b
– volume: 39
  start-page: 9130
  year: 2011
  ident: 10.1016/j.jmb.2013.01.018_bb0320
  article-title: Sequential binding and sensing of Zn(II) by Bacillus subtilis Zur
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr625
– volume: 286
  start-page: 26148
  year: 2011
  ident: 10.1016/j.jmb.2013.01.018_bb0125
  article-title: Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.234039
– volume: 450
  start-page: 964
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0040
  article-title: Dynamic personalities of proteins
  publication-title: Nature
  doi: 10.1038/nature06522
– volume: 96
  start-page: 10068
  year: 1999
  ident: 10.1016/j.jmb.2013.01.018_bb0185
  article-title: Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.18.10068
– volume: 41
  start-page: 585
  year: 2012
  ident: 10.1016/j.jmb.2013.01.018_bb0265
  article-title: Structural and energetic basis of allostery
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-050511-102319
– volume: 44
  start-page: 8976
  year: 2005
  ident: 10.1016/j.jmb.2013.01.018_bb0220
  article-title: Structural and functional characterization of Mycobacterium tuberculosis CmtR, a PbII/CdII-sensing SmtB/ArsR metalloregulatory repressor
  publication-title: Biochemistry
  doi: 10.1021/bi050094v
– volume: 450
  start-page: 838
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0035
  article-title: Intrinsic motions along an enzymatic reaction trajectory
  publication-title: Nature
  doi: 10.1038/nature06410
– volume: 31
  start-page: 235
  year: 2002
  ident: 10.1016/j.jmb.2013.01.018_bb0050
  article-title: The linkage between protein folding and functional cooperativity: two sides of the same coin?
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.31.082901.134215
– volume: 131
  start-page: 18044
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0180
  article-title: Unnatural amino acid substitution as a probe of the allosteric coupling pathway in a mycobacterial Cu(I) sensor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908372b
– volume: 462
  start-page: 368
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0230
  article-title: Dynamic activation of an allosteric regulatory protein
  publication-title: Nature
  doi: 10.1038/nature08560
– year: 2012
  ident: 10.1016/j.jmb.2013.01.018_bb0335
  article-title: 1H, 13C, and 15N resonance assignments of NmtR, a Ni(II)/Co(II) metalloregulatory protein of Mycobacterium tuberculosis
  publication-title: Biomol. NMR Assignments
  doi: 10.1007/s12104-012-9397-7
– volume: 133
  start-page: 19614
  year: 2011
  ident: 10.1016/j.jmb.2013.01.018_bb0080
  article-title: Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2080532
– volume: 286
  start-page: 295
  year: 1999
  ident: 10.1016/j.jmb.2013.01.018_bb0165
  article-title: Evolutionarily conserved pathways of energetic connectivity in protein families
  publication-title: Science
  doi: 10.1126/science.286.5438.295
– volume: 106
  start-page: 18177
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0075
  article-title: Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0905558106
– volume: 403
  start-page: 197
  year: 2010
  ident: 10.1016/j.jmb.2013.01.018_bb0315
  article-title: The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.08.030
– volume: 33
  start-page: 420
  year: 2008
  ident: 10.1016/j.jmb.2013.01.018_bb0200
  article-title: Allostery: an illustrated definition for the “second secret of life”
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2008.05.009
– volume: 184
  start-page: 2300
  year: 2002
  ident: 10.1016/j.jmb.2013.01.018_bb0310
  article-title: The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.8.2300-2304.2002
– volume: 119
  start-page: 3443
  year: 1997
  ident: 10.1016/j.jmb.2013.01.018_bb0300
  article-title: Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9642121
– volume: 324
  start-page: 198
  year: 2009
  ident: 10.1016/j.jmb.2013.01.018_bb0015
  article-title: Sending signals dynamically
  publication-title: Science
  doi: 10.1126/science.1169377
– volume: 448
  start-page: 325
  year: 2007
  ident: 10.1016/j.jmb.2013.01.018_bb0235
  article-title: Conformational entropy in molecular recognition by proteins
  publication-title: Nature
  doi: 10.1038/nature05959
– volume: 40
  start-page: 4178
  year: 2012
  ident: 10.1016/j.jmb.2013.01.018_bb0120
  article-title: Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1316
– volume: 380
  start-page: 187
  year: 2004
  ident: 10.1016/j.jmb.2013.01.018_bb0005
  article-title: Quantitative analysis and interpretation of allosteric behavior
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(04)80009-0
– reference: 17637984 - Dalton Trans. 2007 Aug 7;(29):3107-20
– reference: 8520220 - J Biomol NMR. 1995 Nov;6(3):277-93
– reference: 19359576 - Science. 2009 Apr 10;324(5924):198-203
– reference: 15051338 - Methods Enzymol. 2004;380:187-203
– reference: 10229265 - Microbiol Immunol. 1999;43(2):115-25
– reference: 19249860 - Biochemistry. 2009 Apr 21;48(15):3325-34
– reference: 22577828 - Annu Rev Biophys. 2012;41:585-609
– reference: 19928961 - J Am Chem Soc. 2009 Dec 23;131(50):18044-5
– reference: 12146942 - Biochemistry. 2002 Aug 6;41(31):9765-75
– reference: 12651949 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3713-8
– reference: 18075575 - Nature. 2007 Dec 13;450(7172):964-72
– reference: 19788177 - Chem Rev. 2009 Oct;109(10):4644-81
– reference: 21317893 - Nat Struct Mol Biol. 2011 Mar;18(3):364-71
– reference: 2116741 - Anal Biochem. 1990 Jun;187(2):328-36
– reference: 18590738 - J Mol Biol. 2008 Sep 19;381(5):1157-67
– reference: 21739503 - Protein Sci. 2011 Sep;20(9):1607-18
– reference: 16906160 - Nat Struct Mol Biol. 2006 Sep;13(9):831-8
– reference: 11988469 - Annu Rev Biophys Biomol Struct. 2002;31:235-56
– reference: 14568530 - J Mol Biol. 2003 Oct 31;333(4):683-95
– reference: 18706817 - Trends Biochem Sci. 2008 Sep;33(9):420-5
– reference: 22238377 - Nucleic Acids Res. 2012 May;40(9):4178-92
– reference: 12483203 - Nat Struct Biol. 2003 Jan;10(1):59-69
– reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
– reference: 22618866 - Biomol NMR Assign. 2013 Oct;7(2):145-8
– reference: 19679084 - Structure. 2009 Aug 12;17(8):1042-50
– reference: 10468563 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10068-73
– reference: 14623969 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14445-50
– reference: 21632538 - J Biol Chem. 2011 Jul 22;286(29):26148-57
– reference: 16464095 - J Am Chem Soc. 2006 Feb 15;128(6):1937-47
– reference: 12146943 - Biochemistry. 2002 Aug 6;41(31):9776-86
– reference: 16406068 - J Mol Biol. 2006 Mar 10;356(5):1124-36
– reference: 17143269 - Nat Chem Biol. 2007 Jan;3(1):60-8
– reference: 18026087 - Nature. 2007 Dec 6;450(7171):913-6
– reference: 20483341 - Biophys J. 2010 May 19;98(10):2317-26
– reference: 21742263 - Structure. 2011 Jul 13;19(7):967-75
– reference: 20873837 - J Am Chem Soc. 2010 Oct 20;132(41):14577-89
– reference: 11841314 - J Am Chem Soc. 2002 Feb 20;124(7):1443-51
– reference: 20442958 - Nat Prod Rep. 2010 May;27(5):668-80
– reference: 20586430 - Biochemistry. 2010 Aug 10;49(31):6617-26
– reference: 11914363 - J Bacteriol. 2002 Apr;184(8):2300-4
– reference: 22007899 - J Am Chem Soc. 2012 Feb 22;134(7):3367-76
– reference: 17599915 - J Biol Chem. 2007 Oct 12;282(41):30181-8
– reference: 22394357 - Biochemistry. 2012 Mar 27;51(12):2619-29
– reference: 14343300 - J Mol Biol. 1965 May;12:88-118
– reference: 5938952 - Biochemistry. 1966 Jan;5(1):365-85
– reference: 8051064 - J Biol Chem. 1994 Aug 5;269(31):19826-9
– reference: 19995076 - J Am Chem Soc. 2009 Dec 16;131(49):17860-70
– reference: 17726022 - J Biol Chem. 2007 Nov 2;282(44):32298-310
– reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
– reference: 8451191 - Nucleic Acids Res. 1993 Feb 25;21(4):921-5
– reference: 19924217 - Nature. 2009 Nov 19;462(7271):368-72
– reference: 20804771 - J Mol Biol. 2010 Oct 22;403(2):197-216
– reference: 19805185 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16984-9
– reference: 17637663 - Nature. 2007 Jul 19;448(7151):325-9
– reference: 12054863 - J Mol Biol. 2002 Jun 7;319(3):685-701
– reference: 19636838 - Biomol NMR Assign. 2007 Jul;1(1):99-101
– reference: 22085181 - J Am Chem Soc. 2011 Dec 14;133(49):19614-7
– reference: 8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73
– reference: 15966722 - Biochemistry. 2005 Jun 28;44(25):8976-88
– reference: 18026086 - Nature. 2007 Dec 6;450(7171):838-44
– reference: 20865007 - Mol Syst Biol. 2010 Sep 21;6:414
– reference: 1779839 - Methods Enzymol. 1991;208:291-343
– reference: 21821657 - Nucleic Acids Res. 2011 Nov;39(21):9130-8
– reference: 10514373 - Science. 1999 Oct 8;286(5438):295-9
– reference: 19703402 - Cell. 2009 Aug 21;138(4):774-86
– reference: 19822742 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18177-82
– reference: 15937183 - J Bacteriol. 2005 Jun;187(12):4214-21
– reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7
– reference: 21684672 - Biophys Chem. 2011 Nov;159(1):129-41
SSID ssj0005348
Score 2.2671912
Snippet The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor...
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1143
SubjectTerms Allosteric Regulation
allostery
Amino Acid Substitution
ArsR
Bacterial Proteins
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites
Binding Sites - genetics
Binding, Competitive
chemistry
Crystallography, X-Ray
DNA
DNA-Binding Proteins
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
energy
evolution
genetics
Hydrogen Bonding
Kinetics
metabolism
metal homeostasis
metal ions
Models, Molecular
mutants
Mutation
Protein Binding
Protein Multimerization
Protein Structure, Secondary
Protein Structure, Tertiary
proteins
Repressor Proteins
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Staphylococcus aureus
Staphylococcus aureus - genetics
Staphylococcus aureus - metabolism
statistical coupling analysis
Thermodynamics
transcription (genetics)
Transcription, Genetic
zinc
Zinc - chemistry
Zinc - metabolism
zinc sensor
Title Allosteric Inhibition of a Zinc-Sensing Transcriptional Repressor: Insights into the Arsenic Repressor (ArsR) Family
URI https://dx.doi.org/10.1016/j.jmb.2013.01.018
https://www.ncbi.nlm.nih.gov/pubmed/23353829
https://www.proquest.com/docview/1317854939
https://www.proquest.com/docview/1672083859
https://pubmed.ncbi.nlm.nih.gov/PMC3602352
Volume 425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILgvLo8qiMxAGQQje2EzvcViuqLYge-pBWXCzbcdpUi1N10wMXfjszTrLqomoPSDkl4zw8k5nPycw3hLzPM8t8IXki09ImIlcuUcamSckLg4xS3MQq1x9H-exMfJtn8y0yHWphMK2y9_2dT4_eut-z38_m_lVdY40vfr3gCICRZWWOFexCopV__nMrzYMLNTCGo_TwZzPmeF3-spjdxSNzJ_b9uDs23atMcxcC_TeR8lZkOnhCHveQkk66u35KtnzYIQ-6JpO_d8jD6dDT7RlpJ4sFVnWA86OH4aK2MWGLNhU19GcdXHKC-ezhnMYQNjgUOPlxlzDbXH-BcUtc0C9pHdqGAn6EKy99gDOuhOgH2HX8kXZdNZ6T04Ovp9NZ0vddSJzIszYpisqmRspUmAIAglJe8TSvpDHI3V6YEmK64aWrKsXKsZN5Joz1zDGrDKtK_oJshyb4XUKtcEVuYKEqUy8yL413gDitAhTEbSXdiIyHCdeu5yTH1hgLPSSfXWrQkUYd6XEKmxqRT6shVx0hxyZhMWhRr1mVhoCxadguaFybc_Cz-uyE4VchxL4ApUfk3WAGGnSHf1dM8M3NUqeAxBSstnmxQSaXMJ9cZSDzsjOd1UMwziH4MDgi14xqJYBE4OtHQn0RCcF5jqxF7NX_Pe1r8ojFHh9IYPmGbLfXN_4tIK3W7sVXaY_cnxx-nx39BQcBJrI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2TmhcJhiwdXwZiQMgRWvsJHa4VRVTy7Yetk6quFi242yZijOt2YH_nvfyUSiaekDKKXnOh5_z3s_Jz79HyMckNsylggcizEwQJdIGUpswyHiqUVGK63qV6_k0GV9F3-fxfIuMurUwSKtsY38T0-to3e45bnvz-K4ocI0vfr3gCIBRZWW-TXZQnSrukZ3h5HQ8_cP04JHsRMOxQfdzs6Z53f40SPDitXgnlv54PD1t57p8DIT-y6X8KzmdPCN7Laqkw-bGn5Mt5_fJk6bO5K99sjvqyrq9INVwscCFHRD_6MTfFKbmbNEyp5r-KLwNLpHS7q9pncW6mAInv2g4s-X9V2i3xDn9kha-KilASLjy0nk448qIfoJdF59pU1jjJZmdfJuNxkFbeiGwURJXQZrmJtRChJFOASNI6SQPk1xojfLtqc4grWue2TyXLBtYkcSRNo5ZZqRmecZfkZ4vvTsk1EQ2TTTMVUXootgJ7SyATiMBCHGTC9sng67DlW1lybE6xkJ1_LNbBT5S6CM1CGGTffJl1eSu0eTYZBx1XlRrA0tBztjU7BA8rvQ1hFp1dcnwwxDCX0DTffKhGwYKfIc_WLR35cNShQDGJEy4ebrBJhHQn1zGYHPQDJ3VQzDOIf8wOCLWBtXKALXA14_44qbWBOcJChexo_972vdkdzw7P1Nnk-npa_KU1SU_UM_yDelV9w_uLQCvyrxrX6zfC2EpYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allosteric+Inhibition+of+a+Zinc-Sensing+Transcriptional+Repressor%3A+Insights+into+the+Arsenic+Repressor+%28ArsR%29+Family&rft.jtitle=Journal+of+molecular+biology&rft.au=Campanello%2C+Gregory+C&rft.au=Ma%2C+Zhen&rft.au=Grossoehme%2C+Nicholas+E&rft.au=Guerra%2C+Alfredo+J&rft.date=2013-04-12&rft.pub=Elsevier+Ltd&rft.issn=0022-2836&rft.volume=425&rft.issue=7&rft.spage=1143&rft.epage=1157&rft_id=info:doi/10.1016%2Fj.jmb.2013.01.018&rft.externalDocID=US201500045916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon