The Role of Macrophages in Kidney Fibrosis

The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differe...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 12; p. 705838
Main Authors Wang, Xiaoling, Chen, Jianwei, Xu, Jun, Xie, Jun, Harris, David C. H., Zheng, Guoping
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 06.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis.
AbstractList The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis.
The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis.The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis.
Author Chen, Jianwei
Xie, Jun
Wang, Xiaoling
Zheng, Guoping
Xu, Jun
Harris, David C. H.
AuthorAffiliation 4 Department of General Surgery, First Hospital of Shanxi Medical University , Taiyuan , China
1 Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan , China
3 Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney , NSW , Australia
2 Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine , Taiyuan , China
AuthorAffiliation_xml – name: 1 Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan , China
– name: 3 Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney , NSW , Australia
– name: 2 Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine , Taiyuan , China
– name: 4 Department of General Surgery, First Hospital of Shanxi Medical University , Taiyuan , China
Author_xml – sequence: 1
  givenname: Xiaoling
  surname: Wang
  fullname: Wang, Xiaoling
– sequence: 2
  givenname: Jianwei
  surname: Chen
  fullname: Chen, Jianwei
– sequence: 3
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
– sequence: 4
  givenname: Jun
  surname: Xie
  fullname: Xie, Jun
– sequence: 5
  givenname: David C. H.
  surname: Harris
  fullname: Harris, David C. H.
– sequence: 6
  givenname: Guoping
  surname: Zheng
  fullname: Zheng, Guoping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34421643$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNUbK39AL7IPIqw25v_mRdBitVipVAq-BaSzJ3dlNnJmswW9tub7dbS9sHkIZfknN8N97wlB2MakZD3FOacm_a0Xy-3Zc6A0bkGabh5RY6oUmIGgv0-eFIfkpNSbqEuAQyAviGHXAhGleBH5NPNEpvrNGCT-uanCzmtl26BpYlj8yN2I26b8-hzKrG8I697NxQ8eTiPya_zrzdn32eXV98uzr5czoJQcpq1SrCeS9MBlZob5VwHXoPS2jnQntXdut4IDR6FF1wYStsgHfoOQIfAj8nFntsld2vXOa5c3trkor2_SHlhXZ5iGNCyADKAYtJDK4xqvfRMMyMxtFhbQWV93rPWG7_CLuA4ZTc8gz5_GePSLtKdNVwbyUUFfHwA5PRng2Wyq1gCDoMbMW2KZVJxDZq1vEo_PO312OTfsKuA7gV1yqVk7B8lFOwuU3ufqd1laveZVo9-4QlxclNMu-_G4T_Ov8_GpVo
CitedBy_id crossref_primary_10_3389_fnut_2024_1438327
crossref_primary_10_3389_fimmu_2024_1469353
crossref_primary_10_3390_biomedicines10020420
crossref_primary_10_3390_life14081031
crossref_primary_10_1093_glycob_cwad062
crossref_primary_10_3390_antiox12091778
crossref_primary_10_1002_2211_5463_13568
crossref_primary_10_1002_advs_202200668
crossref_primary_10_1038_s41467_023_40086_3
crossref_primary_10_1186_s12882_023_03065_w
crossref_primary_10_1038_s41419_025_07367_9
crossref_primary_10_1111_imm_13891
crossref_primary_10_3390_jcm12237349
crossref_primary_10_3390_ijms23052574
crossref_primary_10_3390_ijms241713510
crossref_primary_10_3389_fimmu_2024_1447536
crossref_primary_10_34067_KID_0000000000000152
crossref_primary_10_3390_jpm12020127
crossref_primary_10_3389_fmicb_2022_913465
crossref_primary_10_1038_s41420_024_01996_3
crossref_primary_10_1038_s41443_023_00806_1
crossref_primary_10_3389_fphar_2022_1036423
crossref_primary_10_1161_HYPERTENSIONAHA_122_19431
crossref_primary_10_3390_cells12010135
crossref_primary_10_3389_fimmu_2023_1194988
crossref_primary_10_3390_ijms25063543
crossref_primary_10_3390_antiox11071394
crossref_primary_10_3389_fmolb_2023_1215039
crossref_primary_10_3390_life12111829
crossref_primary_10_1038_s41443_024_00874_x
crossref_primary_10_3390_ijms25073763
crossref_primary_10_3389_fimmu_2024_1474688
crossref_primary_10_3389_frtra_2022_988238
crossref_primary_10_1002_ctm2_1631
crossref_primary_10_1016_j_bbamcr_2023_119594
crossref_primary_10_3390_cells12101417
crossref_primary_10_1038_s41467_024_44886_z
crossref_primary_10_1002_adhm_202403230
crossref_primary_10_4111_icu_20230095
crossref_primary_10_1111_sji_13349
crossref_primary_10_1177_09603271241249990
crossref_primary_10_3389_fphar_2023_1200164
crossref_primary_10_3389_fimmu_2023_1203062
crossref_primary_10_1002_nau_24896
crossref_primary_10_1038_s41467_024_51186_z
crossref_primary_10_1038_s42003_023_04649_w
crossref_primary_10_1007_s11033_024_09617_z
crossref_primary_10_3390_ijms23148024
crossref_primary_10_1021_acs_jafc_3c06979
crossref_primary_10_3390_antiox11122461
crossref_primary_10_1093_ndt_gfac290
crossref_primary_10_1097_IMNA_D_23_00001
crossref_primary_10_1002_iid3_1249
crossref_primary_10_23876_j_krcp_22_159
crossref_primary_10_3390_ijms23031542
Cites_doi 10.1038/mt.2010.100
10.1681/asn.2020060806
10.1016/j.febslet.2005.09.032
10.1016/j.ajpath.2021.03.005
10.1111/pim.12353
10.1016/j.biopha.2020.110468
10.12659/msmbr.895563
10.1681/asn.2016121362
10.1038/ki.2013.135
10.1182/blood-2005-12-5046
10.1038/cddis.2016.402
10.1016/bs.pmbts.2017.11.019
10.1186/s12860-016-0101-0
10.1681/asn.2008090930
10.1111/all.13635
10.1038/kisup.2014.7
10.1007/s00467-013-2726-y
10.1038/s41581-020-00343-w
10.1002/jcp.29987
10.1371/journal.pone.0042507
10.1016/j.biocel.2016.05.010
10.1152/ajprenal.00624.2012
10.1038/labinvest.2010.174
10.1007/s10753-014-9941-y
10.1038/s41586-021-03199-7
10.1038/labinvest.2013.3
10.1007/978-1-61779-943-3_16
10.1681/asn.2007030290
10.3390/cells8080826
10.1681/asn.2010030269
10.1681/ASN.2006070704
10.1681/asn.2014070717
10.1681/asn.2014060567
10.1093/ecco-jcc/jjx185
10.1159/000431214
10.3389/fonc.2020.01341
10.2215/cjn.06870810
10.1038/ki.2014.64
10.1038/ki.2011.217
10.1111/j.1523-1755.2004.00367.x
10.1681/asn.2009060592
10.1038/nrneph.2014.170
10.12659/msm.914579
10.1371/journal.pone.0143961
10.1093/ndt/gfy381
10.1074/jbc.m111.276311
10.1038/labinvest.2010.133
10.1161/01.atv.0000162173.27682.7b
10.1038/s41581-019-0110-2
10.1038/ki.2011.255
10.1152/ajprenal.00018.2014
10.1111/nep.12014
10.1038/sj.ki.5002275
10.1038/kisup.2014.16
10.1161/JAHA.116.004387
10.1681/asn.2010070693
10.1038/kisup.2014.2
10.1681/asn.2008121226
10.1038/nrneph.2016.48
10.1002/jlb.3ru1018-378rr
10.1016/s0272-6386(12)80393-3
10.1681/asn.2009060615
10.1016/j.kint.2016.10.020
10.1172/jci.insight.123563
10.1007/s13238-018-0527-6
10.1152/ajprenal.00389.2012
10.1038/s41586-020-2941-1
10.1097/00004872-199917040-00012
10.1681/asn.2017040391
10.1007/s10787-017-0317-4
10.1111/bph.14333
10.1038/nrm1104
10.1016/j.ajpath.2016.03.015
10.3389/fimmu.2019.02297
10.1038/ki.2010.137
10.3390/ijms21175966
10.1186/s13287-018-1039-2
10.1038/ki.2011.446
10.1073/pnas.0912228107
10.1016/j.kint.2017.12.017
10.1111/j.1365-2184.2012.00806.x
10.1042/AN20130045
10.1152/physiol.00046.2014
10.1038/ki.2008.183
10.1074/jbc.ra118.005457
10.1016/j.ajpath.2015.06.001
10.1074/jbc.m207205200
10.1016/j.kint.2017.04.021
10.1016/j.ajpath.2013.12.020
10.1016/j.kint.2016.11.026
10.1172/jci36150
10.2337/db09-1631
10.1152/ajpheart.00367.2014
10.1016/j.cellimm.2018.04.009
10.1007/s40620-019-00637-8
10.1111/ajt.16287
10.1016/j.phrs.2019.03.022
10.1093/ndt/gfm694
10.1681/asn.2010080881
10.1681/asn.2016050573
10.1159/000373932
10.1007/s00467-014-3023-0
10.2353/ajpath.2009.080983
10.1038/ki.2010.13
10.1084/jem.20070075
10.1111/acel.13004
10.1016/j.kint.2016.08.020
10.1371/journal.pone.0033626
10.1016/j.it.2004.09.015
10.1152/ajprenal.00580.2012
10.1038/ki.2013.341
10.2353/ajpath.2010.090188
10.1038/nri3901
10.1038/ki.2015.119
10.1681/asn.2008050513
10.1053/j.ackd.2005.07.011
10.1038/s41374-019-0276-z
10.1097/shk.0000000000000820
10.1038/nm.3218
ContentType Journal Article
Copyright Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng.
Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng. 2021 Wang, Chen, Xu, Xie, Harris and Zheng
Copyright_xml – notice: Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng.
– notice: Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng. 2021 Wang, Chen, Xu, Xie, Harris and Zheng
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2021.705838
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_2c05c0625b094869b5b27285ec9e7b20
PMC8378534
34421643
10_3389_fphys_2021_705838
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-9642f358d0157386aad0b70677aa07b2b2b9af8470be4b4348119c5aebd007cc3
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:24:03 EDT 2025
Thu Aug 21 13:49:25 EDT 2025
Fri Jul 11 16:52:14 EDT 2025
Thu Jan 02 22:39:40 EST 2025
Thu Apr 24 22:51:33 EDT 2025
Tue Jul 01 02:44:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TGF-β
macrophages
fibrosis
signaling pathways
Wnt
Language English
License Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-9642f358d0157386aad0b70677aa07b2b2b9af8470be4b4348119c5aebd007cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors share senior authorship
This article was submitted to Renal and Epithelial Physiology, a section of the journal Frontiers in Physiology
Edited by: Patrick Ming-Kuen Tang, The Chinese University of Hong Kong, China
Reviewed by: David Michael Dolivo, Northwestern University Feinberg School of Medicine, United States; Yanlin Wang, University of Connecticut School of Medicine, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2021.705838
PMID 34421643
PQID 2563707293
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2c05c0625b094869b5b27285ec9e7b20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378534
proquest_miscellaneous_2563707293
pubmed_primary_34421643
crossref_primary_10_3389_fphys_2021_705838
crossref_citationtrail_10_3389_fphys_2021_705838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-06
PublicationDateYYYYMMDD 2021-08-06
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-06
  day: 06
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Huen (B36) 2015; 30
Bianchini (B4) 2019; 74
Huen (B37) 2013; 305
Ulrich (B95) 2011; 6
Pan (B73) 2015; 35
Zeisberg (B115) 2008; 19
Liang (B56) 2017; 92
Tan (B89) 2014; 4
Nikolic-Paterson (B70) 2014; 4
Eitner (B25) 2008; 19
Liu (B59) 2010; 21
Rao (B80) 2019; 99
Tang (B93) 2019; 15
Zhou (B121) 2012; 287
Furuta (B30) 1993; 21
Lin (B57) 2010; 107
Wang (B101) 2019; 106
Eddy (B24) 2011; 2014
Alikhan (B1) 2013; 18
Kalish (B43) 2015; 21
Yang (B113) 2020; 21
Wu (B109) 2020; 130
Ferenbach (B28) 2010; 18
Kunugi (B49) 2011; 91
Cao (B8) 2011; 22
Meng (B65); 12
Kuppe (B50) 2021; 589
Inoue (B39) 2017; 91
Weichhart (B107) 2015; 15
Eddy (B22) 2005; 12
Tan (B90) 2013; 93
LeBleu (B51) 2013; 19
Cicha (B17) 2005; 25
Kim (B47) 2015; 10
Han (B33) 2013; 304
Cao (B9) 2014; 85
Nie (B69) 2020; 10
Hou (B34) 2018; 16
Khazen (B46) 2005; 579
Wong (B108) 2018; 93
Yang (B112) 2019; 34
Zheng (B119) 2009; 175
Jung (B41) 2012; 81
Wang (B102) 2018; 175
Wang (B103) 2011; 22
Feng (B26); 293
Cao (B7) 2015; 30
Chen (B12) 2011; 22
Ko (B48) 2008; 23
Wang (B106) 2018; 153
Blumenthal (B5) 2006; 108
Venturin (B97) 2016; 38
Wang (B105) 2007; 72
Tan (B91) 2010; 176
Lisi (B58) 2014; 6
Chung (B16) 2018; 3
Anders (B2) 2011; 80
Mao (B63) 2014; 307
Tseng (B94) 2020; 21
Ching (B14) 2010; 90
Ratnayake (B82) 2021; 591
Arnold (B3) 2007; 204
Zheng (B120) 2016; 186
Li (B53) 2010; 59
Mantovani (B62) 2004; 25
Philipp (B76) 2018; 9
Wang (B104) 2017; 28
Lee (B52) 2011; 22
Xia (B110) 2014; 86
Yan (B111) 2015; 26
Perugorria (B75) 2019; 16
Rogers (B84) 2014; 10
Zhang (B117) 2017; 91
Shen (B88) 2014; 37
Schunk (B87) 2021; 17
Das (B20) 2015; 185
Meng (B64); 7
Zhou (B122) 2020; 33
Jiang (B40) 2019; 10
Cosin-Roger (B19) 2019; 10
Kang (B44) 2010; 78
Lv (B61) 2017; 91
Salvador (B86) 2018; 12
Palevski (B72) 2017; 6
Floege (B29) 2015; 26
Chen (B11) 2012; 7
Li (B54) 2015; 88
Kadowaki (B42) 2009; 29
Meng (B66) 2015; 1
Pang (B74) 2016; 76
Zhao (B118) 2016; 17
Eardley (B21) 2008; 74
Guo (B32) 2020; 236
Miao (B67) 2019; 18
Yu (B114) 2010; 77
Okamura (B71) 1999; 17
Qiao (B78) 2018; 29
Ikezumi (B38) 2015; 30
Guo (B31) 2019; 144
Wang (B100) 2014; 184
Braga (B6) 2018; 26
Karsdal (B45) 2002; 277
Pilling (B77) 2012; 904
Wang (B99) 2011; 80
Rao (B81) 2021; 191
Conway (B18) 2020; 31
Ng (B68) 2019; 8
Cao (B10) 2010; 21
Zhang (B116) 2019; 25
Li (B55) 2009; 20
Urbina (B96) 2014; 307
Feng (B27); 29
Ranganathan (B79) 2013; 304
Eddy (B23) 2006; 17
Lu (B60) 2013; 84
Ricardo (B83) 2008; 118
Chow (B15) 2004; 65
Viehmann (B98) 2018; 330
Tang (B92) 2017; 48
Rosenberger (B85) 2003; 4
Chen (B13) 2013; 8
Huang (B35) 2012; 7
References_xml – volume: 18
  start-page: 1706
  year: 2010
  ident: B28
  article-title: Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury.
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.100
– volume: 31
  start-page: 2833
  year: 2020
  ident: B18
  article-title: Kidney single-cell atlas reveals myeloid heterogeneity in progression and regression of kidney disease.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2020060806
– volume: 579
  start-page: 5631
  year: 2005
  ident: B46
  article-title: Expression of macrophage-selective markers in human and rodent adipocytes.
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.09.032
– volume: 191
  start-page: 993
  year: 2021
  ident: B81
  article-title: Promotion of β-catenin/Foxo signaling mediates epithelial repair in kidney injury.
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2021.03.005
– volume: 38
  start-page: 698
  year: 2016
  ident: B97
  article-title: M1 polarization and the effect of PGE on TNF-α production by lymph node cells from dogs with visceral leishmaniasis.
  publication-title: Parasite Immunol.
  doi: 10.1111/pim.12353
– volume: 130
  year: 2020
  ident: B109
  article-title: Fibrinogen-like protein 2 deficiency aggravates renal fibrosis by facilitating macrophage polarization.
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110468
– volume: 21
  start-page: 226
  year: 2015
  ident: B43
  article-title: Macrophages reprogrammed in vitro towards the M1 phenotype and activated with LPS extend lifespan of mice with ehrlich ascites carcinoma.
  publication-title: Med. Sci. Monitor Basic Res.
  doi: 10.12659/msmbr.895563
– volume: 29
  start-page: 557
  year: 2018
  ident: B78
  article-title: Redirecting TGF-beta Signaling through the beta-catenin/foxo complex prevents kidney fibrosis.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2016121362
– volume: 84
  start-page: 745
  year: 2013
  ident: B60
  article-title: Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2013.135
– volume: 108
  start-page: 965
  year: 2006
  ident: B5
  article-title: The wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation.
  publication-title: Blood
  doi: 10.1182/blood-2005-12-5046
– volume: 7
  ident: B64
  article-title: Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis.
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.402
– volume: 153
  start-page: 181
  year: 2018
  ident: B106
  article-title: Wnt signaling in kidney development and disease.
  publication-title: Prog. Mol. Biol. Trans. Sci.
  doi: 10.1016/bs.pmbts.2017.11.019
– volume: 17
  year: 2016
  ident: B118
  article-title: Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells.
  publication-title: BMC Cell Biol.
  doi: 10.1186/s12860-016-0101-0
– volume: 20
  start-page: 1907
  year: 2009
  ident: B55
  article-title: Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2008090930
– volume: 74
  start-page: 483
  year: 2019
  ident: B4
  article-title: IgG4 drives M2a macrophages to a regulatory M2b-like phenotype: potential implication in immune tolerance.
  publication-title: Allergy
  doi: 10.1111/all.13635
– volume: 4
  start-page: 34
  year: 2014
  ident: B70
  article-title: Macrophages promote renal fibrosis through direct and indirect mechanisms.
  publication-title: Kidney Int. Suppl.
  doi: 10.1038/kisup.2014.7
– volume: 30
  start-page: 199
  year: 2015
  ident: B36
  article-title: Macrophage-mediated injury and repair after ischemic kidney injury.
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s00467-013-2726-y
– volume: 17
  start-page: 172
  year: 2021
  ident: B87
  article-title: WNT–β-catenin signalling a versatile player in kidney injury and repair.
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-020-00343-w
– volume: 236
  start-page: 2008
  year: 2020
  ident: B32
  article-title: miR-130b-3p regulates M1 macrophage polarization via targeting IRF.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29987
– volume: 7
  year: 2012
  ident: B35
  article-title: Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042507
– volume: 76
  start-page: 123
  year: 2016
  ident: B74
  article-title: Autophagy links beta-catenin and smad signaling to promote epithelial-mesenchymal transition via upregulation of integrin linked kinase.
  publication-title: Int. J. Biochem. Cell. Biol.
  doi: 10.1016/j.biocel.2016.05.010
– volume: 305
  start-page: F477
  year: 2013
  ident: B37
  article-title: Macrophage-specific deletion of transforming growth factor-β1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury.
  publication-title: Am. J. Physiol. Renal. Physiol.
  doi: 10.1152/ajprenal.00624.2012
– volume: 91
  start-page: 170
  year: 2011
  ident: B49
  article-title: Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury.
  publication-title: Laboratory Investigat.
  doi: 10.1038/labinvest.2010.174
– volume: 37
  start-page: 2076
  year: 2014
  ident: B88
  article-title: Macrophages regulate renal fibrosis through modulating TGFβ superfamily signaling.
  publication-title: Inflammation
  doi: 10.1007/s10753-014-9941-y
– volume: 591
  start-page: 281
  year: 2021
  ident: B82
  article-title: Macrophages provide a transient muscle stem cell niche via NAMPT secretion.
  publication-title: Nature
  doi: 10.1038/s41586-021-03199-7
– volume: 93
  start-page: 434
  year: 2013
  ident: B90
  article-title: Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage.
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2013.3
– volume: 904
  start-page: 191
  year: 2012
  ident: B77
  article-title: Differentiation of circulating monocytes into fibroblast-like cells.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-943-3_16
– volume: 19
  start-page: 281
  year: 2008
  ident: B25
  article-title: PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2007030290
– volume: 8
  year: 2019
  ident: B68
  article-title: WNT signaling in disease.
  publication-title: Cells
  doi: 10.3390/cells8080826
– volume: 22
  start-page: 21
  year: 2011
  ident: B103
  article-title: Macrophages in renal disease.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2010030269
– volume: 17
  start-page: 2964
  year: 2006
  ident: B23
  article-title: Chronic kidney disease progression.
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/ASN.2006070704
– volume: 26
  start-page: 3060
  year: 2015
  ident: B111
  article-title: JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis.
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/asn.2014070717
– volume: 26
  start-page: 3
  year: 2015
  ident: B29
  article-title: Antagonism of canonical Wnt/beta-catenin signaling: taking RAS blockade to the next level?
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2014060567
– volume: 12
  start-page: 589
  year: 2018
  ident: B86
  article-title: CD16+ macrophages mediate fibrosis in inflammatory bowel disease.
  publication-title: J. Crohn’s Colitis
  doi: 10.1093/ecco-jcc/jjx185
– volume: 1
  start-page: 138
  year: 2015
  ident: B66
  article-title: Macrophage phenotype in kidney injury and repair.
  publication-title: Kidney Dis.
  doi: 10.1159/000431214
– volume: 10
  year: 2020
  ident: B69
  article-title: Emerging roles of Wnt ligands in human colorectal cancer.
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.01341
– volume: 6
  start-page: 505
  year: 2011
  ident: B95
  article-title: Monocyte angiotensin converting enzyme expression may be associated with atherosclerosis rather than arteriosclerosis in hemodialysis patients.
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/cjn.06870810
– volume: 86
  start-page: 327
  year: 2014
  ident: B110
  article-title: The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2014.64
– volume: 80
  start-page: 915
  year: 2011
  ident: B2
  article-title: Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.217
– volume: 65
  start-page: 116
  year: 2004
  ident: B15
  article-title: Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury.
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2004.00367.x
– volume: 21
  start-page: 933
  year: 2010
  ident: B10
  article-title: IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2009060592
– volume: 10
  start-page: 625
  year: 2014
  ident: B84
  article-title: Dendritic cells and macrophages in the kidney: a spectrum of good and evil.
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2014.170
– volume: 25
  start-page: 4362
  year: 2019
  ident: B116
  article-title: miR-30c-5p reduces renal ischemia-reperfusion involving macrophage.
  publication-title: Med. Sci. Monitor Int. Med. J. Exp. Clin. Res.
  doi: 10.12659/msm.914579
– volume: 10
  year: 2015
  ident: B47
  article-title: The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143961
– volume: 34
  start-page: 1657
  year: 2019
  ident: B112
  article-title: Fate alteration of bone marrow-derived macrophages ameliorates kidney fibrosis in murine model of unilateral ureteral obstruction.
  publication-title: Nephrol. Dialy. Trans. Offi. Publi. Eur. Dialy. Trans. Assoc. Eur. Renal Assoc.
  doi: 10.1093/ndt/gfy381
– volume: 287
  start-page: 7026
  year: 2012
  ident: B121
  article-title: Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP).
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m111.276311
– volume: 90
  start-page: 1406
  year: 2010
  ident: B14
  article-title: Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway.
  publication-title: Laboratory Investigat.
  doi: 10.1038/labinvest.2010.133
– volume: 25
  start-page: 1008
  year: 2005
  ident: B17
  article-title: Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro.
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.atv.0000162173.27682.7b
– volume: 15
  start-page: 144
  year: 2019
  ident: B93
  article-title: Macrophages: versatile players in renal inflammation and fibrosis.
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0110-2
– volume: 80
  start-page: 1159
  year: 2011
  ident: B99
  article-title: Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.255
– volume: 307
  start-page: F1023
  year: 2014
  ident: B63
  article-title: Mammalian target of rapamycin complex 1 activation in podocytes promotes cellular crescent formation.
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00018.2014
– volume: 18
  start-page: 81
  year: 2013
  ident: B1
  article-title: Mononuclear phagocyte system in kidney disease and repair.
  publication-title: Nephrology
  doi: 10.1111/nep.12014
– volume: 72
  start-page: 290
  year: 2007
  ident: B105
  article-title: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease.
  publication-title: Kidney Int.
  doi: 10.1038/sj.ki.5002275
– volume: 4
  start-page: 84
  year: 2014
  ident: B89
  article-title: Wnt/β-catenin signaling and kidney fibrosis.
  publication-title: Kidney Int. Suppl.
  doi: 10.1038/kisup.2014.16
– volume: 6
  year: 2017
  ident: B72
  article-title: Loss of macrophage Wnt secretion improves remodeling and function after myocardial infarction in mice.
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.116.004387
– volume: 22
  start-page: 1229
  year: 2011
  ident: B8
  article-title: IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2010070693
– volume: 2014
  start-page: 2
  year: 2011
  ident: B24
  article-title: Overview of the cellular and molecular basis of kidney fibrosis.
  publication-title: Kidney Int. Suppl.
  doi: 10.1038/kisup.2014.2
– volume: 21
  start-page: 212
  year: 2010
  ident: B59
  article-title: New insights into epithelial-mesenchymal transition in kidney fibrosis.
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/asn.2008121226
– volume: 12
  start-page: 325
  ident: B65
  article-title: TGF-β: the master regulator of fibrosis.
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2016.48
– volume: 106
  start-page: 345
  year: 2019
  ident: B101
  article-title: M2b macrophage polarization and its roles in diseases.
  publication-title: J. Leukocyte Biol.
  doi: 10.1002/jlb.3ru1018-378rr
– volume: 21
  start-page: 480
  year: 1993
  ident: B30
  article-title: The role of macrophages in diabetic glomerulosclerosis.
  publication-title: Am. J. Kidney Dis. Offi. J. Natl. Kidney Found.
  doi: 10.1016/s0272-6386(12)80393-3
– volume: 22
  start-page: 317
  year: 2011
  ident: B52
  article-title: Distinct macrophage phenotypes contribute to kidney injury and repair.
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/asn.2009060615
– volume: 91
  start-page: 587
  year: 2017
  ident: B61
  article-title: The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.10.020
– volume: 3
  year: 2018
  ident: B16
  article-title: TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration.
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.123563
– volume: 10
  start-page: 196
  year: 2019
  ident: B40
  article-title: Myeloid-specific targeting of Notch ameliorates murine renal fibrosis via reduced infiltration and activation of bone marrow-derived macrophage.
  publication-title: Protein Cell
  doi: 10.1007/s13238-018-0527-6
– volume: 304
  start-page: F1043
  year: 2013
  ident: B33
  article-title: Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis.
  publication-title: Am. J. Physiol. Renal. Physiol.
  doi: 10.1152/ajprenal.00389.2012
– volume: 16
  year: 2018
  ident: B34
  article-title: M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis.
  publication-title: Cell Commun. Sign. CCS
– volume: 589
  start-page: 281
  year: 2021
  ident: B50
  article-title: Decoding myofibroblast origins in human kidney fibrosis.
  publication-title: Nature
  doi: 10.1038/s41586-020-2941-1
– volume: 17
  start-page: 537
  year: 1999
  ident: B71
  article-title: Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages.
  publication-title: J. Hypertens
  doi: 10.1097/00004872-199917040-00012
– volume: 29
  start-page: 182
  ident: B27
  article-title: βWnt/-catenin-promoted macrophage alternative activation contributes to kidney fibrosis.
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/asn.2017040391
– volume: 26
  start-page: 403
  year: 2018
  ident: B6
  article-title: CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development.
  publication-title: Inflammopharmacology
  doi: 10.1007/s10787-017-0317-4
– volume: 175
  start-page: 2689
  year: 2018
  ident: B102
  article-title: Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis.
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14333
– volume: 4
  start-page: 385
  year: 2003
  ident: B85
  article-title: Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1104
– volume: 186
  start-page: 1847
  year: 2016
  ident: B120
  article-title: alpha3 integrin of cell-cell contact mediates kidney fibrosis by integrin-linked kinase in proximal tubular E-cadherin deficient mice.
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2016.03.015
– volume: 8
  year: 2013
  ident: B13
  article-title: Granulin exacerbates lupus nephritis via enhancing macrophage M2b polarization.
  publication-title: PLoS One 2013
– volume: 10
  year: 2019
  ident: B19
  article-title: Macrophages as an emerging source of Wnt ligands: relevance in mucosal integrity.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02297
– volume: 78
  start-page: 363
  year: 2010
  ident: B44
  article-title: Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2010.137
– volume: 21
  year: 2020
  ident: B94
  article-title: Trichostatin a alleviates renal interstitial fibrosis through modulation of the M2 macrophage subpopulation.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21175966
– volume: 29
  start-page: 4871
  year: 2009
  ident: B42
  article-title: Comparative immunological analysis of innate immunity activation after oral administration of wheat fermented extract to teleost fish.
  publication-title: Anticancer Res.
– volume: 9
  year: 2018
  ident: B76
  article-title: Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization.
  publication-title: Stem. Cell Res. Ther.
  doi: 10.1186/s13287-018-1039-2
– volume: 81
  start-page: 969
  year: 2012
  ident: B41
  article-title: Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.446
– volume: 107
  start-page: 4194
  year: 2010
  ident: B57
  article-title: Macrophage Wnt7b is critical for kidney repair and regeneration.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0912228107
– volume: 93
  start-page: 1367
  year: 2018
  ident: B108
  article-title: Activated renal tubular Wnt/β-catenin signaling triggers renal inflammation during overload proteinuria.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2017.12.017
– volume: 16
  start-page: 121
  year: 2019
  ident: B75
  article-title: Wnt-β-catenin signalling in liver development, health and disease.
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1111/j.1365-2184.2012.00806.x
– volume: 6
  start-page: 171
  year: 2014
  ident: B58
  article-title: Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells.
  publication-title: ASN Neuro
  doi: 10.1042/AN20130045
– volume: 30
  start-page: 183
  year: 2015
  ident: B7
  article-title: Macrophages in kidney injury, inflammation, and fibrosis.
  publication-title: Physiology (Bethesda, Md)
  doi: 10.1152/physiol.00046.2014
– volume: 74
  start-page: 495
  year: 2008
  ident: B21
  article-title: The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2008.183
– volume: 293
  start-page: 19290
  ident: B26
  article-title: The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.ra118.005457
– volume: 185
  start-page: 2596
  year: 2015
  ident: B20
  article-title: Monocyte and macrophage plasticity in tissue repair and regeneration.
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2015.06.001
– volume: 277
  start-page: 44061
  year: 2002
  ident: B45
  article-title: Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m207205200
– volume: 92
  start-page: 1433
  year: 2017
  ident: B56
  article-title: The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2017.04.021
– volume: 184
  start-page: 1167
  year: 2014
  ident: B100
  article-title: Altered macrophage phenotype transition impairs skeletal muscle regeneration.
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2013.12.020
– volume: 91
  start-page: 526
  year: 2017
  ident: B39
  article-title: M1 macrophage triggered by mincle leads to a deterioration of acute kidney injury.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.11.026
– volume: 118
  start-page: 3522
  year: 2008
  ident: B83
  article-title: Macrophage diversity in renal injury and repair.
  publication-title: J. Clin. Investigat.
  doi: 10.1172/jci36150
– volume: 59
  start-page: 2612
  year: 2010
  ident: B53
  article-title: Blockade of endothelial-mesenchymal transition by a smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy.
  publication-title: Diabetes
  doi: 10.2337/db09-1631
– volume: 307
  start-page: H762
  year: 2014
  ident: B96
  article-title: BMP-7 attenuates adverse cardiac remodeling mediated through M2 macrophages in prediabetic cardiomyopathy.
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00367.2014
– volume: 330
  start-page: 97
  year: 2018
  ident: B98
  article-title: The multifaceted role of the renal mononuclear phagocyte system.
  publication-title: Cell Immunol.
  doi: 10.1016/j.cellimm.2018.04.009
– volume: 33
  start-page: 289
  year: 2020
  ident: B122
  article-title: The regulation effect of WNT-RAS signaling in hypothalamic paraventricular nucleus on renal fibrosis.
  publication-title: J. Nephrol.
  doi: 10.1007/s40620-019-00637-8
– volume: 21
  start-page: 727
  year: 2020
  ident: B113
  article-title: Renal tubular cell binding of beta-catenin to TCF1 versus FoxO1 is associated with chronic interstitial fibrosis in transplanted kidneys.
  publication-title: Am. J. Trans.
  doi: 10.1111/ajt.16287
– volume: 144
  start-page: 151
  year: 2019
  ident: B31
  article-title: Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: an unresolved issue.
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2019.03.022
– volume: 23
  start-page: 842
  year: 2008
  ident: B48
  article-title: Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury.
  publication-title: Nephrol. Dialy. Trans. Offi. Publ. Eur. Dialy. Trans. Assoc. Eur. Renal Assoc.
  doi: 10.1093/ndt/gfm694
– volume: 22
  start-page: 1876
  year: 2011
  ident: B12
  article-title: CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis.
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/asn.2010080881
– volume: 28
  start-page: 2053
  year: 2017
  ident: B104
  article-title: Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury.
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/asn.2016050573
– volume: 35
  start-page: 1062
  year: 2015
  ident: B73
  article-title: Regulation of renal fibrosis by macrophage polarization.
  publication-title: Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol.
  doi: 10.1159/000373932
– volume: 30
  start-page: 1007
  year: 2015
  ident: B38
  article-title: Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury.
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s00467-014-3023-0
– volume: 175
  start-page: 580
  year: 2009
  ident: B119
  article-title: Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells.
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.080983
– volume: 77
  start-page: 820
  year: 2010
  ident: B114
  article-title: Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 international society of nephrology and renal pathology society system.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2010.13
– volume: 204
  start-page: 1057
  year: 2007
  ident: B3
  article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis.
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070075
– volume: 18
  year: 2019
  ident: B67
  article-title: Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction.
  publication-title: Aging Cell
  doi: 10.1111/acel.13004
– volume: 91
  start-page: 375
  year: 2017
  ident: B117
  article-title: IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury.
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.08.020
– volume: 7
  year: 2012
  ident: B11
  article-title: Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033626
– volume: 25
  start-page: 677
  year: 2004
  ident: B62
  article-title: The chemokine system in diverse forms of macrophage activation and polarization.
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2004.09.015
– volume: 304
  start-page: F948
  year: 2013
  ident: B79
  article-title: Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization.
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00580.2012
– volume: 85
  start-page: 794
  year: 2014
  ident: B9
  article-title: Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2013.341
– volume: 176
  start-page: 1256
  year: 2010
  ident: B91
  article-title: Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells.
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.090188
– volume: 15
  start-page: 599
  year: 2015
  ident: B107
  article-title: Regulation of innate immune cell function by mTOR.
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3901
– volume: 88
  start-page: 515
  year: 2015
  ident: B54
  article-title: Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis.
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.119
– volume: 19
  start-page: 2282
  year: 2008
  ident: B115
  article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/asn.2008050513
– volume: 12
  start-page: 353
  year: 2005
  ident: B22
  article-title: Progression in chronic kidney disease.
  publication-title: Adv. Chronic Kidney Dis.
  doi: 10.1053/j.ackd.2005.07.011
– volume: 99
  start-page: 1689
  year: 2019
  ident: B80
  article-title: Promotion of beta-catenin/Foxo1 signaling ameliorates renal interstitial fibrosis.
  publication-title: Lab Invest
  doi: 10.1038/s41374-019-0276-z
– volume: 48
  start-page: 119
  year: 2017
  ident: B92
  article-title: M2A and M2C macrophage subsets ameliorate inflammation and fibroproliferation in acute lung injury through interleukin 10 pathway.
  publication-title: Shock
  doi: 10.1097/shk.0000000000000820
– volume: 19
  start-page: 1047
  year: 2013
  ident: B51
  article-title: Origin and function of myofibroblasts in kidney fibrosis.
  publication-title: Nat. Med.
  doi: 10.1038/nm.3218
SSID ssj0000402001
Score 2.558685
SecondaryResourceType review_article
Snippet The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 705838
SubjectTerms fibrosis
macrophages
Physiology
signaling pathways
TGF-β
Wnt
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdR66O-iCAeCmvTbLKPYxVLUepBLPS25FVaqLti20P_vTPZbWlF9CJ7282S8M1uZr4k8w0hNxBEhIZbF0RpwgIRWxZozJVJuIYAghkhHWYj91-i3kA8DeVwo9QXngkr5YFL4FrcMGkYROkaiEgSpVpqHvNEOpO6WHPP1sHnbZApPwcjLWLtchsTWFjaGuFKAfBB3r6LGe4Vbjkir9f_U5D5_azkhvPp7pO9KmqknXK0B2TH5Yek3smBMb8v6S315zj9AnmdNMHy9LWYOlqMaF9hia4xTBozOsnp88Tmbkm7wJGL2WR2RAbdx7eHXlBVRAiMiOQ8SIEtjEKZWHDiWK1TKct0jCJwSjFAA65UjcDhMO2EFphk206NVE5biAWMCY9JLS9yd0ooB9SscgbA9NmlSkGbKDY2cYpZyxqEreDJTCUXjlUrphnQBkQ084hmiGhWItogzfUrH6VWxm-N7xHzdUOUufY3wPhZZfzsL-M3yPXKYhn8FrjXoXJXLKAnGYUxqqKHDXJSWnDdVSgEB5YIT-It226NZftJPhl76W2U35ehOPuPwZ-TXcTDnyaMLkht_rlwlxDhzPWV_5i_AM1g9jE
  priority: 102
  providerName: Directory of Open Access Journals
Title The Role of Macrophages in Kidney Fibrosis
URI https://www.ncbi.nlm.nih.gov/pubmed/34421643
https://www.proquest.com/docview/2563707293
https://pubmed.ncbi.nlm.nih.gov/PMC8378534
https://doaj.org/article/2c05c0625b094869b5b27285ec9e7b20
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBddd9lltM0-0o-gwtgh4E6RJcs-lNKVhrCRHcYCvRl9ZTWkdhun0Pz3fU92wjJCT8U3W0Lye5Le-0l6v0fIF3AiYsudj5IsZZFQjkUGY2VSbsCBYFZIj9HI41_JaCJ-3MibHbJKb9UKsN4K7TCf1GQ-O3t6WF7AhD9HxAn29tsUNwEA6vHBmWJ4DPiGvAXDpDChwbj19sPCjFiJDZqzze01N6xTIPHf5nn-f4HyH4s03CPvW1eSXja63yc7vjwgncsSYPTdkn6l4XJn2DXvkD4MB_q7mnlaTelYY96uW1hJalqU9GfhSr-kQwDOVV3UH8hkeP3nahS1aRIiKxK5iDKAENNYpg4sO6bw1Noxo5AZTmumDIcn01OwQsx4YQRG3g4yK7U3DhwEa-OPZLesSv-ZUM5Z5rS3XPEQcqo1lEmUdanXzDnWJWwlnty2HOKYymKWA5ZAieZBojlKNG8k2iX9dZX7hkDjpcLfUebrgsh9HV5U8795O5Vybpm0DHCbAWiaJpmRBvqbSm8zD78LnTxdaSyHuYIHILr01SO0JJNYIVV63CWfGg2um4qF4AAd4Yva0O1GXza_lMVt4ONGTn4Zi8PX6PwReYfyCFcMk2Oyu5g_-hNwexamF7YLemFIPwMQdgAv
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Macrophages+in+Kidney+Fibrosis&rft.jtitle=Frontiers+in+physiology&rft.au=Xiaoling+Wang&rft.au=Xiaoling+Wang&rft.au=Jianwei+Chen&rft.au=Jun+Xu&rft.date=2021-08-06&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=12&rft_id=info:doi/10.3389%2Ffphys.2021.705838&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2c05c0625b094869b5b27285ec9e7b20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon