The Role of Macrophages in Kidney Fibrosis
The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differe...
Saved in:
Published in | Frontiers in physiology Vol. 12; p. 705838 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
06.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis. |
---|---|
AbstractList | The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis. The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis.The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis. |
Author | Chen, Jianwei Xie, Jun Wang, Xiaoling Zheng, Guoping Xu, Jun Harris, David C. H. |
AuthorAffiliation | 4 Department of General Surgery, First Hospital of Shanxi Medical University , Taiyuan , China 1 Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan , China 3 Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney , NSW , Australia 2 Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine , Taiyuan , China |
AuthorAffiliation_xml | – name: 1 Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan , China – name: 3 Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney , NSW , Australia – name: 2 Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine , Taiyuan , China – name: 4 Department of General Surgery, First Hospital of Shanxi Medical University , Taiyuan , China |
Author_xml | – sequence: 1 givenname: Xiaoling surname: Wang fullname: Wang, Xiaoling – sequence: 2 givenname: Jianwei surname: Chen fullname: Chen, Jianwei – sequence: 3 givenname: Jun surname: Xu fullname: Xu, Jun – sequence: 4 givenname: Jun surname: Xie fullname: Xie, Jun – sequence: 5 givenname: David C. H. surname: Harris fullname: Harris, David C. H. – sequence: 6 givenname: Guoping surname: Zheng fullname: Zheng, Guoping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34421643$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFDEUxYNUbK39AL7IPIqw25v_mRdBitVipVAq-BaSzJ3dlNnJmswW9tub7dbS9sHkIZfknN8N97wlB2MakZD3FOacm_a0Xy-3Zc6A0bkGabh5RY6oUmIGgv0-eFIfkpNSbqEuAQyAviGHXAhGleBH5NPNEpvrNGCT-uanCzmtl26BpYlj8yN2I26b8-hzKrG8I697NxQ8eTiPya_zrzdn32eXV98uzr5czoJQcpq1SrCeS9MBlZob5VwHXoPS2jnQntXdut4IDR6FF1wYStsgHfoOQIfAj8nFntsld2vXOa5c3trkor2_SHlhXZ5iGNCyADKAYtJDK4xqvfRMMyMxtFhbQWV93rPWG7_CLuA4ZTc8gz5_GePSLtKdNVwbyUUFfHwA5PRng2Wyq1gCDoMbMW2KZVJxDZq1vEo_PO312OTfsKuA7gV1yqVk7B8lFOwuU3ufqd1laveZVo9-4QlxclNMu-_G4T_Ov8_GpVo |
CitedBy_id | crossref_primary_10_3389_fnut_2024_1438327 crossref_primary_10_3389_fimmu_2024_1469353 crossref_primary_10_3390_biomedicines10020420 crossref_primary_10_3390_life14081031 crossref_primary_10_1093_glycob_cwad062 crossref_primary_10_3390_antiox12091778 crossref_primary_10_1002_2211_5463_13568 crossref_primary_10_1002_advs_202200668 crossref_primary_10_1038_s41467_023_40086_3 crossref_primary_10_1186_s12882_023_03065_w crossref_primary_10_1038_s41419_025_07367_9 crossref_primary_10_1111_imm_13891 crossref_primary_10_3390_jcm12237349 crossref_primary_10_3390_ijms23052574 crossref_primary_10_3390_ijms241713510 crossref_primary_10_3389_fimmu_2024_1447536 crossref_primary_10_34067_KID_0000000000000152 crossref_primary_10_3390_jpm12020127 crossref_primary_10_3389_fmicb_2022_913465 crossref_primary_10_1038_s41420_024_01996_3 crossref_primary_10_1038_s41443_023_00806_1 crossref_primary_10_3389_fphar_2022_1036423 crossref_primary_10_1161_HYPERTENSIONAHA_122_19431 crossref_primary_10_3390_cells12010135 crossref_primary_10_3389_fimmu_2023_1194988 crossref_primary_10_3390_ijms25063543 crossref_primary_10_3390_antiox11071394 crossref_primary_10_3389_fmolb_2023_1215039 crossref_primary_10_3390_life12111829 crossref_primary_10_1038_s41443_024_00874_x crossref_primary_10_3390_ijms25073763 crossref_primary_10_3389_fimmu_2024_1474688 crossref_primary_10_3389_frtra_2022_988238 crossref_primary_10_1002_ctm2_1631 crossref_primary_10_1016_j_bbamcr_2023_119594 crossref_primary_10_3390_cells12101417 crossref_primary_10_1038_s41467_024_44886_z crossref_primary_10_1002_adhm_202403230 crossref_primary_10_4111_icu_20230095 crossref_primary_10_1111_sji_13349 crossref_primary_10_1177_09603271241249990 crossref_primary_10_3389_fphar_2023_1200164 crossref_primary_10_3389_fimmu_2023_1203062 crossref_primary_10_1002_nau_24896 crossref_primary_10_1038_s41467_024_51186_z crossref_primary_10_1038_s42003_023_04649_w crossref_primary_10_1007_s11033_024_09617_z crossref_primary_10_3390_ijms23148024 crossref_primary_10_1021_acs_jafc_3c06979 crossref_primary_10_3390_antiox11122461 crossref_primary_10_1093_ndt_gfac290 crossref_primary_10_1097_IMNA_D_23_00001 crossref_primary_10_1002_iid3_1249 crossref_primary_10_23876_j_krcp_22_159 crossref_primary_10_3390_ijms23031542 |
Cites_doi | 10.1038/mt.2010.100 10.1681/asn.2020060806 10.1016/j.febslet.2005.09.032 10.1016/j.ajpath.2021.03.005 10.1111/pim.12353 10.1016/j.biopha.2020.110468 10.12659/msmbr.895563 10.1681/asn.2016121362 10.1038/ki.2013.135 10.1182/blood-2005-12-5046 10.1038/cddis.2016.402 10.1016/bs.pmbts.2017.11.019 10.1186/s12860-016-0101-0 10.1681/asn.2008090930 10.1111/all.13635 10.1038/kisup.2014.7 10.1007/s00467-013-2726-y 10.1038/s41581-020-00343-w 10.1002/jcp.29987 10.1371/journal.pone.0042507 10.1016/j.biocel.2016.05.010 10.1152/ajprenal.00624.2012 10.1038/labinvest.2010.174 10.1007/s10753-014-9941-y 10.1038/s41586-021-03199-7 10.1038/labinvest.2013.3 10.1007/978-1-61779-943-3_16 10.1681/asn.2007030290 10.3390/cells8080826 10.1681/asn.2010030269 10.1681/ASN.2006070704 10.1681/asn.2014070717 10.1681/asn.2014060567 10.1093/ecco-jcc/jjx185 10.1159/000431214 10.3389/fonc.2020.01341 10.2215/cjn.06870810 10.1038/ki.2014.64 10.1038/ki.2011.217 10.1111/j.1523-1755.2004.00367.x 10.1681/asn.2009060592 10.1038/nrneph.2014.170 10.12659/msm.914579 10.1371/journal.pone.0143961 10.1093/ndt/gfy381 10.1074/jbc.m111.276311 10.1038/labinvest.2010.133 10.1161/01.atv.0000162173.27682.7b 10.1038/s41581-019-0110-2 10.1038/ki.2011.255 10.1152/ajprenal.00018.2014 10.1111/nep.12014 10.1038/sj.ki.5002275 10.1038/kisup.2014.16 10.1161/JAHA.116.004387 10.1681/asn.2010070693 10.1038/kisup.2014.2 10.1681/asn.2008121226 10.1038/nrneph.2016.48 10.1002/jlb.3ru1018-378rr 10.1016/s0272-6386(12)80393-3 10.1681/asn.2009060615 10.1016/j.kint.2016.10.020 10.1172/jci.insight.123563 10.1007/s13238-018-0527-6 10.1152/ajprenal.00389.2012 10.1038/s41586-020-2941-1 10.1097/00004872-199917040-00012 10.1681/asn.2017040391 10.1007/s10787-017-0317-4 10.1111/bph.14333 10.1038/nrm1104 10.1016/j.ajpath.2016.03.015 10.3389/fimmu.2019.02297 10.1038/ki.2010.137 10.3390/ijms21175966 10.1186/s13287-018-1039-2 10.1038/ki.2011.446 10.1073/pnas.0912228107 10.1016/j.kint.2017.12.017 10.1111/j.1365-2184.2012.00806.x 10.1042/AN20130045 10.1152/physiol.00046.2014 10.1038/ki.2008.183 10.1074/jbc.ra118.005457 10.1016/j.ajpath.2015.06.001 10.1074/jbc.m207205200 10.1016/j.kint.2017.04.021 10.1016/j.ajpath.2013.12.020 10.1016/j.kint.2016.11.026 10.1172/jci36150 10.2337/db09-1631 10.1152/ajpheart.00367.2014 10.1016/j.cellimm.2018.04.009 10.1007/s40620-019-00637-8 10.1111/ajt.16287 10.1016/j.phrs.2019.03.022 10.1093/ndt/gfm694 10.1681/asn.2010080881 10.1681/asn.2016050573 10.1159/000373932 10.1007/s00467-014-3023-0 10.2353/ajpath.2009.080983 10.1038/ki.2010.13 10.1084/jem.20070075 10.1111/acel.13004 10.1016/j.kint.2016.08.020 10.1371/journal.pone.0033626 10.1016/j.it.2004.09.015 10.1152/ajprenal.00580.2012 10.1038/ki.2013.341 10.2353/ajpath.2010.090188 10.1038/nri3901 10.1038/ki.2015.119 10.1681/asn.2008050513 10.1053/j.ackd.2005.07.011 10.1038/s41374-019-0276-z 10.1097/shk.0000000000000820 10.1038/nm.3218 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng. Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng. 2021 Wang, Chen, Xu, Xie, Harris and Zheng |
Copyright_xml | – notice: Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng. – notice: Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng. 2021 Wang, Chen, Xu, Xie, Harris and Zheng |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphys.2021.705838 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_2c05c0625b094869b5b27285ec9e7b20 PMC8378534 34421643 10_3389_fphys_2021_705838 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-9642f358d0157386aad0b70677aa07b2b2b9af8470be4b4348119c5aebd007cc3 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:24:03 EDT 2025 Thu Aug 21 13:49:25 EDT 2025 Fri Jul 11 16:52:14 EDT 2025 Thu Jan 02 22:39:40 EST 2025 Thu Apr 24 22:51:33 EDT 2025 Tue Jul 01 02:44:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TGF-β macrophages fibrosis signaling pathways Wnt |
Language | English |
License | Copyright © 2021 Wang, Chen, Xu, Xie, Harris and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-9642f358d0157386aad0b70677aa07b2b2b9af8470be4b4348119c5aebd007cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors share senior authorship This article was submitted to Renal and Epithelial Physiology, a section of the journal Frontiers in Physiology Edited by: Patrick Ming-Kuen Tang, The Chinese University of Hong Kong, China Reviewed by: David Michael Dolivo, Northwestern University Feinberg School of Medicine, United States; Yanlin Wang, University of Connecticut School of Medicine, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2021.705838 |
PMID | 34421643 |
PQID | 2563707293 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c05c0625b094869b5b27285ec9e7b20 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378534 proquest_miscellaneous_2563707293 pubmed_primary_34421643 crossref_primary_10_3389_fphys_2021_705838 crossref_citationtrail_10_3389_fphys_2021_705838 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-06 |
PublicationDateYYYYMMDD | 2021-08-06 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Huen (B36) 2015; 30 Bianchini (B4) 2019; 74 Huen (B37) 2013; 305 Ulrich (B95) 2011; 6 Pan (B73) 2015; 35 Zeisberg (B115) 2008; 19 Liang (B56) 2017; 92 Tan (B89) 2014; 4 Nikolic-Paterson (B70) 2014; 4 Eitner (B25) 2008; 19 Liu (B59) 2010; 21 Rao (B80) 2019; 99 Tang (B93) 2019; 15 Zhou (B121) 2012; 287 Furuta (B30) 1993; 21 Lin (B57) 2010; 107 Wang (B101) 2019; 106 Eddy (B24) 2011; 2014 Alikhan (B1) 2013; 18 Kalish (B43) 2015; 21 Yang (B113) 2020; 21 Wu (B109) 2020; 130 Ferenbach (B28) 2010; 18 Kunugi (B49) 2011; 91 Cao (B8) 2011; 22 Meng (B65); 12 Kuppe (B50) 2021; 589 Inoue (B39) 2017; 91 Weichhart (B107) 2015; 15 Eddy (B22) 2005; 12 Tan (B90) 2013; 93 LeBleu (B51) 2013; 19 Cicha (B17) 2005; 25 Kim (B47) 2015; 10 Han (B33) 2013; 304 Cao (B9) 2014; 85 Nie (B69) 2020; 10 Hou (B34) 2018; 16 Khazen (B46) 2005; 579 Wong (B108) 2018; 93 Yang (B112) 2019; 34 Zheng (B119) 2009; 175 Jung (B41) 2012; 81 Wang (B102) 2018; 175 Wang (B103) 2011; 22 Feng (B26); 293 Cao (B7) 2015; 30 Chen (B12) 2011; 22 Ko (B48) 2008; 23 Wang (B106) 2018; 153 Blumenthal (B5) 2006; 108 Venturin (B97) 2016; 38 Wang (B105) 2007; 72 Tan (B91) 2010; 176 Lisi (B58) 2014; 6 Chung (B16) 2018; 3 Anders (B2) 2011; 80 Mao (B63) 2014; 307 Tseng (B94) 2020; 21 Ching (B14) 2010; 90 Ratnayake (B82) 2021; 591 Arnold (B3) 2007; 204 Zheng (B120) 2016; 186 Li (B53) 2010; 59 Mantovani (B62) 2004; 25 Philipp (B76) 2018; 9 Wang (B104) 2017; 28 Lee (B52) 2011; 22 Xia (B110) 2014; 86 Yan (B111) 2015; 26 Perugorria (B75) 2019; 16 Rogers (B84) 2014; 10 Zhang (B117) 2017; 91 Shen (B88) 2014; 37 Schunk (B87) 2021; 17 Das (B20) 2015; 185 Meng (B64); 7 Zhou (B122) 2020; 33 Jiang (B40) 2019; 10 Cosin-Roger (B19) 2019; 10 Kang (B44) 2010; 78 Lv (B61) 2017; 91 Salvador (B86) 2018; 12 Palevski (B72) 2017; 6 Floege (B29) 2015; 26 Chen (B11) 2012; 7 Li (B54) 2015; 88 Kadowaki (B42) 2009; 29 Meng (B66) 2015; 1 Pang (B74) 2016; 76 Zhao (B118) 2016; 17 Eardley (B21) 2008; 74 Guo (B32) 2020; 236 Miao (B67) 2019; 18 Yu (B114) 2010; 77 Okamura (B71) 1999; 17 Qiao (B78) 2018; 29 Ikezumi (B38) 2015; 30 Guo (B31) 2019; 144 Wang (B100) 2014; 184 Braga (B6) 2018; 26 Karsdal (B45) 2002; 277 Pilling (B77) 2012; 904 Wang (B99) 2011; 80 Rao (B81) 2021; 191 Conway (B18) 2020; 31 Ng (B68) 2019; 8 Cao (B10) 2010; 21 Zhang (B116) 2019; 25 Li (B55) 2009; 20 Urbina (B96) 2014; 307 Feng (B27); 29 Ranganathan (B79) 2013; 304 Eddy (B23) 2006; 17 Lu (B60) 2013; 84 Ricardo (B83) 2008; 118 Chow (B15) 2004; 65 Viehmann (B98) 2018; 330 Tang (B92) 2017; 48 Rosenberger (B85) 2003; 4 Chen (B13) 2013; 8 Huang (B35) 2012; 7 |
References_xml | – volume: 18 start-page: 1706 year: 2010 ident: B28 article-title: Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury. publication-title: Mol. Ther. doi: 10.1038/mt.2010.100 – volume: 31 start-page: 2833 year: 2020 ident: B18 article-title: Kidney single-cell atlas reveals myeloid heterogeneity in progression and regression of kidney disease. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2020060806 – volume: 579 start-page: 5631 year: 2005 ident: B46 article-title: Expression of macrophage-selective markers in human and rodent adipocytes. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.09.032 – volume: 191 start-page: 993 year: 2021 ident: B81 article-title: Promotion of β-catenin/Foxo signaling mediates epithelial repair in kidney injury. publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2021.03.005 – volume: 38 start-page: 698 year: 2016 ident: B97 article-title: M1 polarization and the effect of PGE on TNF-α production by lymph node cells from dogs with visceral leishmaniasis. publication-title: Parasite Immunol. doi: 10.1111/pim.12353 – volume: 130 year: 2020 ident: B109 article-title: Fibrinogen-like protein 2 deficiency aggravates renal fibrosis by facilitating macrophage polarization. publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110468 – volume: 21 start-page: 226 year: 2015 ident: B43 article-title: Macrophages reprogrammed in vitro towards the M1 phenotype and activated with LPS extend lifespan of mice with ehrlich ascites carcinoma. publication-title: Med. Sci. Monitor Basic Res. doi: 10.12659/msmbr.895563 – volume: 29 start-page: 557 year: 2018 ident: B78 article-title: Redirecting TGF-beta Signaling through the beta-catenin/foxo complex prevents kidney fibrosis. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2016121362 – volume: 84 start-page: 745 year: 2013 ident: B60 article-title: Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. publication-title: Kidney Int. doi: 10.1038/ki.2013.135 – volume: 108 start-page: 965 year: 2006 ident: B5 article-title: The wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. publication-title: Blood doi: 10.1182/blood-2005-12-5046 – volume: 7 ident: B64 article-title: Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.402 – volume: 153 start-page: 181 year: 2018 ident: B106 article-title: Wnt signaling in kidney development and disease. publication-title: Prog. Mol. Biol. Trans. Sci. doi: 10.1016/bs.pmbts.2017.11.019 – volume: 17 year: 2016 ident: B118 article-title: Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. publication-title: BMC Cell Biol. doi: 10.1186/s12860-016-0101-0 – volume: 20 start-page: 1907 year: 2009 ident: B55 article-title: Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2008090930 – volume: 74 start-page: 483 year: 2019 ident: B4 article-title: IgG4 drives M2a macrophages to a regulatory M2b-like phenotype: potential implication in immune tolerance. publication-title: Allergy doi: 10.1111/all.13635 – volume: 4 start-page: 34 year: 2014 ident: B70 article-title: Macrophages promote renal fibrosis through direct and indirect mechanisms. publication-title: Kidney Int. Suppl. doi: 10.1038/kisup.2014.7 – volume: 30 start-page: 199 year: 2015 ident: B36 article-title: Macrophage-mediated injury and repair after ischemic kidney injury. publication-title: Pediatr. Nephrol. doi: 10.1007/s00467-013-2726-y – volume: 17 start-page: 172 year: 2021 ident: B87 article-title: WNT–β-catenin signalling a versatile player in kidney injury and repair. publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-020-00343-w – volume: 236 start-page: 2008 year: 2020 ident: B32 article-title: miR-130b-3p regulates M1 macrophage polarization via targeting IRF. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29987 – volume: 7 year: 2012 ident: B35 article-title: Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB. publication-title: PLoS One doi: 10.1371/journal.pone.0042507 – volume: 76 start-page: 123 year: 2016 ident: B74 article-title: Autophagy links beta-catenin and smad signaling to promote epithelial-mesenchymal transition via upregulation of integrin linked kinase. publication-title: Int. J. Biochem. Cell. Biol. doi: 10.1016/j.biocel.2016.05.010 – volume: 305 start-page: F477 year: 2013 ident: B37 article-title: Macrophage-specific deletion of transforming growth factor-β1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. publication-title: Am. J. Physiol. Renal. Physiol. doi: 10.1152/ajprenal.00624.2012 – volume: 91 start-page: 170 year: 2011 ident: B49 article-title: Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. publication-title: Laboratory Investigat. doi: 10.1038/labinvest.2010.174 – volume: 37 start-page: 2076 year: 2014 ident: B88 article-title: Macrophages regulate renal fibrosis through modulating TGFβ superfamily signaling. publication-title: Inflammation doi: 10.1007/s10753-014-9941-y – volume: 591 start-page: 281 year: 2021 ident: B82 article-title: Macrophages provide a transient muscle stem cell niche via NAMPT secretion. publication-title: Nature doi: 10.1038/s41586-021-03199-7 – volume: 93 start-page: 434 year: 2013 ident: B90 article-title: Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. publication-title: Lab Invest doi: 10.1038/labinvest.2013.3 – volume: 904 start-page: 191 year: 2012 ident: B77 article-title: Differentiation of circulating monocytes into fibroblast-like cells. publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-943-3_16 – volume: 19 start-page: 281 year: 2008 ident: B25 article-title: PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2007030290 – volume: 8 year: 2019 ident: B68 article-title: WNT signaling in disease. publication-title: Cells doi: 10.3390/cells8080826 – volume: 22 start-page: 21 year: 2011 ident: B103 article-title: Macrophages in renal disease. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2010030269 – volume: 17 start-page: 2964 year: 2006 ident: B23 article-title: Chronic kidney disease progression. publication-title: J. Am. Soc. Nephrol. JASN doi: 10.1681/ASN.2006070704 – volume: 26 start-page: 3060 year: 2015 ident: B111 article-title: JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. publication-title: J. Am. Soc. Nephrol. JASN doi: 10.1681/asn.2014070717 – volume: 26 start-page: 3 year: 2015 ident: B29 article-title: Antagonism of canonical Wnt/beta-catenin signaling: taking RAS blockade to the next level? publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2014060567 – volume: 12 start-page: 589 year: 2018 ident: B86 article-title: CD16+ macrophages mediate fibrosis in inflammatory bowel disease. publication-title: J. Crohn’s Colitis doi: 10.1093/ecco-jcc/jjx185 – volume: 1 start-page: 138 year: 2015 ident: B66 article-title: Macrophage phenotype in kidney injury and repair. publication-title: Kidney Dis. doi: 10.1159/000431214 – volume: 10 year: 2020 ident: B69 article-title: Emerging roles of Wnt ligands in human colorectal cancer. publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01341 – volume: 6 start-page: 505 year: 2011 ident: B95 article-title: Monocyte angiotensin converting enzyme expression may be associated with atherosclerosis rather than arteriosclerosis in hemodialysis patients. publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/cjn.06870810 – volume: 86 start-page: 327 year: 2014 ident: B110 article-title: The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis. publication-title: Kidney Int. doi: 10.1038/ki.2014.64 – volume: 80 start-page: 915 year: 2011 ident: B2 article-title: Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. publication-title: Kidney Int. doi: 10.1038/ki.2011.217 – volume: 65 start-page: 116 year: 2004 ident: B15 article-title: Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2004.00367.x – volume: 21 start-page: 933 year: 2010 ident: B10 article-title: IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2009060592 – volume: 10 start-page: 625 year: 2014 ident: B84 article-title: Dendritic cells and macrophages in the kidney: a spectrum of good and evil. publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2014.170 – volume: 25 start-page: 4362 year: 2019 ident: B116 article-title: miR-30c-5p reduces renal ischemia-reperfusion involving macrophage. publication-title: Med. Sci. Monitor Int. Med. J. Exp. Clin. Res. doi: 10.12659/msm.914579 – volume: 10 year: 2015 ident: B47 article-title: The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. publication-title: PLoS One doi: 10.1371/journal.pone.0143961 – volume: 34 start-page: 1657 year: 2019 ident: B112 article-title: Fate alteration of bone marrow-derived macrophages ameliorates kidney fibrosis in murine model of unilateral ureteral obstruction. publication-title: Nephrol. Dialy. Trans. Offi. Publi. Eur. Dialy. Trans. Assoc. Eur. Renal Assoc. doi: 10.1093/ndt/gfy381 – volume: 287 start-page: 7026 year: 2012 ident: B121 article-title: Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). publication-title: J. Biol. Chem. doi: 10.1074/jbc.m111.276311 – volume: 90 start-page: 1406 year: 2010 ident: B14 article-title: Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. publication-title: Laboratory Investigat. doi: 10.1038/labinvest.2010.133 – volume: 25 start-page: 1008 year: 2005 ident: B17 article-title: Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro. publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.atv.0000162173.27682.7b – volume: 15 start-page: 144 year: 2019 ident: B93 article-title: Macrophages: versatile players in renal inflammation and fibrosis. publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-019-0110-2 – volume: 80 start-page: 1159 year: 2011 ident: B99 article-title: Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. publication-title: Kidney Int. doi: 10.1038/ki.2011.255 – volume: 307 start-page: F1023 year: 2014 ident: B63 article-title: Mammalian target of rapamycin complex 1 activation in podocytes promotes cellular crescent formation. publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00018.2014 – volume: 18 start-page: 81 year: 2013 ident: B1 article-title: Mononuclear phagocyte system in kidney disease and repair. publication-title: Nephrology doi: 10.1111/nep.12014 – volume: 72 start-page: 290 year: 2007 ident: B105 article-title: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. publication-title: Kidney Int. doi: 10.1038/sj.ki.5002275 – volume: 4 start-page: 84 year: 2014 ident: B89 article-title: Wnt/β-catenin signaling and kidney fibrosis. publication-title: Kidney Int. Suppl. doi: 10.1038/kisup.2014.16 – volume: 6 year: 2017 ident: B72 article-title: Loss of macrophage Wnt secretion improves remodeling and function after myocardial infarction in mice. publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.116.004387 – volume: 22 start-page: 1229 year: 2011 ident: B8 article-title: IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2010070693 – volume: 2014 start-page: 2 year: 2011 ident: B24 article-title: Overview of the cellular and molecular basis of kidney fibrosis. publication-title: Kidney Int. Suppl. doi: 10.1038/kisup.2014.2 – volume: 21 start-page: 212 year: 2010 ident: B59 article-title: New insights into epithelial-mesenchymal transition in kidney fibrosis. publication-title: J. Am. Soc. Nephrol. JASN doi: 10.1681/asn.2008121226 – volume: 12 start-page: 325 ident: B65 article-title: TGF-β: the master regulator of fibrosis. publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2016.48 – volume: 106 start-page: 345 year: 2019 ident: B101 article-title: M2b macrophage polarization and its roles in diseases. publication-title: J. Leukocyte Biol. doi: 10.1002/jlb.3ru1018-378rr – volume: 21 start-page: 480 year: 1993 ident: B30 article-title: The role of macrophages in diabetic glomerulosclerosis. publication-title: Am. J. Kidney Dis. Offi. J. Natl. Kidney Found. doi: 10.1016/s0272-6386(12)80393-3 – volume: 22 start-page: 317 year: 2011 ident: B52 article-title: Distinct macrophage phenotypes contribute to kidney injury and repair. publication-title: J. Am. Soc. Nephrol. JASN doi: 10.1681/asn.2009060615 – volume: 91 start-page: 587 year: 2017 ident: B61 article-title: The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation. publication-title: Kidney Int. doi: 10.1016/j.kint.2016.10.020 – volume: 3 year: 2018 ident: B16 article-title: TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. publication-title: JCI Insight doi: 10.1172/jci.insight.123563 – volume: 10 start-page: 196 year: 2019 ident: B40 article-title: Myeloid-specific targeting of Notch ameliorates murine renal fibrosis via reduced infiltration and activation of bone marrow-derived macrophage. publication-title: Protein Cell doi: 10.1007/s13238-018-0527-6 – volume: 304 start-page: F1043 year: 2013 ident: B33 article-title: Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. publication-title: Am. J. Physiol. Renal. Physiol. doi: 10.1152/ajprenal.00389.2012 – volume: 16 year: 2018 ident: B34 article-title: M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. publication-title: Cell Commun. Sign. CCS – volume: 589 start-page: 281 year: 2021 ident: B50 article-title: Decoding myofibroblast origins in human kidney fibrosis. publication-title: Nature doi: 10.1038/s41586-020-2941-1 – volume: 17 start-page: 537 year: 1999 ident: B71 article-title: Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages. publication-title: J. Hypertens doi: 10.1097/00004872-199917040-00012 – volume: 29 start-page: 182 ident: B27 article-title: βWnt/-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. publication-title: J. Am. Soc. Nephrol. JASN doi: 10.1681/asn.2017040391 – volume: 26 start-page: 403 year: 2018 ident: B6 article-title: CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. publication-title: Inflammopharmacology doi: 10.1007/s10787-017-0317-4 – volume: 175 start-page: 2689 year: 2018 ident: B102 article-title: Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis. publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14333 – volume: 4 start-page: 385 year: 2003 ident: B85 article-title: Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1104 – volume: 186 start-page: 1847 year: 2016 ident: B120 article-title: alpha3 integrin of cell-cell contact mediates kidney fibrosis by integrin-linked kinase in proximal tubular E-cadherin deficient mice. publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2016.03.015 – volume: 8 year: 2013 ident: B13 article-title: Granulin exacerbates lupus nephritis via enhancing macrophage M2b polarization. publication-title: PLoS One 2013 – volume: 10 year: 2019 ident: B19 article-title: Macrophages as an emerging source of Wnt ligands: relevance in mucosal integrity. publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02297 – volume: 78 start-page: 363 year: 2010 ident: B44 article-title: Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. publication-title: Kidney Int. doi: 10.1038/ki.2010.137 – volume: 21 year: 2020 ident: B94 article-title: Trichostatin a alleviates renal interstitial fibrosis through modulation of the M2 macrophage subpopulation. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21175966 – volume: 29 start-page: 4871 year: 2009 ident: B42 article-title: Comparative immunological analysis of innate immunity activation after oral administration of wheat fermented extract to teleost fish. publication-title: Anticancer Res. – volume: 9 year: 2018 ident: B76 article-title: Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. publication-title: Stem. Cell Res. Ther. doi: 10.1186/s13287-018-1039-2 – volume: 81 start-page: 969 year: 2012 ident: B41 article-title: Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. publication-title: Kidney Int. doi: 10.1038/ki.2011.446 – volume: 107 start-page: 4194 year: 2010 ident: B57 article-title: Macrophage Wnt7b is critical for kidney repair and regeneration. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0912228107 – volume: 93 start-page: 1367 year: 2018 ident: B108 article-title: Activated renal tubular Wnt/β-catenin signaling triggers renal inflammation during overload proteinuria. publication-title: Kidney Int. doi: 10.1016/j.kint.2017.12.017 – volume: 16 start-page: 121 year: 2019 ident: B75 article-title: Wnt-β-catenin signalling in liver development, health and disease. publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1111/j.1365-2184.2012.00806.x – volume: 6 start-page: 171 year: 2014 ident: B58 article-title: Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells. publication-title: ASN Neuro doi: 10.1042/AN20130045 – volume: 30 start-page: 183 year: 2015 ident: B7 article-title: Macrophages in kidney injury, inflammation, and fibrosis. publication-title: Physiology (Bethesda, Md) doi: 10.1152/physiol.00046.2014 – volume: 74 start-page: 495 year: 2008 ident: B21 article-title: The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. publication-title: Kidney Int. doi: 10.1038/ki.2008.183 – volume: 293 start-page: 19290 ident: B26 article-title: The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. publication-title: J. Biol. Chem. doi: 10.1074/jbc.ra118.005457 – volume: 185 start-page: 2596 year: 2015 ident: B20 article-title: Monocyte and macrophage plasticity in tissue repair and regeneration. publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2015.06.001 – volume: 277 start-page: 44061 year: 2002 ident: B45 article-title: Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m207205200 – volume: 92 start-page: 1433 year: 2017 ident: B56 article-title: The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. publication-title: Kidney Int. doi: 10.1016/j.kint.2017.04.021 – volume: 184 start-page: 1167 year: 2014 ident: B100 article-title: Altered macrophage phenotype transition impairs skeletal muscle regeneration. publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.12.020 – volume: 91 start-page: 526 year: 2017 ident: B39 article-title: M1 macrophage triggered by mincle leads to a deterioration of acute kidney injury. publication-title: Kidney Int. doi: 10.1016/j.kint.2016.11.026 – volume: 118 start-page: 3522 year: 2008 ident: B83 article-title: Macrophage diversity in renal injury and repair. publication-title: J. Clin. Investigat. doi: 10.1172/jci36150 – volume: 59 start-page: 2612 year: 2010 ident: B53 article-title: Blockade of endothelial-mesenchymal transition by a smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. publication-title: Diabetes doi: 10.2337/db09-1631 – volume: 307 start-page: H762 year: 2014 ident: B96 article-title: BMP-7 attenuates adverse cardiac remodeling mediated through M2 macrophages in prediabetic cardiomyopathy. publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00367.2014 – volume: 330 start-page: 97 year: 2018 ident: B98 article-title: The multifaceted role of the renal mononuclear phagocyte system. publication-title: Cell Immunol. doi: 10.1016/j.cellimm.2018.04.009 – volume: 33 start-page: 289 year: 2020 ident: B122 article-title: The regulation effect of WNT-RAS signaling in hypothalamic paraventricular nucleus on renal fibrosis. publication-title: J. Nephrol. doi: 10.1007/s40620-019-00637-8 – volume: 21 start-page: 727 year: 2020 ident: B113 article-title: Renal tubular cell binding of beta-catenin to TCF1 versus FoxO1 is associated with chronic interstitial fibrosis in transplanted kidneys. publication-title: Am. J. Trans. doi: 10.1111/ajt.16287 – volume: 144 start-page: 151 year: 2019 ident: B31 article-title: Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: an unresolved issue. publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2019.03.022 – volume: 23 start-page: 842 year: 2008 ident: B48 article-title: Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. publication-title: Nephrol. Dialy. Trans. Offi. Publ. Eur. Dialy. Trans. Assoc. Eur. Renal Assoc. doi: 10.1093/ndt/gfm694 – volume: 22 start-page: 1876 year: 2011 ident: B12 article-title: CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. publication-title: J. Am. Soc. Nephrol. JASN doi: 10.1681/asn.2010080881 – volume: 28 start-page: 2053 year: 2017 ident: B104 article-title: Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. publication-title: J. Am. Soc. Nephrol. JASN doi: 10.1681/asn.2016050573 – volume: 35 start-page: 1062 year: 2015 ident: B73 article-title: Regulation of renal fibrosis by macrophage polarization. publication-title: Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. doi: 10.1159/000373932 – volume: 30 start-page: 1007 year: 2015 ident: B38 article-title: Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury. publication-title: Pediatr. Nephrol. doi: 10.1007/s00467-014-3023-0 – volume: 175 start-page: 580 year: 2009 ident: B119 article-title: Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.080983 – volume: 77 start-page: 820 year: 2010 ident: B114 article-title: Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 international society of nephrology and renal pathology society system. publication-title: Kidney Int. doi: 10.1038/ki.2010.13 – volume: 204 start-page: 1057 year: 2007 ident: B3 article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. publication-title: J. Exp. Med. doi: 10.1084/jem.20070075 – volume: 18 year: 2019 ident: B67 article-title: Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. publication-title: Aging Cell doi: 10.1111/acel.13004 – volume: 91 start-page: 375 year: 2017 ident: B117 article-title: IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. publication-title: Kidney Int. doi: 10.1016/j.kint.2016.08.020 – volume: 7 year: 2012 ident: B11 article-title: Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. publication-title: PLoS One doi: 10.1371/journal.pone.0033626 – volume: 25 start-page: 677 year: 2004 ident: B62 article-title: The chemokine system in diverse forms of macrophage activation and polarization. publication-title: Trends Immunol. doi: 10.1016/j.it.2004.09.015 – volume: 304 start-page: F948 year: 2013 ident: B79 article-title: Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00580.2012 – volume: 85 start-page: 794 year: 2014 ident: B9 article-title: Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. publication-title: Kidney Int. doi: 10.1038/ki.2013.341 – volume: 176 start-page: 1256 year: 2010 ident: B91 article-title: Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.090188 – volume: 15 start-page: 599 year: 2015 ident: B107 article-title: Regulation of innate immune cell function by mTOR. publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3901 – volume: 88 start-page: 515 year: 2015 ident: B54 article-title: Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. publication-title: Kidney Int. doi: 10.1038/ki.2015.119 – volume: 19 start-page: 2282 year: 2008 ident: B115 article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2008050513 – volume: 12 start-page: 353 year: 2005 ident: B22 article-title: Progression in chronic kidney disease. publication-title: Adv. Chronic Kidney Dis. doi: 10.1053/j.ackd.2005.07.011 – volume: 99 start-page: 1689 year: 2019 ident: B80 article-title: Promotion of beta-catenin/Foxo1 signaling ameliorates renal interstitial fibrosis. publication-title: Lab Invest doi: 10.1038/s41374-019-0276-z – volume: 48 start-page: 119 year: 2017 ident: B92 article-title: M2A and M2C macrophage subsets ameliorate inflammation and fibroproliferation in acute lung injury through interleukin 10 pathway. publication-title: Shock doi: 10.1097/shk.0000000000000820 – volume: 19 start-page: 1047 year: 2013 ident: B51 article-title: Origin and function of myofibroblasts in kidney fibrosis. publication-title: Nat. Med. doi: 10.1038/nm.3218 |
SSID | ssj0000402001 |
Score | 2.558685 |
SecondaryResourceType | review_article |
Snippet | The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 705838 |
SubjectTerms | fibrosis macrophages Physiology signaling pathways TGF-β Wnt |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdR66O-iCAeCmvTbLKPYxVLUepBLPS25FVaqLti20P_vTPZbWlF9CJ7282S8M1uZr4k8w0hNxBEhIZbF0RpwgIRWxZozJVJuIYAghkhHWYj91-i3kA8DeVwo9QXngkr5YFL4FrcMGkYROkaiEgSpVpqHvNEOpO6WHPP1sHnbZApPwcjLWLtchsTWFjaGuFKAfBB3r6LGe4Vbjkir9f_U5D5_azkhvPp7pO9KmqknXK0B2TH5Yek3smBMb8v6S315zj9AnmdNMHy9LWYOlqMaF9hia4xTBozOsnp88Tmbkm7wJGL2WR2RAbdx7eHXlBVRAiMiOQ8SIEtjEKZWHDiWK1TKct0jCJwSjFAA65UjcDhMO2EFphk206NVE5biAWMCY9JLS9yd0ooB9SscgbA9NmlSkGbKDY2cYpZyxqEreDJTCUXjlUrphnQBkQ084hmiGhWItogzfUrH6VWxm-N7xHzdUOUufY3wPhZZfzsL-M3yPXKYhn8FrjXoXJXLKAnGYUxqqKHDXJSWnDdVSgEB5YIT-It226NZftJPhl76W2U35ehOPuPwZ-TXcTDnyaMLkht_rlwlxDhzPWV_5i_AM1g9jE priority: 102 providerName: Directory of Open Access Journals |
Title | The Role of Macrophages in Kidney Fibrosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34421643 https://www.proquest.com/docview/2563707293 https://pubmed.ncbi.nlm.nih.gov/PMC8378534 https://doaj.org/article/2c05c0625b094869b5b27285ec9e7b20 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBddd9lltM0-0o-gwtgh4E6RJcs-lNKVhrCRHcYCvRl9ZTWkdhun0Pz3fU92wjJCT8U3W0Lye5Le-0l6v0fIF3AiYsudj5IsZZFQjkUGY2VSbsCBYFZIj9HI41_JaCJ-3MibHbJKb9UKsN4K7TCf1GQ-O3t6WF7AhD9HxAn29tsUNwEA6vHBmWJ4DPiGvAXDpDChwbj19sPCjFiJDZqzze01N6xTIPHf5nn-f4HyH4s03CPvW1eSXja63yc7vjwgncsSYPTdkn6l4XJn2DXvkD4MB_q7mnlaTelYY96uW1hJalqU9GfhSr-kQwDOVV3UH8hkeP3nahS1aRIiKxK5iDKAENNYpg4sO6bw1Noxo5AZTmumDIcn01OwQsx4YQRG3g4yK7U3DhwEa-OPZLesSv-ZUM5Z5rS3XPEQcqo1lEmUdanXzDnWJWwlnty2HOKYymKWA5ZAieZBojlKNG8k2iX9dZX7hkDjpcLfUebrgsh9HV5U8795O5Vybpm0DHCbAWiaJpmRBvqbSm8zD78LnTxdaSyHuYIHILr01SO0JJNYIVV63CWfGg2um4qF4AAd4Yva0O1GXza_lMVt4ONGTn4Zi8PX6PwReYfyCFcMk2Oyu5g_-hNwexamF7YLemFIPwMQdgAv |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Macrophages+in+Kidney+Fibrosis&rft.jtitle=Frontiers+in+physiology&rft.au=Xiaoling+Wang&rft.au=Xiaoling+Wang&rft.au=Jianwei+Chen&rft.au=Jun+Xu&rft.date=2021-08-06&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=12&rft_id=info:doi/10.3389%2Ffphys.2021.705838&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2c05c0625b094869b5b27285ec9e7b20 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |