Selection of pretreatment method and mannanase enzyme to improve the functionality of palm kernel cake

Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the micr...

Full description

Saved in:
Bibliographic Details
Published inJournal of bioscience and bioengineering Vol. 134; no. 4; pp. 301 - 306
Main Authors Sathitkowitchai, Witida, Ayimbila, Francis, Nitisinprasert, Sunee, Keawsompong, Suttipun
Format Journal Article
LanguageEnglish
Published 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost.Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost.
AbstractList Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost.Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost.
Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30–35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost.
Author Sathitkowitchai, Witida
Nitisinprasert, Sunee
Ayimbila, Francis
Keawsompong, Suttipun
Author_xml – sequence: 1
  givenname: Witida
  orcidid: 0000-0001-8540-2540
  surname: Sathitkowitchai
  fullname: Sathitkowitchai, Witida
– sequence: 2
  givenname: Francis
  orcidid: 0000-0002-4755-9093
  surname: Ayimbila
  fullname: Ayimbila, Francis
– sequence: 3
  givenname: Sunee
  surname: Nitisinprasert
  fullname: Nitisinprasert, Sunee
– sequence: 4
  givenname: Suttipun
  orcidid: 0000-0002-6836-4578
  surname: Keawsompong
  fullname: Keawsompong, Suttipun
BookMark eNqNUbtOxDAQtBBIPP-AwiVNgtfx2TEdQrwkJAqgtnz2RuRI7MP2IR1fT46jokBUOxrNzO5qDsluiAEJOQVWAwN5vqgX8z5mV3PGec1kPZE75AAaoSohOOxucKsrULzZJ4c5LxgDxRQckO4JB3Slj4HGji4TloS2jBgKHbG8Rk9t8HS0IdhgM1IMn-sRaYm0H5cpfkzwFWm3Ct8ZdujL-jvIDiN9wxRwoM6-4THZ6-yQ8eRnHpGXm-vnq7vq4fH2_uryoXJCzkqluUf0845ZqbwSaL3XAqTmc9CtAD9jTHqpJOcOvGqktOC09qyB1jcMZs0ROdvmTre9rzAXM_bZ4TDYgHGVDVfQ8lYLwf4hZVyraUk7SS-2Updizgk74_piNw-XZPvBADObHszCbHswmx4Mk2YiJ7P4ZV6mfrRp_bftCyqckc0
CitedBy_id crossref_primary_10_1080_00032719_2023_2266070
crossref_primary_10_3390_antiox13101253
crossref_primary_10_1007_s11274_024_03985_1
crossref_primary_10_3390_ani15020116
Cites_doi 10.1134/S0006297921140121
10.1016/j.biortech.2018.01.138
10.3389/fbioe.2020.598630
10.1007/s13205-018-1433-6
10.1002/jsfa.11358
10.1016/j.biortech.2016.01.123
10.1007/s11274-007-9627-9
10.1016/j.enzmictec.2016.03.005
10.1016/j.biortech.2015.08.126
10.1016/0003-2697(76)90527-3
10.1111/jwas.12751
10.1021/ac60147a030
10.3168/jds.S0022-0302(63)89008-6
10.1016/0031-9422(92)90017-K
10.1007/s13205-015-0279-4
10.1016/j.enzmictec.2009.10.012
10.1016/j.biortech.2015.06.114
10.1007/s13205-018-1362-4
10.1016/j.biombioe.2020.105901
10.1021/ac60111a017
10.3390/ani11020338
10.1007/s12010-009-8814-6
10.1186/1754-6834-2-14
10.1080/07388550701775919
10.1186/2193-1801-3-430
10.1016/S0958-1669(02)00328-2
ContentType Journal Article
Copyright Copyright © 2022 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2022 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jbiosc.2022.06.016
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-4421
EndPage 306
ExternalDocumentID 10_1016_j_jbiosc_2022_06_016
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
2WC
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAAJQ
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CJTIS
CS3
D-I
DU5
E3Z
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSH
SSI
SSU
SSZ
T5K
TKC
TR2
UNMZH
Y6R
~G-
~KM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c465t-92deedbf0a67d74eadd941692b19841d5006d67622c1d7366a1c99d0318d30153
ISSN 1389-1723
1347-4421
IngestDate Fri Jul 11 06:28:18 EDT 2025
Tue Aug 05 09:55:36 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Tue Jul 01 02:45:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-92deedbf0a67d74eadd941692b19841d5006d67622c1d7366a1c99d0318d30153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8540-2540
0000-0002-4755-9093
0000-0002-6836-4578
PQID 2702977368
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2718289440
proquest_miscellaneous_2702977368
crossref_citationtrail_10_1016_j_jbiosc_2022_06_016
crossref_primary_10_1016_j_jbiosc_2022_06_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-00
PublicationDecade 2020
PublicationTitle Journal of bioscience and bioengineering
PublicationYear 2022
References Liu (10.1016/j.jbiosc.2022.06.016_bib5) 2015; 193
Guan (10.1016/j.jbiosc.2022.06.016_bib28) 2021; 52
Medina (10.1016/j.jbiosc.2022.06.016_bib6) 2016; 199
Kirk (10.1016/j.jbiosc.2022.06.016_bib11) 2002; 13
Galbe (10.1016/j.jbiosc.2022.06.016_bib35) 2007
Maurya (10.1016/j.jbiosc.2022.06.016_bib26) 2015; 5
Yue (10.1016/j.jbiosc.2022.06.016_bib7) 2021; 343
Sathitkowitchai (10.1016/j.jbiosc.2022.06.016_bib12) 2018; 8
Piwpankaew (10.1016/j.jbiosc.2022.06.016_bib32) 2014; 3
Sinitsyn (10.1016/j.jbiosc.2022.06.016_bib2) 2021; 86
Ng (10.1016/j.jbiosc.2022.06.016_bib27) 2012; 19
Daud (10.1016/j.jbiosc.2022.06.016_bib34) 1992; 31
(10.1016/j.jbiosc.2022.06.016_bib18) 2005
Alimon (10.1016/j.jbiosc.2022.06.016_bib24) 2005
Jørgensen (10.1016/j.jbiosc.2022.06.016_bib33) 2010; 161
Nadaroglu (10.1016/j.jbiosc.2022.06.016_bib10) 2021
Li (10.1016/j.jbiosc.2022.06.016_bib14) 2018; 256
Dubois (10.1016/j.jbiosc.2022.06.016_bib21) 1956; 28
Dawood (10.1016/j.jbiosc.2022.06.016_bib8) 2020; 8
Ng (10.1016/j.jbiosc.2022.06.016_bib13) 2004; 41
Phothichitto (10.1016/j.jbiosc.2022.06.016_bib30) 2006; 40
Yang (10.1016/j.jbiosc.2022.06.016_bib25) 2016; 207
Miller (10.1016/j.jbiosc.2022.06.016_bib16) 1959; 31
Titapoka (10.1016/j.jbiosc.2022.06.016_bib29) 2008; 24
Walsh (10.1016/j.jbiosc.2022.06.016_bib36) 2007
Azizi (10.1016/j.jbiosc.2022.06.016_bib4) 2021; 11
Klevenhusen (10.1016/j.jbiosc.2022.06.016_bib1) 2021; 101
Akhlisah (10.1016/j.jbiosc.2022.06.016_bib15) 2021; 144
Cerveró (10.1016/j.jbiosc.2022.06.016_bib3) 2010; 46
Kovacs (10.1016/j.jbiosc.2022.06.016_bib17) 2009; 2
Pongsapipatana (10.1016/j.jbiosc.2022.06.016_bib31) 2016; 89
Van Soest (10.1016/j.jbiosc.2022.06.016_bib20) 1963; 46
Bradford (10.1016/j.jbiosc.2022.06.016_bib22) 1976; 72
Dhawan (10.1016/j.jbiosc.2022.06.016_bib9) 2007; 27
(10.1016/j.jbiosc.2022.06.016_bib19) 1999
Bello (10.1016/j.jbiosc.2022.06.016_bib23) 2018; 8
References_xml – volume: 86
  start-page: S166
  year: 2021
  ident: 10.1016/j.jbiosc.2022.06.016_bib2
  article-title: Bioconversion of renewable plant biomass. Second-generation biofuels: raw materials, biomass pretreatment, enzymes, processes, and cost analysis
  publication-title: Biochemistry (Moscow)
  doi: 10.1134/S0006297921140121
– year: 2007
  ident: 10.1016/j.jbiosc.2022.06.016_bib36
– volume: 256
  start-page: 30
  year: 2018
  ident: 10.1016/j.jbiosc.2022.06.016_bib14
  article-title: High-level expression of an engineered β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.01.138
– volume: 8
  year: 2020
  ident: 10.1016/j.jbiosc.2022.06.016_bib8
  article-title: Applications of microbial β-mannanases
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.598630
– volume: 8
  start-page: 407
  year: 2018
  ident: 10.1016/j.jbiosc.2022.06.016_bib12
  article-title: Improving palm kernel cake nutrition using enzymatic hydrolysis optimized by Taguchi method
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1433-6
– volume: 101
  start-page: 5737
  year: 2021
  ident: 10.1016/j.jbiosc.2022.06.016_bib1
  article-title: A review on the potentials of using feeds rich in water-soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.11358
– volume: 207
  start-page: 361
  year: 2016
  ident: 10.1016/j.jbiosc.2022.06.016_bib25
  article-title: Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.01.123
– volume: 24
  start-page: 1425
  year: 2008
  ident: 10.1016/j.jbiosc.2022.06.016_bib29
  article-title: Selection and characterization of mannanase-producing bacteria useful for the formation of prebiotic manno-oligosaccharides from copra meal
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-007-9627-9
– volume: 89
  start-page: 39
  year: 2016
  ident: 10.1016/j.jbiosc.2022.06.016_bib31
  article-title: Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2016.03.005
– volume: 199
  start-page: 173
  year: 2016
  ident: 10.1016/j.jbiosc.2022.06.016_bib6
  article-title: Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: a biorefinery approach
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.126
– volume: 41
  start-page: 19
  year: 2004
  ident: 10.1016/j.jbiosc.2022.06.016_bib13
  article-title: Researching the use of palm kernel cake in aquaculture feeds
  publication-title: Palm Oil Dev.
– volume: 72
  start-page: 248
  year: 1976
  ident: 10.1016/j.jbiosc.2022.06.016_bib22
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 52
  start-page: 805
  year: 2021
  ident: 10.1016/j.jbiosc.2022.06.016_bib28
  article-title: Effects of nonstarch polysaccharide hydrolase of plant protein-based diets on growth, nutrient digestibility, and protease/amylase activities of Yellow River carp, Cyprinus carpio
  publication-title: J. World Aquac. Soc.
  doi: 10.1111/jwas.12751
– volume: 19
  start-page: 721
  year: 2012
  ident: 10.1016/j.jbiosc.2022.06.016_bib27
  article-title: Enzymatic preparation of palm kernel expeller protein hydrolysate (PKEPH)
  publication-title: Int. Food Res. J. (Malaysia)
– year: 2007
  ident: 10.1016/j.jbiosc.2022.06.016_bib35
– volume: 31
  start-page: 426
  year: 1959
  ident: 10.1016/j.jbiosc.2022.06.016_bib16
  article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar
  publication-title: Anal. Chem.
  doi: 10.1021/ac60147a030
– volume: 46
  start-page: 204
  year: 1963
  ident: 10.1016/j.jbiosc.2022.06.016_bib20
  article-title: Ruminant fat metabolism with particular reference to factors affecting low milk fat and feed efficiency. A review
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(63)89008-6
– volume: 31
  start-page: 463
  year: 1992
  ident: 10.1016/j.jbiosc.2022.06.016_bib34
  article-title: Mannan of oil palm kernel
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(92)90017-K
– volume: 40
  start-page: 26
  issue: Suppl.
  year: 2006
  ident: 10.1016/j.jbiosc.2022.06.016_bib30
  article-title: Isolation screening and identification of mannanase producing microorganisms
  publication-title: Kasetsart J. (Nat. Sci.)
– year: 2005
  ident: 10.1016/j.jbiosc.2022.06.016_bib24
– volume: 5
  start-page: 597
  year: 2015
  ident: 10.1016/j.jbiosc.2022.06.016_bib26
  article-title: An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol
  publication-title: 3 Biotech
  doi: 10.1007/s13205-015-0279-4
– volume: 46
  start-page: 177
  year: 2010
  ident: 10.1016/j.jbiosc.2022.06.016_bib3
  article-title: Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2009.10.012
– volume: 193
  start-page: 345
  year: 2015
  ident: 10.1016/j.jbiosc.2022.06.016_bib5
  article-title: Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.06.114
– volume: 8
  start-page: 346
  year: 2018
  ident: 10.1016/j.jbiosc.2022.06.016_bib23
  article-title: Evaluation of the effect of soluble polysaccharides of palm kernel cake as a potential prebiotic on the growth of probiotics
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1362-4
– volume: 144
  year: 2021
  ident: 10.1016/j.jbiosc.2022.06.016_bib15
  article-title: Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2020.105901
– volume: 28
  start-page: 350
  year: 1956
  ident: 10.1016/j.jbiosc.2022.06.016_bib21
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal. Chem.
  doi: 10.1021/ac60111a017
– volume: 11
  start-page: 338
  year: 2021
  ident: 10.1016/j.jbiosc.2022.06.016_bib4
  article-title: Is palm kernel cake a suitable alternative feed ingredient for poultry?
  publication-title: Animals
  doi: 10.3390/ani11020338
– start-page: 67
  year: 2021
  ident: 10.1016/j.jbiosc.2022.06.016_bib10
  article-title: Microbial extremozymes: novel sources and industrial applications
– volume: 161
  start-page: 318
  year: 2010
  ident: 10.1016/j.jbiosc.2022.06.016_bib33
  article-title: Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8814-6
– volume: 2
  year: 2009
  ident: 10.1016/j.jbiosc.2022.06.016_bib17
  article-title: Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-2-14
– volume: 343
  year: 2021
  ident: 10.1016/j.jbiosc.2022.06.016_bib7
  article-title: Hydrothermal pretreatment for the production of oligosaccharides: a review
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 197
  year: 2007
  ident: 10.1016/j.jbiosc.2022.06.016_bib9
  article-title: Microbial mannanases: an overview of production and applications
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388550701775919
– year: 2005
  ident: 10.1016/j.jbiosc.2022.06.016_bib18
– volume: 3
  start-page: 430
  year: 2014
  ident: 10.1016/j.jbiosc.2022.06.016_bib32
  article-title: Cloning, secretory expression and characterization of recombinant β-mannanase from Bacillus circulans NT 6.7
  publication-title: Springerplus
  doi: 10.1186/2193-1801-3-430
– volume: 13
  start-page: 345
  year: 2002
  ident: 10.1016/j.jbiosc.2022.06.016_bib11
  article-title: Industrial enzyme applications
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(02)00328-2
– year: 1999
  ident: 10.1016/j.jbiosc.2022.06.016_bib19
SSID ssj0017071
Score 2.3801813
Snippet Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows...
Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30–35% β-mannan, which is indigestible, slows...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 301
SubjectTerms amylases
Bacillus circulans
beta-mannosidase
byproducts
Escherichia
feed conversion
hemicellulose
hydrolysis
lignin
nutritive value
palm kernel cake
palm kernel oil
small intestine
steam
Title Selection of pretreatment method and mannanase enzyme to improve the functionality of palm kernel cake
URI https://www.proquest.com/docview/2702977368
https://www.proquest.com/docview/2718289440
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZy2AvY1fW3dBgb8EhthXZfgyjpaxdBktC82ZkSwblIofUZqS_Yz94Rxc7CQ1btxeTCEcKOh_nfDo6F4Q-54LSQID2K-AE5JGAx14sIuJx5nOeJQMRmVyYbyN6OSVfZ4NZp_NrL2qprrJefnc0r-R_pApjIFedJfsPkm0nhQH4DPKFJ0gYng-S8dg0sXGUT0cOtlHjtjG0uRlYMaWYAmPVFepuuzKtMqRxJQjDOrVlsw5BF52xZstVdyE2Siy7OVscxgrt-GsmyyYnSC8DX8WutmHruDHBjYvypwR02M7XN7KSOzfAcCtXmVyyhkTnsiX5I11uSar1ht26xKJxrYTYmQh94btau5jicV1Vcl2rfTcGnICbgLhG84Yk8gix6dI9cWSsUdfO-Sn3nRFG-YZ2vntGwfon5r252ZieXt3UbPWP1OAefU8vptfX6eR8NnmETgM4fID2PB1e_bi5am-nor47yLu_16RkmrjB-6scUp5Di29ozOQZeurkh4cWTM9RR6gX6LHtSLp9iYoWUrgs8D6ksIUUBlnjFlLYQgpXJXaQwgApfAApMxFACltIYQ2pV2h6cT75cum5VhxeTuig8pKAA5nKij6jEY8IqB-eAJVPgsxPYuLzAShvTsGwBrnPo5BS5udJwrXF4CCWQfganahSiTcIRzzOtBstB7JPKPGTAmgiiYokpBGLaf8Mhc1upbmrU6_bpSzTJiBxnto9TvUepzou06dnyGt_tbZ1Wv7y_qdGECkoVH1LxpQo69tUJ2jCoSik8Z_e8bWngpD-2wfM8w492SH-PTqpNrX4AFS2yj46ZP0G8bqmyQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+pretreatment+method+and+mannanase+enzyme+to+improve+the+functionality+of+palm+kernel+cake&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Sathitkowitchai%2C+Witida&rft.au=Ayimbila%2C+Francis&rft.au=Nitisinprasert%2C+Sunee&rft.au=Keawsompong%2C+Suttipun&rft.date=2022-10-01&rft.issn=1347-4421&rft.eissn=1347-4421&rft.volume=134&rft.issue=4&rft.spage=301&rft_id=info:doi/10.1016%2Fj.jbiosc.2022.06.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon