Selection of pretreatment method and mannanase enzyme to improve the functionality of palm kernel cake
Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the micr...
Saved in:
Published in | Journal of bioscience and bioengineering Vol. 134; no. 4; pp. 301 - 306 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost.Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost. |
---|---|
AbstractList | Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost.Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost. Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30–35% β-mannan, which is indigestible, slows growth, and reduces feed efficiency. PKC can be improved by mannanase hydrolysis, but the effectiveness of mannanase is dependent on the microbial source. Thus, the effect of steam pretreatment and bacterial mannanases on PKC quality was investigated. PKC was pretreated by steaming and hydrolyzed in the small intestine by various mannanases. The contents of reducing sugar, total sugar, and protein release were measured. Steamed PKC had a significant increase in protein (16.95 ± 0.14 to 20.98 ± 0.13%) and a substantial decrease in hemicellulose (29.52 ± 0.44 to 3.46 ± 0.88%) and lignin (8.94 ± 0.28 to 1.40 ± 0.22%). Mannanases from Escherichia coli-KMAN-3 and E. coli-Man6.7 recorded the highest activities, followed by commercial mannanase, Bacillus circulans NT6.7 and B. amyloliquefaciens NT6.3 mannanases, orderly. B. circulans NT6.7 and B. amyloliquefaciens NT6.3 had multi-activities that include glucanase (3.10 ± 0.04% and 2.47 ± 0.02%) and amylase (1.74 ± 0.03% and 1.38 ± 0.04%), respectively. B. amyloliquefaciens NT6.3 mannanase hydrolyzed steamed PKC to release more reducing sugar, total sugar, and protein than hydrolyzed raw PKC. In raw and steamed PKC, B. amyloliquefaciens NT6.3 mannanase produced the highest reducing sugar release. As a result, steam pretreatment and mannanase hydrolysis, particularly from B. amyloliquefaciens, can be used to increase the functioning of PKC and develop new feed ingredients for monogastric animals at a reasonable cost. |
Author | Sathitkowitchai, Witida Nitisinprasert, Sunee Ayimbila, Francis Keawsompong, Suttipun |
Author_xml | – sequence: 1 givenname: Witida orcidid: 0000-0001-8540-2540 surname: Sathitkowitchai fullname: Sathitkowitchai, Witida – sequence: 2 givenname: Francis orcidid: 0000-0002-4755-9093 surname: Ayimbila fullname: Ayimbila, Francis – sequence: 3 givenname: Sunee surname: Nitisinprasert fullname: Nitisinprasert, Sunee – sequence: 4 givenname: Suttipun orcidid: 0000-0002-6836-4578 surname: Keawsompong fullname: Keawsompong, Suttipun |
BookMark | eNqNUbtOxDAQtBBIPP-AwiVNgtfx2TEdQrwkJAqgtnz2RuRI7MP2IR1fT46jokBUOxrNzO5qDsluiAEJOQVWAwN5vqgX8z5mV3PGec1kPZE75AAaoSohOOxucKsrULzZJ4c5LxgDxRQckO4JB3Slj4HGji4TloS2jBgKHbG8Rk9t8HS0IdhgM1IMn-sRaYm0H5cpfkzwFWm3Ct8ZdujL-jvIDiN9wxRwoM6-4THZ6-yQ8eRnHpGXm-vnq7vq4fH2_uryoXJCzkqluUf0845ZqbwSaL3XAqTmc9CtAD9jTHqpJOcOvGqktOC09qyB1jcMZs0ROdvmTre9rzAXM_bZ4TDYgHGVDVfQ8lYLwf4hZVyraUk7SS-2Updizgk74_piNw-XZPvBADObHszCbHswmx4Mk2YiJ7P4ZV6mfrRp_bftCyqckc0 |
CitedBy_id | crossref_primary_10_1080_00032719_2023_2266070 crossref_primary_10_3390_antiox13101253 crossref_primary_10_1007_s11274_024_03985_1 crossref_primary_10_3390_ani15020116 |
Cites_doi | 10.1134/S0006297921140121 10.1016/j.biortech.2018.01.138 10.3389/fbioe.2020.598630 10.1007/s13205-018-1433-6 10.1002/jsfa.11358 10.1016/j.biortech.2016.01.123 10.1007/s11274-007-9627-9 10.1016/j.enzmictec.2016.03.005 10.1016/j.biortech.2015.08.126 10.1016/0003-2697(76)90527-3 10.1111/jwas.12751 10.1021/ac60147a030 10.3168/jds.S0022-0302(63)89008-6 10.1016/0031-9422(92)90017-K 10.1007/s13205-015-0279-4 10.1016/j.enzmictec.2009.10.012 10.1016/j.biortech.2015.06.114 10.1007/s13205-018-1362-4 10.1016/j.biombioe.2020.105901 10.1021/ac60111a017 10.3390/ani11020338 10.1007/s12010-009-8814-6 10.1186/1754-6834-2-14 10.1080/07388550701775919 10.1186/2193-1801-3-430 10.1016/S0958-1669(02)00328-2 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jbiosc.2022.06.016 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1347-4421 |
EndPage | 306 |
ExternalDocumentID | 10_1016_j_jbiosc_2022_06_016 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 2WC 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CJTIS CS3 D-I DU5 E3Z EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSH SSI SSU SSZ T5K TKC TR2 UNMZH Y6R ~G- ~KM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c465t-92deedbf0a67d74eadd941692b19841d5006d67622c1d7366a1c99d0318d30153 |
ISSN | 1389-1723 1347-4421 |
IngestDate | Fri Jul 11 06:28:18 EDT 2025 Tue Aug 05 09:55:36 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Tue Jul 01 02:45:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-92deedbf0a67d74eadd941692b19841d5006d67622c1d7366a1c99d0318d30153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8540-2540 0000-0002-4755-9093 0000-0002-6836-4578 |
PQID | 2702977368 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2718289440 proquest_miscellaneous_2702977368 crossref_citationtrail_10_1016_j_jbiosc_2022_06_016 crossref_primary_10_1016_j_jbiosc_2022_06_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of bioscience and bioengineering |
PublicationYear | 2022 |
References | Liu (10.1016/j.jbiosc.2022.06.016_bib5) 2015; 193 Guan (10.1016/j.jbiosc.2022.06.016_bib28) 2021; 52 Medina (10.1016/j.jbiosc.2022.06.016_bib6) 2016; 199 Kirk (10.1016/j.jbiosc.2022.06.016_bib11) 2002; 13 Galbe (10.1016/j.jbiosc.2022.06.016_bib35) 2007 Maurya (10.1016/j.jbiosc.2022.06.016_bib26) 2015; 5 Yue (10.1016/j.jbiosc.2022.06.016_bib7) 2021; 343 Sathitkowitchai (10.1016/j.jbiosc.2022.06.016_bib12) 2018; 8 Piwpankaew (10.1016/j.jbiosc.2022.06.016_bib32) 2014; 3 Sinitsyn (10.1016/j.jbiosc.2022.06.016_bib2) 2021; 86 Ng (10.1016/j.jbiosc.2022.06.016_bib27) 2012; 19 Daud (10.1016/j.jbiosc.2022.06.016_bib34) 1992; 31 (10.1016/j.jbiosc.2022.06.016_bib18) 2005 Alimon (10.1016/j.jbiosc.2022.06.016_bib24) 2005 Jørgensen (10.1016/j.jbiosc.2022.06.016_bib33) 2010; 161 Nadaroglu (10.1016/j.jbiosc.2022.06.016_bib10) 2021 Li (10.1016/j.jbiosc.2022.06.016_bib14) 2018; 256 Dubois (10.1016/j.jbiosc.2022.06.016_bib21) 1956; 28 Dawood (10.1016/j.jbiosc.2022.06.016_bib8) 2020; 8 Ng (10.1016/j.jbiosc.2022.06.016_bib13) 2004; 41 Phothichitto (10.1016/j.jbiosc.2022.06.016_bib30) 2006; 40 Yang (10.1016/j.jbiosc.2022.06.016_bib25) 2016; 207 Miller (10.1016/j.jbiosc.2022.06.016_bib16) 1959; 31 Titapoka (10.1016/j.jbiosc.2022.06.016_bib29) 2008; 24 Walsh (10.1016/j.jbiosc.2022.06.016_bib36) 2007 Azizi (10.1016/j.jbiosc.2022.06.016_bib4) 2021; 11 Klevenhusen (10.1016/j.jbiosc.2022.06.016_bib1) 2021; 101 Akhlisah (10.1016/j.jbiosc.2022.06.016_bib15) 2021; 144 Cerveró (10.1016/j.jbiosc.2022.06.016_bib3) 2010; 46 Kovacs (10.1016/j.jbiosc.2022.06.016_bib17) 2009; 2 Pongsapipatana (10.1016/j.jbiosc.2022.06.016_bib31) 2016; 89 Van Soest (10.1016/j.jbiosc.2022.06.016_bib20) 1963; 46 Bradford (10.1016/j.jbiosc.2022.06.016_bib22) 1976; 72 Dhawan (10.1016/j.jbiosc.2022.06.016_bib9) 2007; 27 (10.1016/j.jbiosc.2022.06.016_bib19) 1999 Bello (10.1016/j.jbiosc.2022.06.016_bib23) 2018; 8 |
References_xml | – volume: 86 start-page: S166 year: 2021 ident: 10.1016/j.jbiosc.2022.06.016_bib2 article-title: Bioconversion of renewable plant biomass. Second-generation biofuels: raw materials, biomass pretreatment, enzymes, processes, and cost analysis publication-title: Biochemistry (Moscow) doi: 10.1134/S0006297921140121 – year: 2007 ident: 10.1016/j.jbiosc.2022.06.016_bib36 – volume: 256 start-page: 30 year: 2018 ident: 10.1016/j.jbiosc.2022.06.016_bib14 article-title: High-level expression of an engineered β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.138 – volume: 8 year: 2020 ident: 10.1016/j.jbiosc.2022.06.016_bib8 article-title: Applications of microbial β-mannanases publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.598630 – volume: 8 start-page: 407 year: 2018 ident: 10.1016/j.jbiosc.2022.06.016_bib12 article-title: Improving palm kernel cake nutrition using enzymatic hydrolysis optimized by Taguchi method publication-title: 3 Biotech doi: 10.1007/s13205-018-1433-6 – volume: 101 start-page: 5737 year: 2021 ident: 10.1016/j.jbiosc.2022.06.016_bib1 article-title: A review on the potentials of using feeds rich in water-soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.11358 – volume: 207 start-page: 361 year: 2016 ident: 10.1016/j.jbiosc.2022.06.016_bib25 article-title: Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.123 – volume: 24 start-page: 1425 year: 2008 ident: 10.1016/j.jbiosc.2022.06.016_bib29 article-title: Selection and characterization of mannanase-producing bacteria useful for the formation of prebiotic manno-oligosaccharides from copra meal publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-007-9627-9 – volume: 89 start-page: 39 year: 2016 ident: 10.1016/j.jbiosc.2022.06.016_bib31 article-title: Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2016.03.005 – volume: 199 start-page: 173 year: 2016 ident: 10.1016/j.jbiosc.2022.06.016_bib6 article-title: Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: a biorefinery approach publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.126 – volume: 41 start-page: 19 year: 2004 ident: 10.1016/j.jbiosc.2022.06.016_bib13 article-title: Researching the use of palm kernel cake in aquaculture feeds publication-title: Palm Oil Dev. – volume: 72 start-page: 248 year: 1976 ident: 10.1016/j.jbiosc.2022.06.016_bib22 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 52 start-page: 805 year: 2021 ident: 10.1016/j.jbiosc.2022.06.016_bib28 article-title: Effects of nonstarch polysaccharide hydrolase of plant protein-based diets on growth, nutrient digestibility, and protease/amylase activities of Yellow River carp, Cyprinus carpio publication-title: J. World Aquac. Soc. doi: 10.1111/jwas.12751 – volume: 19 start-page: 721 year: 2012 ident: 10.1016/j.jbiosc.2022.06.016_bib27 article-title: Enzymatic preparation of palm kernel expeller protein hydrolysate (PKEPH) publication-title: Int. Food Res. J. (Malaysia) – year: 2007 ident: 10.1016/j.jbiosc.2022.06.016_bib35 – volume: 31 start-page: 426 year: 1959 ident: 10.1016/j.jbiosc.2022.06.016_bib16 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal. Chem. doi: 10.1021/ac60147a030 – volume: 46 start-page: 204 year: 1963 ident: 10.1016/j.jbiosc.2022.06.016_bib20 article-title: Ruminant fat metabolism with particular reference to factors affecting low milk fat and feed efficiency. A review publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(63)89008-6 – volume: 31 start-page: 463 year: 1992 ident: 10.1016/j.jbiosc.2022.06.016_bib34 article-title: Mannan of oil palm kernel publication-title: Phytochemistry doi: 10.1016/0031-9422(92)90017-K – volume: 40 start-page: 26 issue: Suppl. year: 2006 ident: 10.1016/j.jbiosc.2022.06.016_bib30 article-title: Isolation screening and identification of mannanase producing microorganisms publication-title: Kasetsart J. (Nat. Sci.) – year: 2005 ident: 10.1016/j.jbiosc.2022.06.016_bib24 – volume: 5 start-page: 597 year: 2015 ident: 10.1016/j.jbiosc.2022.06.016_bib26 article-title: An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol publication-title: 3 Biotech doi: 10.1007/s13205-015-0279-4 – volume: 46 start-page: 177 year: 2010 ident: 10.1016/j.jbiosc.2022.06.016_bib3 article-title: Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2009.10.012 – volume: 193 start-page: 345 year: 2015 ident: 10.1016/j.jbiosc.2022.06.016_bib5 article-title: Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.114 – volume: 8 start-page: 346 year: 2018 ident: 10.1016/j.jbiosc.2022.06.016_bib23 article-title: Evaluation of the effect of soluble polysaccharides of palm kernel cake as a potential prebiotic on the growth of probiotics publication-title: 3 Biotech doi: 10.1007/s13205-018-1362-4 – volume: 144 year: 2021 ident: 10.1016/j.jbiosc.2022.06.016_bib15 article-title: Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2020.105901 – volume: 28 start-page: 350 year: 1956 ident: 10.1016/j.jbiosc.2022.06.016_bib21 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. doi: 10.1021/ac60111a017 – volume: 11 start-page: 338 year: 2021 ident: 10.1016/j.jbiosc.2022.06.016_bib4 article-title: Is palm kernel cake a suitable alternative feed ingredient for poultry? publication-title: Animals doi: 10.3390/ani11020338 – start-page: 67 year: 2021 ident: 10.1016/j.jbiosc.2022.06.016_bib10 article-title: Microbial extremozymes: novel sources and industrial applications – volume: 161 start-page: 318 year: 2010 ident: 10.1016/j.jbiosc.2022.06.016_bib33 article-title: Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8814-6 – volume: 2 year: 2009 ident: 10.1016/j.jbiosc.2022.06.016_bib17 article-title: Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-2-14 – volume: 343 year: 2021 ident: 10.1016/j.jbiosc.2022.06.016_bib7 article-title: Hydrothermal pretreatment for the production of oligosaccharides: a review publication-title: Bioresour. Technol. – volume: 27 start-page: 197 year: 2007 ident: 10.1016/j.jbiosc.2022.06.016_bib9 article-title: Microbial mannanases: an overview of production and applications publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388550701775919 – year: 2005 ident: 10.1016/j.jbiosc.2022.06.016_bib18 – volume: 3 start-page: 430 year: 2014 ident: 10.1016/j.jbiosc.2022.06.016_bib32 article-title: Cloning, secretory expression and characterization of recombinant β-mannanase from Bacillus circulans NT 6.7 publication-title: Springerplus doi: 10.1186/2193-1801-3-430 – volume: 13 start-page: 345 year: 2002 ident: 10.1016/j.jbiosc.2022.06.016_bib11 article-title: Industrial enzyme applications publication-title: Curr. Opin. Biotechnol. doi: 10.1016/S0958-1669(02)00328-2 – year: 1999 ident: 10.1016/j.jbiosc.2022.06.016_bib19 |
SSID | ssj0017071 |
Score | 2.3801813 |
Snippet | Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30-35% β-mannan, which is indigestible, slows... Palm kernel cake (PKC) is a by-product of palm kernel oil extraction with moderate nutritional value, containing 30–35% β-mannan, which is indigestible, slows... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 301 |
SubjectTerms | amylases Bacillus circulans beta-mannosidase byproducts Escherichia feed conversion hemicellulose hydrolysis lignin nutritive value palm kernel cake palm kernel oil small intestine steam |
Title | Selection of pretreatment method and mannanase enzyme to improve the functionality of palm kernel cake |
URI | https://www.proquest.com/docview/2702977368 https://www.proquest.com/docview/2718289440 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZy2AvY1fW3dBgb8EhthXZfgyjpaxdBktC82ZkSwblIofUZqS_Yz94Rxc7CQ1btxeTCEcKOh_nfDo6F4Q-54LSQID2K-AE5JGAx14sIuJx5nOeJQMRmVyYbyN6OSVfZ4NZp_NrL2qprrJefnc0r-R_pApjIFedJfsPkm0nhQH4DPKFJ0gYng-S8dg0sXGUT0cOtlHjtjG0uRlYMaWYAmPVFepuuzKtMqRxJQjDOrVlsw5BF52xZstVdyE2Siy7OVscxgrt-GsmyyYnSC8DX8WutmHruDHBjYvypwR02M7XN7KSOzfAcCtXmVyyhkTnsiX5I11uSar1ht26xKJxrYTYmQh94btau5jicV1Vcl2rfTcGnICbgLhG84Yk8gix6dI9cWSsUdfO-Sn3nRFG-YZ2vntGwfon5r252ZieXt3UbPWP1OAefU8vptfX6eR8NnmETgM4fID2PB1e_bi5am-nor47yLu_16RkmrjB-6scUp5Di29ozOQZeurkh4cWTM9RR6gX6LHtSLp9iYoWUrgs8D6ksIUUBlnjFlLYQgpXJXaQwgApfAApMxFACltIYQ2pV2h6cT75cum5VhxeTuig8pKAA5nKij6jEY8IqB-eAJVPgsxPYuLzAShvTsGwBrnPo5BS5udJwrXF4CCWQfganahSiTcIRzzOtBstB7JPKPGTAmgiiYokpBGLaf8Mhc1upbmrU6_bpSzTJiBxnto9TvUepzou06dnyGt_tbZ1Wv7y_qdGECkoVH1LxpQo69tUJ2jCoSik8Z_e8bWngpD-2wfM8w492SH-PTqpNrX4AFS2yj46ZP0G8bqmyQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+pretreatment+method+and+mannanase+enzyme+to+improve+the+functionality+of+palm+kernel+cake&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Sathitkowitchai%2C+Witida&rft.au=Ayimbila%2C+Francis&rft.au=Nitisinprasert%2C+Sunee&rft.au=Keawsompong%2C+Suttipun&rft.date=2022-10-01&rft.issn=1347-4421&rft.eissn=1347-4421&rft.volume=134&rft.issue=4&rft.spage=301&rft_id=info:doi/10.1016%2Fj.jbiosc.2022.06.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon |