Design of a single protein that spans the entire 2-V range of physiological redox potentials

The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological Eo′s. An ultimate test of our understanding of Eo′ is to find out th...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 2; pp. 262 - 267
Main Authors Hosseinzadeh, Parisa, Marshall, Nicholas M., Chacón, Kelly N., Yu, Yang, Nilges, Mark J., New, Siu Yee, Tashkov, Stoyan A., Blackburn, Ninian J., Lu, Yi
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.01.2016
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological Eo′s. An ultimate test of our understanding of Eo′ is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme Eo′. We report herein the design of the protein azurin to cover a range from +970 mV to −954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high Eo′. The knowledge gained and the resulting water-soluble redox agents with predictable Eo′s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields.
AbstractList The reduction potential (E...') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological E...'s. An ultimate test of our understanding of E...' is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme E...'. We report herein the design of the protein azurin to cover a range from +970 mV to -954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high E...'. The knowledge gained and the resulting water-soluble redox agents with predictable E...'s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields. (ProQuest: ... denotes formulae/symbols omitted.)
The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological Eo′s. An ultimate test of our understanding of Eo′ is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme Eo′. We report herein the design of the protein azurin to cover a range from +970 mV to −954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high Eo′. The knowledge gained and the resulting water-soluble redox agents with predictable Eo′s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields.
Nature spent millions of years to evolve electron transfer proteins that span a wide range of reduction potentials (E°′) under physiological conditions, from −1 V to 1 V vs. standard hydrogen electrode. Understanding the rules that govern such tuning within similar classes of metalloproteins enables scientists to rationally tune the E°′of their catalysts without changing the active site. An ultimate test of such understanding is to achieve the entire range of E°′ within a single protein, a feat that has not been achieved yet. Herein, we conclusively found that we can cover the entire 2-V range of E°′ using a single protein with five mutations and two metal ions. We have also provided explanations for structural features responsible for such high potential. The reduction potential (E°′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological E°′s. An ultimate test of our understanding of E°′ is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme E°′. We report herein the design of the protein azurin to cover a range from +970 mV to −954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high E°′. The knowledge gained and the resulting water-soluble redox agents with predictable E°′s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields.
The reduction potential (E°') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological E°'s. An ultimate test of our understanding of E°' is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme E°'. We report herein the design of the protein azurin to cover a range from +970 mV to -954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high E°'. The knowledge gained and the resulting water-soluble redox agents with predictable E°'s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields.
Author Yu, Yang
Tashkov, Stoyan A.
Blackburn, Ninian J.
Marshall, Nicholas M.
Lu, Yi
Hosseinzadeh, Parisa
New, Siu Yee
Chacón, Kelly N.
Nilges, Mark J.
Author_xml – sequence: 1
  givenname: Parisa
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Parisa
  organization: Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 2
  givenname: Nicholas M.
  surname: Marshall
  fullname: Marshall, Nicholas M.
  organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 3
  givenname: Kelly N.
  surname: Chacón
  fullname: Chacón, Kelly N.
  organization: Institute of Environmental and Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239
– sequence: 4
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
  organization: Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 5
  givenname: Mark J.
  surname: Nilges
  fullname: Nilges, Mark J.
  organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 6
  givenname: Siu Yee
  surname: New
  fullname: New, Siu Yee
  organization: Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 7
  givenname: Stoyan A.
  surname: Tashkov
  fullname: Tashkov, Stoyan A.
  organization: Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 8
  givenname: Ninian J.
  surname: Blackburn
  fullname: Blackburn, Ninian J.
  organization: Institute of Environmental and Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239
– sequence: 9
  givenname: Yi
  surname: Lu
  fullname: Lu, Yi
  organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26631748$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1v1DAQxS1URLeFMyeQJS5c0o4_YjsXJFSgrVSpl8IJyfImk6xXWTvYWUT_e7zqsm05zWjm9549eifkKMSAhLxlcMZAi_MpuHzGalabRjPGX5AFg4ZVSjZwRBYAXFdGcnlMTnJeA0BTG3hFjrlSgmlpFuTnF8x-CDT21NHswzAinVKc0Qc6r9xM8-RCLi1SDLNPSHn1gyYXBtxpptV99nGMg2_dSBN28Q-dirqgbsyvycu-FHyzr6fk-7evdxdX1c3t5fXF55uqlaqeK6NqvexBGd1Khg2UKQrTtbwHUA4lF7DkWncCZY9c1wicGyaWveg77DspTsmnB99pu9xg15bnkxvtlPzGpXsbnbfPN8Gv7BB_W6k5CKmKwce9QYq_tphnu_G5xXF0AeM2W6YVmFrWwAv64T90HbcplPMKVTfAjRZQqPMHqk0x54T94TMM7C45u0vOPiZXFO-f3nDg_0VVgHd7YKc82DFheYH4436d55ie6KXSQmrxFxPAqjg
CitedBy_id crossref_primary_10_1021_acs_biochem_9b00823
crossref_primary_10_1021_acscatal_3c00320
crossref_primary_10_1073_pnas_1714225115
crossref_primary_10_1194_jlr_M069617
crossref_primary_10_1073_pnas_2308286120
crossref_primary_10_1002_chem_201800750
crossref_primary_10_1007_s00232_019_00069_2
crossref_primary_10_1093_protein_gzab003
crossref_primary_10_1103_PhysRevLett_131_228201
crossref_primary_10_1021_acs_jcim_3c01303
crossref_primary_10_1002_ejic_201600655
crossref_primary_10_1021_acs_inorgchem_3c01365
crossref_primary_10_1038_nchem_2489
crossref_primary_10_1016_j_ccr_2018_03_009
crossref_primary_10_1021_acs_inorgchem_6b01704
crossref_primary_10_1021_acs_inorgchem_1c01822
crossref_primary_10_1039_C7SC04486K
crossref_primary_10_1002_anie_201712306
crossref_primary_10_1021_jacs_3c07399
crossref_primary_10_1039_C8FD00164B
crossref_primary_10_1002_ange_202314019
crossref_primary_10_1021_jacs_2c08885
crossref_primary_10_1021_acs_accounts_8b00627
crossref_primary_10_1039_C9SC00195F
crossref_primary_10_1021_acs_accounts_6b00483
crossref_primary_10_1002_pro_3071
crossref_primary_10_1021_jacs_8b08567
crossref_primary_10_1021_acscatal_9b01720
crossref_primary_10_1039_D3DT03372D
crossref_primary_10_1002_ange_201712306
crossref_primary_10_1016_j_coelec_2021_100780
crossref_primary_10_1039_D0CY00724B
crossref_primary_10_1021_acs_jpcb_3c02060
crossref_primary_10_1021_acs_analchem_2c05777
crossref_primary_10_1021_jacs_8b12335
crossref_primary_10_3390_molecules24152743
crossref_primary_10_1021_acs_accounts_9b00011
crossref_primary_10_1021_acs_jpcb_2c03642
crossref_primary_10_1039_C8NR06627B
crossref_primary_10_1016_j_jinorgbio_2022_111863
crossref_primary_10_1021_jacs_7b03892
crossref_primary_10_1002_pro_4591
crossref_primary_10_1039_D1DT04387K
crossref_primary_10_3389_fmicb_2024_1357152
crossref_primary_10_1002_anie_202314019
crossref_primary_10_1021_jacs_6b05428
crossref_primary_10_1039_C6CC09921A
crossref_primary_10_1021_jacs_0c04226
crossref_primary_10_1039_D4FD00010B
crossref_primary_10_1002_chem_201702901
crossref_primary_10_1002_prot_26563
crossref_primary_10_1021_acs_jpcb_3c08194
crossref_primary_10_1021_jasms_0c00066
crossref_primary_10_1002_chem_201900178
crossref_primary_10_1021_jacs_3c07256
crossref_primary_10_1021_jacs_9b06836
crossref_primary_10_1039_D0SC01369B
crossref_primary_10_1042_EBC20160068
crossref_primary_10_1073_pnas_1522425112
crossref_primary_10_1021_acs_inorgchem_7b00167
crossref_primary_10_1021_acs_organomet_9b00843
crossref_primary_10_1039_C7RA11512A
crossref_primary_10_1021_acscatal_3c02531
crossref_primary_10_1021_acs_inorgchem_2c00030
crossref_primary_10_1039_C6CP03394F
crossref_primary_10_1021_jacs_3c03006
crossref_primary_10_1021_acs_biochem_6b00061
crossref_primary_10_1016_j_bioelechem_2022_108095
crossref_primary_10_1016_j_bpr_2021_100016
crossref_primary_10_1021_acscatal_9b00531
crossref_primary_10_1021_acs_langmuir_8b00163
crossref_primary_10_1021_jacs_5b13128
crossref_primary_10_1002_cpz1_234
crossref_primary_10_1016_j_ica_2017_08_041
crossref_primary_10_1021_acs_inorgchem_0c01065
crossref_primary_10_1021_acs_jctc_8b00403
crossref_primary_10_1039_C9SE00229D
crossref_primary_10_1021_acsabm_9b01023
crossref_primary_10_1111_1462_2920_15329
crossref_primary_10_1021_jacs_3c03241
Cites_doi 10.1126/science.aaa4526
10.1038/nature08551
10.1021/ic060450d
10.1021/ja043404q
10.1021/bi980960m
10.1002/anie.199311113
10.1016/B0-08-043748-6/08172-X
10.1016/S0959-440X(00)00237-2
10.1111/j.1432-1033.1993.tb17661.x
10.1016/j.ccr.2010.12.008
10.1042/bj3340063
10.1021/ja910759v
10.1021/ar700237u
10.1021/cr400327t
10.1021/ja105586q
10.1016/j.jinorgbio.2012.05.002
10.1007/s007750000146
10.1016/j.jinorgbio.2004.01.001
10.1039/c0mt00061b
10.1016/S0005-2728(02)00254-2
10.1126/science.277.5326.653
10.1126/science.2563171
10.1021/ja1093919
10.1016/S0020-1693(00)92355-7
10.1021/ja062732i
10.1021/cr950046o
10.1111/j.1432-1033.1995.tb20305.x
10.1021/ja102632p
10.1126/science.1147753
10.1021/ja5054863
10.1021/cr0000574
10.1021/acs.inorgchem.5b01103
10.1021/ja306438n
10.1073/pnas.1204251109
10.1021/ja103920k
10.1021/ja0501114
10.1021/ic9022486
10.1016/B978-0-12-222401-0.50011-1
10.1385/CBB:36:1:19
10.1002/ange.19931050804
10.1039/c2cc30901g
10.1021/ic050553g
10.1016/j.jinorgbio.2010.06.004
10.1021/bi1010128
10.1021/cr400479b
10.1016/j.ccr.2012.03.032
10.1021/bi0102611
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jan 12, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jan 12, 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1515897112
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Single protein spans entire 2-Volt range of E
EISSN 1091-6490
EndPage 267
ExternalDocumentID 3929598341
10_1073_pnas_1515897112
26631748
113_2_262
26467347
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM054803
– fundername: NIGMS NIH HHS
  grantid: P41GM103393
– fundername: NIGMS NIH HHS
  grantid: R01GM054803
– fundername: NIGMS NIH HHS
  grantid: P41 GM103393
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DWIUU
DZ
F20
KM
PQEST
X
XHC
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c465t-8657bf0687c41e90c46e38dc2f006ae4230b277d3e4fe275e022813bf3fdefd43
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:48:19 EDT 2024
Fri Aug 16 23:31:54 EDT 2024
Thu Oct 10 19:49:40 EDT 2024
Fri Dec 06 02:52:37 EST 2024
Tue Aug 27 13:49:20 EDT 2024
Wed Nov 11 00:29:27 EST 2020
Thu Dec 12 13:59:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords secondary coordination sphere
cupredoxins
electron transfer
reduction potential
azurin
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-8657bf0687c41e90c46e38dc2f006ae4230b277d3e4fe275e022813bf3fdefd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1P.H. and N.M.M. contributed equally to this work.
Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved October 21, 2015 (received for review August 10, 2015)
Author contributions: P.H., N.M.M., and Y.L. designed research; P.H., N.M.M., K.N.C., Y.Y., S.Y.N., and S.A.T. performed research; P.H., N.M.M., K.N.C., M.J.N., N.J.B., and Y.L. analyzed data; and P.H., N.M.M., and Y.L. wrote the paper.
ORCID 0000-0003-1332-7283
OpenAccessLink https://www.pnas.org/content/pnas/113/2/262.full.pdf
PMID 26631748
PQID 1759028730
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_1759028730
crossref_primary_10_1073_pnas_1515897112
pnas_primary_113_2_262
jstor_primary_26467347
proquest_miscellaneous_1760854502
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4720346
pubmed_primary_26631748
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2016-01-12
PublicationDateYYYYMMDD 2016-01-12
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Acad Sciences
– name: National Academy of Sciences
References 20380457 - Inorg Chem. 2010 Apr 19;49(8):3557-66
20615551 - J Inorg Biochem. 2010 Oct;104(10):1071-8
11710062 - Chem Rev. 2001 Oct;101(10):3047-80
12206891 - Biochim Biophys Acta. 2002 Sep 10;1555(1-3):54-9
16060626 - Inorg Chem. 2005 Aug 8;44(16):5745-52
15884941 - J Am Chem Soc. 2005 May 18;127(19):6977-89
26676579 - Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):248-50
24588098 - Chem Rev. 2014 Apr 9;114(7):3659-853
21388209 - J Am Chem Soc. 2011 Apr 6;133(13):4802-9
8383044 - Eur J Biochem. 1993 Mar 1;212(2):289-96
11495743 - Curr Opin Struct Biol. 2001 Aug;11(4):485-90
23054836 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17348-53
23420049 - Coord Chem Rev. 2012 Nov 1;256(21-22):2478-2487
26301482 - Biochim Biophys Acta. 2016 May;1857(5):557-81
11848837 - Chem Rev. 1996 Nov 7;96(7):2563-2606
22441412 - Chem Commun (Camb). 2012 May 4;48(35):4217-9
25766226 - Science. 2015 Mar 13;347(6227):1218-20
21258692 - Metallomics. 2011 Feb;3(2):140-51
24758379 - Chem Rev. 2014 Apr 23;114(8):4366-469
18376853 - Acc Chem Res. 2008 Apr;41(4):501-10
9708980 - Biochemistry. 1998 Aug 18;37(33):11451-8
17147368 - J Am Chem Soc. 2006 Dec 13;128(49):15608-17
22658756 - J Inorg Biochem. 2012 Oct;115:119-26
20232870 - J Am Chem Soc. 2010 Apr 14;132(14):5215-26
11939370 - Cell Biochem Biophys. 2002;36(1):19-40
15898751 - J Am Chem Soc. 2005 May 25;127(20):7274-5
9235882 - Science. 1997 Aug 1;277(5326):653-9
20608676 - J Am Chem Soc. 2010 Jul 28;132(29):10093-101
21405124 - J Am Chem Soc. 2011 Apr 6;133(13):4865-73
11341832 - Biochemistry. 2001 May 15;40(19):5674-81
22985400 - J Am Chem Soc. 2012 Oct 10;134(40):16701-16
18048692 - Science. 2007 Nov 30;318(5855):1464-8
11085645 - J Biol Inorg Chem. 2000 Oct;5(5):551-9
16999398 - Inorg Chem. 2006 Oct 2;45(20):8012-25
20812736 - J Am Chem Soc. 2010 Sep 29;132(38):13120-2
9693103 - Biochem J. 1998 Aug 15;334 ( Pt 1):63-70
19890331 - Nature. 2009 Nov 5;462(7269):113-6
2563171 - Science. 1989 Jan 6;243(4887):69-72
7737159 - Eur J Biochem. 1995 Mar 15;228(3):653-7
20669901 - Biochemistry. 2010 Sep 7;49(35):7516-23
15134925 - J Inorg Biochem. 2004 May;98(5):797-802
25076049 - J Am Chem Soc. 2014 Aug 27;136(34):11882-5
Hauenstein BLJ (e_1_3_3_42_2) 1981
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
Hosseinzadeh P (e_1_3_3_6_2) 2015
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
Shoham M (e_1_3_3_50_2) 2001
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_52_2
  doi: 10.1126/science.aaa4526
– ident: e_1_3_3_17_2
  doi: 10.1038/nature08551
– ident: e_1_3_3_34_2
  doi: 10.1021/ic060450d
– ident: e_1_3_3_10_2
  doi: 10.1021/ja043404q
– ident: e_1_3_3_49_2
  doi: 10.1021/bi980960m
– start-page: 319
  volume-title: Metal Ions in Biological Systems
  year: 1981
  ident: e_1_3_3_42_2
  contributor:
    fullname: Hauenstein BLJ
– ident: e_1_3_3_8_2
  doi: 10.1002/anie.199311113
– ident: e_1_3_3_26_2
  doi: 10.1016/B0-08-043748-6/08172-X
– ident: e_1_3_3_30_2
  doi: 10.1016/S0959-440X(00)00237-2
– ident: e_1_3_3_13_2
  doi: 10.1111/j.1432-1033.1993.tb17661.x
– ident: e_1_3_3_35_2
  doi: 10.1016/j.ccr.2010.12.008
– ident: e_1_3_3_51_2
  doi: 10.1042/bj3340063
– ident: e_1_3_3_38_2
  doi: 10.1021/ja910759v
– ident: e_1_3_3_16_2
  doi: 10.1021/ar700237u
– ident: e_1_3_3_37_2
  doi: 10.1021/cr400327t
– ident: e_1_3_3_29_2
  doi: 10.1021/ja105586q
– ident: e_1_3_3_36_2
  doi: 10.1016/j.jinorgbio.2012.05.002
– ident: e_1_3_3_24_2
  doi: 10.1007/s007750000146
– ident: e_1_3_3_33_2
  doi: 10.1016/j.jinorgbio.2004.01.001
– ident: e_1_3_3_2_2
  doi: 10.1039/c0mt00061b
– ident: e_1_3_3_9_2
  doi: 10.1016/S0005-2728(02)00254-2
– ident: e_1_3_3_1_2
  doi: 10.1126/science.277.5326.653
– ident: e_1_3_3_12_2
  doi: 10.1126/science.2563171
– ident: e_1_3_3_19_2
  doi: 10.1021/ja1093919
– ident: e_1_3_3_43_2
  doi: 10.1016/S0020-1693(00)92355-7
– ident: e_1_3_3_15_2
  doi: 10.1021/ja062732i
– start-page: 1235
  volume-title: Handbook of Metalloproteins
  year: 2001
  ident: e_1_3_3_50_2
  contributor:
    fullname: Shoham M
– ident: e_1_3_3_23_2
  doi: 10.1021/cr950046o
– ident: e_1_3_3_44_2
  doi: 10.1111/j.1432-1033.1995.tb20305.x
– ident: e_1_3_3_40_2
  doi: 10.1021/ja102632p
– ident: e_1_3_3_27_2
  doi: 10.1126/science.1147753
– ident: e_1_3_3_22_2
  doi: 10.1021/ja5054863
– year: 2015
  ident: e_1_3_3_6_2
  article-title: Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Hosseinzadeh P
– ident: e_1_3_3_31_2
  doi: 10.1021/cr0000574
– ident: e_1_3_3_46_2
  doi: 10.1021/acs.inorgchem.5b01103
– ident: e_1_3_3_20_2
  doi: 10.1021/ja306438n
– ident: e_1_3_3_47_2
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1204251109
– ident: e_1_3_3_18_2
  doi: 10.1021/ja103920k
– ident: e_1_3_3_14_2
  doi: 10.1021/ja0501114
– ident: e_1_3_3_25_2
– ident: e_1_3_3_11_2
  doi: 10.1021/ic9022486
– ident: e_1_3_3_32_2
  doi: 10.1016/B978-0-12-222401-0.50011-1
– ident: e_1_3_3_41_2
  doi: 10.1385/CBB:36:1:19
– ident: e_1_3_3_7_2
  doi: 10.1002/ange.19931050804
– ident: e_1_3_3_21_2
  doi: 10.1039/c2cc30901g
– ident: e_1_3_3_45_2
  doi: 10.1021/ic050553g
– ident: e_1_3_3_28_2
  doi: 10.1016/j.jinorgbio.2010.06.004
– ident: e_1_3_3_48_2
  doi: 10.1021/bi1010128
– ident: e_1_3_3_5_2
  doi: 10.1021/cr400479b
– ident: e_1_3_3_3_2
  doi: 10.1016/j.ccr.2012.03.032
– ident: e_1_3_3_39_2
  doi: 10.1021/bi0102611
SSID ssj0009580
Score 2.525225
Snippet The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of...
The reduction potential (E°') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of...
Nature spent millions of years to evolve electron transfer proteins that span a wide range of reduction potentials (E°′) under physiological conditions, from...
The reduction potential (E...') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 262
SubjectTerms Azurin - chemistry
Azurin - metabolism
Bacterial proteins
Biochemistry
Biophysics
Biotechnology
Electrochemical Techniques
Electron Spin Resonance Spectroscopy
Gram-positive bacteria
Models, Molecular
Mutation - genetics
Oxidation-Reduction
Physical Sciences
Physiology
Protein Engineering
Spectrometry, X-Ray Emission
Spectrophotometry, Ultraviolet
Spectrum analysis
Title Design of a single protein that spans the entire 2-V range of physiological redox potentials
URI https://www.jstor.org/stable/26467347
http://www.pnas.org/content/113/2/262.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26631748
https://www.proquest.com/docview/1759028730
https://search.proquest.com/docview/1760854502
https://pubmed.ncbi.nlm.nih.gov/PMC4720346
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bp16q0gJdoMiVONBDdhO_c6woCFWi6qFUHCpFsWOLlcC72g0SP79j51EW9cQtimeSyB7PfB6PvwCcai8lL5s8w-DhMnR4KitV4zNZGuu8NZqlVPb1D3l1w7_fitstEMNZmFS0b818Gu4fpmF-l2orlw92NtSJzX5en_O4d8jlbBu2MfwOS_SRaVd3504oul9O-cDno9hsGer1NEZwXSrEGZEIGAMuYnK9EZW6wsTIdory_0OeLwson0Wky3fwtoeS5Gv3ybuw5cJ72O0n65qc9YzSXz7An2-pToMsPKlJTA7cO5IIGuaBtHd1S9CthDVeOhKLh1aO0Ow3WcVzB1EnZT8GJ0kiw-gTWaI2iqLx7sHN5cWv86us_61CZrkUbaalUMbnUivLC1fmeNcx3VjqcQbWDvFVbqhSDXPcO6qEixQ5BTOe-cb5hrN92AmL4D4C4UJQSY0uTWF5bguDy7s6N7o2jjba2wmcDd1aLTv2jCrteitWxc6t_g3GBPZTt49yiNSkYlxhQxId9QtWUWxFjeNhZKp-4uEDVeKjQb81gc9jM06ZuA9SB7d4jDISgSYXOT7ioBvIZ2_tDGICamOIR4FIx73ZglaaaLl7qzx8teYRvEE4lhI8BT2GnXb16D4h5GnNSQw44iQZ-l-iFv9G
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALokBh21KMxKEcspvYju0cUaFaoFtxaFEPSFHs2OpKrXe1m0r9-R07H3QRp96ieCaJ7PHM83j8AvBJOSF4UacJBg-boMOTSSFrl4hCG-uMViymsmdnYnrBf1zml1uQ92dhYtG-0fOxv74Z-_lVrK1c3phJXyc2-TU75mHvkIvJE3iaM1lk_SJ94NpV7ckTig6YU94z-kg2WfpqPQ4xXBUSkUagAsaQi6hcbcSltjQx8J2i_P-w578llA9i0slLeNGBSfKl_egd2LL-Fex003VNjjpO6c-v4c_XWKlBFo5UJKQHri2JFA1zT5qrqiHoWPwaLy0J5UMrS2jym6zCyYOgE_MfvZskgWP0jixRG0XRfN_Axcm38-Np0v1YITFc5E2iRC61S4WShme2SPGuZao21OEcrCwirFRTKWtmubNU5jaQ5GRMO-Zq62rOdmHbL7x9B4TnORVUq0Jnhqcm07jAq1KtKm1prZwZwVHfreWy5c8o4763ZGXo3PLvYIxgN3b7IIdYTUjGJTZE0UE_YyXFVtQ46Eem7KYePlBGRhr0XCP4ODTjpAk7IZW3i9sgIxBq8jzFR7xtB_LBW1uDGIHcGOJBIBByb7agnUZi7s4u9x6t-QGeTc9np-Xp97Of-_AcwVlM92T0ALab1a19jwCo0YfR3O8BMu0BxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoSFUvFbSlbHnUlXqgh2wS27GdIwJWQAviUCoOlaLYscVK4I12g8TPZ-w82K164hbFM05kj2c-2-PPCH2XlnOWV0kEwcNE4PBElIvKRjxX2litJA1L2ZdX_OyGXdxmt0tXfYWkfa2mY3f_MHbTu5BbWT_ouM8Ti68vj5nfO2Q8risbv0EbGQUj6yfqA9-ubE-fEHDCjLCe1UfQuHblYuzjuMwFoA1PBwxhF5C5XIlNbXqi5zwF-f_hz3_TKJfi0mQTve8AJT5qf3wLrRn3AW11Q3aBDzte6R8f0d-TkK2BZxaX2C8R3BscaBqmDjd3ZYPBubgFPBrsU4jmBpPoD5770wdeJ6yB9K4Se57RJ1yDNoiCCX9CN5PT38dnUXe5QqQZz5pI8kwom3ApNEtNnsBbQ2WliYVxWBpAWYkiQlTUMGuIyIwnykmpstRWxlaMbqN1N3NmB2GWZYQTJXOVapboVMEkr0yULJUhlbR6hA77Zi3qlkOjCHvfgha-cYuXzhih7dDsgxzgNS4oE1AQRAf9lBYESkFjr--Zoht-UKEIrDTgvUbo21AMA8fvhpTOzB69DAe4ybIEqvjcduTSV1uDGCGx0sWDgCflXi0BWw3k3J1tfnm15lf09vpkUvw6v_q5i94BPgsrPinZQ-vN_NHsAwZq1EGw9mfyIwLX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+single+protein+that+spans+the+entire+2-V+range+of+physiological+redox+potentials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hosseinzadeh%2C+Parisa&rft.au=Marshall%2C+Nicholas+M&rft.au=Chac%C3%B3n%2C+Kelly+N&rft.au=Yu%2C+Yang&rft.date=2016-01-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=2&rft.spage=262&rft_id=info:doi/10.1073%2Fpnas.1515897112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3929598341
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F2.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F2.cover.gif