Design of a single protein that spans the entire 2-V range of physiological redox potentials
The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological Eo′s. An ultimate test of our understanding of Eo′ is to find out th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 2; pp. 262 - 267 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
12.01.2016
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological Eo′s. An ultimate test of our understanding of Eo′ is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme Eo′. We report herein the design of the protein azurin to cover a range from +970 mV to −954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high Eo′. The knowledge gained and the resulting water-soluble redox agents with predictable Eo′s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields. |
---|---|
AbstractList | The reduction potential (E...') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological E...'s. An ultimate test of our understanding of E...' is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme E...'. We report herein the design of the protein azurin to cover a range from +970 mV to -954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high E...'. The knowledge gained and the resulting water-soluble redox agents with predictable E...'s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields. (ProQuest: ... denotes formulae/symbols omitted.) The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological Eo′s. An ultimate test of our understanding of Eo′ is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme Eo′. We report herein the design of the protein azurin to cover a range from +970 mV to −954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high Eo′. The knowledge gained and the resulting water-soluble redox agents with predictable Eo′s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields. Nature spent millions of years to evolve electron transfer proteins that span a wide range of reduction potentials (E°′) under physiological conditions, from −1 V to 1 V vs. standard hydrogen electrode. Understanding the rules that govern such tuning within similar classes of metalloproteins enables scientists to rationally tune the E°′of their catalysts without changing the active site. An ultimate test of such understanding is to achieve the entire range of E°′ within a single protein, a feat that has not been achieved yet. Herein, we conclusively found that we can cover the entire 2-V range of E°′ using a single protein with five mutations and two metal ions. We have also provided explanations for structural features responsible for such high potential. The reduction potential (E°′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological E°′s. An ultimate test of our understanding of E°′ is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme E°′. We report herein the design of the protein azurin to cover a range from +970 mV to −954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high E°′. The knowledge gained and the resulting water-soluble redox agents with predictable E°′s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields. The reduction potential (E°') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological E°'s. An ultimate test of our understanding of E°' is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme E°'. We report herein the design of the protein azurin to cover a range from +970 mV to -954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high E°'. The knowledge gained and the resulting water-soluble redox agents with predictable E°'s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields. |
Author | Yu, Yang Tashkov, Stoyan A. Blackburn, Ninian J. Marshall, Nicholas M. Lu, Yi Hosseinzadeh, Parisa New, Siu Yee Chacón, Kelly N. Nilges, Mark J. |
Author_xml | – sequence: 1 givenname: Parisa surname: Hosseinzadeh fullname: Hosseinzadeh, Parisa organization: Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 2 givenname: Nicholas M. surname: Marshall fullname: Marshall, Nicholas M. organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 3 givenname: Kelly N. surname: Chacón fullname: Chacón, Kelly N. organization: Institute of Environmental and Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239 – sequence: 4 givenname: Yang surname: Yu fullname: Yu, Yang organization: Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 5 givenname: Mark J. surname: Nilges fullname: Nilges, Mark J. organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 6 givenname: Siu Yee surname: New fullname: New, Siu Yee organization: Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 7 givenname: Stoyan A. surname: Tashkov fullname: Tashkov, Stoyan A. organization: Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 8 givenname: Ninian J. surname: Blackburn fullname: Blackburn, Ninian J. organization: Institute of Environmental and Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239 – sequence: 9 givenname: Yi surname: Lu fullname: Lu, Yi organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26631748$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc1v1DAQxS1URLeFMyeQJS5c0o4_YjsXJFSgrVSpl8IJyfImk6xXWTvYWUT_e7zqsm05zWjm9549eifkKMSAhLxlcMZAi_MpuHzGalabRjPGX5AFg4ZVSjZwRBYAXFdGcnlMTnJeA0BTG3hFjrlSgmlpFuTnF8x-CDT21NHswzAinVKc0Qc6r9xM8-RCLi1SDLNPSHn1gyYXBtxpptV99nGMg2_dSBN28Q-dirqgbsyvycu-FHyzr6fk-7evdxdX1c3t5fXF55uqlaqeK6NqvexBGd1Khg2UKQrTtbwHUA4lF7DkWncCZY9c1wicGyaWveg77DspTsmnB99pu9xg15bnkxvtlPzGpXsbnbfPN8Gv7BB_W6k5CKmKwce9QYq_tphnu_G5xXF0AeM2W6YVmFrWwAv64T90HbcplPMKVTfAjRZQqPMHqk0x54T94TMM7C45u0vOPiZXFO-f3nDg_0VVgHd7YKc82DFheYH4436d55ie6KXSQmrxFxPAqjg |
CitedBy_id | crossref_primary_10_1021_acs_biochem_9b00823 crossref_primary_10_1021_acscatal_3c00320 crossref_primary_10_1073_pnas_1714225115 crossref_primary_10_1194_jlr_M069617 crossref_primary_10_1073_pnas_2308286120 crossref_primary_10_1002_chem_201800750 crossref_primary_10_1007_s00232_019_00069_2 crossref_primary_10_1093_protein_gzab003 crossref_primary_10_1103_PhysRevLett_131_228201 crossref_primary_10_1021_acs_jcim_3c01303 crossref_primary_10_1002_ejic_201600655 crossref_primary_10_1021_acs_inorgchem_3c01365 crossref_primary_10_1038_nchem_2489 crossref_primary_10_1016_j_ccr_2018_03_009 crossref_primary_10_1021_acs_inorgchem_6b01704 crossref_primary_10_1021_acs_inorgchem_1c01822 crossref_primary_10_1039_C7SC04486K crossref_primary_10_1002_anie_201712306 crossref_primary_10_1021_jacs_3c07399 crossref_primary_10_1039_C8FD00164B crossref_primary_10_1002_ange_202314019 crossref_primary_10_1021_jacs_2c08885 crossref_primary_10_1021_acs_accounts_8b00627 crossref_primary_10_1039_C9SC00195F crossref_primary_10_1021_acs_accounts_6b00483 crossref_primary_10_1002_pro_3071 crossref_primary_10_1021_jacs_8b08567 crossref_primary_10_1021_acscatal_9b01720 crossref_primary_10_1039_D3DT03372D crossref_primary_10_1002_ange_201712306 crossref_primary_10_1016_j_coelec_2021_100780 crossref_primary_10_1039_D0CY00724B crossref_primary_10_1021_acs_jpcb_3c02060 crossref_primary_10_1021_acs_analchem_2c05777 crossref_primary_10_1021_jacs_8b12335 crossref_primary_10_3390_molecules24152743 crossref_primary_10_1021_acs_accounts_9b00011 crossref_primary_10_1021_acs_jpcb_2c03642 crossref_primary_10_1039_C8NR06627B crossref_primary_10_1016_j_jinorgbio_2022_111863 crossref_primary_10_1021_jacs_7b03892 crossref_primary_10_1002_pro_4591 crossref_primary_10_1039_D1DT04387K crossref_primary_10_3389_fmicb_2024_1357152 crossref_primary_10_1002_anie_202314019 crossref_primary_10_1021_jacs_6b05428 crossref_primary_10_1039_C6CC09921A crossref_primary_10_1021_jacs_0c04226 crossref_primary_10_1039_D4FD00010B crossref_primary_10_1002_chem_201702901 crossref_primary_10_1002_prot_26563 crossref_primary_10_1021_acs_jpcb_3c08194 crossref_primary_10_1021_jasms_0c00066 crossref_primary_10_1002_chem_201900178 crossref_primary_10_1021_jacs_3c07256 crossref_primary_10_1021_jacs_9b06836 crossref_primary_10_1039_D0SC01369B crossref_primary_10_1042_EBC20160068 crossref_primary_10_1073_pnas_1522425112 crossref_primary_10_1021_acs_inorgchem_7b00167 crossref_primary_10_1021_acs_organomet_9b00843 crossref_primary_10_1039_C7RA11512A crossref_primary_10_1021_acscatal_3c02531 crossref_primary_10_1021_acs_inorgchem_2c00030 crossref_primary_10_1039_C6CP03394F crossref_primary_10_1021_jacs_3c03006 crossref_primary_10_1021_acs_biochem_6b00061 crossref_primary_10_1016_j_bioelechem_2022_108095 crossref_primary_10_1016_j_bpr_2021_100016 crossref_primary_10_1021_acscatal_9b00531 crossref_primary_10_1021_acs_langmuir_8b00163 crossref_primary_10_1021_jacs_5b13128 crossref_primary_10_1002_cpz1_234 crossref_primary_10_1016_j_ica_2017_08_041 crossref_primary_10_1021_acs_inorgchem_0c01065 crossref_primary_10_1021_acs_jctc_8b00403 crossref_primary_10_1039_C9SE00229D crossref_primary_10_1021_acsabm_9b01023 crossref_primary_10_1111_1462_2920_15329 crossref_primary_10_1021_jacs_3c03241 |
Cites_doi | 10.1126/science.aaa4526 10.1038/nature08551 10.1021/ic060450d 10.1021/ja043404q 10.1021/bi980960m 10.1002/anie.199311113 10.1016/B0-08-043748-6/08172-X 10.1016/S0959-440X(00)00237-2 10.1111/j.1432-1033.1993.tb17661.x 10.1016/j.ccr.2010.12.008 10.1042/bj3340063 10.1021/ja910759v 10.1021/ar700237u 10.1021/cr400327t 10.1021/ja105586q 10.1016/j.jinorgbio.2012.05.002 10.1007/s007750000146 10.1016/j.jinorgbio.2004.01.001 10.1039/c0mt00061b 10.1016/S0005-2728(02)00254-2 10.1126/science.277.5326.653 10.1126/science.2563171 10.1021/ja1093919 10.1016/S0020-1693(00)92355-7 10.1021/ja062732i 10.1021/cr950046o 10.1111/j.1432-1033.1995.tb20305.x 10.1021/ja102632p 10.1126/science.1147753 10.1021/ja5054863 10.1021/cr0000574 10.1021/acs.inorgchem.5b01103 10.1021/ja306438n 10.1073/pnas.1204251109 10.1021/ja103920k 10.1021/ja0501114 10.1021/ic9022486 10.1016/B978-0-12-222401-0.50011-1 10.1385/CBB:36:1:19 10.1002/ange.19931050804 10.1039/c2cc30901g 10.1021/ic050553g 10.1016/j.jinorgbio.2010.06.004 10.1021/bi1010128 10.1021/cr400479b 10.1016/j.ccr.2012.03.032 10.1021/bi0102611 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jan 12, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jan 12, 2016 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1515897112 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Single protein spans entire 2-Volt range of E |
EISSN | 1091-6490 |
EndPage | 267 |
ExternalDocumentID | 3929598341 10_1073_pnas_1515897112 26631748 113_2_262 26467347 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM054803 – fundername: NIGMS NIH HHS grantid: P41GM103393 – fundername: NIGMS NIH HHS grantid: R01GM054803 – fundername: NIGMS NIH HHS grantid: P41 GM103393 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DWIUU DZ F20 KM PQEST X XHC ZA5 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c465t-8657bf0687c41e90c46e38dc2f006ae4230b277d3e4fe275e022813bf3fdefd43 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:48:19 EDT 2024 Fri Aug 16 23:31:54 EDT 2024 Thu Oct 10 19:49:40 EDT 2024 Fri Dec 06 02:52:37 EST 2024 Tue Aug 27 13:49:20 EDT 2024 Wed Nov 11 00:29:27 EST 2020 Thu Dec 12 13:59:40 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | secondary coordination sphere cupredoxins electron transfer reduction potential azurin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-8657bf0687c41e90c46e38dc2f006ae4230b277d3e4fe275e022813bf3fdefd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1P.H. and N.M.M. contributed equally to this work. Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved October 21, 2015 (received for review August 10, 2015) Author contributions: P.H., N.M.M., and Y.L. designed research; P.H., N.M.M., K.N.C., Y.Y., S.Y.N., and S.A.T. performed research; P.H., N.M.M., K.N.C., M.J.N., N.J.B., and Y.L. analyzed data; and P.H., N.M.M., and Y.L. wrote the paper. |
ORCID | 0000-0003-1332-7283 |
OpenAccessLink | https://www.pnas.org/content/pnas/113/2/262.full.pdf |
PMID | 26631748 |
PQID | 1759028730 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1759028730 crossref_primary_10_1073_pnas_1515897112 pnas_primary_113_2_262 jstor_primary_26467347 proquest_miscellaneous_1760854502 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4720346 pubmed_primary_26631748 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2016-01-12 |
PublicationDateYYYYMMDD | 2016-01-12 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Acad Sciences – name: National Academy of Sciences |
References | 20380457 - Inorg Chem. 2010 Apr 19;49(8):3557-66 20615551 - J Inorg Biochem. 2010 Oct;104(10):1071-8 11710062 - Chem Rev. 2001 Oct;101(10):3047-80 12206891 - Biochim Biophys Acta. 2002 Sep 10;1555(1-3):54-9 16060626 - Inorg Chem. 2005 Aug 8;44(16):5745-52 15884941 - J Am Chem Soc. 2005 May 18;127(19):6977-89 26676579 - Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):248-50 24588098 - Chem Rev. 2014 Apr 9;114(7):3659-853 21388209 - J Am Chem Soc. 2011 Apr 6;133(13):4802-9 8383044 - Eur J Biochem. 1993 Mar 1;212(2):289-96 11495743 - Curr Opin Struct Biol. 2001 Aug;11(4):485-90 23054836 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17348-53 23420049 - Coord Chem Rev. 2012 Nov 1;256(21-22):2478-2487 26301482 - Biochim Biophys Acta. 2016 May;1857(5):557-81 11848837 - Chem Rev. 1996 Nov 7;96(7):2563-2606 22441412 - Chem Commun (Camb). 2012 May 4;48(35):4217-9 25766226 - Science. 2015 Mar 13;347(6227):1218-20 21258692 - Metallomics. 2011 Feb;3(2):140-51 24758379 - Chem Rev. 2014 Apr 23;114(8):4366-469 18376853 - Acc Chem Res. 2008 Apr;41(4):501-10 9708980 - Biochemistry. 1998 Aug 18;37(33):11451-8 17147368 - J Am Chem Soc. 2006 Dec 13;128(49):15608-17 22658756 - J Inorg Biochem. 2012 Oct;115:119-26 20232870 - J Am Chem Soc. 2010 Apr 14;132(14):5215-26 11939370 - Cell Biochem Biophys. 2002;36(1):19-40 15898751 - J Am Chem Soc. 2005 May 25;127(20):7274-5 9235882 - Science. 1997 Aug 1;277(5326):653-9 20608676 - J Am Chem Soc. 2010 Jul 28;132(29):10093-101 21405124 - J Am Chem Soc. 2011 Apr 6;133(13):4865-73 11341832 - Biochemistry. 2001 May 15;40(19):5674-81 22985400 - J Am Chem Soc. 2012 Oct 10;134(40):16701-16 18048692 - Science. 2007 Nov 30;318(5855):1464-8 11085645 - J Biol Inorg Chem. 2000 Oct;5(5):551-9 16999398 - Inorg Chem. 2006 Oct 2;45(20):8012-25 20812736 - J Am Chem Soc. 2010 Sep 29;132(38):13120-2 9693103 - Biochem J. 1998 Aug 15;334 ( Pt 1):63-70 19890331 - Nature. 2009 Nov 5;462(7269):113-6 2563171 - Science. 1989 Jan 6;243(4887):69-72 7737159 - Eur J Biochem. 1995 Mar 15;228(3):653-7 20669901 - Biochemistry. 2010 Sep 7;49(35):7516-23 15134925 - J Inorg Biochem. 2004 May;98(5):797-802 25076049 - J Am Chem Soc. 2014 Aug 27;136(34):11882-5 Hauenstein BLJ (e_1_3_3_42_2) 1981 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 Hosseinzadeh P (e_1_3_3_6_2) 2015 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 Shoham M (e_1_3_3_50_2) 2001 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_52_2 doi: 10.1126/science.aaa4526 – ident: e_1_3_3_17_2 doi: 10.1038/nature08551 – ident: e_1_3_3_34_2 doi: 10.1021/ic060450d – ident: e_1_3_3_10_2 doi: 10.1021/ja043404q – ident: e_1_3_3_49_2 doi: 10.1021/bi980960m – start-page: 319 volume-title: Metal Ions in Biological Systems year: 1981 ident: e_1_3_3_42_2 contributor: fullname: Hauenstein BLJ – ident: e_1_3_3_8_2 doi: 10.1002/anie.199311113 – ident: e_1_3_3_26_2 doi: 10.1016/B0-08-043748-6/08172-X – ident: e_1_3_3_30_2 doi: 10.1016/S0959-440X(00)00237-2 – ident: e_1_3_3_13_2 doi: 10.1111/j.1432-1033.1993.tb17661.x – ident: e_1_3_3_35_2 doi: 10.1016/j.ccr.2010.12.008 – ident: e_1_3_3_51_2 doi: 10.1042/bj3340063 – ident: e_1_3_3_38_2 doi: 10.1021/ja910759v – ident: e_1_3_3_16_2 doi: 10.1021/ar700237u – ident: e_1_3_3_37_2 doi: 10.1021/cr400327t – ident: e_1_3_3_29_2 doi: 10.1021/ja105586q – ident: e_1_3_3_36_2 doi: 10.1016/j.jinorgbio.2012.05.002 – ident: e_1_3_3_24_2 doi: 10.1007/s007750000146 – ident: e_1_3_3_33_2 doi: 10.1016/j.jinorgbio.2004.01.001 – ident: e_1_3_3_2_2 doi: 10.1039/c0mt00061b – ident: e_1_3_3_9_2 doi: 10.1016/S0005-2728(02)00254-2 – ident: e_1_3_3_1_2 doi: 10.1126/science.277.5326.653 – ident: e_1_3_3_12_2 doi: 10.1126/science.2563171 – ident: e_1_3_3_19_2 doi: 10.1021/ja1093919 – ident: e_1_3_3_43_2 doi: 10.1016/S0020-1693(00)92355-7 – ident: e_1_3_3_15_2 doi: 10.1021/ja062732i – start-page: 1235 volume-title: Handbook of Metalloproteins year: 2001 ident: e_1_3_3_50_2 contributor: fullname: Shoham M – ident: e_1_3_3_23_2 doi: 10.1021/cr950046o – ident: e_1_3_3_44_2 doi: 10.1111/j.1432-1033.1995.tb20305.x – ident: e_1_3_3_40_2 doi: 10.1021/ja102632p – ident: e_1_3_3_27_2 doi: 10.1126/science.1147753 – ident: e_1_3_3_22_2 doi: 10.1021/ja5054863 – year: 2015 ident: e_1_3_3_6_2 article-title: Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics publication-title: Biochim Biophys Acta contributor: fullname: Hosseinzadeh P – ident: e_1_3_3_31_2 doi: 10.1021/cr0000574 – ident: e_1_3_3_46_2 doi: 10.1021/acs.inorgchem.5b01103 – ident: e_1_3_3_20_2 doi: 10.1021/ja306438n – ident: e_1_3_3_47_2 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1204251109 – ident: e_1_3_3_18_2 doi: 10.1021/ja103920k – ident: e_1_3_3_14_2 doi: 10.1021/ja0501114 – ident: e_1_3_3_25_2 – ident: e_1_3_3_11_2 doi: 10.1021/ic9022486 – ident: e_1_3_3_32_2 doi: 10.1016/B978-0-12-222401-0.50011-1 – ident: e_1_3_3_41_2 doi: 10.1385/CBB:36:1:19 – ident: e_1_3_3_7_2 doi: 10.1002/ange.19931050804 – ident: e_1_3_3_21_2 doi: 10.1039/c2cc30901g – ident: e_1_3_3_45_2 doi: 10.1021/ic050553g – ident: e_1_3_3_28_2 doi: 10.1016/j.jinorgbio.2010.06.004 – ident: e_1_3_3_48_2 doi: 10.1021/bi1010128 – ident: e_1_3_3_5_2 doi: 10.1021/cr400479b – ident: e_1_3_3_3_2 doi: 10.1016/j.ccr.2012.03.032 – ident: e_1_3_3_39_2 doi: 10.1021/bi0102611 |
SSID | ssj0009580 |
Score | 2.525225 |
Snippet | The reduction potential (Eo′) is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of... The reduction potential (E°') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of... Nature spent millions of years to evolve electron transfer proteins that span a wide range of reduction potentials (E°′) under physiological conditions, from... The reduction potential (E...') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 262 |
SubjectTerms | Azurin - chemistry Azurin - metabolism Bacterial proteins Biochemistry Biophysics Biotechnology Electrochemical Techniques Electron Spin Resonance Spectroscopy Gram-positive bacteria Models, Molecular Mutation - genetics Oxidation-Reduction Physical Sciences Physiology Protein Engineering Spectrometry, X-Ray Emission Spectrophotometry, Ultraviolet Spectrum analysis |
Title | Design of a single protein that spans the entire 2-V range of physiological redox potentials |
URI | https://www.jstor.org/stable/26467347 http://www.pnas.org/content/113/2/262.abstract https://www.ncbi.nlm.nih.gov/pubmed/26631748 https://www.proquest.com/docview/1759028730 https://search.proquest.com/docview/1760854502 https://pubmed.ncbi.nlm.nih.gov/PMC4720346 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bp16q0gJdoMiVONBDdhO_c6woCFWi6qFUHCpFsWOLlcC72g0SP79j51EW9cQtimeSyB7PfB6PvwCcai8lL5s8w-DhMnR4KitV4zNZGuu8NZqlVPb1D3l1w7_fitstEMNZmFS0b818Gu4fpmF-l2orlw92NtSJzX5en_O4d8jlbBu2MfwOS_SRaVd3504oul9O-cDno9hsGer1NEZwXSrEGZEIGAMuYnK9EZW6wsTIdory_0OeLwson0Wky3fwtoeS5Gv3ybuw5cJ72O0n65qc9YzSXz7An2-pToMsPKlJTA7cO5IIGuaBtHd1S9CthDVeOhKLh1aO0Ow3WcVzB1EnZT8GJ0kiw-gTWaI2iqLx7sHN5cWv86us_61CZrkUbaalUMbnUivLC1fmeNcx3VjqcQbWDvFVbqhSDXPcO6qEixQ5BTOe-cb5hrN92AmL4D4C4UJQSY0uTWF5bguDy7s6N7o2jjba2wmcDd1aLTv2jCrteitWxc6t_g3GBPZTt49yiNSkYlxhQxId9QtWUWxFjeNhZKp-4uEDVeKjQb81gc9jM06ZuA9SB7d4jDISgSYXOT7ioBvIZ2_tDGICamOIR4FIx73ZglaaaLl7qzx8teYRvEE4lhI8BT2GnXb16D4h5GnNSQw44iQZ-l-iFv9G |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALokBh21KMxKEcspvYju0cUaFaoFtxaFEPSFHs2OpKrXe1m0r9-R07H3QRp96ieCaJ7PHM83j8AvBJOSF4UacJBg-boMOTSSFrl4hCG-uMViymsmdnYnrBf1zml1uQ92dhYtG-0fOxv74Z-_lVrK1c3phJXyc2-TU75mHvkIvJE3iaM1lk_SJ94NpV7ckTig6YU94z-kg2WfpqPQ4xXBUSkUagAsaQi6hcbcSltjQx8J2i_P-w578llA9i0slLeNGBSfKl_egd2LL-Fex003VNjjpO6c-v4c_XWKlBFo5UJKQHri2JFA1zT5qrqiHoWPwaLy0J5UMrS2jym6zCyYOgE_MfvZskgWP0jixRG0XRfN_Axcm38-Np0v1YITFc5E2iRC61S4WShme2SPGuZao21OEcrCwirFRTKWtmubNU5jaQ5GRMO-Zq62rOdmHbL7x9B4TnORVUq0Jnhqcm07jAq1KtKm1prZwZwVHfreWy5c8o4763ZGXo3PLvYIxgN3b7IIdYTUjGJTZE0UE_YyXFVtQ46Eem7KYePlBGRhr0XCP4ODTjpAk7IZW3i9sgIxBq8jzFR7xtB_LBW1uDGIHcGOJBIBByb7agnUZi7s4u9x6t-QGeTc9np-Xp97Of-_AcwVlM92T0ALab1a19jwCo0YfR3O8BMu0BxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoSFUvFbSlbHnUlXqgh2wS27GdIwJWQAviUCoOlaLYscVK4I12g8TPZ-w82K164hbFM05kj2c-2-PPCH2XlnOWV0kEwcNE4PBElIvKRjxX2litJA1L2ZdX_OyGXdxmt0tXfYWkfa2mY3f_MHbTu5BbWT_ouM8Ti68vj5nfO2Q8risbv0EbGQUj6yfqA9-ubE-fEHDCjLCe1UfQuHblYuzjuMwFoA1PBwxhF5C5XIlNbXqi5zwF-f_hz3_TKJfi0mQTve8AJT5qf3wLrRn3AW11Q3aBDzte6R8f0d-TkK2BZxaX2C8R3BscaBqmDjd3ZYPBubgFPBrsU4jmBpPoD5770wdeJ6yB9K4Se57RJ1yDNoiCCX9CN5PT38dnUXe5QqQZz5pI8kwom3ApNEtNnsBbQ2WliYVxWBpAWYkiQlTUMGuIyIwnykmpstRWxlaMbqN1N3NmB2GWZYQTJXOVapboVMEkr0yULJUhlbR6hA77Zi3qlkOjCHvfgha-cYuXzhih7dDsgxzgNS4oE1AQRAf9lBYESkFjr--Zoht-UKEIrDTgvUbo21AMA8fvhpTOzB69DAe4ybIEqvjcduTSV1uDGCGx0sWDgCflXi0BWw3k3J1tfnm15lf09vpkUvw6v_q5i94BPgsrPinZQ-vN_NHsAwZq1EGw9mfyIwLX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+single+protein+that+spans+the+entire+2-V+range+of+physiological+redox+potentials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hosseinzadeh%2C+Parisa&rft.au=Marshall%2C+Nicholas+M&rft.au=Chac%C3%B3n%2C+Kelly+N&rft.au=Yu%2C+Yang&rft.date=2016-01-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=2&rft.spage=262&rft_id=info:doi/10.1073%2Fpnas.1515897112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3929598341 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F2.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F2.cover.gif |