Neural decoding of attentional selection in multi-speaker environments without access to clean sources
Objective. People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress background noise; however, there is little that can be done to help a user attend to a single conversation amongst many without knowi...
Saved in:
Published in | Journal of neural engineering Vol. 14; no. 5; p. 56001 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective. People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress background noise; however, there is little that can be done to help a user attend to a single conversation amongst many without knowing which speaker the user is attending to. Cognitively controlled hearing aids that use auditory attention decoding (AAD) methods are the next step in offering help. Translating the successes in AAD research to real-world applications poses a number of challenges, including the lack of access to the clean sound sources in the environment with which to compare with the neural signals. We propose a novel framework that combines single-channel speech separation algorithms with AAD. Approach. We present an end-to-end system that (1) receives a single audio channel containing a mixture of speakers that is heard by a listener along with the listener's neural signals, (2) automatically separates the individual speakers in the mixture, (3) determines the attended speaker, and (4) amplifies the attended speaker's voice to assist the listener. Main results. Using invasive electrophysiology recordings, we identified the regions of the auditory cortex that contribute to AAD. Given appropriate electrode locations, our system is able to decode the attention of subjects and amplify the attended speaker using only the mixed audio. Our quality assessment of the modified audio demonstrates a significant improvement in both subjective and objective speech quality measures. Significance. Our novel framework for AAD bridges the gap between the most recent advancements in speech processing technologies and speech prosthesis research and moves us closer to the development of cognitively controlled hearable devices for the hearing impaired. |
---|---|
AbstractList | Objective. People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress background noise; however, there is little that can be done to help a user attend to a single conversation amongst many without knowing which speaker the user is attending to. Cognitively controlled hearing aids that use auditory attention decoding (AAD) methods are the next step in offering help. Translating the successes in AAD research to real-world applications poses a number of challenges, including the lack of access to the clean sound sources in the environment with which to compare with the neural signals. We propose a novel framework that combines single-channel speech separation algorithms with AAD. Approach. We present an end-to-end system that (1) receives a single audio channel containing a mixture of speakers that is heard by a listener along with the listener's neural signals, (2) automatically separates the individual speakers in the mixture, (3) determines the attended speaker, and (4) amplifies the attended speaker's voice to assist the listener. Main results. Using invasive electrophysiology recordings, we identified the regions of the auditory cortex that contribute to AAD. Given appropriate electrode locations, our system is able to decode the attention of subjects and amplify the attended speaker using only the mixed audio. Our quality assessment of the modified audio demonstrates a significant improvement in both subjective and objective speech quality measures. Significance. Our novel framework for AAD bridges the gap between the most recent advancements in speech processing technologies and speech prosthesis research and moves us closer to the development of cognitively controlled hearable devices for the hearing impaired. People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress background noise; however, there is little that can be done to help a user attend to a single conversation amongst many without knowing which speaker the user is attending to. Cognitively controlled hearing aids that use auditory attention decoding (AAD) methods are the next step in offering help. Translating the successes in AAD research to real-world applications poses a number of challenges, including the lack of access to the clean sound sources in the environment with which to compare with the neural signals. We propose a novel framework that combines single-channel speech separation algorithms with AAD.OBJECTIVEPeople who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress background noise; however, there is little that can be done to help a user attend to a single conversation amongst many without knowing which speaker the user is attending to. Cognitively controlled hearing aids that use auditory attention decoding (AAD) methods are the next step in offering help. Translating the successes in AAD research to real-world applications poses a number of challenges, including the lack of access to the clean sound sources in the environment with which to compare with the neural signals. We propose a novel framework that combines single-channel speech separation algorithms with AAD.We present an end-to-end system that (1) receives a single audio channel containing a mixture of speakers that is heard by a listener along with the listener's neural signals, (2) automatically separates the individual speakers in the mixture, (3) determines the attended speaker, and (4) amplifies the attended speaker's voice to assist the listener.APPROACHWe present an end-to-end system that (1) receives a single audio channel containing a mixture of speakers that is heard by a listener along with the listener's neural signals, (2) automatically separates the individual speakers in the mixture, (3) determines the attended speaker, and (4) amplifies the attended speaker's voice to assist the listener.Using invasive electrophysiology recordings, we identified the regions of the auditory cortex that contribute to AAD. Given appropriate electrode locations, our system is able to decode the attention of subjects and amplify the attended speaker using only the mixed audio. Our quality assessment of the modified audio demonstrates a significant improvement in both subjective and objective speech quality measures.MAIN RESULTSUsing invasive electrophysiology recordings, we identified the regions of the auditory cortex that contribute to AAD. Given appropriate electrode locations, our system is able to decode the attention of subjects and amplify the attended speaker using only the mixed audio. Our quality assessment of the modified audio demonstrates a significant improvement in both subjective and objective speech quality measures.Our novel framework for AAD bridges the gap between the most recent advancements in speech processing technologies and speech prosthesis research and moves us closer to the development of cognitively controlled hearable devices for the hearing impaired.SIGNIFICANCEOur novel framework for AAD bridges the gap between the most recent advancements in speech processing technologies and speech prosthesis research and moves us closer to the development of cognitively controlled hearable devices for the hearing impaired. People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress background noise; however, there is little that can be done to help a user attend to a single conversation amongst many without knowing which speaker the user is attending to. Cognitively controlled hearing aids that use auditory attention decoding (AAD) methods are the next step in offering help. Translating the successes in AAD research to real-world applications poses a number of challenges, including the lack of access to the clean sound sources in the environment with which to compare with the neural signals. We propose a novel framework that combines single-channel speech separation algorithms with AAD. We present an end-to-end system that (1) receives a single audio channel containing a mixture of speakers that is heard by a listener along with the listener's neural signals, (2) automatically separates the individual speakers in the mixture, (3) determines the attended speaker, and (4) amplifies the attended speaker's voice to assist the listener. Using invasive electrophysiology recordings, we identified the regions of the auditory cortex that contribute to AAD. Given appropriate electrode locations, our system is able to decode the attention of subjects and amplify the attended speaker using only the mixed audio. Our quality assessment of the modified audio demonstrates a significant improvement in both subjective and objective speech quality measures. Our novel framework for AAD bridges the gap between the most recent advancements in speech processing technologies and speech prosthesis research and moves us closer to the development of cognitively controlled hearable devices for the hearing impaired. |
Author | Herrero, Jose Chen, Zhuo McKhann, Guy M Mesgarani, Nima Sheth, Sameer A Mehta, Ashesh D O'Sullivan, James |
AuthorAffiliation | 4 Department of Neurosurgery, Hofstra-Northwell School of Medicine and Feinstein Institute for Medical Research, Manhasset, NY 11030, United States of America 3 Department of Neurological Surgery, The Neurological Institute, 710 West 168 Street, New York, NY 10032, United States of America 1 Department of Electrical Engineering, Columbia University, New York, NY, United States of America 2 Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America |
AuthorAffiliation_xml | – name: 3 Department of Neurological Surgery, The Neurological Institute, 710 West 168 Street, New York, NY 10032, United States of America – name: 1 Department of Electrical Engineering, Columbia University, New York, NY, United States of America – name: 2 Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America – name: 4 Department of Neurosurgery, Hofstra-Northwell School of Medicine and Feinstein Institute for Medical Research, Manhasset, NY 11030, United States of America |
Author_xml | – sequence: 1 givenname: James orcidid: 0000-0002-3501-9647 surname: O'Sullivan fullname: O'Sullivan, James email: jo2472@columbia.edu organization: Columbia University Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, United States of America – sequence: 2 givenname: Zhuo surname: Chen fullname: Chen, Zhuo email: zc2204@columbia.edu organization: Columbia University Department of Electrical Engineering, New York, NY, United States of America – sequence: 3 givenname: Jose surname: Herrero fullname: Herrero, Jose email: jherreroru@northwell.edu organization: Hofstra-Northwell School of Medicine and Feinstein Institute for Medical Research Department of Neurosurgery, Manhasset, NY 11030, United States of America – sequence: 4 givenname: Guy M surname: McKhann fullname: McKhann, Guy M email: gm317@cumc.columbia.edu organization: The Neurological Institute Department of Neurological Surgery, 710 West 168 Street, New York, NY 10032, United States of America – sequence: 5 givenname: Sameer A surname: Sheth fullname: Sheth, Sameer A email: ss4451@cumc.columbia.edu organization: The Neurological Institute Department of Neurological Surgery, 710 West 168 Street, New York, NY 10032, United States of America – sequence: 6 givenname: Ashesh D surname: Mehta fullname: Mehta, Ashesh D email: amehta@nshs.edu organization: Hofstra-Northwell School of Medicine and Feinstein Institute for Medical Research Department of Neurosurgery, Manhasset, NY 11030, United States of America – sequence: 7 givenname: Nima surname: Mesgarani fullname: Mesgarani, Nima email: nima@ee.columbia.edu organization: Columbia University Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28776506$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsFu1TAQtFARbR_cOSHf4ECo7SR2ckGqqhaQqvYC55XjrFs_EjvEThF_j6PXPkFVOHm1npldz_iYHPjgkZDXnH3grGlOuKp4IepanGitdFc9I0f71sG-luyQHMe4ZazkqmUvyKFolJI1k0fEXuEy64H2aELv_A0NluqU0CcXfO5HHNCsNXWejsuQXBEn1N9xpujv3Bz8mLGR_nTpNiyJamMwRpoCNQNqT2NY5tx5SZ5bPUR8dX9uyLeL869nn4vL609fzk4vC1PJOhXK6tb0LROyt6XtK2ZQouBKWC6UNKYTWqFs2k50qmpLVgnGLeN9qbQWfafLDfm4052WbsTe5N3y62Ca3ajnXxC0g79vvLuFm3AHdcPqsmFZ4N29wBx-LBgTjC4aHAbtMSwReCukbKq2khn65s9Z-yEP5maA3AHMHGKc0YJxSa9m5tFuAM5gTRHWmGCNDHYpZiJ7RHzQ_g_l7Y7iwgTbbHoOL8LWI_AKamD5EzAOU7Z1Q94_gfyn8G-pKL4E |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_3389_fnins_2021_643705 crossref_primary_10_1007_s10772_021_09817_z crossref_primary_10_1523_JNEUROSCI_0583_21_2021 crossref_primary_10_1177_2331216518816600 crossref_primary_10_1016_j_ymeth_2022_04_009 crossref_primary_10_3389_fnins_2022_904003 crossref_primary_10_1002_advs_202401379 crossref_primary_10_3390_s21020531 crossref_primary_10_1111_ejn_14425 crossref_primary_10_1088_1741_2552_ab0cf1 crossref_primary_10_7554_eLife_56481 crossref_primary_10_1080_2326263X_2019_1697163 crossref_primary_10_1088_1741_2552_ac16b4 crossref_primary_10_1109_TNSRE_2019_2952724 crossref_primary_10_1109_TASLP_2022_3169629 crossref_primary_10_3389_fnhum_2023_1122480 crossref_primary_10_3390_brainsci9030070 crossref_primary_10_3389_fnins_2018_00531 crossref_primary_10_1016_j_bspc_2021_102966 crossref_primary_10_1088_1741_2552_aae0a6 crossref_primary_10_1523_JNEUROSCI_1936_19_2020 crossref_primary_10_3389_fnins_2019_00153 crossref_primary_10_1038_s41598_024_58886_y crossref_primary_10_1016_j_neuron_2019_09_007 crossref_primary_10_1109_JBHI_2020_3037366 crossref_primary_10_1007_s10162_022_00846_2 crossref_primary_10_1088_1741_2552_ac4de6 crossref_primary_10_1038_s41598_023_49990_6 crossref_primary_10_3389_fnins_2022_872600 crossref_primary_10_1088_1741_2552_ad867c crossref_primary_10_1109_TNSRE_2019_2903404 crossref_primary_10_1038_s41598_021_94876_0 crossref_primary_10_1038_s41598_018_37359_z crossref_primary_10_1111_ejn_15616 crossref_primary_10_1109_TASLP_2024_3463498 crossref_primary_10_1088_1741_2552_ab7c8d crossref_primary_10_1088_1741_2552_ab4340 crossref_primary_10_1088_1741_2552_aba6f8 crossref_primary_10_1109_MSP_2021_3075932 crossref_primary_10_1121_1_5045322 crossref_primary_10_1088_1741_2552_abfeba crossref_primary_10_7554_eLife_92079_3 crossref_primary_10_1162_imag_a_00148 crossref_primary_10_1088_1741_2552_aae6b9 crossref_primary_10_1016_j_neuroimage_2019_116211 crossref_primary_10_1121_1_5129055 crossref_primary_10_1093_cercor_bhad325 crossref_primary_10_1016_j_apacoust_2022_108822 crossref_primary_10_1016_j_neuroimage_2020_117282 crossref_primary_10_3390_e20050386 crossref_primary_10_1523_ENEURO_0057_19_2019 crossref_primary_10_3390_s23146484 crossref_primary_10_1097_AUD_0000000000000879 crossref_primary_10_1016_j_cub_2019_07_075 crossref_primary_10_1016_j_apacoust_2020_107826 crossref_primary_10_1126_sciadv_aav6134 crossref_primary_10_1109_TASLP_2020_2969779 crossref_primary_10_7554_eLife_92079 crossref_primary_10_1044_2018_JSLHR_S_ASTM_18_0244 crossref_primary_10_3389_fnins_2018_00262 crossref_primary_10_1073_pnas_1721226115 crossref_primary_10_1088_1741_2552_ab92b2 crossref_primary_10_1177_2331216518788219 |
Cites_doi | 10.3109/17483107.2014.905642 10.1109/EMBC.2016.7590644 10.1109/EMBC.2016.7592020 10.1109/MLSP.2016.7738810 10.1109/JPROC.2008.922569 10.3233/RNN-2010-0535 10.1016/B978-012369391-4/50065-5 10.1121/1.3097493 10.1093/cercor/bht355 10.1152/jn.91128.2008 10.1109/TASL.2009.2016395 10.1016/j.tins.2016.05.001 10.1201/b14529 10.1121/1.1408946 10.1121/1.408434 10.1016/j.brainres.2007.10.053 10.1109/ICASSP.2016.7471771 10.1038/nature11020 10.1088/1741-2560/12/4/046007 10.1016/j.neuroimage.2009.08.041 10.1109/TASLP.2014.2304637 10.1080/2326263X.2015.1063363 10.1097/01.HJ.0000508368.12042.08 10.1088/1741-2560/11/4/046015 10.1109/GlobalSIP.2014.7032183 10.1109/ICASSP.2001.941023 10.1109/TAU.1969.1162058 10.1109/ISVLSI.2016.111 10.1109/tnsre.2016.2571900 10.1109/EMBC.2015.7319696 10.1044/1092-4388(2003/071) 10.1146/annurev.neuro.29.051605.112824 10.1007/978-3-319-22482-4_11 10.1038/nature11911 10.1152/jn.00297.2011 10.1109/ICASSP.2014.6853860 10.1111/j.1528-1157.1998.tb01151.x 10.1111/j.0013-9580.2004.26104.x 10.1109/ICASSP.2016.7471764 10.1109/tbme.2016.2587382 10.1111/j.1460-9568.2012.08060.x 10.1109/53.665 10.1073/pnas.1205381109 10.3115/1075527.1075614 10.1109/TBME.2008.2009768 10.1016/j.jneumeth.2011.04.037 10.1109/TSA.2003.811543 10.1016/j.neuroimage.2008.02.032 10.1163/000579511X605759 10.1109/TASL.2010.2045180 10.1007/978-3-540-49127-9_5 10.1016/j.neuron.2012.12.037 10.1152/jn.01026.2012 10.1109/EUSIPCO.2016.7760204 10.1016/j.neuroimage.2015.09.048 10.1088/1741-2560/13/6/066004 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd |
Copyright_xml | – notice: 2017 IOP Publishing Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1088/1741-2552/aa7ab4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Neural decoding of attentional selection in multi-speaker environments without access to clean sources |
EISSN | 1741-2552 |
EndPage | 056001 |
ExternalDocumentID | PMC5805380 28776506 10_1088_1741_2552_aa7ab4 jneaa7ab4 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute on Deafness and Other Communication Disorders grantid: DC014279 funderid: https://doi.org/10.13039/100000055 – fundername: NIMH NIH HHS grantid: R21 MH114166 – fundername: NIDCD NIH HHS grantid: R01 DC014279 |
GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP AAYXX ADEQX CITATION ACARI AERVB AGQPQ ARNYC CGR CUY CVF ECM EIF NPM 7X8 5PM AEINN |
ID | FETCH-LOGICAL-c465t-7fa9cd9026df3fd40ce6e2172f1276ccb2a7e689b2b749304201f01d37aa2dba3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Thu Aug 21 14:34:29 EDT 2025 Fri Jul 11 11:34:44 EDT 2025 Mon Jul 21 05:55:18 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Tue Jul 01 01:58:37 EDT 2025 Wed Aug 21 03:33:55 EDT 2024 Fri Jan 08 09:41:22 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-7fa9cd9026df3fd40ce6e2172f1276ccb2a7e689b2b749304201f01d37aa2dba3 |
Notes | JNE-101802.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 James O’Sullivan https://orcid.org/0000-0002-3501-9647 ORCID iDs |
ORCID | 0000-0002-3501-9647 |
OpenAccessLink | http://doi.org/10.1088/1741-2552/aa7ab4 |
PMID | 28776506 |
PQID | 1926684946 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1926684946 crossref_primary_10_1088_1741_2552_aa7ab4 crossref_citationtrail_10_1088_1741_2552_aa7ab4 pubmed_primary_28776506 iop_journals_10_1088_1741_2552_aa7ab4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 46 48 49 Ovtcharov K (54) 2015; 2 Peterson N R (51) 2010; 28 Synchron (53) Lacey G (56) 2016 Loizou P C (47) 2013 50 52 10 11 55 12 13 57 58 15 59 16 17 18 Macmillan N (43) 2005 19 Das N (26) 2016; 13 1 2 3 4 5 6 7 8 9 60 61 62 63 20 Fiedler L (28) 1988; 14 64 21 Mirkovic B (22) 2015; 12 24 25 Bleichner M G (23) 2016; 13 27 29 Lotia P (42) 2012; 3 30 31 32 33 34 Mesgarani N (45) 2016 35 36 37 38 39 Horton C (14) 2014; 11 40 41 |
References_xml | – ident: 6 doi: 10.3109/17483107.2014.905642 – ident: 31 doi: 10.1109/EMBC.2016.7590644 – ident: 25 doi: 10.1109/EMBC.2016.7592020 – volume: 14 issn: 1741-2552 year: 1988 ident: 28 publication-title: J. Neural Eng. – ident: 24 doi: 10.1109/MLSP.2016.7738810 – year: 2016 ident: 56 – ident: 53 – volume: 3 start-page: 650 year: 2012 ident: 42 publication-title: Int. J. Adv. Eng. Technol. – ident: 49 doi: 10.1109/JPROC.2008.922569 – volume: 28 start-page: 237 issn: 0922-6028 year: 2010 ident: 51 publication-title: Restor. Neurol. Neurosci. doi: 10.3233/RNN-2010-0535 – ident: 2 doi: 10.1016/B978-012369391-4/50065-5 – ident: 40 doi: 10.1121/1.3097493 – ident: 13 doi: 10.1093/cercor/bht355 – ident: 41 doi: 10.1152/jn.91128.2008 – ident: 30 doi: 10.1109/TASL.2009.2016395 – ident: 5 doi: 10.1016/j.tins.2016.05.001 – year: 2013 ident: 47 publication-title: Speech Enhancement: Theory and Practice doi: 10.1201/b14529 – ident: 63 doi: 10.1121/1.1408946 – ident: 1 doi: 10.1121/1.408434 – ident: 62 doi: 10.1016/j.brainres.2007.10.053 – ident: 20 doi: 10.1109/ICASSP.2016.7471771 – ident: 12 doi: 10.1038/nature11020 – volume: 12 issn: 1741-2552 year: 2015 ident: 22 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046007 – ident: 60 doi: 10.1016/j.neuroimage.2009.08.041 – ident: 57 doi: 10.1109/TASLP.2014.2304637 – ident: 15 doi: 10.1080/2326263X.2015.1063363 – ident: 4 doi: 10.1097/01.HJ.0000508368.12042.08 – volume: 11 issn: 1741-2552 year: 2014 ident: 14 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/4/046015 – ident: 34 doi: 10.1109/GlobalSIP.2014.7032183 – ident: 38 doi: 10.1109/ICASSP.2001.941023 – ident: 44 doi: 10.1109/TAU.1969.1162058 – volume: 13 issn: 1741-2552 year: 2016 ident: 26 publication-title: J. Neural Eng. – year: 2005 ident: 43 publication-title: Detection Theory: a User’s Guide – ident: 55 doi: 10.1109/ISVLSI.2016.111 – ident: 16 doi: 10.1109/tnsre.2016.2571900 – ident: 18 doi: 10.1109/EMBC.2015.7319696 – ident: 3 doi: 10.1044/1092-4388(2003/071) – ident: 52 doi: 10.1146/annurev.neuro.29.051605.112824 – ident: 36 doi: 10.1007/978-3-319-22482-4_11 – ident: 35 doi: 10.1038/nature11911 – ident: 7 doi: 10.1152/jn.00297.2011 – ident: 33 doi: 10.1109/ICASSP.2014.6853860 – ident: 48 doi: 10.1111/j.1528-1157.1998.tb01151.x – ident: 50 doi: 10.1111/j.0013-9580.2004.26104.x – ident: 19 doi: 10.1109/ICASSP.2016.7471764 – ident: 21 doi: 10.1109/tbme.2016.2587382 – volume: 2 year: 2015 ident: 54 publication-title: Microsoft Research Whitepaper – ident: 10 doi: 10.1111/j.1460-9568.2012.08060.x – ident: 29 doi: 10.1109/53.665 – ident: 8 doi: 10.1073/pnas.1205381109 – ident: 37 doi: 10.3115/1075527.1075614 – ident: 59 doi: 10.1109/TBME.2008.2009768 – ident: 64 doi: 10.1016/j.jneumeth.2011.04.037 – ident: 32 doi: 10.1109/TSA.2003.811543 – ident: 61 doi: 10.1016/j.neuroimage.2008.02.032 – ident: 58 doi: 10.1163/000579511X605759 – ident: 46 doi: 10.1109/TASL.2010.2045180 – ident: 39 doi: 10.1007/978-3-540-49127-9_5 – ident: 11 doi: 10.1016/j.neuron.2012.12.037 – ident: 9 doi: 10.1152/jn.01026.2012 – ident: 17 doi: 10.1109/EUSIPCO.2016.7760204 – ident: 27 doi: 10.1016/j.neuroimage.2015.09.048 – volume: 13 issn: 1741-2552 year: 2016 ident: 23 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/6/066004 – year: 2016 ident: 45 publication-title: Provisional Patent filed June 2016 |
SSID | ssj0031790 |
Score | 2.4812598 |
Snippet | Objective. People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can... People who suffer from hearing impairments can find it difficult to follow a conversation in a multi-speaker environment. Current hearing aids can suppress... |
SourceID | pubmedcentral proquest pubmed crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56001 |
SubjectTerms | Acoustic Stimulation - methods attention Auditory Cortex - physiology Auditory Perception - physiology DNN ECoG Electrodes, Implanted - trends Electroencephalography - methods Female hearing aid Hearing Aids - trends Humans LSTM Male Nerve Net - physiology sEEG Speech Perception - physiology stimulus-reconstruction |
Title | Neural decoding of attentional selection in multi-speaker environments without access to clean sources |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/aa7ab4 https://www.ncbi.nlm.nih.gov/pubmed/28776506 https://www.proquest.com/docview/1926684946 https://pubmed.ncbi.nlm.nih.gov/PMC5805380 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6ofelLbWsva2tJoS30YXbnkkky-CSlokIvDxV8KIRMLmjVzOLOPuiv70kyu7giUvoWyJlkcv9Ocs53AD7UFeMKj-lMG5zBlJkia7guM90wHR0pcxocnL99ZwfH9OikPlmD3aUvTDcdtv4xJhNRcOrCwSBOTBBDFxki4XKiFFctXYdHlWAshC84_PFzsQ1XgXoqeUMGaZYPb5T3lbByJq1jvffBzbtWk7eOof1N-L1oQLI-OR_P-3asb-5wO_5nC5_CkwGekr0k-gzWrH8OW3seVfPLa_KJRIPReBO_BS4Qe6CwQQ02nICkcySwdQ427GQWQ-xgmpx5Eg0Xs9nUqnN7RW6715FwFdzNe6Ji7EbSdwSrVp6kd4XZCzje__rry0E2hG3INGV1n3GnGm0aVO6Mq5yhubbMhjhYrig507otFbdMNG3ZctqE65S8cHlhKq5UaVpVvYQN33n7GggVNeOlci3qqYEqX-WF5bg7a0Vdwep6BJPFwEk9cJqH0BoXMr6tCyFDV8rQlTJ15Qg-L7-YJj6PB2Q_4gjJYVHPHpAjK3J_vEWNStYyj3BSTo0bwfvFhJK4fsOjjPK2m2OhDUIkQRvKRvAqTbDlj6E2yxFBYw5fmXpLgcANvprjz04jR3gtcHcV-fY_NuENPC4DXolWim9ho7-a2x1EW337Lq6qv4GxJBs |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxEC2RICEubIEwrEYCJA4904vb7j5GwChhCTkQKTfj9iJCEvco03OAr6e8zCgTRRESt5Zcttv7K7vqFcDrumJc4jGdKY0zmDJdZC1XZaZapoIjZU69g_PXfbZ7SD8d1Ucpzmnwhelnaesf42ckCo5dmAzimgli6CJDJFxOpOSyo5OZthtwE2utPHn-3reD5VZcefqp6BHpc7A8vVNeVcraubSBdV8FOS9bTl44iqZ34ceyEdEC5WS8GLqx-nOJ3_E_WnkP7iSYSnai-H24YdwD2NpxqKKf_SZvSTAcDTfyW2A9wQcKa9Rk_UlIeks8a2eyZSfzEGoHv8mxI8GAMZvPjDwx5-Simx3xV8L9YiAyxHAkQ0-waulIfF-YP4TD6cfv73ezFL4hU5TVQ8atbJVuUcnTtrKa5sow4-Nh2aLkTKmulNywpu3KjtPWX6vkhc0LXXEpS93J6hFsut6Zx0BoUzNeStuhvuop82VeGI67tJLUFqyuRzBZDp5Qidvch9g4FeGNvWmE707hu1PE7hzBu1WOWeT1uEb2DY6SSIt7fo0cWZP75QxqVqIWeYCVAkdwBK-Wk0rgOvaPM9KZfoGFtgiVGtpSNoLtOMlWP4ZaLUckjSl8bfqtBDxH-HqKO_4ZuMLrBnfZJn_yj014CbcOPkzFl739z0_hdukhTDBcfAabw_nCPEcANnQvwiL7C5hxKX8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+decoding+of+attentional+selection+in+multi-speaker+environments+without+access+to+clean+sources&rft.jtitle=Journal+of+neural+engineering&rft.au=O%27Sullivan%2C+James&rft.au=Chen%2C+Zhuo&rft.au=Herrero%2C+Jose&rft.au=McKhann%2C+Guy+M&rft.date=2017-10-01&rft.eissn=1741-2552&rft.volume=14&rft.issue=5&rft.spage=056001&rft_id=info:doi/10.1088%2F1741-2552%2Faa7ab4&rft_id=info%3Apmid%2F28776506&rft.externalDocID=28776506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |