Synergistic Solubilization of Phenanthrene by Mixed Micelles Composed of Biosurfactants and a Conventional Non-Ionic Surfactant

This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. Th...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 25; no. 18; p. 4327
Main Authors Liu, Jianfei, Wang, Yuru, Li, Huifang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 21.09.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. The ideal critical micelle concentration values of the Triton X-100/rhamnolipids mixture system were higher than that of the theoretical predicted value suggesting the existence of interactions between the two surfactants. Solubilization capabilities were quantified in term of weight solubilization ratio and micellar-water partition coefficient. The highest value of the weight solubilization ratio was detected in the treatment where only Triton X-100 was used. This ratio decreased with the increase in the mass of rhamnolipids in the mixed surfactant systems. The parameters of the interaction between surfactants and the micellar mole fraction in the mixed system have been determined. The factors that influence phenanthrene solubilization, such as pH, ionic strength, and acetic acid concentration have been discussed in the paper. The aqueous solubility of phenanthrene increased linearly with the total surfactant concentration in all treatments. The mixed rhamnolipids and synthetic surfactants showed synergistic behavior and enhanced the solubilization capabilities of the mixture, which would extend the rhamnolipids application.
AbstractList This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. The ideal critical micelle concentration values of the Triton X-100/rhamnolipids mixture system were higher than that of the theoretical predicted value suggesting the existence of interactions between the two surfactants. Solubilization capabilities were quantified in term of weight solubilization ratio and micellar-water partition coefficient. The highest value of the weight solubilization ratio was detected in the treatment where only Triton X-100 was used. This ratio decreased with the increase in the mass of rhamnolipids in the mixed surfactant systems. The parameters of the interaction between surfactants and the micellar mole fraction in the mixed system have been determined. The factors that influence phenanthrene solubilization, such as pH, ionic strength, and acetic acid concentration have been discussed in the paper. The aqueous solubility of phenanthrene increased linearly with the total surfactant concentration in all treatments. The mixed rhamnolipids and synthetic surfactants showed synergistic behavior and enhanced the solubilization capabilities of the mixture, which would extend the rhamnolipids application.
This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. The ideal critical micelle concentration values of the Triton X-100/rhamnolipids mixture system were higher than that of the theoretical predicted value suggesting the existence of interactions between the two surfactants. Solubilization capabilities were quantified in term of weight solubilization ratio and micellar-water partition coefficient. The highest value of the weight solubilization ratio was detected in the treatment where only Triton X-100 was used. This ratio decreased with the increase in the mass of rhamnolipids in the mixed surfactant systems. The parameters of the interaction between surfactants and the micellar mole fraction in the mixed system have been determined. The factors that influence phenanthrene solubilization, such as pH, ionic strength, and acetic acid concentration have been discussed in the paper. The aqueous solubility of phenanthrene increased linearly with the total surfactant concentration in all treatments. The mixed rhamnolipids and synthetic surfactants showed synergistic behavior and enhanced the solubilization capabilities of the mixture, which would extend the rhamnolipids application.This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. The ideal critical micelle concentration values of the Triton X-100/rhamnolipids mixture system were higher than that of the theoretical predicted value suggesting the existence of interactions between the two surfactants. Solubilization capabilities were quantified in term of weight solubilization ratio and micellar-water partition coefficient. The highest value of the weight solubilization ratio was detected in the treatment where only Triton X-100 was used. This ratio decreased with the increase in the mass of rhamnolipids in the mixed surfactant systems. The parameters of the interaction between surfactants and the micellar mole fraction in the mixed system have been determined. The factors that influence phenanthrene solubilization, such as pH, ionic strength, and acetic acid concentration have been discussed in the paper. The aqueous solubility of phenanthrene increased linearly with the total surfactant concentration in all treatments. The mixed rhamnolipids and synthetic surfactants showed synergistic behavior and enhanced the solubilization capabilities of the mixture, which would extend the rhamnolipids application.
Author Liu, Jianfei
Li, Huifang
Wang, Yuru
AuthorAffiliation School of Civil Engineer, Henan Polytechnic University, Jiaozuo 454003, China; wangyuru1996@126.com (Y.W.); lihuifang1009@163.com (H.L.)
AuthorAffiliation_xml – name: School of Civil Engineer, Henan Polytechnic University, Jiaozuo 454003, China; wangyuru1996@126.com (Y.W.); lihuifang1009@163.com (H.L.)
Author_xml – sequence: 1
  givenname: Jianfei
  surname: Liu
  fullname: Liu, Jianfei
– sequence: 2
  givenname: Yuru
  surname: Wang
  fullname: Wang, Yuru
– sequence: 3
  givenname: Huifang
  surname: Li
  fullname: Li, Huifang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32967248$$D View this record in MEDLINE/PubMed
BookMark eNp1kklvFDEQhS0URBb4AVxQH7k0eOvtggSjQEYKixQ4W17KM47c9mB3RwwX_no8mSRKQFxsq_ze9-QqH6ODEAMg9JLgN4wN-O0YPejZQ6YN6Tmj3RN0RDjFNcN8OHhwPkTHOV9iTAknzTN0yOjQdpT3R-jPxTZAWrk8OV1dRD8r591vObkYqmirb2sIMkzrBAEqta0-u19gyqrBl9hqEcdNzKVSpB9czHOyUk_FkCsZTCWLIFxB2NGkr77EUC9j2AXdC5-jp1b6DC9u9xP04-Pp98VZff7103Lx_rzWvG2muhtIa5SRzPDeYKOYNpz31GBqDMW9UpYrori2PVBJoPTCtIO2pmuxBtxTdoKWe66J8lJskhtl2ooonbgpxLQSMpUeeBAto6Rtbcs067gGK3mjqcId1cTyftCF9W7P2sxqBKPLA5P0j6CPb4Jbi1W8El3T4YY1BfD6FpDizxnyJEaXdy2VAeKcBeW8Gcp8Glykrx5m3YfcTbAIur1Ap5hzAiu0m27mV6KdFwSL3V8R__yV4iR_Oe_g__dcA_UgyJk
CitedBy_id crossref_primary_10_1016_j_colsurfa_2023_131931
crossref_primary_10_3390_molecules26092793
crossref_primary_10_3390_app13095726
crossref_primary_10_1016_j_colsurfa_2022_128837
crossref_primary_10_1016_j_jece_2023_111555
crossref_primary_10_1016_j_molliq_2022_120547
crossref_primary_10_1016_j_cocis_2023_101765
crossref_primary_10_3390_ijms24065395
crossref_primary_10_1016_j_molliq_2023_122289
crossref_primary_10_1038_s41598_024_59021_7
crossref_primary_10_1016_j_jics_2023_100980
crossref_primary_10_1128_spectrum_00910_22
crossref_primary_10_1186_s42825_021_00064_1
crossref_primary_10_1007_s11696_021_01634_7
crossref_primary_10_1007_s11356_024_34248_z
crossref_primary_10_1016_j_scitotenv_2021_152414
Cites_doi 10.1016/j.jhazmat.2009.07.118
10.1007/s11270-012-1190-9
10.1007/s12665-016-6264-3
10.1016/j.scitotenv.2015.08.008
10.1006/jcis.1995.1136
10.1007/978-1-4615-7880-2_15
10.1021/ie051377m
10.1016/j.jiec.2018.05.001
10.1016/j.chemosphere.2010.09.012
10.1016/j.jcis.2016.10.071
10.1021/la1031834
10.1016/j.cej.2014.01.097
10.1016/j.colsurfa.2015.10.008
10.1016/j.chemosphere.2020.126854
10.1016/j.colsurfa.2018.09.027
10.1016/j.biortech.2016.11.095
10.1016/j.colsurfa.2014.12.026
10.1016/j.envpol.2015.04.012
10.1016/j.envpol.2013.09.010
10.1016/j.jhazmat.2014.12.009
10.1016/j.colsurfb.2009.03.006
10.5650/jos.53.183
10.1021/es00013a014
10.2134/jeq2015.08.0443
10.1021/la00097a002
10.1016/j.marpolbul.2015.09.059
10.1016/j.still.2014.09.008
10.1016/j.watres.2007.10.038
10.1021/jp8071298
10.1016/j.jenvman.2008.08.006
10.1016/j.ibiod.2014.01.007
10.1016/j.seppur.2016.01.010
10.1515/tsd-1994-310323
10.1039/f19757101327
10.1016/j.ibiod.2010.10.015
10.1016/S0269-7491(01)00304-9
10.1016/j.jhazmat.2015.12.008
10.1007/s11356-016-6242-z
10.1016/j.biortech.2012.01.181
10.1016/j.colsurfa.2014.07.010
10.1016/j.cej.2016.03.099
10.1016/j.chemosphere.2016.10.115
10.1016/j.chemosphere.2006.07.068
10.1007/s11274-011-0854-8
10.1016/S1002-0160(14)60007-2
10.1016/j.cocis.2020.03.013
10.1016/j.cis.2007.11.001
10.1016/j.envpol.2011.02.001
10.1016/j.colsurfa.2013.12.076
10.1016/j.colsurfb.2003.11.006
10.1016/j.jhazmat.2009.01.022
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/molecules25184327
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : directory of open access journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_632166f63c374cefa45c2b072c1f489c
PMC7570535
32967248
10_3390_molecules25184327
Genre Journal Article
GrantInformation_xml – fundername: Science and technology research project of Henan province,China
  grantid: 182102311058
– fundername: Henan polytechnic university Foundation
  grantid: B2015-62
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c465t-7916dbda3d48d0db3cd4482d02dd208bbf4b1b4cf8e2a1e432d69cfd760ce0823
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:32:05 EDT 2025
Thu Aug 21 17:33:39 EDT 2025
Fri Jul 11 08:19:34 EDT 2025
Thu Apr 03 07:04:59 EDT 2025
Tue Jul 01 01:16:57 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords mixed surfactant
solubilization
phenanthrene
rhamnolipids
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-7916dbda3d48d0db3cd4482d02dd208bbf4b1b4cf8e2a1e432d69cfd760ce0823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/632166f63c374cefa45c2b072c1f489c
PMID 32967248
PQID 2445972450
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_632166f63c374cefa45c2b072c1f489c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570535
proquest_miscellaneous_2445972450
pubmed_primary_32967248
crossref_citationtrail_10_3390_molecules25184327
crossref_primary_10_3390_molecules25184327
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200921
PublicationDateYYYYMMDD 2020-09-21
PublicationDate_xml – month: 9
  year: 2020
  text: 20200921
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Marecik (ref_20) 2012; 111
Lau (ref_11) 2014; 184
Nguyen (ref_17) 2008; 42
Morillo (ref_34) 2015; 538
Hallmann (ref_38) 2016; 488
Liu (ref_5) 2017; 224
Edwards (ref_29) 1991; 25
Markus (ref_44) 2004; 34
Song (ref_36) 2016; 45
Li (ref_46) 2015; 101
Long (ref_24) 2016; 160
Rao (ref_14) 2009; 113
Chen (ref_18) 2010; 26
Chong (ref_10) 2014; 24
Trellu (ref_3) 2016; 306
Liu (ref_9) 2018; 65
Zhou (ref_47) 2011; 159
Gan (ref_2) 2009; 172
Gao (ref_52) 2015; 145
Kuppusamy (ref_7) 2017; 168
Chun (ref_30) 2002; 118
ref_28
An (ref_51) 2010; 81
Pornsunthorntawee (ref_41) 2009; 72
Mao (ref_12) 2015; 285
Champion (ref_45) 1995; 170
Wei (ref_42) 2020; 254
Sowada (ref_48) 1994; 31
Fasolin (ref_50) 2014; 459
Liu (ref_26) 2016; 75
Treiner (ref_31) 1990; 6
Serafini (ref_33) 2018; 559
Laha (ref_8) 2009; 90
Chrzanowski (ref_16) 2011; 65
ref_32
Wei (ref_39) 2015; 468
Chrzanowski (ref_15) 2010; 48
Liley (ref_19) 2016; 487
Tanaka (ref_49) 2004; 53
Sales (ref_43) 2016; 23
Falciglia (ref_4) 2016; 296
Souza (ref_6) 2014; 89
Paria (ref_13) 2008; 138
Chrzanowski (ref_23) 2011; 28
Paria (ref_37) 2006; 45
Drakontis (ref_22) 2020; 48
Liang (ref_35) 2014; 244
Clint (ref_27) 1975; 71
Noordman (ref_25) 2007; 66
Guo (ref_40) 2014; 445
Chen (ref_1) 2015; 204
Marecik (ref_21) 2012; 223
References_xml – volume: 172
  start-page: 532
  year: 2009
  ident: ref_2
  article-title: Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.07.118
– volume: 48
  start-page: 756
  year: 2010
  ident: ref_15
  article-title: Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols toPseudomonas putidaDOT-T1E
  publication-title: Lett. Appl. Microbiol.
– volume: 223
  start-page: 4275
  year: 2012
  ident: ref_21
  article-title: Rhamnolipids Increase the Phytotoxicity of Diesel Oil Towards Four Common Plant Species in a Terrestrial Environment
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-012-1190-9
– volume: 75
  start-page: 1453
  year: 2016
  ident: ref_26
  article-title: Separation of polycyclic aromatic hydrocarbons from rhamnolipid solution by activated carbon adsorption
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-6264-3
– volume: 538
  start-page: 262
  year: 2015
  ident: ref_34
  article-title: Solubilization of herbicides by single and mixed commercial surfactants
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2015.08.008
– volume: 170
  start-page: 569
  year: 1995
  ident: ref_45
  article-title: Electron Microscopy of Rhamnolipid (Biosurfactant) Morphology: Effects of pH, Cadmium, and Octadecane
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1136
– ident: ref_28
  doi: 10.1007/978-1-4615-7880-2_15
– volume: 45
  start-page: 3552
  year: 2006
  ident: ref_37
  article-title: Solubilization of Naphthalene by Pure and Mixed Surfactants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie051377m
– volume: 65
  start-page: 31
  year: 2018
  ident: ref_9
  article-title: Soil remediation using soil washing followed by ozone oxidation
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.05.001
– volume: 81
  start-page: 1423
  year: 2010
  ident: ref_51
  article-title: Effect of short-chain organic acids and pH on the behaviors of pyrene in soil-water system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.09.012
– volume: 487
  start-page: 493
  year: 2016
  ident: ref_19
  article-title: Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.10.071
– volume: 26
  start-page: 17958
  year: 2010
  ident: ref_18
  article-title: Mixing Behavior of the Biosurfactant, Rhamnolipid, with a Conventional Anionic Surfactant, Sodium Dodecyl Benzene Sulfonate
  publication-title: Langmuir
  doi: 10.1021/la1031834
– volume: 244
  start-page: 522
  year: 2014
  ident: ref_35
  article-title: Competitive solubilization of low-molecular-weight polycyclic aromatic hydrocarbons mixtures in single and binary surfactant micelles
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.01.097
– volume: 488
  start-page: 162
  year: 2016
  ident: ref_38
  article-title: Synergistic effects in micellization and surface tension reduction in nonionic gemini S-10 and cationic RTAB surfactants mixtures
  publication-title: Colloids Surfaces A
  doi: 10.1016/j.colsurfa.2015.10.008
– volume: 254
  start-page: 126854
  year: 2020
  ident: ref_42
  article-title: Desorption process and morphological analysis of real polycyclic aromatic hydrocarbons contaminated soil by the heterogemini surfactant and its mixed systems
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126854
– volume: 559
  start-page: 127
  year: 2018
  ident: ref_33
  article-title: The aqueous Triton X-100-dodecyltrimethylammonium bromidemicellar mixed system. Experimental results and thermodynamic analysis
  publication-title: Colloids Surfaces A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.09.027
– volume: 224
  start-page: 25
  year: 2017
  ident: ref_5
  article-title: Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.11.095
– volume: 468
  start-page: 211
  year: 2015
  ident: ref_39
  article-title: Enhanced solubilization and desorption of pyrene from soils by saline anionic-nonionic surfactant systems
  publication-title: Colloids Surfaces A
  doi: 10.1016/j.colsurfa.2014.12.026
– volume: 204
  start-page: 58
  year: 2015
  ident: ref_1
  article-title: Increase in polycyclic aromatic hydrocarbon (PAH) emissions due to briquetting: A challenge to the coal briquetting policy
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.04.012
– volume: 184
  start-page: 640
  year: 2014
  ident: ref_11
  article-title: Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.09.010
– volume: 285
  start-page: 419
  year: 2015
  ident: ref_12
  article-title: Use of surfactants for the remediation of contaminated soils: A review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.12.009
– volume: 72
  start-page: 6
  year: 2009
  ident: ref_41
  article-title: Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4
  publication-title: Colloids Surfaces B
  doi: 10.1016/j.colsurfb.2009.03.006
– volume: 53
  start-page: 183
  year: 2004
  ident: ref_49
  article-title: New Interpretation of Small System Thermodynamics Applied to Ionic Micelles in Solution and Corrin-Harkins Equation
  publication-title: J. Oleo Sci.
  doi: 10.5650/jos.53.183
– volume: 25
  start-page: 127
  year: 1991
  ident: ref_29
  article-title: Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00013a014
– volume: 45
  start-page: 1405
  year: 2016
  ident: ref_36
  article-title: Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2015.08.0443
– volume: 6
  start-page: 1211
  year: 1990
  ident: ref_31
  article-title: Micellar solubilization in strongly interacting binary surfactant systems
  publication-title: Langmuir
  doi: 10.1021/la00097a002
– volume: 101
  start-page: 219
  year: 2015
  ident: ref_46
  article-title: Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.09.059
– volume: 145
  start-page: 103
  year: 2015
  ident: ref_52
  article-title: Low-molecular-weight organic acids enhance the release of bound PAH residues in soils
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2014.09.008
– volume: 42
  start-page: 1735
  year: 2008
  ident: ref_17
  article-title: Rhamnolipid biosurfactant mixtures for environmental remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.10.038
– volume: 113
  start-page: 474
  year: 2009
  ident: ref_14
  article-title: Solubilization of Naphthalene in the Presence of Plant-Synthetic Mixed Surfactant Systems
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp8071298
– volume: 90
  start-page: 95
  year: 2009
  ident: ref_8
  article-title: Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: A review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2008.08.006
– volume: 89
  start-page: 88
  year: 2014
  ident: ref_6
  article-title: Biosurfactant-enhanced hydrocarbon bioremediation: An overview
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2014.01.007
– volume: 160
  start-page: 11
  year: 2016
  ident: ref_24
  article-title: Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed micelles composed of a photoresponsive surfactant and a conventional non-ionic surfactant
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.01.010
– volume: 31
  start-page: 195
  year: 1994
  ident: ref_48
  article-title: The effect of electrolytes on the critical micelle concentration of ionic surfactants: The Corrin-Harkins equation
  publication-title: Tenside Surfactant Det.
  doi: 10.1515/tsd-1994-310323
– volume: 71
  start-page: 1327
  year: 1975
  ident: ref_27
  article-title: Micellization of mixed nonionic surface active agents
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/f19757101327
– volume: 65
  start-page: 605
  year: 2011
  ident: ref_16
  article-title: Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2010.10.015
– volume: 118
  start-page: 307
  year: 2002
  ident: ref_30
  article-title: Solubilization of PAH mixtures by three different anionic surfactants
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00304-9
– volume: 306
  start-page: 149
  year: 2016
  ident: ref_3
  article-title: Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.12.008
– volume: 23
  start-page: 10158
  year: 2016
  ident: ref_43
  article-title: Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6242-z
– volume: 111
  start-page: 328
  year: 2012
  ident: ref_20
  article-title: Biodegradation of rhamnolipids in liquid cultures: Effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.181
– volume: 459
  start-page: 290
  year: 2014
  ident: ref_50
  article-title: Influence of organic acids on surfactant self-assemblies in surfactant/oil/water systems
  publication-title: Colloids Surfaces A
  doi: 10.1016/j.colsurfa.2014.07.010
– volume: 296
  start-page: 162
  year: 2016
  ident: ref_4
  article-title: Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.099
– volume: 168
  start-page: 944
  year: 2017
  ident: ref_7
  article-title: Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.10.115
– volume: 66
  start-page: 1634
  year: 2007
  ident: ref_25
  article-title: Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.07.068
– volume: 28
  start-page: 401
  year: 2011
  ident: ref_23
  article-title: Why do microorganisms produce rhamnolipids?
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-011-0854-8
– volume: 24
  start-page: 209
  year: 2014
  ident: ref_10
  article-title: Enhanced Desorption of PAHs from Manufactured Gas Plant Soils Using Different Types of Surfactants
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(14)60007-2
– volume: 48
  start-page: 77
  year: 2020
  ident: ref_22
  article-title: Biosurfactants: Formulations, properties, and applications
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2020.03.013
– volume: 138
  start-page: 24
  year: 2008
  ident: ref_13
  article-title: Surfactant-enhanced remediation of organic contaminated soil and water
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2007.11.001
– volume: 159
  start-page: 1198
  year: 2011
  ident: ref_47
  article-title: Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.02.001
– volume: 445
  start-page: 12
  year: 2014
  ident: ref_40
  article-title: Solubilization of moderately hydrophobic 17α-ethinylestradiol by mono- and di-rhamnolipid solutions
  publication-title: Colloids Surfaces A
  doi: 10.1016/j.colsurfa.2013.12.076
– volume: 34
  start-page: 69
  year: 2004
  ident: ref_44
  article-title: Phase behavior of DOPE/TritonX100 (reduced) in dilute aqueous solution: Aggregate structure and pH-dependence
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2003.11.006
– ident: ref_32
  doi: 10.1016/j.jhazmat.2009.01.022
SSID ssj0021415
Score 2.3886757
Snippet This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4327
SubjectTerms Hydrogen-Ion Concentration
Micelles
mixed surfactant
phenanthrene
Phenanthrenes - chemistry
rhamnolipids
Solubility
solubilization
Surface Tension
Surface-Active Agents - chemistry
Title Synergistic Solubilization of Phenanthrene by Mixed Micelles Composed of Biosurfactants and a Conventional Non-Ionic Surfactant
URI https://www.ncbi.nlm.nih.gov/pubmed/32967248
https://www.proquest.com/docview/2445972450
https://pubmed.ncbi.nlm.nih.gov/PMC7570535
https://doaj.org/article/632166f63c374cefa45c2b072c1f489c
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCWl4NpStX4oQUNbEd2zmyVZeC1FXVUmlvkZ_qSpBUza5ET_x1ZpLssgsILlx8cCaONTPxzNjjbwh5ayKCjqiQSu54KpxQackNT7kF7YiKF76rEnE-lWfX4tOsmG2U-sKcsB4euGfcseQslzLiUEq4EI0oHLOZYi6PQpcOV1-weatgagi1crBL_Rkmh6D--Gtfaja0YM214FhCZsMKdWD9f_Iwf02U3LA8k13ydHAZ6ft-qnvkQaifkccnq0ptz8n3q3u8wddBLlPc58KE1_56JW0ivbgJmO2CeXWB2nt6Pv8WPLTdnn1LcUVoWugB0vG8aZd3eNkB02OoqT01QPAzMZ1Omzr9iHC69GpN-IJcT04_n5ylQ2GF1AlZLBCiUnrrDfdC-8xb7jxEacxnzHuWaWujsLkVLurATB6AYV6WLnolMxfwaO4l2ambOuwTKmzhtSlF5jyHsZnWZZS50Qosn3HWJSRbMbpyA-o4Fr_4UkH0gbKpfpNNQt6tX7ntITf-RjxG6a0JES276wAdqgYdqv6lQwk5Wsm-AtEh-00dmmVbgfMDERcTRZaQV70urD_FWSnhkU6I2tKSrblsP6nnNx2CtyoU4uq8_h-TPyBPGO4B4ElZ_obsLO6W4RAcpYUdkYdqpqDVkw8j8mh8Or24HHX_yQ9NkhnE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Solubilization+of+Phenanthrene+by+Mixed+Micelles+Composed+of+Biosurfactants+and+a+Conventional+Non-Ionic+Surfactant&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Jianfei+Liu&rft.au=Yuru+Wang&rft.au=Huifang+Li&rft.date=2020-09-21&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=25&rft.issue=18&rft.spage=4327&rft_id=info:doi/10.3390%2Fmolecules25184327&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_632166f63c374cefa45c2b072c1f489c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon