Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert

The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 12; p. 794743
Main Authors Fuentes, Bárbara, Choque, Alessandra, Gómez, Francisco, Alarcón, Jaime, Castro-Nallar, Eduardo, Arenas, Franko, Contreras, Daniel, Mörchen, Ramona, Amelung, Wulf, Knief, Claudia, Moradi, Ghazal, Klumpp, Erwin, Saavedra, Claudia P., Prietzel, Jörg, Klysubun, Wantana, Remonsellez, Francisco, Bol, Roland
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 07.02.2022
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
DOI10.3389/fmicb.2021.794743

Cover

Abstract The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm), (ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota , Halobacterota , and Latescibacterota in zone A; Crenarchaeota , Fusobacteriota , and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.
AbstractList The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm), (ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota , Halobacterota , and Latescibacterota in zone A; Crenarchaeota , Fusobacteriota , and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.
The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.
The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa , , and in zone A; , , and Sva0485 in zone B; and and in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.
The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm), (ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.
Author Knief, Claudia
Klumpp, Erwin
Remonsellez, Francisco
Klysubun, Wantana
Gómez, Francisco
Arenas, Franko
Mörchen, Ramona
Amelung, Wulf
Contreras, Daniel
Choque, Alessandra
Prietzel, Jörg
Castro-Nallar, Eduardo
Fuentes, Bárbara
Moradi, Ghazal
Saavedra, Claudia P.
Alarcón, Jaime
Bol, Roland
AuthorAffiliation 2 Programa de Doctorado en Ciencias Mención Geología, Universidad Católica del Norte , Antofagasta , Chile
1 Departamento de Ingeniería Química, Universidad Católica del Norte , Antofagasta , Chile
5 Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, University of Bonn , Bonn , Germany
6 Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany
8 Wissenschaftszentum Weihenstephan, Technical University München , Freising , Germany
10 Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte , Antofagasta , Chile
7 Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile
3 Center for Bioinformatics and Integrative Biology, Universidad Andres Bello , Santiago , Chile
9 Synchrotron Light Research Institute , Nakhon Ratchasima , Thailand
4 Institute of Crop Science and Resource
AuthorAffiliation_xml – name: 5 Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, University of Bonn , Bonn , Germany
– name: 10 Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte , Antofagasta , Chile
– name: 7 Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile
– name: 1 Departamento de Ingeniería Química, Universidad Católica del Norte , Antofagasta , Chile
– name: 8 Wissenschaftszentum Weihenstephan, Technical University München , Freising , Germany
– name: 2 Programa de Doctorado en Ciencias Mención Geología, Universidad Católica del Norte , Antofagasta , Chile
– name: 6 Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany
– name: 9 Synchrotron Light Research Institute , Nakhon Ratchasima , Thailand
– name: 3 Center for Bioinformatics and Integrative Biology, Universidad Andres Bello , Santiago , Chile
– name: 4 Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn , Bonn , Germany
– name: 11 School of Natural Sciences, Environment Centre Wales, Bangor University , Bangor , United Kingdom
Author_xml – sequence: 1
  givenname: Bárbara
  surname: Fuentes
  fullname: Fuentes, Bárbara
– sequence: 2
  givenname: Alessandra
  surname: Choque
  fullname: Choque, Alessandra
– sequence: 3
  givenname: Francisco
  surname: Gómez
  fullname: Gómez, Francisco
– sequence: 4
  givenname: Jaime
  surname: Alarcón
  fullname: Alarcón, Jaime
– sequence: 5
  givenname: Eduardo
  surname: Castro-Nallar
  fullname: Castro-Nallar, Eduardo
– sequence: 6
  givenname: Franko
  surname: Arenas
  fullname: Arenas, Franko
– sequence: 7
  givenname: Daniel
  surname: Contreras
  fullname: Contreras, Daniel
– sequence: 8
  givenname: Ramona
  surname: Mörchen
  fullname: Mörchen, Ramona
– sequence: 9
  givenname: Wulf
  surname: Amelung
  fullname: Amelung, Wulf
– sequence: 10
  givenname: Claudia
  surname: Knief
  fullname: Knief, Claudia
– sequence: 11
  givenname: Ghazal
  surname: Moradi
  fullname: Moradi, Ghazal
– sequence: 12
  givenname: Erwin
  surname: Klumpp
  fullname: Klumpp, Erwin
– sequence: 13
  givenname: Claudia P.
  surname: Saavedra
  fullname: Saavedra, Claudia P.
– sequence: 14
  givenname: Jörg
  surname: Prietzel
  fullname: Prietzel, Jörg
– sequence: 15
  givenname: Wantana
  surname: Klysubun
  fullname: Klysubun, Wantana
– sequence: 16
  givenname: Francisco
  surname: Remonsellez
  fullname: Remonsellez, Francisco
– sequence: 17
  givenname: Roland
  surname: Bol
  fullname: Bol, Roland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35197940$$D View this record in MEDLINE/PubMed
BookMark eNp9Us1u1DAQjlARLaUPwAX5yCWL7ThOfEGqtoWuVEQlQOJmjZ1J11USB9tbaR-A98a7W6qWAz7Yo_H3Y3m-18XR5CcsireMLqqqVR_60Vmz4JSzRaNEI6oXxQmTUpQV5T-PntTHxVmMdzQvQXneXxXHVc1UJtGT4vdq6ocNThaJ78nNehudhaFcrnHcFeSbdwO5gQAjJgyR-Il8cTZ443wCsvTj7KNLLrdh6siFu88gl7bE5Qa5QJzJ1XbGAMF1GR32LmmN5DyBhXEHiRjSm-JlD0PEs4fztPjx6fL78qq8_vp5tTy_Lq2QdSolM1QKIySlDe0NowKZZGhV1_ZojKV13RorlURJLce2qSggCKWwlRyZqU6L1UG383Cn5-BGCFvtwel9w4dbDSE5O6BmWPFGNlKhYsIwDsA62XDs8t8bCiJrfTxozRszYmdxSgGGZ6LPbya31rf-XrdtrbhkWeD9g0DwvzYYkx5dtDgMMKHfRM1lxVtaN1Jm6LunXo8mf-eYAewAyKOJMWD_CGFU7-Ki93HRu7joQ1wyp_mHY12C3Szzc93wH-YfOinG5w
CitedBy_id crossref_primary_10_3390_soilsystems8020046
crossref_primary_10_1093_pnasnexus_pgae123
crossref_primary_10_1186_s40168_023_01684_x
crossref_primary_10_1016_j_catena_2023_107171
crossref_primary_10_1360_N072023_0067
crossref_primary_10_5194_bg_21_5305_2024
crossref_primary_10_1016_j_soilbio_2023_109128
crossref_primary_10_1007_s11430_023_1186_y
crossref_primary_10_3390_d16120745
crossref_primary_10_2139_ssrn_4162357
crossref_primary_10_3390_app14198591
crossref_primary_10_1007_s11756_024_01731_4
crossref_primary_10_1016_j_scitotenv_2022_158578
crossref_primary_10_1128_spectrum_00056_24
crossref_primary_10_3390_biology12071023
crossref_primary_10_1016_j_gloplacha_2024_104383
crossref_primary_10_1016_j_gloplacha_2023_104320
Cites_doi 10.1186/s40168-018-0605-2
10.1016/j.jaridenv.2017.09.013
10.1111/j.1365-2389.1955.tb00849.x
10.1126/science.1089143
10.1016/j.gloplacha.2019.103078
10.1089/ast.2006.6.415
10.1038/nmeth.f.303
10.1016/j.gloplacha.2019.102993
10.1016/S0003-2670(00)88444-5
10.1038/nmeth.3869
10.1002/joc.938
10.1101/299537
10.1099/ijsem.0.003038
10.3389/fmicb.2019.00069
10.3389/fmicb.2021.636405
10.1016/j.jaridenv.2012.05.004
10.1038/s41598-018-35051-w
10.1016/j.gca.2021.07.027
10.3389/fmicb.2016.01284
10.1038/s41598-020-76302-z
10.18637/jss.v008.i15
10.3389/fmicb.2017.01435
10.1371/journal.pone.0061217
10.1016/j.gca.2006.08.020
10.1007/978-3-540-74231-9_6
10.1128/mSystems.00195-16
10.2136/sssaj1982.03615995004600050017x
10.1007/s00343-018-7387-z
10.1016/j.gloplacha.2019.103090
10.1021/acs.est.5b03096
10.24200/jams.vol8iss1pp41-46
10.3390/microorganisms9051038
10.1007/s00792-012-0454-z
10.1016/j.febslet.2012.07.025
10.3133/pp1188
10.1038/s41598-018-32229-0
10.1080/01490451.2013.774073
10.1073/pnas.1808176115
10.1038/s41598-018-32339-9
10.1099/ijs.0.034488-0
10.1016/j.tim.2018.11.003
10.1038/ismej.2016.36
10.1016/j.asr.2011.10.001
10.1038/ismej.2012.8
10.1016/S0168-6496(03)00128-4
10.3389/fmicb.2018.02228
10.1111/1758-2229.12261
10.1093/nar/gks1219
10.1007/s00248-013-0276-2
10.32614/RJ-2016-025
10.1186/2049-2618-1-28
10.1016/j.quascirev.2016.05.036
10.1128/AEM.00062-07
10.1002/joc.1359
10.1016/j.geoderma.2014.06.016
10.1128/mBio.01718-20
10.1007/BF02180317
10.1016/j.radphyschem.2019.02.004
10.1016/j.quascirev.2018.08.001
10.1016/j.asr.2012.03.003
10.1007/s00248-010-9657-y
10.5027/andgeoV41n2-a03
10.1007/s00248-006-9055-7
10.1007/s10482-013-9911-7
10.1073/pnas.1714341115
10.1007/s00343-019-9027-7
10.1093/femsec/fiaa042
10.1007/978-3-319-24277-4
10.1007/s42860-020-00071-z
10.1107/S1600577515023085
10.3390/f9100598
10.1029/2006JG000311
ContentType Journal Article
Copyright Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol.
Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol. 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol
Copyright_xml – notice: Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol.
– notice: Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol. 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2021.794743
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_1e3276769e914b12aa1d672ed389b0a4
PMC8859261
35197940
10_3389_fmicb_2021_794743
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-61b064b460070fb104e161ec9d8febbc0558bc696e60c2e8730aea499e862e1b3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 00:31:18 EDT 2025
Thu Aug 21 14:32:08 EDT 2025
Fri Sep 05 06:30:47 EDT 2025
Thu Jan 02 22:54:59 EST 2025
Tue Jul 01 04:34:05 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords microbiota
hyperarid soil
Atacama Desert
physicochemical properties
deep soil
Language English
License Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-61b064b460070fb104e161ec9d8febbc0558bc696e60c2e8730aea499e862e1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Mark Alexander Lever, ETH Zürich, Switzerland
This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology
Reviewed by: Alfonso F. Davila, National Aeronautics and Space Administration (NASA), United States; Charles K. Lee, University of Waikato, New Zealand
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2021.794743
PMID 35197940
PQID 2632805766
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1e3276769e914b12aa1d672ed389b0a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8859261
proquest_miscellaneous_2632805766
pubmed_primary_35197940
crossref_primary_10_3389_fmicb_2021_794743
crossref_citationtrail_10_3389_fmicb_2021_794743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-07
PublicationDateYYYYMMDD 2022-02-07
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-07
  day: 07
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Bottos (B10) 2020; 96
Azua-Bustos (B8) 2012; 586
Andersen (B3) 2018
Ericksen (B23) 1981
Knief (B38) 2020; 184
Azua-Bustos (B6) 2018; 8
Wickham (B75) 2016
Crognale (B18) 2013; 30
Herrera (B32) 2014; 41
Plaza (B55) 2018; 8
Moradi (B45) 2020; 185
Ritter (B62) 2018; 8
Wright (B77) 2016; 8
Wang (B71) 2021; 311
Melchiorre (B42) 2018; 148
Fletcher (B27) 2012; 49
Jiang (B36) 2012; 62
Oliverio (B53) 2020; 11
Azua-Bustos (B5) 2015; 7
Azua-Bustos (B7) 2020; 10
Eisenhofer (B22) 2019; 27
Li (B40) 2021; 12
Schulze-Makuch (B66) 2021; 9
Zhang (B78) 2020; 38
Fuentes (B29) 2014; 232
Neilson (B49) 2017; 2
Murphy (B47) 1962; 27
Puente-Sánchez (B57) 2018; 115
Ewing (B24) 2006; 70
Saunders (B65) 1955; 6
Gómez-Silva (B30) 2008
Neilson (B50) 2012; 16
Davis (B19) 2018; 6
Mörchen (B46) 2019; 181
Finstad (B26) 2017; 8
Caporaso (B13) 2010; 7
Newton (B51) 2018; 36
Hubalek (B35) 2016; 10
(B20) 2017
Wierzchos (B76) 2006; 6
Wang (B70) 2007; 73
Warren-Rhodes (B73) 2006; 52
Rastogi (B60) 2010; 60
Valdivia-Silva (B69) 2012; 50
Hedley (B31) 1982; 46
Pfeiffer (B54) 2018; 197
Werner (B74) 2015; 49
Fox (B28) 2003; 8
Houston (B34) 2003; 23
Klysubun (B37) 2019; 175
Remonsellez (B61) 2018; 9
Fernandez (B25) 2016; 7
Churchman (B15) 2020; 68
McMurdie (B41) 2013; 8
Schulze-Makuch (B67) 2018; 115
Zhong (B79) 2018; 9
(B63) 2016
Warren-Rhodes (B72) 2019; 10
Navarro-González (B48) 2003; 302
Crits-Christoph (B17) 2013; 1
Prietzel (B56) 2016; 23
Callahan (B12) 2016; 13
(B59) 2018
Mirete (B43) 2015; 2
Sáez (B64) 2016; 145
Caporaso (B14) 2012; 6
Bull (B11) 2013; 103
Houston (B33) 2006; 26
Quast (B58) 2013; 41
(B68) 1997
Connon (B16) 2007; 112
Dormann (B21) 2008; 8
Moquin (B44) 2012; 87
An (B2) 2013; 66
Bonilla (B9) 1972
Oades (B52) 1988; 5
Al-Busaidi (B1) 2003; 8
Asem (B4) 2018; 68
Kormas (B39) 2003; 45
References_xml – volume: 6
  start-page: 1
  year: 2018
  ident: B19
  article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data.
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0605-2
– volume: 148
  start-page: 45
  year: 2018
  ident: B42
  article-title: Isotope stratigraphy: insights on paleoclimate and formation of nitrate deposits in the Atacama Desert, Chile.
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2017.09.013
– volume: 6
  start-page: 254
  year: 1955
  ident: B65
  article-title: Observations on the determination of total organic phosphorus in soil.
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1955.tb00849.x
– volume: 302
  start-page: 1018
  year: 2003
  ident: B48
  article-title: Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life.
  publication-title: Science
  doi: 10.1126/science.1089143
– volume: 184
  year: 2020
  ident: B38
  article-title: Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert.
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2019.103078
– volume: 8
  start-page: 8
  year: 2008
  ident: B21
  article-title: Introducing the bipartite package: analysing ecological networks.
  publication-title: R News
– volume: 6
  start-page: 415
  year: 2006
  ident: B76
  article-title: Endolithic cyanobacteria in halite rocks from the Hyperarid core of the Atacama desert.
  publication-title: Astrobiology
  doi: 10.1089/ast.2006.6.415
– volume: 7
  start-page: 335
  year: 2010
  ident: B13
  article-title: QIIME allows analysis of high-throughput community sequencing data.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– volume: 181
  year: 2019
  ident: B46
  article-title: Carbon accrual in the Atacama Desert.
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2019.102993
– volume: 27
  start-page: 31
  year: 1962
  ident: B47
  article-title: A modified single solution method for the determination of phosphate in natural waters.
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 13
  year: 2016
  ident: B12
  article-title: DADA2: high-resolution sample inference from Illumina amplicon data.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– volume: 23
  start-page: 1453
  year: 2003
  ident: B34
  article-title: The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert.
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.938
– year: 2018
  ident: B3
  article-title: ampvis2: an R package to analyse and visualise 16S rRNA amplicon data.
  publication-title: bioRxiv
  doi: 10.1101/299537
– volume: 68
  start-page: 3593
  year: 2018
  ident: B4
  article-title: Desertimonas flava gen. nov., sp. nov. isolated from a desert soil, and proposal of Ilumatobacteraceae fam. nov.
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijsem.0.003038
– volume: 10
  year: 2019
  ident: B72
  article-title: Subsurface microbial habitats in an extreme desert mars-analog environment.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00069
– volume: 12
  year: 2021
  ident: B40
  article-title: Impact of rocky desertification control on soil bacterial community in Karst Graben Basin, Southwestern China.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.636405
– volume: 87
  start-page: 110
  year: 2012
  ident: B44
  article-title: Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites.
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2012.05.004
– volume: 8
  year: 2018
  ident: B6
  article-title: Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35051-w
– volume: 311
  start-page: 1
  year: 2021
  ident: B71
  article-title: Phosphate oxygen isotope fingerprints of past biological activity in the Atacama Desert.
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2021.07.027
– volume: 7
  year: 2016
  ident: B25
  article-title: Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01284
– volume: 10
  year: 2020
  ident: B7
  article-title: Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76302-z
– volume: 8
  start-page: 1
  year: 2003
  ident: B28
  article-title: Effect displays in R for generalised linear models.
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v008.i15
– volume: 8
  year: 2017
  ident: B26
  article-title: Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01435
– volume: 8
  year: 2013
  ident: B41
  article-title: phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061217
– volume: 70
  start-page: 5293
  year: 2006
  ident: B24
  article-title: A threshold in soil formation at Earth’s arid–hyperarid transition.
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.08.020
– year: 2008
  ident: B30
  article-title: Atacama desert soil microbiology
  publication-title: Microbiology of Extreme Soils
  doi: 10.1007/978-3-540-74231-9_6
– volume: 2
  year: 2017
  ident: B49
  article-title: Significant impacts of increasing aridity on the arid soil microbiome.
  publication-title: mSystems
  doi: 10.1128/mSystems.00195-16
– volume: 46
  start-page: 970
  year: 1982
  ident: B31
  article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory Incubations.
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1982.03615995004600050017x
– volume: 36
  start-page: 2033
  year: 2018
  ident: B51
  article-title: Taxonomic and metabolic shifts in the Coorong bacterial metagenome driven by salinity and external inputs.
  publication-title: J. Ocean Limnol.
  doi: 10.1007/s00343-018-7387-z
– volume: 185
  year: 2020
  ident: B45
  article-title: Contrasting depth distribution of colloid-associated phosphorus in the active and abandoned sections of an alluvial fan in a hyper-arid region of the Atacama Desert.
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2019.103090
– volume: 49
  start-page: 10521
  year: 2015
  ident: B74
  article-title: Standard protocol and quality assessment of soil phosphorus speciation by P K-Edge XANES spectroscopy.
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.5b03096
– volume: 8
  start-page: 41
  year: 2003
  ident: B1
  article-title: Salinity–pH relationships in calcareous soils.
  publication-title: J. Agric. Mar. Sci.
  doi: 10.24200/jams.vol8iss1pp41-46
– volume: 9
  year: 2021
  ident: B66
  article-title: Microbial hotspots in lithic microhabitats inferred from DNA fractionation and metagenomics in the Atacama Desert.
  publication-title: Migroorganisms
  doi: 10.3390/microorganisms9051038
– volume: 16
  start-page: 553
  year: 2012
  ident: B50
  article-title: Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile.
  publication-title: Extremophiles
  doi: 10.1007/s00792-012-0454-z
– year: 2016
  ident: B63
  publication-title: Integrated Development for R.
– volume: 586
  start-page: 2939
  year: 2012
  ident: B8
  article-title: Life at the dry edge: microorganisms of the Atacama Desert.
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.07.025
– year: 1981
  ident: B23
  publication-title: Geology and Origin of the Chilean Nitrate Deposits. Geological Survey Professional paper 1188.
  doi: 10.3133/pp1188
– volume: 8
  year: 2018
  ident: B55
  article-title: Soil resources and element stocks in drylands to face global issues.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32229-0
– volume: 30
  start-page: 801
  year: 2013
  ident: B18
  article-title: Halobacterial community analysis of Mierlei saline lake in Transylvania (Romania).
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490451.2013.774073
– volume: 115
  start-page: 10702
  year: 2018
  ident: B57
  article-title: Viable cyanobacteria in the deep continental subsurface.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1808176115
– volume: 8
  year: 2018
  ident: B62
  article-title: Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32339-9
– volume: 62
  start-page: 2127
  year: 2012
  ident: B36
  article-title: Salisediminibacterium halotolerans gen. nov., sp. nov., a halophilic bacterium from soda lake sediment.
  publication-title: Int. J. Syst. Evol. Micr.
  doi: 10.1099/ijs.0.034488-0
– volume: 27
  start-page: 105
  year: 2019
  ident: B22
  article-title: Contamination in low microbial biomass microbiome studies: issues and recommendations.
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2018.11.003
– volume: 10
  start-page: 2447
  year: 2016
  ident: B35
  article-title: Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield.
  publication-title: ISME J.
  doi: 10.1038/ismej.2016.36
– volume: 49
  start-page: 271
  year: 2012
  ident: B27
  article-title: Variability of organic material in surface horizons of the hyper-arid Mars-like soils of the Atacama Desert.
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2011.10.001
– year: 1997
  ident: B68
  publication-title: World Atlas of Desertification
– volume: 6
  year: 2012
  ident: B14
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.8
– volume: 45
  start-page: 115
  year: 2003
  ident: B39
  article-title: Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176).
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/S0168-6496(03)00128-4
– volume: 9
  year: 2018
  ident: B61
  article-title: Characterization and salt response in recurrent halotolerant Exiguobacterium sp. SH31 isolated from sediments of Salar de Huasco, Chilean Altiplano.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02228
– volume: 7
  start-page: 388
  year: 2015
  ident: B5
  article-title: Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile.
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12261
– volume: 41
  start-page: D590
  year: 2013
  ident: B58
  article-title: The SILVA ribosomal RNA gene database proj- ect: improved data processing and web-based tools.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 66
  start-page: 850
  year: 2013
  ident: B2
  article-title: Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-013-0276-2
– volume: 8
  start-page: 352
  year: 2016
  ident: B77
  article-title: Using DECIPHER v2.0 to Analyse big biological sequence data in R.
  publication-title: R J.
  doi: 10.32614/RJ-2016-025
– volume: 1
  year: 2013
  ident: B17
  article-title: Colonisation patterns of soil microbial communities in the Atacama Desert.
  publication-title: Microbiome
  doi: 10.1186/2049-2618-1-28
– volume: 145
  start-page: 82
  year: 2016
  ident: B64
  article-title: Timing of wet episodes in Atacama Desert over the last 15 ka. The Groundwater Discharge Deposits (GWD) from Domeyko Range at 25°S.
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2016.05.036
– volume: 73
  start-page: 5261
  year: 2007
  ident: B70
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-07
– volume: 26
  start-page: 2181
  year: 2006
  ident: B33
  article-title: Variability of precipitation in the Atacama Desert: its causes and hydrological impact.
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1359
– volume: 232
  start-page: 573
  year: 2014
  ident: B29
  article-title: Sorption of inositol hexaphosphate on desert soils.
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.06.016
– volume: 11
  year: 2020
  ident: B53
  article-title: The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities.
  publication-title: mBio
  doi: 10.1128/mBio.01718-20
– volume: 5
  start-page: 35
  year: 1988
  ident: B52
  article-title: The retention of organic matter in soils.
  publication-title: Biogeochemistry
  doi: 10.1007/BF02180317
– volume: 175
  year: 2019
  ident: B37
  article-title: Upgrade of SLRI BL8 beamline for XAFS spectroscopy in a photon energy range of 1–13keV.
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.02.004
– volume: 197
  start-page: 224
  year: 2018
  ident: B54
  article-title: Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late quaternary.
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2018.08.001
– volume: 50
  start-page: 108
  year: 2012
  ident: B69
  article-title: Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with mars-like soils.
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2012.03.003
– volume: 60
  start-page: 539
  year: 2010
  ident: B60
  article-title: Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-010-9657-y
– volume: 41
  start-page: 314
  year: 2014
  ident: B32
  article-title: Origin of waters from small springs located at the northern coast of Chile, in the vicinity of Antofagasta.
  publication-title: Andean Geol.
  doi: 10.5027/andgeoV41n2-a03
– year: 2018
  ident: B59
  publication-title: R: A Language and Environment for Statistical Computing.
– volume: 52
  start-page: 389
  year: 2006
  ident: B73
  article-title: Hypolithic Cyanobacteria, dry limit of photosynthesis, and microbial ecology in the Hyperarid Atacama desert.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-006-9055-7
– volume: 103
  start-page: 1173
  year: 2013
  ident: B11
  article-title: Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile.
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-013-9911-7
– volume: 115
  start-page: 2670
  year: 2018
  ident: B67
  article-title: Transitory microbial habitat in the hyperarid Atacama Desert.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1714341115
– volume: 38
  start-page: 395
  year: 2020
  ident: B78
  article-title: The levels of microbial diversity in different water layers of saline Chagan Lake, China.
  publication-title: J. Oceanol. Limnol.
  doi: 10.1007/s00343-019-9027-7
– year: 1972
  ident: B9
  publication-title: Hidrología del Salar de Aguas Blancas. Departamento de Recursos Hidráulicos.
– volume: 96
  year: 2020
  ident: B10
  article-title: Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiaa042
– year: 2016
  ident: B75
  publication-title: ggplot2: Elegant Graphics for Data Analysis.
  doi: 10.1007/978-3-319-24277-4
– volume: 68
  start-page: 135
  year: 2020
  ident: B15
  article-title: Clay minerals as the key to the sequestration of carbon in soils.
  publication-title: Clays Clay Miner.
  doi: 10.1007/s42860-020-00071-z
– volume: 23
  start-page: 532
  year: 2016
  ident: B56
  article-title: Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577515023085
– volume: 2
  year: 2015
  ident: B43
  article-title: Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment.
  publication-title: Front. Microbiol.
– volume: 9
  year: 2018
  ident: B79
  article-title: Relationship between soil organic carbon stocks and clay content under different climatic conditions in Central China.
  publication-title: Forests
  doi: 10.3390/f9100598
– volume: 112
  year: 2007
  ident: B16
  article-title: Bacterial diversity in hyperarid Atacama Desert soils.
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JG000311
– year: 2017
  ident: B20
  publication-title: Inventario Nacional de Acuíferos
SSID ssj0000402000
Score 2.425249
Snippet The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 794743
SubjectTerms Atacama Desert
deep soil
hyperarid soil
Microbiology
microbiota
physicochemical properties
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FKPRS2lrbtVUi9FRYm-xLstmjH5WnYBFawVtIsrN0QXdF14N_gP93Z_bj8Z5IvXjNzpJhZpLMbzP7G8a-6TyosjIytYWwqZIhpgXVuEsdtYpW-irQB_3TX2Z-rk4u9MVSqy-qCRvogQfD_ZAwy3Kqw4RCqiAz72Vp8gxKPGmD8D0TqCjEEpjq92CCRWK8xkQUVqCb6hgQD2ZyF0MwV7OVg6jn638qyXxcK7l0-By9Y2_HrJHvDdq-Z6-g-cBeD30k79fZw_HUaoS3FT8bTZ9OZAD8d1tf8jNPdVhEpsnbhp_WAwNT5zltCWPpFvdNyQ-nUg1e4wA_BLjmc4SrBKtLlL7pZ8HEke91PvorEqE7_Y_s_Ojnn4N5OvZXSKMyukPUGDAhCYoo6kUVEJgB5n8Qi9JWEEIUWtsQTWHAiJiBxc3Ag0eIBAiDQIbZBltr2gY-Mx61iUTfhMlgVCCUR2AUiJ3M6qwUJiZMTMZ2cSQfpx4Ylw5BCPnH9f5x5B83-Cdh3xevXA_MG_8T3icPLgSJNLsfwFByYyi550IpYTuT_x0uMro58Q20d7eOSO0tZrbGJOzTEA-LqajDISohEpavRMqKLqtPmvpvT-RtrS7QSJsvofwX9iajPzOooDz_yta6mzvYwnypC9v90vgHCj0Skg
  priority: 102
  providerName: Directory of Open Access Journals
Title Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert
URI https://www.ncbi.nlm.nih.gov/pubmed/35197940
https://www.proquest.com/docview/2632805766
https://pubmed.ncbi.nlm.nih.gov/PMC8859261
https://doaj.org/article/1e3276769e914b12aa1d672ed389b0a4
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1di9QwFA3riuCL-G39WCL4JHRpukmaPoisrusojCzowLyFJL3Vwtius11wf4D_23vTdnBkEF_60KZNyE1yz0luz2XshSq8rGotUlNmJpXCh7SkGHehgpLBCFd72tCff9Kzhfy4VMs9NqW3GjvwYie1o3xSi_Xq8OePq9c44V8R40R_ixZogkeql4tDHF3oEq-x6-iYNHGx-Yj248JMXCn-lCK0pvOAfDmcc-7-ypanioL-u1Do38GUf3in09vs1ggr-fEwDu6wPWjvshtDosmre-zXhykXCe9qfjbaJp3UAvjnrlnxM0eBWqS2ybuWz5tBoql3nNaMMbaLu7biJ1MsB2_wBj8BOOcz5LPEuyssvY61ILLkx70L7jsVoUP_-2xx-u7L21k6JmBIg9SqR1rpEbF4SRr2We2RuQECRAhlZWrwPmRKGR90qUFnIQeDq4UDhxwKkCeB8EcP2H7btfCI8aB0IH0nRItBQiYdMidP8mVG5VWmQ8KyqbNtGNXJKUnGyiJLIfvYaB9L9rGDfRL2cvPK-SDN8a_Cb8iCm4Kkqh1vdOuvdpykVsBRXlDML5RCepE7Jypd5FDhJ33mZMKeT_a3OAvpaMW10F1eWFK9Nwh9tU7Yw2E8bKqiFIjYiCxhxdZI2WrL9pO2-RaVvo1RJXbS4_-o9wm7mdOfGRRQXjxl-_36Ep4hXur9QdxnwOv7pTiIM-I3WacUfw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Physical-Chemical+Soil+Parameters+on+Microbiota+Composition+and+Diversity+in+a+Deep+Hyperarid+Core+of+the+Atacama+Desert&rft.jtitle=Frontiers+in+microbiology&rft.au=Fuentes%2C+B%C3%A1rbara&rft.au=Choque%2C+Alessandra&rft.au=G%C3%B3mez%2C+Francisco&rft.au=Alarc%C3%B3n%2C+Jaime&rft.date=2022-02-07&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=12&rft.spage=794743&rft_id=info:doi/10.3389%2Ffmicb.2021.794743&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon