Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert
The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid...
Saved in:
Published in | Frontiers in microbiology Vol. 12; p. 794743 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
07.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X |
DOI | 10.3389/fmicb.2021.794743 |
Cover
Abstract | The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm), (ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa
Deinococcota
,
Halobacterota
, and
Latescibacterota
in zone A;
Crenarchaeota
,
Fusobacteriota
, and
Deltaproteobacterium
Sva0485 in zone B; and
Fervidibacteria
and
Campilobacterota
in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars. |
---|---|
AbstractList | The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm), (ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa
Deinococcota
,
Halobacterota
, and
Latescibacterota
in zone A;
Crenarchaeota
,
Fusobacteriota
, and
Deltaproteobacterium
Sva0485 in zone B; and
Fervidibacteria
and
Campilobacterota
in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars. The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars.The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars. The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa , , and in zone A; , , and Sva0485 in zone B; and and in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars. The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm), (ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota, Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars. |
Author | Knief, Claudia Klumpp, Erwin Remonsellez, Francisco Klysubun, Wantana Gómez, Francisco Arenas, Franko Mörchen, Ramona Amelung, Wulf Contreras, Daniel Choque, Alessandra Prietzel, Jörg Castro-Nallar, Eduardo Fuentes, Bárbara Moradi, Ghazal Saavedra, Claudia P. Alarcón, Jaime Bol, Roland |
AuthorAffiliation | 2 Programa de Doctorado en Ciencias Mención Geología, Universidad Católica del Norte , Antofagasta , Chile 1 Departamento de Ingeniería Química, Universidad Católica del Norte , Antofagasta , Chile 5 Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, University of Bonn , Bonn , Germany 6 Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany 8 Wissenschaftszentum Weihenstephan, Technical University München , Freising , Germany 10 Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte , Antofagasta , Chile 7 Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile 3 Center for Bioinformatics and Integrative Biology, Universidad Andres Bello , Santiago , Chile 9 Synchrotron Light Research Institute , Nakhon Ratchasima , Thailand 4 Institute of Crop Science and Resource |
AuthorAffiliation_xml | – name: 5 Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, University of Bonn , Bonn , Germany – name: 10 Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte , Antofagasta , Chile – name: 7 Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello , Santiago , Chile – name: 1 Departamento de Ingeniería Química, Universidad Católica del Norte , Antofagasta , Chile – name: 8 Wissenschaftszentum Weihenstephan, Technical University München , Freising , Germany – name: 2 Programa de Doctorado en Ciencias Mención Geología, Universidad Católica del Norte , Antofagasta , Chile – name: 6 Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany – name: 9 Synchrotron Light Research Institute , Nakhon Ratchasima , Thailand – name: 3 Center for Bioinformatics and Integrative Biology, Universidad Andres Bello , Santiago , Chile – name: 4 Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn , Bonn , Germany – name: 11 School of Natural Sciences, Environment Centre Wales, Bangor University , Bangor , United Kingdom |
Author_xml | – sequence: 1 givenname: Bárbara surname: Fuentes fullname: Fuentes, Bárbara – sequence: 2 givenname: Alessandra surname: Choque fullname: Choque, Alessandra – sequence: 3 givenname: Francisco surname: Gómez fullname: Gómez, Francisco – sequence: 4 givenname: Jaime surname: Alarcón fullname: Alarcón, Jaime – sequence: 5 givenname: Eduardo surname: Castro-Nallar fullname: Castro-Nallar, Eduardo – sequence: 6 givenname: Franko surname: Arenas fullname: Arenas, Franko – sequence: 7 givenname: Daniel surname: Contreras fullname: Contreras, Daniel – sequence: 8 givenname: Ramona surname: Mörchen fullname: Mörchen, Ramona – sequence: 9 givenname: Wulf surname: Amelung fullname: Amelung, Wulf – sequence: 10 givenname: Claudia surname: Knief fullname: Knief, Claudia – sequence: 11 givenname: Ghazal surname: Moradi fullname: Moradi, Ghazal – sequence: 12 givenname: Erwin surname: Klumpp fullname: Klumpp, Erwin – sequence: 13 givenname: Claudia P. surname: Saavedra fullname: Saavedra, Claudia P. – sequence: 14 givenname: Jörg surname: Prietzel fullname: Prietzel, Jörg – sequence: 15 givenname: Wantana surname: Klysubun fullname: Klysubun, Wantana – sequence: 16 givenname: Francisco surname: Remonsellez fullname: Remonsellez, Francisco – sequence: 17 givenname: Roland surname: Bol fullname: Bol, Roland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35197940$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us1u1DAQjlARLaUPwAX5yCWL7ThOfEGqtoWuVEQlQOJmjZ1J11USB9tbaR-A98a7W6qWAz7Yo_H3Y3m-18XR5CcsireMLqqqVR_60Vmz4JSzRaNEI6oXxQmTUpQV5T-PntTHxVmMdzQvQXneXxXHVc1UJtGT4vdq6ocNThaJ78nNehudhaFcrnHcFeSbdwO5gQAjJgyR-Il8cTZ443wCsvTj7KNLLrdh6siFu88gl7bE5Qa5QJzJ1XbGAMF1GR32LmmN5DyBhXEHiRjSm-JlD0PEs4fztPjx6fL78qq8_vp5tTy_Lq2QdSolM1QKIySlDe0NowKZZGhV1_ZojKV13RorlURJLce2qSggCKWwlRyZqU6L1UG383Cn5-BGCFvtwel9w4dbDSE5O6BmWPFGNlKhYsIwDsA62XDs8t8bCiJrfTxozRszYmdxSgGGZ6LPbya31rf-XrdtrbhkWeD9g0DwvzYYkx5dtDgMMKHfRM1lxVtaN1Jm6LunXo8mf-eYAewAyKOJMWD_CGFU7-Ki93HRu7joQ1wyp_mHY12C3Szzc93wH-YfOinG5w |
CitedBy_id | crossref_primary_10_3390_soilsystems8020046 crossref_primary_10_1093_pnasnexus_pgae123 crossref_primary_10_1186_s40168_023_01684_x crossref_primary_10_1016_j_catena_2023_107171 crossref_primary_10_1360_N072023_0067 crossref_primary_10_5194_bg_21_5305_2024 crossref_primary_10_1016_j_soilbio_2023_109128 crossref_primary_10_1007_s11430_023_1186_y crossref_primary_10_3390_d16120745 crossref_primary_10_2139_ssrn_4162357 crossref_primary_10_3390_app14198591 crossref_primary_10_1007_s11756_024_01731_4 crossref_primary_10_1016_j_scitotenv_2022_158578 crossref_primary_10_1128_spectrum_00056_24 crossref_primary_10_3390_biology12071023 crossref_primary_10_1016_j_gloplacha_2024_104383 crossref_primary_10_1016_j_gloplacha_2023_104320 |
Cites_doi | 10.1186/s40168-018-0605-2 10.1016/j.jaridenv.2017.09.013 10.1111/j.1365-2389.1955.tb00849.x 10.1126/science.1089143 10.1016/j.gloplacha.2019.103078 10.1089/ast.2006.6.415 10.1038/nmeth.f.303 10.1016/j.gloplacha.2019.102993 10.1016/S0003-2670(00)88444-5 10.1038/nmeth.3869 10.1002/joc.938 10.1101/299537 10.1099/ijsem.0.003038 10.3389/fmicb.2019.00069 10.3389/fmicb.2021.636405 10.1016/j.jaridenv.2012.05.004 10.1038/s41598-018-35051-w 10.1016/j.gca.2021.07.027 10.3389/fmicb.2016.01284 10.1038/s41598-020-76302-z 10.18637/jss.v008.i15 10.3389/fmicb.2017.01435 10.1371/journal.pone.0061217 10.1016/j.gca.2006.08.020 10.1007/978-3-540-74231-9_6 10.1128/mSystems.00195-16 10.2136/sssaj1982.03615995004600050017x 10.1007/s00343-018-7387-z 10.1016/j.gloplacha.2019.103090 10.1021/acs.est.5b03096 10.24200/jams.vol8iss1pp41-46 10.3390/microorganisms9051038 10.1007/s00792-012-0454-z 10.1016/j.febslet.2012.07.025 10.3133/pp1188 10.1038/s41598-018-32229-0 10.1080/01490451.2013.774073 10.1073/pnas.1808176115 10.1038/s41598-018-32339-9 10.1099/ijs.0.034488-0 10.1016/j.tim.2018.11.003 10.1038/ismej.2016.36 10.1016/j.asr.2011.10.001 10.1038/ismej.2012.8 10.1016/S0168-6496(03)00128-4 10.3389/fmicb.2018.02228 10.1111/1758-2229.12261 10.1093/nar/gks1219 10.1007/s00248-013-0276-2 10.32614/RJ-2016-025 10.1186/2049-2618-1-28 10.1016/j.quascirev.2016.05.036 10.1128/AEM.00062-07 10.1002/joc.1359 10.1016/j.geoderma.2014.06.016 10.1128/mBio.01718-20 10.1007/BF02180317 10.1016/j.radphyschem.2019.02.004 10.1016/j.quascirev.2018.08.001 10.1016/j.asr.2012.03.003 10.1007/s00248-010-9657-y 10.5027/andgeoV41n2-a03 10.1007/s00248-006-9055-7 10.1007/s10482-013-9911-7 10.1073/pnas.1714341115 10.1007/s00343-019-9027-7 10.1093/femsec/fiaa042 10.1007/978-3-319-24277-4 10.1007/s42860-020-00071-z 10.1107/S1600577515023085 10.3390/f9100598 10.1029/2006JG000311 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol. Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol. 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol |
Copyright_xml | – notice: Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol. – notice: Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol. 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2021.794743 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_1e3276769e914b12aa1d672ed389b0a4 PMC8859261 35197940 10_3389_fmicb_2021_794743 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-61b064b460070fb104e161ec9d8febbc0558bc696e60c2e8730aea499e862e1b3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 00:31:18 EDT 2025 Thu Aug 21 14:32:08 EDT 2025 Fri Sep 05 06:30:47 EDT 2025 Thu Jan 02 22:54:59 EST 2025 Tue Jul 01 04:34:05 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | microbiota hyperarid soil Atacama Desert physicochemical properties deep soil |
Language | English |
License | Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-61b064b460070fb104e161ec9d8febbc0558bc696e60c2e8730aea499e862e1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Mark Alexander Lever, ETH Zürich, Switzerland This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology Reviewed by: Alfonso F. Davila, National Aeronautics and Space Administration (NASA), United States; Charles K. Lee, University of Waikato, New Zealand |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2021.794743 |
PMID | 35197940 |
PQID | 2632805766 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e3276769e914b12aa1d672ed389b0a4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8859261 proquest_miscellaneous_2632805766 pubmed_primary_35197940 crossref_primary_10_3389_fmicb_2021_794743 crossref_citationtrail_10_3389_fmicb_2021_794743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-07 |
PublicationDateYYYYMMDD | 2022-02-07 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bottos (B10) 2020; 96 Azua-Bustos (B8) 2012; 586 Andersen (B3) 2018 Ericksen (B23) 1981 Knief (B38) 2020; 184 Azua-Bustos (B6) 2018; 8 Wickham (B75) 2016 Crognale (B18) 2013; 30 Herrera (B32) 2014; 41 Plaza (B55) 2018; 8 Moradi (B45) 2020; 185 Ritter (B62) 2018; 8 Wright (B77) 2016; 8 Wang (B71) 2021; 311 Melchiorre (B42) 2018; 148 Fletcher (B27) 2012; 49 Jiang (B36) 2012; 62 Oliverio (B53) 2020; 11 Azua-Bustos (B5) 2015; 7 Azua-Bustos (B7) 2020; 10 Eisenhofer (B22) 2019; 27 Li (B40) 2021; 12 Schulze-Makuch (B66) 2021; 9 Zhang (B78) 2020; 38 Fuentes (B29) 2014; 232 Neilson (B49) 2017; 2 Murphy (B47) 1962; 27 Puente-Sánchez (B57) 2018; 115 Ewing (B24) 2006; 70 Saunders (B65) 1955; 6 Gómez-Silva (B30) 2008 Neilson (B50) 2012; 16 Davis (B19) 2018; 6 Mörchen (B46) 2019; 181 Finstad (B26) 2017; 8 Caporaso (B13) 2010; 7 Newton (B51) 2018; 36 Hubalek (B35) 2016; 10 (B20) 2017 Wierzchos (B76) 2006; 6 Wang (B70) 2007; 73 Warren-Rhodes (B73) 2006; 52 Rastogi (B60) 2010; 60 Valdivia-Silva (B69) 2012; 50 Hedley (B31) 1982; 46 Pfeiffer (B54) 2018; 197 Werner (B74) 2015; 49 Fox (B28) 2003; 8 Houston (B34) 2003; 23 Klysubun (B37) 2019; 175 Remonsellez (B61) 2018; 9 Fernandez (B25) 2016; 7 Churchman (B15) 2020; 68 McMurdie (B41) 2013; 8 Schulze-Makuch (B67) 2018; 115 Zhong (B79) 2018; 9 (B63) 2016 Warren-Rhodes (B72) 2019; 10 Navarro-González (B48) 2003; 302 Crits-Christoph (B17) 2013; 1 Prietzel (B56) 2016; 23 Callahan (B12) 2016; 13 (B59) 2018 Mirete (B43) 2015; 2 Sáez (B64) 2016; 145 Caporaso (B14) 2012; 6 Bull (B11) 2013; 103 Houston (B33) 2006; 26 Quast (B58) 2013; 41 (B68) 1997 Connon (B16) 2007; 112 Dormann (B21) 2008; 8 Moquin (B44) 2012; 87 An (B2) 2013; 66 Bonilla (B9) 1972 Oades (B52) 1988; 5 Al-Busaidi (B1) 2003; 8 Asem (B4) 2018; 68 Kormas (B39) 2003; 45 |
References_xml | – volume: 6 start-page: 1 year: 2018 ident: B19 article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. publication-title: Microbiome doi: 10.1186/s40168-018-0605-2 – volume: 148 start-page: 45 year: 2018 ident: B42 article-title: Isotope stratigraphy: insights on paleoclimate and formation of nitrate deposits in the Atacama Desert, Chile. publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2017.09.013 – volume: 6 start-page: 254 year: 1955 ident: B65 article-title: Observations on the determination of total organic phosphorus in soil. publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1955.tb00849.x – volume: 302 start-page: 1018 year: 2003 ident: B48 article-title: Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. publication-title: Science doi: 10.1126/science.1089143 – volume: 184 year: 2020 ident: B38 article-title: Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert. publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2019.103078 – volume: 8 start-page: 8 year: 2008 ident: B21 article-title: Introducing the bipartite package: analysing ecological networks. publication-title: R News – volume: 6 start-page: 415 year: 2006 ident: B76 article-title: Endolithic cyanobacteria in halite rocks from the Hyperarid core of the Atacama desert. publication-title: Astrobiology doi: 10.1089/ast.2006.6.415 – volume: 7 start-page: 335 year: 2010 ident: B13 article-title: QIIME allows analysis of high-throughput community sequencing data. publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 – volume: 181 year: 2019 ident: B46 article-title: Carbon accrual in the Atacama Desert. publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2019.102993 – volume: 27 start-page: 31 year: 1962 ident: B47 article-title: A modified single solution method for the determination of phosphate in natural waters. publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 13 year: 2016 ident: B12 article-title: DADA2: high-resolution sample inference from Illumina amplicon data. publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 23 start-page: 1453 year: 2003 ident: B34 article-title: The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. publication-title: Int. J. Climatol. doi: 10.1002/joc.938 – year: 2018 ident: B3 article-title: ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. publication-title: bioRxiv doi: 10.1101/299537 – volume: 68 start-page: 3593 year: 2018 ident: B4 article-title: Desertimonas flava gen. nov., sp. nov. isolated from a desert soil, and proposal of Ilumatobacteraceae fam. nov. publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.003038 – volume: 10 year: 2019 ident: B72 article-title: Subsurface microbial habitats in an extreme desert mars-analog environment. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00069 – volume: 12 year: 2021 ident: B40 article-title: Impact of rocky desertification control on soil bacterial community in Karst Graben Basin, Southwestern China. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.636405 – volume: 87 start-page: 110 year: 2012 ident: B44 article-title: Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2012.05.004 – volume: 8 year: 2018 ident: B6 article-title: Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. publication-title: Sci. Rep. doi: 10.1038/s41598-018-35051-w – volume: 311 start-page: 1 year: 2021 ident: B71 article-title: Phosphate oxygen isotope fingerprints of past biological activity in the Atacama Desert. publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2021.07.027 – volume: 7 year: 2016 ident: B25 article-title: Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01284 – volume: 10 year: 2020 ident: B7 article-title: Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. publication-title: Sci. Rep. doi: 10.1038/s41598-020-76302-z – volume: 8 start-page: 1 year: 2003 ident: B28 article-title: Effect displays in R for generalised linear models. publication-title: J. Stat. Softw. doi: 10.18637/jss.v008.i15 – volume: 8 year: 2017 ident: B26 article-title: Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01435 – volume: 8 year: 2013 ident: B41 article-title: phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. publication-title: PLoS One doi: 10.1371/journal.pone.0061217 – volume: 70 start-page: 5293 year: 2006 ident: B24 article-title: A threshold in soil formation at Earth’s arid–hyperarid transition. publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.08.020 – year: 2008 ident: B30 article-title: Atacama desert soil microbiology publication-title: Microbiology of Extreme Soils doi: 10.1007/978-3-540-74231-9_6 – volume: 2 year: 2017 ident: B49 article-title: Significant impacts of increasing aridity on the arid soil microbiome. publication-title: mSystems doi: 10.1128/mSystems.00195-16 – volume: 46 start-page: 970 year: 1982 ident: B31 article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory Incubations. publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1982.03615995004600050017x – volume: 36 start-page: 2033 year: 2018 ident: B51 article-title: Taxonomic and metabolic shifts in the Coorong bacterial metagenome driven by salinity and external inputs. publication-title: J. Ocean Limnol. doi: 10.1007/s00343-018-7387-z – volume: 185 year: 2020 ident: B45 article-title: Contrasting depth distribution of colloid-associated phosphorus in the active and abandoned sections of an alluvial fan in a hyper-arid region of the Atacama Desert. publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2019.103090 – volume: 49 start-page: 10521 year: 2015 ident: B74 article-title: Standard protocol and quality assessment of soil phosphorus speciation by P K-Edge XANES spectroscopy. publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.5b03096 – volume: 8 start-page: 41 year: 2003 ident: B1 article-title: Salinity–pH relationships in calcareous soils. publication-title: J. Agric. Mar. Sci. doi: 10.24200/jams.vol8iss1pp41-46 – volume: 9 year: 2021 ident: B66 article-title: Microbial hotspots in lithic microhabitats inferred from DNA fractionation and metagenomics in the Atacama Desert. publication-title: Migroorganisms doi: 10.3390/microorganisms9051038 – volume: 16 start-page: 553 year: 2012 ident: B50 article-title: Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. publication-title: Extremophiles doi: 10.1007/s00792-012-0454-z – year: 2016 ident: B63 publication-title: Integrated Development for R. – volume: 586 start-page: 2939 year: 2012 ident: B8 article-title: Life at the dry edge: microorganisms of the Atacama Desert. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.07.025 – year: 1981 ident: B23 publication-title: Geology and Origin of the Chilean Nitrate Deposits. Geological Survey Professional paper 1188. doi: 10.3133/pp1188 – volume: 8 year: 2018 ident: B55 article-title: Soil resources and element stocks in drylands to face global issues. publication-title: Sci. Rep. doi: 10.1038/s41598-018-32229-0 – volume: 30 start-page: 801 year: 2013 ident: B18 article-title: Halobacterial community analysis of Mierlei saline lake in Transylvania (Romania). publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2013.774073 – volume: 115 start-page: 10702 year: 2018 ident: B57 article-title: Viable cyanobacteria in the deep continental subsurface. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1808176115 – volume: 8 year: 2018 ident: B62 article-title: Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert. publication-title: Sci. Rep. doi: 10.1038/s41598-018-32339-9 – volume: 62 start-page: 2127 year: 2012 ident: B36 article-title: Salisediminibacterium halotolerans gen. nov., sp. nov., a halophilic bacterium from soda lake sediment. publication-title: Int. J. Syst. Evol. Micr. doi: 10.1099/ijs.0.034488-0 – volume: 27 start-page: 105 year: 2019 ident: B22 article-title: Contamination in low microbial biomass microbiome studies: issues and recommendations. publication-title: Trends Microbiol. doi: 10.1016/j.tim.2018.11.003 – volume: 10 start-page: 2447 year: 2016 ident: B35 article-title: Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. publication-title: ISME J. doi: 10.1038/ismej.2016.36 – volume: 49 start-page: 271 year: 2012 ident: B27 article-title: Variability of organic material in surface horizons of the hyper-arid Mars-like soils of the Atacama Desert. publication-title: Adv. Space Res. doi: 10.1016/j.asr.2011.10.001 – year: 1997 ident: B68 publication-title: World Atlas of Desertification – volume: 6 year: 2012 ident: B14 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. publication-title: ISME J. doi: 10.1038/ismej.2012.8 – volume: 45 start-page: 115 year: 2003 ident: B39 article-title: Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). publication-title: FEMS Microbiol. Ecol. doi: 10.1016/S0168-6496(03)00128-4 – volume: 9 year: 2018 ident: B61 article-title: Characterization and salt response in recurrent halotolerant Exiguobacterium sp. SH31 isolated from sediments of Salar de Huasco, Chilean Altiplano. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02228 – volume: 7 start-page: 388 year: 2015 ident: B5 article-title: Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12261 – volume: 41 start-page: D590 year: 2013 ident: B58 article-title: The SILVA ribosomal RNA gene database proj- ect: improved data processing and web-based tools. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 66 start-page: 850 year: 2013 ident: B2 article-title: Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. publication-title: Microb. Ecol. doi: 10.1007/s00248-013-0276-2 – volume: 8 start-page: 352 year: 2016 ident: B77 article-title: Using DECIPHER v2.0 to Analyse big biological sequence data in R. publication-title: R J. doi: 10.32614/RJ-2016-025 – volume: 1 year: 2013 ident: B17 article-title: Colonisation patterns of soil microbial communities in the Atacama Desert. publication-title: Microbiome doi: 10.1186/2049-2618-1-28 – volume: 145 start-page: 82 year: 2016 ident: B64 article-title: Timing of wet episodes in Atacama Desert over the last 15 ka. The Groundwater Discharge Deposits (GWD) from Domeyko Range at 25°S. publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2016.05.036 – volume: 73 start-page: 5261 year: 2007 ident: B70 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00062-07 – volume: 26 start-page: 2181 year: 2006 ident: B33 article-title: Variability of precipitation in the Atacama Desert: its causes and hydrological impact. publication-title: Int. J. Climatol. doi: 10.1002/joc.1359 – volume: 232 start-page: 573 year: 2014 ident: B29 article-title: Sorption of inositol hexaphosphate on desert soils. publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.016 – volume: 11 year: 2020 ident: B53 article-title: The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. publication-title: mBio doi: 10.1128/mBio.01718-20 – volume: 5 start-page: 35 year: 1988 ident: B52 article-title: The retention of organic matter in soils. publication-title: Biogeochemistry doi: 10.1007/BF02180317 – volume: 175 year: 2019 ident: B37 article-title: Upgrade of SLRI BL8 beamline for XAFS spectroscopy in a photon energy range of 1–13keV. publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2019.02.004 – volume: 197 start-page: 224 year: 2018 ident: B54 article-title: Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late quaternary. publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2018.08.001 – volume: 50 start-page: 108 year: 2012 ident: B69 article-title: Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with mars-like soils. publication-title: Adv. Space Res. doi: 10.1016/j.asr.2012.03.003 – volume: 60 start-page: 539 year: 2010 ident: B60 article-title: Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. publication-title: Microb. Ecol. doi: 10.1007/s00248-010-9657-y – volume: 41 start-page: 314 year: 2014 ident: B32 article-title: Origin of waters from small springs located at the northern coast of Chile, in the vicinity of Antofagasta. publication-title: Andean Geol. doi: 10.5027/andgeoV41n2-a03 – year: 2018 ident: B59 publication-title: R: A Language and Environment for Statistical Computing. – volume: 52 start-page: 389 year: 2006 ident: B73 article-title: Hypolithic Cyanobacteria, dry limit of photosynthesis, and microbial ecology in the Hyperarid Atacama desert. publication-title: Microb. Ecol. doi: 10.1007/s00248-006-9055-7 – volume: 103 start-page: 1173 year: 2013 ident: B11 article-title: Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-013-9911-7 – volume: 115 start-page: 2670 year: 2018 ident: B67 article-title: Transitory microbial habitat in the hyperarid Atacama Desert. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1714341115 – volume: 38 start-page: 395 year: 2020 ident: B78 article-title: The levels of microbial diversity in different water layers of saline Chagan Lake, China. publication-title: J. Oceanol. Limnol. doi: 10.1007/s00343-019-9027-7 – year: 1972 ident: B9 publication-title: Hidrología del Salar de Aguas Blancas. Departamento de Recursos Hidráulicos. – volume: 96 year: 2020 ident: B10 article-title: Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiaa042 – year: 2016 ident: B75 publication-title: ggplot2: Elegant Graphics for Data Analysis. doi: 10.1007/978-3-319-24277-4 – volume: 68 start-page: 135 year: 2020 ident: B15 article-title: Clay minerals as the key to the sequestration of carbon in soils. publication-title: Clays Clay Miner. doi: 10.1007/s42860-020-00071-z – volume: 23 start-page: 532 year: 2016 ident: B56 article-title: Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy. publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577515023085 – volume: 2 year: 2015 ident: B43 article-title: Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. publication-title: Front. Microbiol. – volume: 9 year: 2018 ident: B79 article-title: Relationship between soil organic carbon stocks and clay content under different climatic conditions in Central China. publication-title: Forests doi: 10.3390/f9100598 – volume: 112 year: 2007 ident: B16 article-title: Bacterial diversity in hyperarid Atacama Desert soils. publication-title: J. Geophys. Res. doi: 10.1029/2006JG000311 – year: 2017 ident: B20 publication-title: Inventario Nacional de Acuíferos |
SSID | ssj0000402000 |
Score | 2.425249 |
Snippet | The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 794743 |
SubjectTerms | Atacama Desert deep soil hyperarid soil Microbiology microbiota physicochemical properties |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FKPRS2lrbtVUi9FRYm-xLstmjH5WnYBFawVtIsrN0QXdF14N_gP93Z_bj8Z5IvXjNzpJhZpLMbzP7G8a-6TyosjIytYWwqZIhpgXVuEsdtYpW-irQB_3TX2Z-rk4u9MVSqy-qCRvogQfD_ZAwy3Kqw4RCqiAz72Vp8gxKPGmD8D0TqCjEEpjq92CCRWK8xkQUVqCb6hgQD2ZyF0MwV7OVg6jn638qyXxcK7l0-By9Y2_HrJHvDdq-Z6-g-cBeD30k79fZw_HUaoS3FT8bTZ9OZAD8d1tf8jNPdVhEpsnbhp_WAwNT5zltCWPpFvdNyQ-nUg1e4wA_BLjmc4SrBKtLlL7pZ8HEke91PvorEqE7_Y_s_Ojnn4N5OvZXSKMyukPUGDAhCYoo6kUVEJgB5n8Qi9JWEEIUWtsQTWHAiJiBxc3Ag0eIBAiDQIbZBltr2gY-Mx61iUTfhMlgVCCUR2AUiJ3M6qwUJiZMTMZ2cSQfpx4Ylw5BCPnH9f5x5B83-Cdh3xevXA_MG_8T3icPLgSJNLsfwFByYyi550IpYTuT_x0uMro58Q20d7eOSO0tZrbGJOzTEA-LqajDISohEpavRMqKLqtPmvpvT-RtrS7QSJsvofwX9iajPzOooDz_yta6mzvYwnypC9v90vgHCj0Skg priority: 102 providerName: Directory of Open Access Journals |
Title | Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35197940 https://www.proquest.com/docview/2632805766 https://pubmed.ncbi.nlm.nih.gov/PMC8859261 https://doaj.org/article/1e3276769e914b12aa1d672ed389b0a4 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1di9QwFA3riuCL-G39WCL4JHRpukmaPoisrusojCzowLyFJL3Vwtius11wf4D_23vTdnBkEF_60KZNyE1yz0luz2XshSq8rGotUlNmJpXCh7SkGHehgpLBCFd72tCff9Kzhfy4VMs9NqW3GjvwYie1o3xSi_Xq8OePq9c44V8R40R_ixZogkeql4tDHF3oEq-x6-iYNHGx-Yj248JMXCn-lCK0pvOAfDmcc-7-ypanioL-u1Do38GUf3in09vs1ggr-fEwDu6wPWjvshtDosmre-zXhykXCe9qfjbaJp3UAvjnrlnxM0eBWqS2ybuWz5tBoql3nNaMMbaLu7biJ1MsB2_wBj8BOOcz5LPEuyssvY61ILLkx70L7jsVoUP_-2xx-u7L21k6JmBIg9SqR1rpEbF4SRr2We2RuQECRAhlZWrwPmRKGR90qUFnIQeDq4UDhxwKkCeB8EcP2H7btfCI8aB0IH0nRItBQiYdMidP8mVG5VWmQ8KyqbNtGNXJKUnGyiJLIfvYaB9L9rGDfRL2cvPK-SDN8a_Cb8iCm4Kkqh1vdOuvdpykVsBRXlDML5RCepE7Jypd5FDhJ33mZMKeT_a3OAvpaMW10F1eWFK9Nwh9tU7Yw2E8bKqiFIjYiCxhxdZI2WrL9pO2-RaVvo1RJXbS4_-o9wm7mdOfGRRQXjxl-_36Ep4hXur9QdxnwOv7pTiIM-I3WacUfw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Physical-Chemical+Soil+Parameters+on+Microbiota+Composition+and+Diversity+in+a+Deep+Hyperarid+Core+of+the+Atacama+Desert&rft.jtitle=Frontiers+in+microbiology&rft.au=Fuentes%2C+B%C3%A1rbara&rft.au=Choque%2C+Alessandra&rft.au=G%C3%B3mez%2C+Francisco&rft.au=Alarc%C3%B3n%2C+Jaime&rft.date=2022-02-07&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=12&rft.spage=794743&rft_id=info:doi/10.3389%2Ffmicb.2021.794743&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |