Therapeutic hypothermia reduces cortical inflammation associated with utah array implants
Objective. Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biologic...
Saved in:
Published in | Journal of neural engineering Vol. 17; no. 2; p. 026035 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
29.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective. Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. Approach. A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. Main results. The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. Significance. This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation. |
---|---|
AbstractList | Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term.
A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups.
The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines.
This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation. OBJECTIVENeuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACHA custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTSThe custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCEThis work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation. Objective. Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. Approach. A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. Main results. The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. Significance. This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation. |
Author | Dugan, Elizabeth A Dietrich, W Dalton Bennett, Cassie Tamames, Ilmar Rajguru, Suhrud M King, Curtis S Prasad, Abhishek |
AuthorAffiliation | 4 Department of Otolaryngology, University of Miami, FL 2 The Miami Project to Cure Paralysis, University of Miami, FL 1 Department of Biomedical Engineering, University of Miami, FL 3 Lucent Medical Systems, WA |
AuthorAffiliation_xml | – name: 2 The Miami Project to Cure Paralysis, University of Miami, FL – name: 1 Department of Biomedical Engineering, University of Miami, FL – name: 3 Lucent Medical Systems, WA – name: 4 Department of Otolaryngology, University of Miami, FL |
Author_xml | – sequence: 1 givenname: Elizabeth A surname: Dugan fullname: Dugan, Elizabeth A organization: University of Miami Department of Biomedical Engineering, FL, United States of America – sequence: 2 givenname: Cassie surname: Bennett fullname: Bennett, Cassie organization: University of Miami Department of Biomedical Engineering, FL, United States of America – sequence: 3 givenname: Ilmar surname: Tamames fullname: Tamames, Ilmar organization: University of Miami Department of Biomedical Engineering, FL, United States of America – sequence: 4 givenname: W Dalton surname: Dietrich fullname: Dietrich, W Dalton organization: University of Miami The Miami Project to Cure Paralysis, FL, United States of America – sequence: 5 givenname: Curtis S surname: King fullname: King, Curtis S organization: Lucent Medical Systems , WA, United States of America – sequence: 6 givenname: Abhishek orcidid: 0000-0001-9586-9400 surname: Prasad fullname: Prasad, Abhishek email: a.prasad@miami.edu organization: University of Miami Department of Biomedical Engineering, FL, United States of America – sequence: 7 givenname: Suhrud M orcidid: 0000-0001-5953-8516 surname: Rajguru fullname: Rajguru, Suhrud M email: s.rajguru@miami.edu organization: University of Miami Department of Otolaryngology, FL, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32240985$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcuPFCEQxolZ4z707slw04Pj8mjo5mJiNr6STbysB0-khq62mXRDC_Sa-e9lMutEE2M4QFG_-qC-uiRnIQYk5DlnbzjrumveNnwjlBLXsO1ULx6Ri9PV2ems2Tm5zHnHmOStYU_IuRSiYaZTF-Tb3YgJFlyLd3TcL7HUePZAE_arw0xdTDUFE_VhmGCeofgYKOQcnYeCPf3py0jXAiOFlGBP_bxMEEp-Sh4PMGV89rBfka8f3t_dfNrcfvn4-ebd7cY1WpWN0s5IZbbccde00uhBaiOlcXUhb2tXGgY5iKFtQfdGNk0PYgudRpQN7528Im-Pusu6nbF3GEqCyS7Jz5D2NoK3f2eCH-33eG87oYyQrAq8ehBI8ceKudjZZ4dT7QLjmq2QnRatZm1TUXZEXYo5JxxOz3BmDxOxB8vtwX57nEgtefHn904Fv0dQgddHwMfF7uKaQnXrf3ov_4HvAlbUCsuEZlLZpR_kL0ikpq4 |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1016_j_jtherbio_2023_103501 crossref_primary_10_3389_fnins_2023_1296475 crossref_primary_10_1109_TBME_2021_3055976 crossref_primary_10_3390_mi12020208 crossref_primary_10_1016_j_heares_2022_108680 crossref_primary_10_3389_fnins_2023_1296458 |
Cites_doi | 10.1016/j.biomaterials.2018.09.040 10.1023/A:1020709814456 10.1152/ajpcell.00152.2005 10.3389/fneng.2014.00002 10.1016/j.jneumeth.2008.12.030 10.1114/1.1554924 10.1007/s11517-019-01962-7 10.1523/JNEUROSCI.22-10-03921.2002 10.1016/S0022-510X(02)00463-X 10.3174/ajnr.A3175 10.1088/1741-2560/10/6/066014 10.1007/s00421-007-0451-6 10.1155/2013/957054 10.3171/jns.2005.103.2.0289 10.1152/ajpheart.01275.2004 10.1109/TNSRE.2017.2677443 10.1038/sj.jcbfm.9600150 10.1161/01.STR.29.10.2171 10.1067/mem.2002.123697 10.1097/00006123-199612000-00024 10.3389/fnmol.2015.00077 10.1016/0896-6273(94)90266-6 10.1161/01.STR.0000091269.67384.E7 10.22088/IJMCM.BUMS.7.1.8 10.1038/nature11076 10.1097/mao.0000000000002373 10.1016/S1042-3680(18)30322-X 10.1038/sj.cdd.4400344 10.1016/S0022-5223(05)80006-6 10.1016/j.molbrainres.2005.04.006 10.1016/j.yjmcc.2007.11.020 10.1179/2045772312Y.0000000085 10.1097/BRS.0b013e3181b9dc28 10.1042/bj3260001 10.1073/pnas.0500369102 10.1146/annurev.neuro.20.1.245 10.1161/01.STR.27.5.913 10.1016/j.brainres.2007.10.052 10.1097/CCM.0b013e3181aa5241 10.1016/S0006-8993(03)03088-9 10.1177/0954411911400156 10.1007/s00134-003-2152-x 10.1038/nm.3953 10.1038/jcbfm.1991.13 10.1161/01.STR.31.8.1982 10.1146/annurev-bioeng-071910-124640 10.1097/AUD.0000000000000529 10.1016/j.jss.2004.08.002 10.1615/CritRevBiomedEng.2018027166 10.1016/j.stem.2008.05.018 10.1097/MAO.0000000000000787 10.1179/016164110X12670144526228 10.1016/0003-4975(94)91350-1 10.1001/archinte.168.14.1522 10.1002/cne.22014 10.1016/j.biomaterials.2018.02.036 10.1006/meth.2001.1262 10.1097/01.WCB.0000090680.07515.C8 10.4103/bc.bc_28_17 10.1109/TNSRE.2007.908429 10.1016/j.nurt.2009.10.015 10.1227/01.NEU.0000367557.77973.5F 10.1097/CCM.0b013e3181962ad5 10.1177/003693309203700301 10.1038/jcbfm.2009.81 10.1371/journal.pone.0170682 10.1016/j.ijporl.2012.01.013 10.1523/JNEUROSCI.16-02-00486.1996 10.1016/j.heares.2016.05.015 10.1111/j.1471-4159.2004.02711.x 10.1186/cc5023 10.1177/10454411930040020401 10.1016/S0169-328X(01)00247-9 10.1080/000164800750000793 10.1177/1073858402238517 10.1097/00004647-200003000-00012 10.1016/j.jtherbio.2004.04.001 10.1007/s13311-011-0035-3 10.1016/S0306-4522(02)00350-0 |
ContentType | Journal Article |
Copyright | 2020 IOP Publishing Ltd |
Copyright_xml | – notice: 2020 IOP Publishing Ltd |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1088/1741-2552/ab85d2 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Therapeutic hypothermia reduces cortical inflammation associated with utah array implants |
EISSN | 1741-2552 |
EndPage | 026035 |
ExternalDocumentID | 10_1088_1741_2552_ab85d2 32240985 jneab85d2 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: 1DP2EB022357; R01DC01379801A1; UL1TR002736 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institute on Deafness and Other Communication Disorders grantid: R01DC01379801 funderid: http://dx.doi.org/10.13039/100000055 – fundername: National Center for Advancing Translational Sciences grantid: UL1TR002736 funderid: http://dx.doi.org/10.13039/100006108 – fundername: NCATS NIH HHS grantid: UL1 TR000460 – fundername: NIDCD NIH HHS grantid: R01 DC013798 – fundername: NIBIB NIH HHS grantid: DP2 EB022357 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c465t-56c9359b1c1c47396f369339c9c9e1785d6af3f2f77a6d9344da2ba86ee341dc3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Tue Sep 17 21:06:14 EDT 2024 Fri Jun 28 12:07:58 EDT 2024 Fri Aug 23 01:47:24 EDT 2024 Tue Aug 27 13:45:54 EDT 2024 Wed Aug 21 03:34:54 EDT 2024 Thu Jan 07 15:21:17 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-56c9359b1c1c47396f369339c9c9e1785d6af3f2f77a6d9344da2ba86ee341dc3 |
Notes | JNE-103322.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5953-8516 0000-0001-9586-9400 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259230 |
PMID | 32240985 |
PQID | 2386276074 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1088_1741_2552_ab85d2 proquest_miscellaneous_2386276074 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8259230 iop_journals_10_1088_1741_2552_ab85d2 pubmed_primary_32240985 |
PublicationCentury | 2000 |
PublicationDate | 20200429 |
PublicationDateYYYYMMDD | 2020-04-29 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200429 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 47 48 49 Inamasu J (25) 2000; 76 50 51 53 10 54 11 55 12 13 57 14 58 15 59 16 Prasad A (52) 2012; 9 17 18 19 1 2 3 4 5 7 8 9 63 20 64 21 65 22 66 23 67 24 68 Maekawa T (60) 2012 69 26 28 29 Choi J S (27) 2011; 2011 70 71 72 73 30 74 31 75 32 76 33 77 34 78 35 79 36 37 Jiang J (61) 2017 38 39 Cooper D J (62) 2017 Barrese J C (6) 2013; 10 Butte A J (56) 2001 80 81 82 83 40 84 41 85 42 86 43 87 |
References_xml | – ident: 53 doi: 10.1016/j.biomaterials.2018.09.040 – ident: 85 doi: 10.1023/A:1020709814456 – ident: 28 doi: 10.1152/ajpcell.00152.2005 – ident: 7 doi: 10.3389/fneng.2014.00002 – ident: 63 doi: 10.1016/j.jneumeth.2008.12.030 – ident: 47 doi: 10.1114/1.1554924 – ident: 51 doi: 10.1007/s11517-019-01962-7 – ident: 36 doi: 10.1523/JNEUROSCI.22-10-03921.2002 – ident: 21 doi: 10.1016/S0022-510X(02)00463-X – ident: 17 doi: 10.3174/ajnr.A3175 – volume: 10 issn: 1741-2552 year: 2013 ident: 6 publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/10/6/066014 contributor: fullname: Barrese J C – ident: 50 doi: 10.1007/s00421-007-0451-6 – ident: 67 doi: 10.1155/2013/957054 – ident: 37 doi: 10.3171/jns.2005.103.2.0289 – ident: 41 doi: 10.1152/ajpheart.01275.2004 – ident: 1 doi: 10.1109/TNSRE.2017.2677443 – ident: 9 doi: 10.1038/sj.jcbfm.9600150 – ident: 24 doi: 10.1161/01.STR.29.10.2171 – ident: 20 doi: 10.1067/mem.2002.123697 – ident: 23 doi: 10.1097/00006123-199612000-00024 – ident: 76 doi: 10.3389/fnmol.2015.00077 – ident: 87 doi: 10.1016/0896-6273(94)90266-6 – ident: 35 doi: 10.1161/01.STR.0000091269.67384.E7 – ident: 79 doi: 10.22088/IJMCM.BUMS.7.1.8 – ident: 3 doi: 10.1038/nature11076 – ident: 43 doi: 10.1097/mao.0000000000002373 – ident: 30 doi: 10.1016/S1042-3680(18)30322-X – ident: 74 doi: 10.1038/sj.cdd.4400344 – ident: 33 doi: 10.1016/S0022-5223(05)80006-6 – ident: 10 doi: 10.1016/j.molbrainres.2005.04.006 – ident: 57 doi: 10.1016/j.yjmcc.2007.11.020 – ident: 18 doi: 10.1179/2045772312Y.0000000085 – ident: 11 doi: 10.1097/BRS.0b013e3181b9dc28 – volume: 9 issn: 1741-2552 year: 2012 ident: 52 publication-title: J. Neural. Eng. contributor: fullname: Prasad A – ident: 73 doi: 10.1042/bj3260001 – ident: 58 doi: 10.1073/pnas.0500369102 – ident: 84 doi: 10.1146/annurev.neuro.20.1.245 – ident: 34 doi: 10.1161/01.STR.27.5.913 – ident: 39 doi: 10.1016/j.brainres.2007.10.052 – ident: 65 doi: 10.1097/CCM.0b013e3181aa5241 – ident: 40 doi: 10.1016/S0006-8993(03)03088-9 – ident: 64 doi: 10.1177/0954411911400156 – year: 2012 ident: 60 publication-title: Therapeutic Hypothermia for Severe Traumatic Brain Injury in Japan contributor: fullname: Maekawa T – ident: 69 doi: 10.1007/s00134-003-2152-x – ident: 2 doi: 10.1038/nm.3953 – ident: 19 doi: 10.1038/jcbfm.1991.13 – volume: 2011 year: 2011 ident: 27 publication-title: Stroke Res. Treat contributor: fullname: Choi J S – ident: 14 doi: 10.1161/01.STR.31.8.1982 – ident: 4 doi: 10.1146/annurev-bioeng-071910-124640 – ident: 45 doi: 10.1097/AUD.0000000000000529 – ident: 49 doi: 10.1097/AUD.0000000000000529 – ident: 75 doi: 10.1016/j.jss.2004.08.002 – ident: 5 doi: 10.1615/CritRevBiomedEng.2018027166 – start-page: 6 year: 2001 ident: 56 publication-title: Pac. Symp. Biocomput. contributor: fullname: Butte A J – ident: 59 doi: 10.1016/j.stem.2008.05.018 – ident: 81 doi: 10.1097/MAO.0000000000000787 – ident: 82 doi: 10.1179/016164110X12670144526228 – ident: 46 doi: 10.1016/0003-4975(94)91350-1 – year: 2017 ident: 61 contributor: fullname: Jiang J – ident: 31 doi: 10.1001/archinte.168.14.1522 – ident: 13 doi: 10.1002/cne.22014 – ident: 54 doi: 10.1016/j.biomaterials.2018.02.036 – ident: 55 doi: 10.1006/meth.2001.1262 – ident: 42 doi: 10.1097/01.WCB.0000090680.07515.C8 – ident: 68 doi: 10.4103/bc.bc_28_17 – ident: 48 doi: 10.1109/TNSRE.2007.908429 – ident: 16 doi: 10.1016/j.nurt.2009.10.015 – volume: 76 start-page: 525 issn: 0065-1419 year: 2000 ident: 25 publication-title: Acta Neurochir. Suppl. contributor: fullname: Inamasu J – ident: 12 doi: 10.1227/01.NEU.0000367557.77973.5F – ident: 71 doi: 10.1097/CCM.0b013e3181962ad5 – ident: 29 doi: 10.1177/003693309203700301 – ident: 26 doi: 10.1038/jcbfm.2009.81 – ident: 38 doi: 10.1371/journal.pone.0170682 – ident: 78 doi: 10.1016/j.ijporl.2012.01.013 – ident: 86 doi: 10.1523/JNEUROSCI.16-02-00486.1996 – ident: 44 doi: 10.1016/j.heares.2016.05.015 – ident: 72 doi: 10.1111/j.1471-4159.2004.02711.x – year: 2017 ident: 62 contributor: fullname: Cooper D J – ident: 70 doi: 10.1186/cc5023 – ident: 77 doi: 10.1177/10454411930040020401 – ident: 83 doi: 10.1016/S0169-328X(01)00247-9 – ident: 32 doi: 10.1080/000164800750000793 – ident: 80 doi: 10.1177/1073858402238517 – ident: 8 doi: 10.1097/00004647-200003000-00012 – ident: 66 doi: 10.1016/j.jtherbio.2004.04.001 – ident: 15 doi: 10.1007/s13311-011-0035-3 – ident: 22 doi: 10.1016/S0306-4522(02)00350-0 |
SSID | ssj0031790 |
Score | 2.3582845 |
Snippet | Objective. Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of... Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable... OBJECTIVENeuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable... |
SourceID | pubmedcentral proquest crossref pubmed iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 026035 |
SubjectTerms | brain computer interface inflammation microelectrodes neuroprosthesis neuroprotection therapeutic hypothermia Utah arrays |
Title | Therapeutic hypothermia reduces cortical inflammation associated with utah array implants |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ab85d2 https://www.ncbi.nlm.nih.gov/pubmed/32240985 https://search.proquest.com/docview/2386276074 https://pubmed.ncbi.nlm.nih.gov/PMC8259230 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXABSoGGR2UkQOLgbWLHL3GqqlYFicehlYqEZNmOo11gs9Fu9rD8esZxdmGrCiGUHCJlFGcmM_Y345kJQi9DXijBrSUaPDVShmCJE4oR73IOJ3fUx9rhDx_F-WX5_opf7aC3m1qYWTtM_SO4TI2CkwiHhDh1BBi6IICE6ZF1ilcw_95mYCrR83r36fN6Gmax9VSqhozUIh_2KG96wtaadAvGvQluXs-a_GMZOruHvq4ZSNkn30fLzo38z2u9Hf-Tw_vo7gBP8XEi3UM7oXmA9o8bcM2nK_wa9wmjfSR-H325-F27hcertq_lmk4snsd2sGGBwbHtI-UYtBgULxVJYjsoRKhwDALjZWfH2M7ndoUn0_ZHzMt5iC7PTi9OzsnwpwbiS8E7woWPFb6u8IUvJdOiZkIzpj0coZDAg7A1q2ktpRWVZmVZWeqsEiHAKlp59gjtNrMmHCBcAwSxTlPlYOHUFTj-0noXgpQwVOlEht6sv5VpU0MO02-kK2Wi3EyUm0lyy9ArELEZrHLxFzq8RfetCUBjqIkN1xg3bVVn6MVaIwwYYNxVsU2YLRcGMI-gUgAUy9DjpCGbF2MRMGnFMyS3dGdDEJt7b99pJuO-yTd47oC98yf_yMJTdIfGSEBeEqqfod1uvgzPAS517rA3i1-eBBB4 |
link.rule.ids | 230,315,783,787,888,27936,27937,38877,53854 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuLVAeKS8jARKH7CZ2bMfHCli1PEoPrVROxnYc7RY2G-1mD8uvZ5xkC1tVCAklh0iZxPF47Plsz3wBeOmTNBfcmFjhTC3OvDexFTmLnU04ntxSF3KHPx-Lw7Pswzk_7_9z2ubCzOp-6B_gZUcU3KmwD4jLh4ih0xiRMB0am_OCDuui3IKb2HN5IM8_-nKyHopZoJ_qMiLDEyLp9ymve8uGX9rCsq-DnFcjJ_9wRaNd-LauRBeB8n2wbOzA_bzC7_gftbwDOz1MJQed-F244at7sHdQ4RR9uiKvSRs42q7I78HX0985XGS8qtucrunEkHmghfULghPcdsWcoDWjAXbJksT0huELEhaDybIxY2Lmc7Mik2n9I8Tn3Iez0fvTt4dx_8eG2GWCNzEXLmT62tSlLpNMiZIJxZhyePhUYj2EKVlJSymNKBTLssJQa3LhPXrTwrEHsF3NKv8ISIlQxFhFc4sOVBXeUmmc9V5KLCqzIoI36_bSdUfModsN9TzXQXc66E53uovgFapZ971z8Rc5siF3UXmU0VQH4jXGNTZBBC_WVqGxI4bdFVP52XKhEfsIKgVCsggedlZy-WEsACeV8wjkhv1cCgSS78071WTckn3jDB4xeLL_j1V4DrdO3o30p6Pjj4_hNg2LA0kWU_UEtpv50j9FBNXYZ20v-QUjyhXY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+hypothermia+reduces+cortical+inflammation+associated+with+utah+array+implants&rft.jtitle=Journal+of+neural+engineering&rft.au=Dugan%2C+Elizabeth+A&rft.au=Bennett%2C+Cassie&rft.au=Tamames%2C+Ilmar&rft.au=Dietrich%2C+W+Dalton&rft.date=2020-04-29&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=17&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fab85d2&rft.externalDocID=jneab85d2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |