Sample size determination for mediation analysis of longitudinal data
Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforw...
Saved in:
Published in | BMC medical research methodology Vol. 18; no. 1; pp. 32 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
27.03.2018
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2288 1471-2288 |
DOI | 10.1186/s12874-018-0473-2 |
Cover
Loading…
Abstract | Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design.
To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method.
Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use.
Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design. |
---|---|
AbstractList | Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design.BACKGROUNDSample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design.To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method.METHODSTo facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method.Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use.RESULTSAmong the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use.Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.CONCLUSIONSExtensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design. Abstract Background Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. Methods To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel’s method, distribution of product method and the bootstrap method. Results Among the three methods of testing the mediation effects, Sobel’s method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel’s method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Conclusions Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel’s method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design. Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design. |
ArticleNumber | 32 |
Author | Pan, Haitao Miao, Danmin Yuan, Ying Liu, Suyu |
Author_xml | – sequence: 1 givenname: Haitao orcidid: 0000-0003-4457-7349 surname: Pan fullname: Pan, Haitao – sequence: 2 givenname: Suyu surname: Liu fullname: Liu, Suyu – sequence: 3 givenname: Danmin surname: Miao fullname: Miao, Danmin – sequence: 4 givenname: Ying surname: Yuan fullname: Yuan, Ying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29580203$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEUhompsV_-ADdmlm6m8jkwGxPTVG3SxIV2Tc4Ac6Vh4Apck_bXy-20TevCFYfDe54XeI_RQUzRIfSO4DNC1PCxEKok7zFRPeaS9fQVOiJckp5SpQ6e1YfouJQbjIlUbHiDDukoFKaYHaGLH7Bsg-uKv3OdddXlxUeoPsVuTrlbnPXrDiKE2-JLl-YupLjxdWebMnQWKpyi1zOE4t4-rCfo-svFz_Nv_dX3r5fnn696wwdReyGsFNySWQhDhINZYKV4q7miMAnMiMWSUmvlQPlAhwkPwAwo4TiVRFJ2gi5Xrk1wo7fZL5BvdQKv7xspbzTk6k1wmhvBzdRoozF85moCoKNiZm7OGAhrrE8ra7ub2jONizVDeAF9eRL9L71Jf7RQEgs2NsCHB0BOv3euVL34YlwIEF3aFU0xGTEb6cib9P1zryeTxxyagKwCk1Mp2c1PEoL1Pmu9Zq1b1nqftd5_hvxnxvh6H1a7rg__mfwLms6tPQ |
CitedBy_id | crossref_primary_10_1016_j_ptsp_2024_08_009 crossref_primary_10_5465_amj_2017_0054 crossref_primary_10_2196_24380 crossref_primary_10_1016_j_brat_2023_104424 crossref_primary_10_1016_j_jecp_2024_106103 crossref_primary_10_1093_ije_dyaa174 crossref_primary_10_1016_j_jmbbm_2022_105512 crossref_primary_10_1016_j_apmr_2021_02_025 crossref_primary_10_1017_S0033291721002336 crossref_primary_10_1123_pes_2022_0073 crossref_primary_10_1016_j_learninstruc_2020_101397 crossref_primary_10_1111_sms_14530 crossref_primary_10_3390_ijms21124401 crossref_primary_10_1080_07399332_2024_2359555 crossref_primary_10_1007_s10608_019_10059_2 crossref_primary_10_3389_fneur_2025_1533565 crossref_primary_10_1016_j_brainres_2019_146436 crossref_primary_10_1080_03630242_2024_2374783 crossref_primary_10_1016_j_jocrd_2019_100441 crossref_primary_10_5406_19398298_136_1_07 crossref_primary_10_1080_02701367_2024_2311652 crossref_primary_10_1007_s42413_024_00204_5 crossref_primary_10_1093_aje_kwaa083 crossref_primary_10_1097_jnr_0000000000000590 crossref_primary_10_1007_s40299_023_00751_z crossref_primary_10_1016_j_concog_2022_103318 crossref_primary_10_1016_j_cct_2022_106844 crossref_primary_10_1007_s11695_020_05023_z crossref_primary_10_1007_s10826_022_02329_7 crossref_primary_10_1016_j_psychsport_2022_102292 crossref_primary_10_1016_j_ajsep_2023_09_002 crossref_primary_10_1093_sleepadvances_zpad030 crossref_primary_10_1186_s12888_020_03020_1 crossref_primary_10_1177_00332941241255037 crossref_primary_10_1080_19331681_2022_2097358 crossref_primary_10_3390_ijerph19031826 crossref_primary_10_26852_01234250_34 crossref_primary_10_1080_10826084_2023_2262021 crossref_primary_10_1177_00332941231183331 crossref_primary_10_1016_j_xjmad_2023_100043 crossref_primary_10_1016_j_appet_2023_106568 crossref_primary_10_3389_fpsyg_2024_1346503 crossref_primary_10_3390_su151612455 crossref_primary_10_1016_j_ejon_2021_102014 crossref_primary_10_1016_j_ijhm_2023_103483 crossref_primary_10_1093_geronb_gbae209 crossref_primary_10_1016_j_jenvp_2021_101617 crossref_primary_10_1007_s12144_024_05683_5 crossref_primary_10_1177_00332941231216899 crossref_primary_10_1016_j_bodyim_2022_08_014 crossref_primary_10_1016_j_clpl_2024_100076 crossref_primary_10_1590_0102_311xen138023 crossref_primary_10_1016_j_learninstruc_2024_101874 crossref_primary_10_2196_59288 crossref_primary_10_1007_s10608_021_10280_y crossref_primary_10_1007_s10865_024_00476_4 crossref_primary_10_1111_psyg_70000 crossref_primary_10_1186_s13052_025_01914_y crossref_primary_10_1080_02791072_2022_2080616 crossref_primary_10_30773_pi_2019_0291 crossref_primary_10_1007_s11469_025_01459_5 crossref_primary_10_1093_jpepsy_jsaa007 crossref_primary_10_1002_ejp_1733 crossref_primary_10_1080_00273171_2019_1593814 crossref_primary_10_1093_abm_kaab073 crossref_primary_10_1186_s12884_025_07364_y crossref_primary_10_1080_02640414_2020_1826666 crossref_primary_10_3390_children12030329 crossref_primary_10_1080_00222895_2022_2105793 crossref_primary_10_3390_ijerph182413149 crossref_primary_10_1080_10888691_2019_1700797 crossref_primary_10_3390_ijerph19031074 crossref_primary_10_1016_j_jpain_2023_08_010 crossref_primary_10_1177_17470218221082657 crossref_primary_10_1007_s12144_023_05170_3 crossref_primary_10_1080_20008198_2020_1825166 crossref_primary_10_1177_01461672231202278 crossref_primary_10_1007_s10880_023_09977_x crossref_primary_10_1016_j_techsoc_2024_102601 crossref_primary_10_1016_j_envres_2020_109613 crossref_primary_10_1080_10447318_2024_2445102 crossref_primary_10_1027_1864_9335_a000403 crossref_primary_10_1002_bse_4086 crossref_primary_10_1136_bmjopen_2024_096116 crossref_primary_10_14746_ssllt_37174 crossref_primary_10_1007_s11031_024_10100_2 crossref_primary_10_1016_j_jocrd_2022_100754 crossref_primary_10_1080_17482798_2025_2450637 crossref_primary_10_1007_s10479_021_04189_8 crossref_primary_10_1111_jep_14267 crossref_primary_10_3389_fpubh_2024_1485143 crossref_primary_10_23736_S2724_6612_24_02528_4 crossref_primary_10_3389_fpls_2020_614837 crossref_primary_10_37382_jomts_v5i1_915 crossref_primary_10_1002_hpja_911 crossref_primary_10_1002_job_2371 crossref_primary_10_1080_16066359_2023_2264773 crossref_primary_10_1186_s12903_020_01206_3 crossref_primary_10_1007_s10578_020_01033_1 crossref_primary_10_1016_j_jad_2024_09_106 crossref_primary_10_1155_2022_6979310 crossref_primary_10_1002_capr_12375 crossref_primary_10_1007_s12529_022_10101_w crossref_primary_10_1136_bmjopen_2023_075142 |
Cites_doi | 10.1111/j.1467-9280.2007.01882.x 10.1037/1082-989X.9.2.147 10.1080/00273171.2017.1289361 10.1037/1082-989X.11.2.142 10.1007/978-0-387-73186-5 10.1080/00273171.2016.1191324 10.2307/270723 10.1111/j.2517-6161.1967.tb00713.x 10.1037/0022-006X.59.1.20 10.1207/s15327906mbr3901_4 10.1146/annurev.psych.59.103006.093735 10.1207/s15327906mbr3302_5 10.1002/cpp.383 10.1177/0962280212465163 10.1207/s15327906mbr3001_3 10.1177/0193841X9301700202 10.4324/9781410604118 10.1207/S15327906MBR3602_06 10.1037/0022-3514.51.6.1173 10.1017/CBO9780511790928 10.1177/0193841X8100500502 10.1177/0193841X9902300404 10.3102/10769986006003267 10.1370/afm.141 10.1214/aos/1176344552 10.1177/0049124187016001006 10.2307/271084 10.1080/10503300500264911 10.1037/1082-989X.7.4.422 10.1037/0022-006X.73.5.914 10.1111/j.1751-9004.2007.00052.x 10.1037/0022-0167.54.1.32 10.1037/1082-989X.8.2.115 10.1080/10503300500268540 |
ContentType | Journal Article |
Copyright | The Author(s). 2018 |
Copyright_xml | – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/s12874-018-0473-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2288 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_4c54cb7229cc4f48baa2983cfc150a13 PMC5870539 29580203 10_1186_s12874_018_0473_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P50 CA098258 – fundername: NCI NIH HHS grantid: R01 CA154591 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: CA154591 grantid: CA154591 – fundername: NCI NIH HHS grantid: 5P50CA098258 – fundername: NCI NIH HHS grantid: CA016672 – fundername: ; – fundername: ; grantid: CA154591 – fundername: ; grantid: CA016672; 5P50CA098258 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c465t-55d754d1f55c15eaf508845c1482ab5031d0722dd7624626b06a3ca85e4271723 |
IEDL.DBID | M48 |
ISSN | 1471-2288 |
IngestDate | Wed Aug 27 01:19:46 EDT 2025 Thu Aug 21 18:23:47 EDT 2025 Fri Jul 11 03:35:18 EDT 2025 Thu Jan 02 23:01:24 EST 2025 Tue Jul 01 04:30:54 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mediation analysis Sample size determination Longitudinal study |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-55d754d1f55c15eaf508845c1482ab5031d0722dd7624626b06a3ca85e4271723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4457-7349 |
OpenAccessLink | https://doaj.org/article/4c54cb7229cc4f48baa2983cfc150a13 |
PMID | 29580203 |
PQID | 2019039294 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c54cb7229cc4f48baa2983cfc150a13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870539 proquest_miscellaneous_2019039294 pubmed_primary_29580203 crossref_primary_10_1186_s12874_018_0473_2 crossref_citationtrail_10_1186_s12874_018_0473_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-27 |
PublicationDateYYYYMMDD | 2018-03-27 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC medical research methodology |
PublicationTitleAlternate | BMC Med Res Methodol |
PublicationYear | 2018 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | LM Collins (473_CR7) 1998; 33 DP MacKinnon (473_CR25) 1993; 17 KA Bollen (473_CR6) 1990; 20 MS Fritz (473_CR14) 2007; 18 C Wang (473_CR38) 2016; 25 S Killip (473_CR19) 2004; 2 JJ Hox (473_CR15) 2002 DP MacKinnon (473_CR28) 1995; 30 J Okiishi (473_CR32) 2003; 10 JL Krull (473_CR22) 2001; 36 473_CR24 DJ Bauer (473_CR5) 2006; 11 RM Baron (473_CR4) 1986; 51 JL Krull (473_CR21) 1999; 23 J de Leeuw (473_CR9) 2008 ME Sobel (473_CR35) 1982; 13 H Du (473_CR10) 2016; 51 DP MacKinnon (473_CR26) 2004; 39 I Elkin (473_CR12) 2006; 16 D-M Kim (473_CR20) 2006; 16 ZA Lomnicki (473_CR23) 1967; 29 BE Wampold (473_CR37) 2005; 73 WQ Meeker Jr (473_CR31) 1981 B Efron (473_CR11) 1979; 7 473_CR2 CM Judd (473_CR16) 1981 SE Maxwell (473_CR29) 2004; 9 ME Sobel (473_CR36) 1987; 16 473_CR13 WT Abraham (473_CR1) 2008; 2 P Crits-Christoph (473_CR8) 1991; 59 DA Kenny (473_CR18) 2003; 8 R Barcikowski (473_CR3) 1981; 6 DP MacKinnon (473_CR27) 2008 SE Maxwell (473_CR30) 2008; 59 SW Raudenbush (473_CR33) 2002 CM Judd (473_CR17) 1981; 5 PE Shrout (473_CR34) 2002; 7 |
References_xml | – volume-title: Selected tables in mathematical statistics year: 1981 ident: 473_CR31 – volume: 18 start-page: 233 year: 2007 ident: 473_CR14 publication-title: Psychol Sci doi: 10.1111/j.1467-9280.2007.01882.x – volume: 9 start-page: 147 issue: 2 year: 2004 ident: 473_CR29 publication-title: Psychol Methods doi: 10.1037/1082-989X.9.2.147 – ident: 473_CR2 doi: 10.1080/00273171.2017.1289361 – volume-title: Hierarchical linear models: applications and data analysis methods year: 2002 ident: 473_CR33 – volume: 11 start-page: 142 year: 2006 ident: 473_CR5 publication-title: Psychol Methods doi: 10.1037/1082-989X.11.2.142 – volume-title: Handbook of multilevel analysis year: 2008 ident: 473_CR9 doi: 10.1007/978-0-387-73186-5 – volume: 51 start-page: 589 issue: 5 year: 2016 ident: 473_CR10 publication-title: Multivar Behav Res doi: 10.1080/00273171.2016.1191324 – volume: 13 start-page: 290 year: 1982 ident: 473_CR35 publication-title: Sociol Methodol doi: 10.2307/270723 – volume: 29 start-page: 513 year: 1967 ident: 473_CR23 publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1967.tb00713.x – volume: 59 start-page: 20 year: 1991 ident: 473_CR8 publication-title: J Consult Clin Psychol doi: 10.1037/0022-006X.59.1.20 – volume: 39 start-page: 99 year: 2004 ident: 473_CR26 publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr3901_4 – volume: 59 start-page: 537 year: 2008 ident: 473_CR30 publication-title: Annu Rev Psychol doi: 10.1146/annurev.psych.59.103006.093735 – volume: 33 start-page: 295 year: 1998 ident: 473_CR7 publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr3302_5 – volume: 10 start-page: 361 year: 2003 ident: 473_CR32 publication-title: Clinical Psychology and Psychotherapy doi: 10.1002/cpp.383 – volume: 25 start-page: 686 issue: 2 year: 2016 ident: 473_CR38 publication-title: Stat Methods Med Res doi: 10.1177/0962280212465163 – volume: 30 start-page: 41 year: 1995 ident: 473_CR28 publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr3001_3 – volume-title: Estimating the effects of social interventions year: 1981 ident: 473_CR16 – volume: 17 start-page: 144 year: 1993 ident: 473_CR25 publication-title: Eval Rev doi: 10.1177/0193841X9301700202 – volume-title: Multilevel analysis: techniques and applications year: 2002 ident: 473_CR15 doi: 10.4324/9781410604118 – volume: 36 start-page: 249 year: 2001 ident: 473_CR22 publication-title: Multivar Behav Res doi: 10.1207/S15327906MBR3602_06 – volume: 51 start-page: 1173 year: 1986 ident: 473_CR4 publication-title: J Pers Soc Psychol doi: 10.1037/0022-3514.51.6.1173 – ident: 473_CR13 doi: 10.1017/CBO9780511790928 – volume: 5 start-page: 602 year: 1981 ident: 473_CR17 publication-title: Eval Rev doi: 10.1177/0193841X8100500502 – volume: 23 start-page: 418 year: 1999 ident: 473_CR21 publication-title: Eval Rev doi: 10.1177/0193841X9902300404 – volume: 6 start-page: 267 year: 1981 ident: 473_CR3 publication-title: J Educ Stat doi: 10.3102/10769986006003267 – volume: 2 start-page: 204 issue: 3 year: 2004 ident: 473_CR19 publication-title: Ann Fam Med doi: 10.1370/afm.141 – volume: 7 start-page: 1 year: 1979 ident: 473_CR11 publication-title: Ann Stat doi: 10.1214/aos/1176344552 – volume: 16 start-page: 155 year: 1987 ident: 473_CR36 publication-title: Sociological Methods and Research doi: 10.1177/0049124187016001006 – volume: 20 start-page: 115 year: 1990 ident: 473_CR6 publication-title: Sociol Methodol doi: 10.2307/271084 – volume-title: Introduction to statistical mediation analysis year: 2008 ident: 473_CR27 – volume: 16 start-page: 161 year: 2006 ident: 473_CR20 publication-title: Psychother Res doi: 10.1080/10503300500264911 – volume: 7 start-page: 422 year: 2002 ident: 473_CR34 publication-title: Psychology Methods doi: 10.1037/1082-989X.7.4.422 – volume: 73 start-page: 914 year: 2005 ident: 473_CR37 publication-title: J Consult Clin Psychol doi: 10.1037/0022-006X.73.5.914 – volume: 2 start-page: 283 issue: 1 year: 2008 ident: 473_CR1 publication-title: Soc Personal Psychol Compass doi: 10.1111/j.1751-9004.2007.00052.x – ident: 473_CR24 doi: 10.1037/0022-0167.54.1.32 – volume: 8 start-page: 115 year: 2003 ident: 473_CR18 publication-title: Psychol Methods doi: 10.1037/1082-989X.8.2.115 – volume: 16 start-page: 144 year: 2006 ident: 473_CR12 publication-title: Psychother Res doi: 10.1080/10503300500268540 |
SSID | ssj0017836 |
Score | 2.5275717 |
Snippet | Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant... Abstract Background Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 32 |
SubjectTerms | Algorithms Computer Simulation Humans Longitudinal Studies Longitudinal study Mediation analysis Models, Statistical Multilevel Analysis - methods Reproducibility of Results Sample Size Sample size determination |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA_iQbyIn--tX0TwJASz6aRJjyqKCHpRwVtIkxQF6T7c3Yt_vTNpd3Efohdv_UhpOjPp_IaZ_IaxY-mNko1OwqK7FBBlLbzVtQATPUgbq5BytcVdef0IN0_66VOrL6oJ6-iBO8GdQtAQaqNUFQI0YGvvVWWL0ASEMj73q1Xo82bBVJ8_oL0JfQ5zaMvT8ZBo3TFstkKCKYRa8EKZrP8rhPl_oeQnz3O1ztZ6yMjPuqlusKXUbrKV2z4pvsUu7z1R_PLxy3vicVbeQgLniEh53huSz3xPQMJHDX8dUaOiaaSmWJzKRLfZ49Xlw8W16LsjiAClngito9EQh43WKIrkG4JagMdgla81LtYoUWwx4u8OMGypZemLgIpIoDCGU8UOW25HbfrLuCHcYGQZhz6AD1T5FAsVy1BH6aOFAZMzabnQU4dTB4tXl0MIW7pOwA4F7EjATg3YyfyRfx1vxneDz0kF84FEeZ0voCG43hDcT4YwYEczBTpcIpT38G0aTcdO0X55woH4IX86hc5fpSptKRk7YGZB1QtzWbzTvjxnGm6NvzpdVLu_Mfk9tqqydaJtmn22PHmbpgNEO5P6MBv2B6lv-5Y priority: 102 providerName: Directory of Open Access Journals |
Title | Sample size determination for mediation analysis of longitudinal data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29580203 https://www.proquest.com/docview/2019039294 https://pubmed.ncbi.nlm.nih.gov/PMC5870539 https://doaj.org/article/4c54cb7229cc4f48baa2983cfc150a13 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1ri9QwMJx3IH4R3-6pSwQ_CdE0nTTpBxFX9jiEO-R0YfFLSJP2PFhabx-g_npnst3VlUXwS-kjfcxMJjPTeTH2QnqjZKNrYVFcCoiyEt7qSoCJHqSNZahTtMV5cTqBD1M9PWCb9lY9Ahd7TTvqJzWZz159v_7xFhn-TWJ4W7xeZFS0HY1iKySYXOCKfISCyVAnhzP47VSghIWUbGQyoZS1vZNz7yN2xFSq5r9PBf07kvIP0XRyh93udUr-bj0J7rKDur3Hbp71XvP7bPzJUw1gvrj6WfO4iX8hinBUWXlKHklHvq9QwruGzzrqZLSK1DWLUxzpAzY5GX9-fyr69gkiQKGXQutoNMSs0TpkuvYN6WKA-2CVrzRyc5RGqRhxPQS0aypZ-DwgpWpQaOSp_CE7bLu2fsy4IcXCyCJmPoAPFBoVcxWLUEXpo4UBkxtsudDXFqcWFzOXbAxbuDWCHSLYEYKdGrCX21u-rQtr_GvwiEiwHUg1sdOJbn7pehZzEDSECiEqQ4AGbOW9Km0eGoRe-iwfsOcbAjrkIXKM-LbuVgunKKGeFEUE5NGaoNtXqVJb8tYOmNkh9c637F5pr76mOt0a10Kdl8f_A-kTdkulWYhz0Dxlh8v5qn6Gas-yGrIbZmqG7Gg0Pv94MUw_D4ZpguP2YvTlF3T2_64 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+determination+for+mediation+analysis+of+longitudinal+data&rft.jtitle=BMC+medical+research+methodology&rft.au=Pan%2C+Haitao&rft.au=Liu%2C+Suyu&rft.au=Miao%2C+Danmin&rft.au=Yuan%2C+Ying&rft.date=2018-03-27&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-018-0473-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12874_018_0473_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |