Sample size determination for mediation analysis of longitudinal data

Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforw...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 18; no. 1; pp. 32 - 11
Main Authors Pan, Haitao, Liu, Suyu, Miao, Danmin, Yuan, Ying
Format Journal Article
LanguageEnglish
Published England BioMed Central 27.03.2018
BMC
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/s12874-018-0473-2

Cover

Loading…
Abstract Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.
AbstractList Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design.BACKGROUNDSample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design.To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method.METHODSTo facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method.Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use.RESULTSAmong the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use.Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.CONCLUSIONSExtensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.
Abstract Background Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. Methods To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel’s method, distribution of product method and the bootstrap method. Results Among the three methods of testing the mediation effects, Sobel’s method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel’s method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Conclusions Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel’s method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.
Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.
ArticleNumber 32
Author Pan, Haitao
Miao, Danmin
Yuan, Ying
Liu, Suyu
Author_xml – sequence: 1
  givenname: Haitao
  orcidid: 0000-0003-4457-7349
  surname: Pan
  fullname: Pan, Haitao
– sequence: 2
  givenname: Suyu
  surname: Liu
  fullname: Liu, Suyu
– sequence: 3
  givenname: Danmin
  surname: Miao
  fullname: Miao, Danmin
– sequence: 4
  givenname: Ying
  surname: Yuan
  fullname: Yuan, Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29580203$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEUhompsV_-ADdmlm6m8jkwGxPTVG3SxIV2Tc4Ac6Vh4Apck_bXy-20TevCFYfDe54XeI_RQUzRIfSO4DNC1PCxEKok7zFRPeaS9fQVOiJckp5SpQ6e1YfouJQbjIlUbHiDDukoFKaYHaGLH7Bsg-uKv3OdddXlxUeoPsVuTrlbnPXrDiKE2-JLl-YupLjxdWebMnQWKpyi1zOE4t4-rCfo-svFz_Nv_dX3r5fnn696wwdReyGsFNySWQhDhINZYKV4q7miMAnMiMWSUmvlQPlAhwkPwAwo4TiVRFJ2gi5Xrk1wo7fZL5BvdQKv7xspbzTk6k1wmhvBzdRoozF85moCoKNiZm7OGAhrrE8ra7ub2jONizVDeAF9eRL9L71Jf7RQEgs2NsCHB0BOv3euVL34YlwIEF3aFU0xGTEb6cib9P1zryeTxxyagKwCk1Mp2c1PEoL1Pmu9Zq1b1nqftd5_hvxnxvh6H1a7rg__mfwLms6tPQ
CitedBy_id crossref_primary_10_1016_j_ptsp_2024_08_009
crossref_primary_10_5465_amj_2017_0054
crossref_primary_10_2196_24380
crossref_primary_10_1016_j_brat_2023_104424
crossref_primary_10_1016_j_jecp_2024_106103
crossref_primary_10_1093_ije_dyaa174
crossref_primary_10_1016_j_jmbbm_2022_105512
crossref_primary_10_1016_j_apmr_2021_02_025
crossref_primary_10_1017_S0033291721002336
crossref_primary_10_1123_pes_2022_0073
crossref_primary_10_1016_j_learninstruc_2020_101397
crossref_primary_10_1111_sms_14530
crossref_primary_10_3390_ijms21124401
crossref_primary_10_1080_07399332_2024_2359555
crossref_primary_10_1007_s10608_019_10059_2
crossref_primary_10_3389_fneur_2025_1533565
crossref_primary_10_1016_j_brainres_2019_146436
crossref_primary_10_1080_03630242_2024_2374783
crossref_primary_10_1016_j_jocrd_2019_100441
crossref_primary_10_5406_19398298_136_1_07
crossref_primary_10_1080_02701367_2024_2311652
crossref_primary_10_1007_s42413_024_00204_5
crossref_primary_10_1093_aje_kwaa083
crossref_primary_10_1097_jnr_0000000000000590
crossref_primary_10_1007_s40299_023_00751_z
crossref_primary_10_1016_j_concog_2022_103318
crossref_primary_10_1016_j_cct_2022_106844
crossref_primary_10_1007_s11695_020_05023_z
crossref_primary_10_1007_s10826_022_02329_7
crossref_primary_10_1016_j_psychsport_2022_102292
crossref_primary_10_1016_j_ajsep_2023_09_002
crossref_primary_10_1093_sleepadvances_zpad030
crossref_primary_10_1186_s12888_020_03020_1
crossref_primary_10_1177_00332941241255037
crossref_primary_10_1080_19331681_2022_2097358
crossref_primary_10_3390_ijerph19031826
crossref_primary_10_26852_01234250_34
crossref_primary_10_1080_10826084_2023_2262021
crossref_primary_10_1177_00332941231183331
crossref_primary_10_1016_j_xjmad_2023_100043
crossref_primary_10_1016_j_appet_2023_106568
crossref_primary_10_3389_fpsyg_2024_1346503
crossref_primary_10_3390_su151612455
crossref_primary_10_1016_j_ejon_2021_102014
crossref_primary_10_1016_j_ijhm_2023_103483
crossref_primary_10_1093_geronb_gbae209
crossref_primary_10_1016_j_jenvp_2021_101617
crossref_primary_10_1007_s12144_024_05683_5
crossref_primary_10_1177_00332941231216899
crossref_primary_10_1016_j_bodyim_2022_08_014
crossref_primary_10_1016_j_clpl_2024_100076
crossref_primary_10_1590_0102_311xen138023
crossref_primary_10_1016_j_learninstruc_2024_101874
crossref_primary_10_2196_59288
crossref_primary_10_1007_s10608_021_10280_y
crossref_primary_10_1007_s10865_024_00476_4
crossref_primary_10_1111_psyg_70000
crossref_primary_10_1186_s13052_025_01914_y
crossref_primary_10_1080_02791072_2022_2080616
crossref_primary_10_30773_pi_2019_0291
crossref_primary_10_1007_s11469_025_01459_5
crossref_primary_10_1093_jpepsy_jsaa007
crossref_primary_10_1002_ejp_1733
crossref_primary_10_1080_00273171_2019_1593814
crossref_primary_10_1093_abm_kaab073
crossref_primary_10_1186_s12884_025_07364_y
crossref_primary_10_1080_02640414_2020_1826666
crossref_primary_10_3390_children12030329
crossref_primary_10_1080_00222895_2022_2105793
crossref_primary_10_3390_ijerph182413149
crossref_primary_10_1080_10888691_2019_1700797
crossref_primary_10_3390_ijerph19031074
crossref_primary_10_1016_j_jpain_2023_08_010
crossref_primary_10_1177_17470218221082657
crossref_primary_10_1007_s12144_023_05170_3
crossref_primary_10_1080_20008198_2020_1825166
crossref_primary_10_1177_01461672231202278
crossref_primary_10_1007_s10880_023_09977_x
crossref_primary_10_1016_j_techsoc_2024_102601
crossref_primary_10_1016_j_envres_2020_109613
crossref_primary_10_1080_10447318_2024_2445102
crossref_primary_10_1027_1864_9335_a000403
crossref_primary_10_1002_bse_4086
crossref_primary_10_1136_bmjopen_2024_096116
crossref_primary_10_14746_ssllt_37174
crossref_primary_10_1007_s11031_024_10100_2
crossref_primary_10_1016_j_jocrd_2022_100754
crossref_primary_10_1080_17482798_2025_2450637
crossref_primary_10_1007_s10479_021_04189_8
crossref_primary_10_1111_jep_14267
crossref_primary_10_3389_fpubh_2024_1485143
crossref_primary_10_23736_S2724_6612_24_02528_4
crossref_primary_10_3389_fpls_2020_614837
crossref_primary_10_37382_jomts_v5i1_915
crossref_primary_10_1002_hpja_911
crossref_primary_10_1002_job_2371
crossref_primary_10_1080_16066359_2023_2264773
crossref_primary_10_1186_s12903_020_01206_3
crossref_primary_10_1007_s10578_020_01033_1
crossref_primary_10_1016_j_jad_2024_09_106
crossref_primary_10_1155_2022_6979310
crossref_primary_10_1002_capr_12375
crossref_primary_10_1007_s12529_022_10101_w
crossref_primary_10_1136_bmjopen_2023_075142
Cites_doi 10.1111/j.1467-9280.2007.01882.x
10.1037/1082-989X.9.2.147
10.1080/00273171.2017.1289361
10.1037/1082-989X.11.2.142
10.1007/978-0-387-73186-5
10.1080/00273171.2016.1191324
10.2307/270723
10.1111/j.2517-6161.1967.tb00713.x
10.1037/0022-006X.59.1.20
10.1207/s15327906mbr3901_4
10.1146/annurev.psych.59.103006.093735
10.1207/s15327906mbr3302_5
10.1002/cpp.383
10.1177/0962280212465163
10.1207/s15327906mbr3001_3
10.1177/0193841X9301700202
10.4324/9781410604118
10.1207/S15327906MBR3602_06
10.1037/0022-3514.51.6.1173
10.1017/CBO9780511790928
10.1177/0193841X8100500502
10.1177/0193841X9902300404
10.3102/10769986006003267
10.1370/afm.141
10.1214/aos/1176344552
10.1177/0049124187016001006
10.2307/271084
10.1080/10503300500264911
10.1037/1082-989X.7.4.422
10.1037/0022-006X.73.5.914
10.1111/j.1751-9004.2007.00052.x
10.1037/0022-0167.54.1.32
10.1037/1082-989X.8.2.115
10.1080/10503300500268540
ContentType Journal Article
Copyright The Author(s). 2018
Copyright_xml – notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12874-018-0473-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 11
ExternalDocumentID oai_doaj_org_article_4c54cb7229cc4f48baa2983cfc150a13
PMC5870539
29580203
10_1186_s12874_018_0473_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P50 CA098258
– fundername: NCI NIH HHS
  grantid: R01 CA154591
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: CA154591
  grantid: CA154591
– fundername: NCI NIH HHS
  grantid: 5P50CA098258
– fundername: NCI NIH HHS
  grantid: CA016672
– fundername: ;
– fundername: ;
  grantid: CA154591
– fundername: ;
  grantid: CA016672; 5P50CA098258
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c465t-55d754d1f55c15eaf508845c1482ab5031d0722dd7624626b06a3ca85e4271723
IEDL.DBID M48
ISSN 1471-2288
IngestDate Wed Aug 27 01:19:46 EDT 2025
Thu Aug 21 18:23:47 EDT 2025
Fri Jul 11 03:35:18 EDT 2025
Thu Jan 02 23:01:24 EST 2025
Tue Jul 01 04:30:54 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mediation analysis
Sample size determination
Longitudinal study
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-55d754d1f55c15eaf508845c1482ab5031d0722dd7624626b06a3ca85e4271723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4457-7349
OpenAccessLink https://doaj.org/article/4c54cb7229cc4f48baa2983cfc150a13
PMID 29580203
PQID 2019039294
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_4c54cb7229cc4f48baa2983cfc150a13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5870539
proquest_miscellaneous_2019039294
pubmed_primary_29580203
crossref_primary_10_1186_s12874_018_0473_2
crossref_citationtrail_10_1186_s12874_018_0473_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-27
PublicationDateYYYYMMDD 2018-03-27
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-27
  day: 27
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC medical research methodology
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2018
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References LM Collins (473_CR7) 1998; 33
DP MacKinnon (473_CR25) 1993; 17
KA Bollen (473_CR6) 1990; 20
MS Fritz (473_CR14) 2007; 18
C Wang (473_CR38) 2016; 25
S Killip (473_CR19) 2004; 2
JJ Hox (473_CR15) 2002
DP MacKinnon (473_CR28) 1995; 30
J Okiishi (473_CR32) 2003; 10
JL Krull (473_CR22) 2001; 36
473_CR24
DJ Bauer (473_CR5) 2006; 11
RM Baron (473_CR4) 1986; 51
JL Krull (473_CR21) 1999; 23
J de Leeuw (473_CR9) 2008
ME Sobel (473_CR35) 1982; 13
H Du (473_CR10) 2016; 51
DP MacKinnon (473_CR26) 2004; 39
I Elkin (473_CR12) 2006; 16
D-M Kim (473_CR20) 2006; 16
ZA Lomnicki (473_CR23) 1967; 29
BE Wampold (473_CR37) 2005; 73
WQ Meeker Jr (473_CR31) 1981
B Efron (473_CR11) 1979; 7
473_CR2
CM Judd (473_CR16) 1981
SE Maxwell (473_CR29) 2004; 9
ME Sobel (473_CR36) 1987; 16
473_CR13
WT Abraham (473_CR1) 2008; 2
P Crits-Christoph (473_CR8) 1991; 59
DA Kenny (473_CR18) 2003; 8
R Barcikowski (473_CR3) 1981; 6
DP MacKinnon (473_CR27) 2008
SE Maxwell (473_CR30) 2008; 59
SW Raudenbush (473_CR33) 2002
CM Judd (473_CR17) 1981; 5
PE Shrout (473_CR34) 2002; 7
References_xml – volume-title: Selected tables in mathematical statistics
  year: 1981
  ident: 473_CR31
– volume: 18
  start-page: 233
  year: 2007
  ident: 473_CR14
  publication-title: Psychol Sci
  doi: 10.1111/j.1467-9280.2007.01882.x
– volume: 9
  start-page: 147
  issue: 2
  year: 2004
  ident: 473_CR29
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.9.2.147
– ident: 473_CR2
  doi: 10.1080/00273171.2017.1289361
– volume-title: Hierarchical linear models: applications and data analysis methods
  year: 2002
  ident: 473_CR33
– volume: 11
  start-page: 142
  year: 2006
  ident: 473_CR5
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.11.2.142
– volume-title: Handbook of multilevel analysis
  year: 2008
  ident: 473_CR9
  doi: 10.1007/978-0-387-73186-5
– volume: 51
  start-page: 589
  issue: 5
  year: 2016
  ident: 473_CR10
  publication-title: Multivar Behav Res
  doi: 10.1080/00273171.2016.1191324
– volume: 13
  start-page: 290
  year: 1982
  ident: 473_CR35
  publication-title: Sociol Methodol
  doi: 10.2307/270723
– volume: 29
  start-page: 513
  year: 1967
  ident: 473_CR23
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1967.tb00713.x
– volume: 59
  start-page: 20
  year: 1991
  ident: 473_CR8
  publication-title: J Consult Clin Psychol
  doi: 10.1037/0022-006X.59.1.20
– volume: 39
  start-page: 99
  year: 2004
  ident: 473_CR26
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr3901_4
– volume: 59
  start-page: 537
  year: 2008
  ident: 473_CR30
  publication-title: Annu Rev Psychol
  doi: 10.1146/annurev.psych.59.103006.093735
– volume: 33
  start-page: 295
  year: 1998
  ident: 473_CR7
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr3302_5
– volume: 10
  start-page: 361
  year: 2003
  ident: 473_CR32
  publication-title: Clinical Psychology and Psychotherapy
  doi: 10.1002/cpp.383
– volume: 25
  start-page: 686
  issue: 2
  year: 2016
  ident: 473_CR38
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280212465163
– volume: 30
  start-page: 41
  year: 1995
  ident: 473_CR28
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr3001_3
– volume-title: Estimating the effects of social interventions
  year: 1981
  ident: 473_CR16
– volume: 17
  start-page: 144
  year: 1993
  ident: 473_CR25
  publication-title: Eval Rev
  doi: 10.1177/0193841X9301700202
– volume-title: Multilevel analysis: techniques and applications
  year: 2002
  ident: 473_CR15
  doi: 10.4324/9781410604118
– volume: 36
  start-page: 249
  year: 2001
  ident: 473_CR22
  publication-title: Multivar Behav Res
  doi: 10.1207/S15327906MBR3602_06
– volume: 51
  start-page: 1173
  year: 1986
  ident: 473_CR4
  publication-title: J Pers Soc Psychol
  doi: 10.1037/0022-3514.51.6.1173
– ident: 473_CR13
  doi: 10.1017/CBO9780511790928
– volume: 5
  start-page: 602
  year: 1981
  ident: 473_CR17
  publication-title: Eval Rev
  doi: 10.1177/0193841X8100500502
– volume: 23
  start-page: 418
  year: 1999
  ident: 473_CR21
  publication-title: Eval Rev
  doi: 10.1177/0193841X9902300404
– volume: 6
  start-page: 267
  year: 1981
  ident: 473_CR3
  publication-title: J Educ Stat
  doi: 10.3102/10769986006003267
– volume: 2
  start-page: 204
  issue: 3
  year: 2004
  ident: 473_CR19
  publication-title: Ann Fam Med
  doi: 10.1370/afm.141
– volume: 7
  start-page: 1
  year: 1979
  ident: 473_CR11
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344552
– volume: 16
  start-page: 155
  year: 1987
  ident: 473_CR36
  publication-title: Sociological Methods and Research
  doi: 10.1177/0049124187016001006
– volume: 20
  start-page: 115
  year: 1990
  ident: 473_CR6
  publication-title: Sociol Methodol
  doi: 10.2307/271084
– volume-title: Introduction to statistical mediation analysis
  year: 2008
  ident: 473_CR27
– volume: 16
  start-page: 161
  year: 2006
  ident: 473_CR20
  publication-title: Psychother Res
  doi: 10.1080/10503300500264911
– volume: 7
  start-page: 422
  year: 2002
  ident: 473_CR34
  publication-title: Psychology Methods
  doi: 10.1037/1082-989X.7.4.422
– volume: 73
  start-page: 914
  year: 2005
  ident: 473_CR37
  publication-title: J Consult Clin Psychol
  doi: 10.1037/0022-006X.73.5.914
– volume: 2
  start-page: 283
  issue: 1
  year: 2008
  ident: 473_CR1
  publication-title: Soc Personal Psychol Compass
  doi: 10.1111/j.1751-9004.2007.00052.x
– ident: 473_CR24
  doi: 10.1037/0022-0167.54.1.32
– volume: 8
  start-page: 115
  year: 2003
  ident: 473_CR18
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.8.2.115
– volume: 16
  start-page: 144
  year: 2006
  ident: 473_CR12
  publication-title: Psychother Res
  doi: 10.1080/10503300500268540
SSID ssj0017836
Score 2.5275717
Snippet Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant...
Abstract Background Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 32
SubjectTerms Algorithms
Computer Simulation
Humans
Longitudinal Studies
Longitudinal study
Mediation analysis
Models, Statistical
Multilevel Analysis - methods
Reproducibility of Results
Sample Size
Sample size determination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA_iQbyIn--tX0TwJASz6aRJjyqKCHpRwVtIkxQF6T7c3Yt_vTNpd3Efohdv_UhpOjPp_IaZ_IaxY-mNko1OwqK7FBBlLbzVtQATPUgbq5BytcVdef0IN0_66VOrL6oJ6-iBO8GdQtAQaqNUFQI0YGvvVWWL0ASEMj73q1Xo82bBVJ8_oL0JfQ5zaMvT8ZBo3TFstkKCKYRa8EKZrP8rhPl_oeQnz3O1ztZ6yMjPuqlusKXUbrKV2z4pvsUu7z1R_PLxy3vicVbeQgLniEh53huSz3xPQMJHDX8dUaOiaaSmWJzKRLfZ49Xlw8W16LsjiAClngito9EQh43WKIrkG4JagMdgla81LtYoUWwx4u8OMGypZemLgIpIoDCGU8UOW25HbfrLuCHcYGQZhz6AD1T5FAsVy1BH6aOFAZMzabnQU4dTB4tXl0MIW7pOwA4F7EjATg3YyfyRfx1vxneDz0kF84FEeZ0voCG43hDcT4YwYEczBTpcIpT38G0aTcdO0X55woH4IX86hc5fpSptKRk7YGZB1QtzWbzTvjxnGm6NvzpdVLu_Mfk9tqqydaJtmn22PHmbpgNEO5P6MBv2B6lv-5Y
  priority: 102
  providerName: Directory of Open Access Journals
Title Sample size determination for mediation analysis of longitudinal data
URI https://www.ncbi.nlm.nih.gov/pubmed/29580203
https://www.proquest.com/docview/2019039294
https://pubmed.ncbi.nlm.nih.gov/PMC5870539
https://doaj.org/article/4c54cb7229cc4f48baa2983cfc150a13
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1ri9QwMJx3IH4R3-6pSwQ_CdE0nTTpBxFX9jiEO-R0YfFLSJP2PFhabx-g_npnst3VlUXwS-kjfcxMJjPTeTH2QnqjZKNrYVFcCoiyEt7qSoCJHqSNZahTtMV5cTqBD1M9PWCb9lY9Ahd7TTvqJzWZz159v_7xFhn-TWJ4W7xeZFS0HY1iKySYXOCKfISCyVAnhzP47VSghIWUbGQyoZS1vZNz7yN2xFSq5r9PBf07kvIP0XRyh93udUr-bj0J7rKDur3Hbp71XvP7bPzJUw1gvrj6WfO4iX8hinBUWXlKHklHvq9QwruGzzrqZLSK1DWLUxzpAzY5GX9-fyr69gkiQKGXQutoNMSs0TpkuvYN6WKA-2CVrzRyc5RGqRhxPQS0aypZ-DwgpWpQaOSp_CE7bLu2fsy4IcXCyCJmPoAPFBoVcxWLUEXpo4UBkxtsudDXFqcWFzOXbAxbuDWCHSLYEYKdGrCX21u-rQtr_GvwiEiwHUg1sdOJbn7pehZzEDSECiEqQ4AGbOW9Km0eGoRe-iwfsOcbAjrkIXKM-LbuVgunKKGeFEUE5NGaoNtXqVJb8tYOmNkh9c637F5pr76mOt0a10Kdl8f_A-kTdkulWYhz0Dxlh8v5qn6Gas-yGrIbZmqG7Gg0Pv94MUw_D4ZpguP2YvTlF3T2_64
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+determination+for+mediation+analysis+of+longitudinal+data&rft.jtitle=BMC+medical+research+methodology&rft.au=Pan%2C+Haitao&rft.au=Liu%2C+Suyu&rft.au=Miao%2C+Danmin&rft.au=Yuan%2C+Ying&rft.date=2018-03-27&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-018-0473-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12874_018_0473_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon