Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration
This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue d...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 10; p. 856261 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology. |
---|---|
AbstractList | This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology. This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology. |
Author | Biose, Ifechukwude J Farrugia, Brooke L Hayes, Anthony J Bix, Gregory J Melrose, James |
AuthorAffiliation | 2 Department of Biomedical Engineering , Melbourne School of Engineering , The University of Melbourne , Melbourne , VIC , Australia 5 Raymond Purves Bone and Joint Research Laboratories , Kolling Institute of Medical Research , Royal North Shore Hospital , The Faculty of Medicine and Health , The University of Sydney , St. Leonard’s , NSW , Australia 1 Bioimaging Research Hub , Cardiff School of Biosciences , Cardiff University , Wales , United Kingdom 4 Graduate School of Biomedical Engineering , University of New South Wales , Sydney , NSW , Australia 3 Departments of Neurosurgery and Neurology , Clinical Neuroscience Research Center , Tulane University School of Medicine , New Orleans , LA , United States |
AuthorAffiliation_xml | – name: 4 Graduate School of Biomedical Engineering , University of New South Wales , Sydney , NSW , Australia – name: 2 Department of Biomedical Engineering , Melbourne School of Engineering , The University of Melbourne , Melbourne , VIC , Australia – name: 5 Raymond Purves Bone and Joint Research Laboratories , Kolling Institute of Medical Research , Royal North Shore Hospital , The Faculty of Medicine and Health , The University of Sydney , St. Leonard’s , NSW , Australia – name: 1 Bioimaging Research Hub , Cardiff School of Biosciences , Cardiff University , Wales , United Kingdom – name: 3 Departments of Neurosurgery and Neurology , Clinical Neuroscience Research Center , Tulane University School of Medicine , New Orleans , LA , United States |
Author_xml | – sequence: 1 givenname: Anthony J surname: Hayes fullname: Hayes, Anthony J organization: Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom – sequence: 2 givenname: Brooke L surname: Farrugia fullname: Farrugia, Brooke L organization: Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia – sequence: 3 givenname: Ifechukwude J surname: Biose fullname: Biose, Ifechukwude J organization: Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States – sequence: 4 givenname: Gregory J surname: Bix fullname: Bix, Gregory J organization: Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States – sequence: 5 givenname: James surname: Melrose fullname: Melrose, James organization: Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, The Faculty of Medicine and Health, The University of Sydney, St. Leonard's, NSW, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35433700$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkktvEzEQx1eoiJbSD8AF-cghG_zcxwWpCpRGakUViuBmeb2zqSvHTm1vRPlKfEmcpK1aXzyax29GM_-3xYHzDoriPcFTxpr206DB2inFlE4bUdGKvCqOKG2rsmL898Ez-7A4ifEWY0yoqEXD3hSHTHDGaoyPin9XECxo5SboFF2ONpnybHQ6Ge-UnaBZ7lHOXUxhzL4NTNClSsH8KX8k1Rlr_hq3RFfBJ_BLe58x6JdJN2jhLURkHLo2MY6AvsAGrF-vwCV0riJagIWNchpQ8mjmnYMd_TF9AWtlAlKuz-YSHAS1Hehd8XpQNsLJw39c_Dz7ej07Ly--f5vPTi9KzSuRSj5gWguiNPSU9hU0HaZD1beEQNdXgjVctA3U1UB6wbFoaX6i7bimHVGEEXZczPfc3qtbuQ5mpcK99MrIncOHpVQhGW1BkppjzHvVqBrzDouuYnm3ig2DZlphyKzPe9Z67FbQ67yBoOwL6MuIMzdy6TeyxQS3nGfAxwdA8HcjxCRXJm5Prxz4MUpaCYrzMWuRU8k-VQcfY4DhqQ3BcqsZudOM3GpG7jWTaz48n--p4lEh7D803cLJ |
CitedBy_id | crossref_primary_10_3390_ijms241310824 crossref_primary_10_3390_biom13040702 crossref_primary_10_3390_biologics4020008 crossref_primary_10_1002_cns3_20040 crossref_primary_10_3390_ijms241814101 crossref_primary_10_1186_s13046_022_02484_1 crossref_primary_10_3390_cells12091215 crossref_primary_10_3390_ijms25031863 crossref_primary_10_1016_j_biomaterials_2024_122629 crossref_primary_10_1016_j_nbd_2023_106282 crossref_primary_10_1007_s10571_023_01405_w crossref_primary_10_1242_dev_201640 crossref_primary_10_3390_ph16030437 crossref_primary_10_3390_ijms24021148 crossref_primary_10_3390_ijms23095148 crossref_primary_10_1002_advs_202302940 crossref_primary_10_7554_eLife_88273 crossref_primary_10_3390_genes14091753 crossref_primary_10_1016_j_celrep_2023_113668 crossref_primary_10_3390_md21070417 crossref_primary_10_3390_cells12131763 crossref_primary_10_1016_j_ymgme_2023_107648 crossref_primary_10_1002_pro_4843 crossref_primary_10_1186_s13041_023_01005_1 crossref_primary_10_3390_ijms25105332 crossref_primary_10_3390_cells12040629 crossref_primary_10_1089_ten_tec_2022_0176 crossref_primary_10_3389_fcvm_2024_1319164 crossref_primary_10_3390_ijms24010477 crossref_primary_10_1152_ajpcell_00683_2023 crossref_primary_10_7554_eLife_88273_2 crossref_primary_10_3390_genes14040838 crossref_primary_10_1002_pgr2_21 |
Cites_doi | 10.1016/j.addr.2015.10.012 10.1016/j.cardiores.2004.03.028 10.1007/s10544-015-9929-x 10.1186/s12915-018-0511-x 10.1007/s00586-013-2680-1 10.1038/jcbfm.2011.136 10.1159/000440950 10.4137/BTRI.S38670 10.1016/j.matbio.2014.01.016 10.1016/j.ydbio.2016.08.029 10.1002/art.39529 10.1161/str.52.suppl_1.p755 10.1007/s12035-011-8213-1 10.3390/ijms22052716 10.1097/MOL.0b013e3282ef77e9 10.1002/advs.202000900 10.1016/j.scr.2013.12.009 10.1016/j.matbio.2016.09.003 10.1083/jcb.152.3.435 10.1038/s41598-018-25635-x 10.1007/s00418-012-0968-6 10.7717/peerj.5120 10.1046/j.1432-1327.1998.2550060.x 10.1021/bi8013938 10.1074/jbc.c300310200 10.1101/sqb.1992.057.01.053 10.1007/s12975-020-00800-5 10.5966/sctm.2016-0083 10.1212/con.0000000000000793 10.1016/j.mcn.2016.11.004 10.1089/wound.2013.0464 10.1586/14737175.2014.964210 10.1007/s12975-013-0304-z 10.1097/00001756-201207110-00010 10.1074/jbc.m108285200 10.1242/dev.011171 10.1016/j.brainres.2011.12.027 10.1155/2017/6526151 10.1038/nn801 10.1369/jhc.4a6261.2004 10.1038/s41551-020-0548-3 10.1016/j.cbi.2008.05.035 10.1172/jci46358 10.1016/s0006-3495(79)85249-2 10.1016/s0955-0674(96)80102-5 10.1083/jcb.201807178 10.3390/ijms20163962 10.1006/bbrc.1998.9303 10.1046/j.1432-1327.1999.00127.x 10.22203/ecm.v041a06 10.1161/01.res.83.3.305 10.1074/jbc.m806968200 10.1083/jcb.145.4.911 10.1002/jor.23318 10.2174/1566524014666140414204829 10.1007/s00018-008-7584-6 10.1002/adtp.202000151 10.3390/biom11010092 10.1089/ten.tea.2008.0669 10.1002/jcp.20625 10.1016/s0021-9258(18)54445-8 10.1016/j.biomaterials.2009.09.009 10.1002/cphy.c180034 10.1016/j.neuron.2018.09.040 10.7554/eLife.46840 10.1113/jphysiol.1973.sp010248 10.1016/j.matbio.2013.01.004 10.1016/j.matbio.2010.06.001 10.1002/bies.20748 10.1007/s11154-008-9078-0 10.1111/j.1432-1033.1978.tb12241.x 10.1016/j.matbio.2016.01.008 10.1359/jbmr.2002.17.1.48 10.1007/s00418-012-1041-1 10.1083/jcb.147.5.1109 10.1016/j.actbio.2021.08.032 10.1007/s10735-016-9677-0 10.1074/mcp.ra120.001998 10.1083/jcb.145.1.153 10.1007/s00439-013-1391-3 10.1002/ar.24087 10.1186/s12974-019-1599-9 10.1113/expphysiol.2005.030130 10.1016/j.cub.2017.02.006 10.1016/j.abb.2007.10.006 10.1136/svn-2018-000198 10.1016/j.matbio.2012.02.006 10.1016/j.otohns.2009.10.039 10.1161/01.res.0000109791.69181.b6 10.1016/j.cis.2014.01.009 10.1111/j.1432-1033.1997.t01-1-00039.x 10.1016/j.ajpath.2012.01.035 10.4155/fsoa-2016-0034 10.1016/j.febslet.2005.07.090 10.1016/j.brainres.2015.11.003 10.1016/j.matbio.2020.04.006 10.1006/dbio.1997.8521 10.1186/2040-7378-6-5 10.1016/j.nmd.2013.07.005 10.1002/ajmg.10229 10.1016/j.jbc.2021.100520 10.1038/86941 10.1002/jcp.10025 10.1016/s0945-053x(99)00014-1 10.1007/s00216-021-03705-w 10.1093/cvr/cvv143 10.1186/s40634-016-0057-1 10.1098/rstb.2017.0145 10.1016/j.matbio.2008.01.005 10.3389/fneur.2021.632336 10.1002/jbmr.2105 10.1038/82638 10.1002/mus.21253 10.1242/dev.126.14.3047 10.22203/ecm.v032a03 10.1091/mbc.e07-02-0093 10.1093/hmg/ddn213 10.1007/s00018-016-2314-y 10.1186/1471-213X-7-29 10.1074/jbc.m210529200 10.1016/s1474-4422(21)00297-0 10.1083/jcb.136.2.367 10.1089/ten.2005.11.76 10.1007/s11011-014-9576-6 10.1091/mbc.1.11.833 10.1038/15537 10.1016/j.coph.2009.04.004 10.1016/s0166-2236(03)00077-8 10.1152/ajpheart.00654.2013 10.1007/978-1-4939-0320-7_27 10.1016/j.biocel.2020.105849 10.1007/978-3-319-93485-3_9 10.1074/jbc.272.36.22840 10.1074/jbc.m513746200 10.1371/journal.pone.0241040 10.1097/BRS.0b013e31821fd23e 10.1111/j.1749-6632.2012.06807.x 10.1002/adhm.202100388 10.1016/j.biomaterials.2012.02.055 10.1369/0022155420946403 10.1093/glycob/cwv021 10.1016/j.jconrel.2013.07.032 10.1007/s00418-011-0854-7 10.1016/s0021-9258(18)42478-7 10.1016/j.neulet.2020.135155 10.1006/jmbi.1999.3259 10.1111/asj.12376 10.1096/fj.04-1970com 10.1074/jbc.m305462200 10.1021/acsbiomaterials.1c00745 10.1002/biot.201700196 10.1089/ten.2006.12.2009 10.1523/jneurosci.4374-09.2010 10.1016/j.jneuroim.2020.577318 10.3791/62573 10.1088/1361-6528/abfd58 10.3389/fnagi.2021.710683 10.1016/j.matbio.2014.08.009 10.1093/glycob/cwm043 10.5607/en21012 10.1016/j.biomaterials.2013.05.044 10.1016/j.cytogfr.2015.10.001 10.1161/strokeaha.118.020927 10.1021/cn300197y 10.1016/j.tice.2014.04.002 10.1016/j.wneu.2019.03.082 10.1177/002215540305101010 10.1172/jci8283 10.1002/term.1458 10.1042/bcj20180695 10.1152/ajpcell.00151.2018 10.3389/fnana.2021.764458 10.1089/scd.2016.0054 10.14670/HH-24.859 10.1016/j.expneurol.2014.12.007 10.1016/j.neulet.2020.134833 10.1159/000075029 10.1002/dneu.20953 10.1016/j.addr.2018.12.015 10.1016/j.actbio.2019.07.040 10.1006/bbrc.1999.1714 10.1634/stemcells.2007-0082 10.1242/jcs.108.7.2663 10.1371/journal.pone.0187069 10.1371/journal.pone.0045257 10.3390/biomedicines9111666 10.1007/s00018-006-6162-z 10.1002/humu.22325 10.1002/jbmr.236 10.1016/j.cbi.2008.05.025 10.1093/hmg/ddl484 10.1074/jbc.m301384200 10.1016/j.matbio.2016.12.009 10.1016/j.colsurfb.2016.08.039 10.1016/j.matbio.2007.07.007 10.1074/jbc.m608462200 10.1016/j.matbio.2015.11.001 10.3389/fnins.2019.00540 10.1523/ENEURO.0474-19.2020 10.1007/s12975-013-0266-1 10.24966/SRDT-2060/100009 10.1088/1748-6041/7/2/024109 10.1093/glycob/cwab081 10.1016/j.cbi.2012.08.020 10.1002/jcb.27521 10.1111/febs.16251 10.1016/j.matbio.2007.09.007 10.1016/j.biomaterials.2009.05.063 10.1007/s10735-019-09823-1 10.1111/febs.12197 10.1091/mbc.e02-08-0508 10.1074/jbc.m709995200 10.1111/cpr.12023 10.1369/0022155420988661 10.1038/s41467-020-18105-4 10.1007/s11914-018-0414-3 10.1016/j.actbio.2021.02.014 10.4049/jimmunol.1701151 10.1083/jcb.200307164 10.1016/j.jconrel.2017.02.009 10.1086/340390 10.1159/000107948 10.1002/j.1460-2075.1991.tb08070.x 10.2174/156720212799297100 10.1016/j.mcn.2008.01.013 10.1016/j.brainresrev.2004.07.019 10.1016/j.cbi.2005.10.007 10.1074/jbc.275.10.7095 10.1007/s00401-018-1860-9 10.1016/j.matbio.2018.02.013 10.1158/0008-5472.can-04-0810 10.1007/s00418-010-0730-x |
ContentType | Journal Article |
Copyright | Copyright © 2022 Hayes, Farrugia, Biose, Bix and Melrose. Copyright © 2022 Hayes, Farrugia, Biose, Bix and Melrose. 2022 Hayes, Farrugia, Biose, Bix and Melrose |
Copyright_xml | – notice: Copyright © 2022 Hayes, Farrugia, Biose, Bix and Melrose. – notice: Copyright © 2022 Hayes, Farrugia, Biose, Bix and Melrose. 2022 Hayes, Farrugia, Biose, Bix and Melrose |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fcell.2022.856261 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Hayes et al |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_174004da8a704b05b63354a3ffc3ca0e 10_3389_fcell_2022_856261 35433700 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ ACGFS ACXDI ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV DIK EMOBN GROUPED_DOAJ GX1 HYE IAO IEA IHR IHW IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RPM AAYXX CITATION 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c465t-4f02751aced22d6e8b02f6d911ebd65384598e76f1d54059222259b4c2b1a1313 |
IEDL.DBID | RPM |
ISSN | 2296-634X |
IngestDate | Tue Oct 22 15:15:19 EDT 2024 Tue Sep 17 21:07:54 EDT 2024 Sat Oct 26 04:12:50 EDT 2024 Thu Nov 21 20:58:03 EST 2024 Sat Nov 02 12:28:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | growth factor delivery perlecan perlecan domain-I repair biology cartilage repair perlecan domain-V repair of blood brain barrier vascular repair |
Language | English |
License | Copyright © 2022 Hayes, Farrugia, Biose, Bix and Melrose. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-4f02751aced22d6e8b02f6d911ebd65384598e76f1d54059222259b4c2b1a1313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Linda Hiebert, University of Saskatchewan, Canada Edited by: Sissel Beate Rønning, Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Norway This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology Chiara Falciani, University of Siena, Italy |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010944/ |
PMID | 35433700 |
PQID | 2652033775 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_174004da8a704b05b63354a3ffc3ca0e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9010944 proquest_miscellaneous_2652033775 crossref_primary_10_3389_fcell_2022_856261 pubmed_primary_35433700 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationTitleAlternate | Front Cell Dev Biol |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Noborn (B149) 2021; 1 Smith (B195) 2010; 134 Hayes (B65) 2014; 46 Hayes (B69) 2013; 139 Smith (B194) 2019; 50 Südhof (B202) 2018; 100 Cescon (B28) 2018; 136 Lau (B103) 2021; 132 Russo (B172) 2020; 15 Saha (B174) 2018; 373 Rotundo (B169) 2005 Shu (B186) 2013; 22 Farach-Carson (B43) 2007; 17 Wang (B218) 2013; 172 Rudenko (B171) 2017; 2017 Vallet (B211) 2021; 69 Casanueva (B27) 1998; 250 Silman (B189) 2008; 175 Melrose (B127) 2008; 30 Moccia (B136) 2019; 20 Peng (B155) 1999; 145 Rowland (B170) 2013; 7 Knight (B95) 2011; 44 Kim (B93) 2021; 30 Wang (B216) 2014; 29 Gao (B48) 2021; 135 Shen (B178) 2012; 32 Yamashita (B227) 2018; 8 Smith (B191) 2015; 4 Hubka (B76) 2019; 97 Lin (B106) 2021; 12 Xu (B224) 2016; 418 Aldunate (B1) 2004; 47 Yoshida-Moriguchi (B230) 2015; 25 Punga (B161) 2022; 21 Kerever (B92) 2007; 25 Lord (B113) 2013; 280 Arikawa-Hirasawa (B6) 2002; 70 Geppert (B51) 1992; 57 Gradilla (B60) 2018; 16 Allen (B4) 2009; 284 Timpl (B209) 1996; 8 Ishai-Michaeli (B78) 1990; 1 Itoh (B80) 2016; 28 Hellstrom (B72) 1999; 126 Fowler (B45) 2021; 7 Massoulié (B123) 2009; 9 Farach-Carson (B42) 2008; 27 SundarRaj (B203) 1995; 108 Whitelock (B220) 2008; 47 Marcelo (B119) 2015; 30 Kvist (B102) 2008; 27 Salmeron (B176) 2019; 16 Xu (B225) 2010; 29 Yamada (B226) 2013; 34 Rosenberry (B166) 1979; 26 Bix (B22) 2013; 4 French (B46) 2002; 17 Saini (B175) 2012; 1438 Martinez (B120) 2018; 120 Gubbiotti (B61) 2017 Hozumi (B75) 2012; 33 Belhasan (B19) 2020; 722 Hayes (B68) 2020; 3 Hoffmann (B73) 2018; 49 Vögtle (B214) 2019; 8 Krejci (B100) 1991; 10 Legay (B105) 2020; 735 Armiento (B12) 2019; 146 Zhou (B233) 2004; 64 Wilusz (B222) 2014; 39 Hayes (B66) 2016; 25 Mongiat (B137) 2003; 278 Melrose (B132) 2003; 51 Shu (B183) 2019; 476 Srinivasan (B199) 2017; 6 Nakata (B144) 2013; 34 Itoh (B81) 2014; 14 Melrose (B131) 2016 Majumdar (B116) 2001; 189 Patel (B154) 2008; 283 Tannock (B205) 2008; 9 Patel (B153) 2007; 134 Yang (B229) 2006; 12 Lord (B112) 2018 Sadatsuki (B173) 2017; 35 Crosbie (B34) 1999; 145 Kerever (B91) 2014; 12 Koyama (B98) 1998; 83 Pozzi (B158) 2017 Arimura (B11) 2012; 9 Fitzgerald (B44) 2020; 303 Shu (B184) 2016; 2 Shibahara (B180) 2020; 7 Amruta (B5) 2020; 346 Garcia (B49) 2021; 11 Mercier (B134) 2016; 73 Rnjak-Kovacina (B162) 2017; 12 Kimbell (B94) 2004; 279 Marcelo (B118) 2014; 1135 Nakamura (B143) 2015; 200 Thompson (B208) 2011; 26 Xu (B223) 2018; 4 Lin (B107) 2020; 7 Kerever (B90) 2021; 15 Whitelock (B219) 1999; 18 Ng (B147) 2021; 296 Bengtsson (B20) 2002; 277 Biose (B21) 2021; 52 Gonzalez (B58) 2003; 278 Arikawa-Hirasawa (B7) 2002; 5 Shestovskaya (B179) 2021; 9 Chiu (B31) 2016; 3 Liu (B108) 2020; 11 Arumugam (B14) 2019; 202 Nakamura (B140) 2016; 1630 Shu (B181) 2016; 68 Buzanska (B25) 2018; 66 Knox (B97) 2006; 63 Hayes (B70) 2021; 41 Clarke (B32) 2012; 7 Vasquez (B212) 2019; 127 Chandrasekar (B29) 2021; 10 Mongiat (B138) 2000; 275 Murdoch (B139) 1992; 267 Edwards (B41) 2019; 13 Nam (B145) 2017; 12 Snow (B196) 2021; 13 Bauché (B18) 2013; 23 Szekeres (B204) 2021; 1 Zeng (B232) 2021; 32 Pradhan (B159) 2010; 142 Hayes (B71) 2016; 32 Lord (B115) 2020; 4 Badaut (B15) 2014; 5 Melrose (B129) 2016; 3 Smith (B192) 1997; 184 Rotundo (B167) 2008; 175 Ocken (B151) 2020; 19 Platt (B156) 2014; 6 Yang (B228) 2005; 11 Kaneko (B87) 2013; 32 Nicole (B148) 2000; 26 Banerjee (B16) 2017; 78 Edwards (B40) 2019; 316 Srinivasan (B198) 2012; 7 Kerever (B89) 2021; 1 Rodgers (B164) 2007; 16 Kahle (B86) 2012; 23 de Castro Brás (B35) 2020 Guilak (B63) 2021; 22 Walker (B215) 2003; 14 Soulintzi (B197) 2007; 186 Gómez Toledo (B57) 2021; 69 Stum (B201) 2008; 17 Rotundo (B168) 1997; 136 Nakamura (B141) 2019; 218 Cartaud (B26) 2004; 165 Lee (B104) 2011; 121 Garl (B50) 2004; 94 Göhring (B54) 1998; 255 Allen (B2) 2008; 27 Costell (B33) 1999; 147 Guell (B62) 2014; 14 Melrose (B133) 2004; 52 Arikawa-Hirasawa (B9) 2001; 27 Melrose (B125) 2020; 128 Shu (B182) 2018; 6 Arredondo (B13) 2014; 133 Jacobson (B82) 2001; 152 Pradhan (B160) 2009; 15 Shu (B185) 2016; 47 Krejci (B101) 1997; 272 Tapanadechopone (B206) 1999; 265 Singhal (B190) 2011; 71 Katz (B88) 1973; 231 Sigoillot (B188) 2010; 30 Hopf (B74) 1999; 259 Makihara (B117) 2015; 264 Nasser (B146) 2008; 65 Gomes (B55) 2002; 2 Wijeratne (B221) 2016; 50 Ohno (B152) 2013; 203 Poluzzi (B157) 2016; 97 Jayadev (B83) 2017; 27 Arikawa-Hirasawa (B8) 1999; 23 Hultgårdh-Nilsson (B77) 2007; 18 Melrose (B130) 2006; 281 Girós (B53) 2007; 7 Segev (B177) 2004; 63 Arikawa-Hirasawa (B10) 2001; 106 Douet (B37) 2013; 46 Gotha (B59) 2014; 307 Nakamura (B142) 2015; 86 Smith (B193) 2007; 468 Gomes (B56) 2004; 176 Allen (B3) 2006; 281 Echaniz-Laguna (B39) 2009; 40 Thakore (B207) 2019; 9 Friedrich (B47) 1999; 294 Roediger (B165) 2009; 24 Melrose (B126) 2016; 7 McGrath (B124) 2005; 90 Llovera (B109) 2021; 1 Brown (B24) 1997; 250 Bix (B23) 2013; 4 Deprez (B36) 2003; 278 Gill (B52) 2015; 17 Trout (B210) 2021; 12 Ishijima (B79) 2012; 31 Siegel (B187) 2014; 205 Melrose (B128) 2012; 138 Ebara (B38) 2000; 105 Lord (B111) 2017; 250 Bangratz (B17) 2012; 180 Chang (B30) 2015; 107 Hayes (B64) 2011; 36 Noonan (B150) 1991; 266 Wang (B217) 2018; 16 Johnson (B85) 2019; 25 Knox (B96) 2005; 579 Kram (B99) 2006; 207 Maselli (B122) 2012; 1275 Vigny (B213) 1978; 85 Zcharia (B231) 2005; 19 Jha (B84) 2009; 30 Hayes (B67) 2011; 136 Steen (B200) 2003; 26 Martinez-Pena y Valenzuela (B121) 2007; 18 Milner (B135) 2008; 38 Lord (B110) 2014; 35 Rnjak-Kovacina (B163) 2016; 148 Lord (B114) 2009; 30 |
References_xml | – volume: 97 start-page: 156 year: 2016 ident: B157 article-title: Endostatin and Endorepellin: A Common Route of Action for Similar Angiostatic Cancer Avengers publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.10.012 contributor: fullname: Poluzzi – volume: 63 start-page: 603 year: 2004 ident: B177 article-title: The Role of Perlecan in Arterial Injury and Angiogenesis publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2004.03.028 contributor: fullname: Segev – volume: 17 start-page: 27 year: 2015 ident: B52 article-title: Towards the Fabrication of Artificial 3D Microdevices for Neural Cell Networks publication-title: Biomed. Microdevices doi: 10.1007/s10544-015-9929-x contributor: fullname: Gill – volume: 16 start-page: 37 year: 2018 ident: B60 article-title: From Top to Bottom: Cell Polarity in Hedgehog and Wnt Trafficking publication-title: BMC Biol. doi: 10.1186/s12915-018-0511-x contributor: fullname: Gradilla – volume: 22 start-page: 1774 year: 2013 ident: B186 article-title: Comparative Immunolocalisation of Perlecan, Heparan Sulphate, Fibroblast Growth Factor-18, and Fibroblast Growth Factor Receptor-3 and Their Prospective Roles in Chondrogenic and Osteogenic Development of the Human Foetal Spine publication-title: Eur. Spine J. doi: 10.1007/s00586-013-2680-1 contributor: fullname: Shu – volume: 32 start-page: 353 year: 2012 ident: B178 article-title: PDGFR-β as a Positive Regulator of Tissue Repair in a Mouse Model of Focal Cerebral Ischemia publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2011.136 contributor: fullname: Shen – volume: 200 start-page: 374 year: 2015 ident: B143 article-title: Perlecan Diversely Regulates the Migration and Proliferation of Distinct Cell Types In Vitro publication-title: Cells Tissues Organs doi: 10.1159/000440950 contributor: fullname: Nakamura – volume: 7 start-page: BTRI.S38670 year: 2016 ident: B126 article-title: Glycosaminoglycans in Wound Healing publication-title: Bone Tissue Regen. Insights doi: 10.4137/BTRI.S38670 contributor: fullname: Melrose – volume: 35 start-page: 112 year: 2014 ident: B110 article-title: The Role of Vascular-Derived Perlecan in Modulating Cell Adhesion, Proliferation and Growth Factor Signaling publication-title: Matrix Biol. doi: 10.1016/j.matbio.2014.01.016 contributor: fullname: Lord – volume: 418 start-page: 242 year: 2016 ident: B224 article-title: Knockdown of the Pericellular Matrix Molecule Perlecan Lowers In Situ Cell and Matrix Stiffness in Developing Cartilage publication-title: Developmental Biol. doi: 10.1016/j.ydbio.2016.08.029 contributor: fullname: Xu – volume: 68 start-page: 868 year: 2016 ident: B181 article-title: Ablation of Perlecan Domain 1 Heparan Sulfate Reduces Progressive Cartilage Degradation, Synovitis, and Osteophyte Size in a Preclinical Model of Posttraumatic Osteoarthritis publication-title: Arthritis Rheumatol. doi: 10.1002/art.39529 contributor: fullname: Shu – volume: 52 start-page: AP755 year: 2021 ident: B21 article-title: Perlecan LG3 Is Neuroprotective and Functionally Restorative in Experimental Ischemic Stroke publication-title: Stroke doi: 10.1161/str.52.suppl_1.p755 contributor: fullname: Biose – volume: 44 start-page: 426 year: 2011 ident: B95 article-title: Neurexins and Neuroligins: Recent Insights from Invertebrates publication-title: Mol. Neurobiol. doi: 10.1007/s12035-011-8213-1 contributor: fullname: Knight – volume: 22 start-page: 2716 year: 2021 ident: B63 article-title: Perlecan in Pericellular Mechanosensory Cell-Matrix Communication, Extracellular Matrix Stabilisation and Mechanoregulation of Load-Bearing Connective Tissues publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22052716 contributor: fullname: Guilak – volume: 18 start-page: 540 year: 2007 ident: B77 article-title: Role of the Extracellular Matrix and its Receptors in Smooth Muscle Cell Function: Implications in Vascular Development and Disease publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0b013e3282ef77e9 contributor: fullname: Hultgårdh-Nilsson – volume: 7 start-page: 2000900 year: 2020 ident: B107 article-title: A Biomimetic Approach toward Enhancing Angiogenesis: Recombinantly Expressed Domain V of Human Perlecan Is a Bioactive Molecule that Promotes Angiogenesis and Vascularization of Implanted Biomaterials publication-title: Adv. Sci. doi: 10.1002/advs.202000900 contributor: fullname: Lin – volume: 12 start-page: 492 year: 2014 ident: B91 article-title: Perlecan Is Required for FGF-2 Signaling in the Neural Stem Cell Niche publication-title: Stem Cel Res. doi: 10.1016/j.scr.2013.12.009 contributor: fullname: Kerever – start-page: 285 year: 2017 ident: B61 article-title: A Current View of Perlecan in Physiology and Pathology: A Mosaic of Functions publication-title: Matrix Biol. doi: 10.1016/j.matbio.2016.09.003 contributor: fullname: Gubbiotti – volume: 152 start-page: 435 year: 2001 ident: B82 article-title: The Dystroglycan Complex Is Necessary for Stabilization of Acetylcholine Receptor Clusters at Neuromuscular Junctions and Formation of the Synaptic Basement Membrane publication-title: J. Cel Biol doi: 10.1083/jcb.152.3.435 contributor: fullname: Jacobson – volume: 8 start-page: 7766 year: 2018 ident: B227 article-title: Perlecan, a Heparan Sulfate Proteoglycan, Regulates Systemic Metabolism with Dynamic Changes in Adipose Tissue and Skeletal Muscle publication-title: Sci. Rep. doi: 10.1038/s41598-018-25635-x contributor: fullname: Yamashita – volume: 138 start-page: 461 year: 2012 ident: B128 article-title: Chondroitin Sulphate and Heparan Sulphate Sulphation Motifs and Their Proteoglycans Are Involved in Articular Cartilage Formation during Human Foetal Knee Joint Development publication-title: Histochem. Cel Biol doi: 10.1007/s00418-012-0968-6 contributor: fullname: Melrose – volume: 6 start-page: e5120 year: 2018 ident: B182 article-title: Achilles and Tail Tendons of Perlecan Exon 3 Null Heparan Sulphate Deficient Mice Display Surprising Improvement in Tendon Tensile Properties and Altered Collagen Fibril Organisation Compared to C57BL/6 Wild Type Mice publication-title: PeerJ doi: 10.7717/peerj.5120 contributor: fullname: Shu – volume: 255 start-page: 60 year: 1998 ident: B54 article-title: Mapping of the Binding of Platelet-Derived Growth Factor to Distinct Domains of the Basement Membrane Proteins BM-40 and Perlecan and Distinction from the BM-40 Collagen-Binding Epitope publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2550060.x contributor: fullname: Göhring – volume: 47 start-page: 11174 year: 2008 ident: B220 article-title: Diverse Cell Signaling Events Modulated by Perlecan publication-title: Biochemistry doi: 10.1021/bi8013938 contributor: fullname: Whitelock – volume: 278 start-page: 38113 year: 2003 ident: B58 article-title: A Novel Interaction between Perlecan Protein Core and Progranulin publication-title: J. Biol. Chem. doi: 10.1074/jbc.c300310200 contributor: fullname: Gonzalez – volume: 57 start-page: 483 year: 1992 ident: B51 article-title: Neurexins publication-title: Cold Spring Harbor Symposia Quantitative Biol. doi: 10.1101/sqb.1992.057.01.053 contributor: fullname: Geppert – volume: 12 start-page: 72 year: 2021 ident: B210 article-title: Perlecan Domain-V Enhances Neurogenic Brain Repair after Stroke in Mice publication-title: Transl. Stroke Res. doi: 10.1007/s12975-020-00800-5 contributor: fullname: Trout – volume: 6 start-page: 110 year: 2017 ident: B199 article-title: Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-like Differentiation in Hyaluronate Hydrogel Culture publication-title: Stem Cell Transl Med doi: 10.5966/sctm.2016-0083 contributor: fullname: Srinivasan – volume: 25 start-page: 1682 year: 2019 ident: B85 article-title: Myotonic Muscular Dystrophies publication-title: CONTINUUM: Lifelong Learn. Neurol. doi: 10.1212/con.0000000000000793 contributor: fullname: Johnson – volume: 78 start-page: 9 year: 2017 ident: B16 article-title: Neurexin, Neuroligin and Wishful Thinking Coordinate Synaptic Cytoarchitecture and Growth at Neuromuscular Junctions publication-title: Mol. Cell Neurosci. doi: 10.1016/j.mcn.2016.11.004 contributor: fullname: Banerjee – volume: 4 start-page: 152 year: 2015 ident: B191 article-title: Proteoglycans in Normal and Healing Skin publication-title: Adv. Wound Care doi: 10.1089/wound.2013.0464 contributor: fullname: Smith – volume: 14 start-page: 1287 year: 2014 ident: B62 article-title: Brain Endothelial Cell Specific Integrins and Ischemic Stroke publication-title: Expert Rev. Neurotherapeutics doi: 10.1586/14737175.2014.964210 contributor: fullname: Guell – volume: 5 start-page: 394 year: 2014 ident: B15 article-title: Vascular Neural Network Phenotypic Transformation after Traumatic Injury: Potential Role in Long-Term Sequelae publication-title: Transl. Stroke Res. doi: 10.1007/s12975-013-0304-z contributor: fullname: Badaut – volume: 23 start-page: 627 year: 2012 ident: B86 article-title: Perlecan Domain V Is Upregulated in Human Brain Arteriovenous Malformation and Could Mediate the Vascular Endothelial Growth Factor Effect in Lesional Tissue publication-title: Neuroreport doi: 10.1097/00001756-201207110-00010 contributor: fullname: Kahle – volume: 277 start-page: 15061 year: 2002 ident: B20 article-title: The Leucine-Rich Repeat Protein PRELP Binds Perlecan and Collagens and May Function as a Basement Membrane Anchor publication-title: J. Biol. Chem. doi: 10.1074/jbc.m108285200 contributor: fullname: Bengtsson – volume: 134 start-page: 4177 year: 2007 ident: B153 article-title: Heparanase Cleavage of Perlecan Heparan Sulfate Modulates FGF10 Activity during Ex Vivo Submandibular Gland Branching Morphogenesis publication-title: Development doi: 10.1242/dev.011171 contributor: fullname: Patel – volume: 1438 start-page: 65 year: 2012 ident: B175 article-title: Oxygen-glucose Deprivation (OGD) and Interleukin-1 (IL-1) Differentially Modulate Cathepsin B/L Mediated Generation of Neuroprotective Perlecan LG3 by Neurons publication-title: Brain Res. doi: 10.1016/j.brainres.2011.12.027 contributor: fullname: Saini – volume: 2017 start-page: 6526151 year: 2017 ident: B171 article-title: Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity publication-title: Neural Plast. doi: 10.1155/2017/6526151 contributor: fullname: Rudenko – volume: 5 start-page: 119 year: 2002 ident: B7 article-title: Absence of Acetylcholinesterase at the Neuromuscular Junctions of Perlecan-Null Mice publication-title: Nat. Neurosci. doi: 10.1038/nn801 contributor: fullname: Arikawa-Hirasawa – volume: 52 start-page: 1405 year: 2004 ident: B133 article-title: Perlecan Immunolocalizes to Perichondrial Vessels and Canals in Human Fetal Cartilaginous Primordia in Early Vascular and Matrix Remodeling Events Associated with Diarthrodial Joint Development publication-title: J. Histochem. Cytochem. doi: 10.1369/jhc.4a6261.2004 contributor: fullname: Melrose – volume: 4 start-page: 368 year: 2020 ident: B115 article-title: Better Growth-Factor Binding Aids Tissue Repair publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-0548-3 contributor: fullname: Lord – volume: 175 start-page: 3 year: 2008 ident: B189 article-title: Acetylcholinesterase: How Is Structure Related to Function? publication-title: Chem. Biol. Interact doi: 10.1016/j.cbi.2008.05.035 contributor: fullname: Silman – volume: 121 start-page: 3005 year: 2011 ident: B104 article-title: Perlecan Domain V Is Neuroprotective and Proangiogenic Following Ischemic Stroke in Rodents publication-title: J. Clin. Invest. doi: 10.1172/jci46358 contributor: fullname: Lee – volume: 26 start-page: 263 year: 1979 ident: B166 article-title: Quantitative Simulation of Endplate Currents at Neuromuscular Junctions Based on the Reaction of Acetylcholine with Acetylcholine Receptor and Acetylcholinesterase publication-title: Biophysical J. doi: 10.1016/s0006-3495(79)85249-2 contributor: fullname: Rosenberry – volume: 8 start-page: 618 year: 1996 ident: B209 article-title: Macromolecular Organization of Basement Membranes publication-title: Curr. Opin. Cel Biol. doi: 10.1016/s0955-0674(96)80102-5 contributor: fullname: Timpl – volume: 218 start-page: 3506 year: 2019 ident: B141 article-title: Perlecan Regulates Pericyte Dynamics in the Maintenance and Repair of the Blood-Brain Barrier publication-title: J. Cel Biol doi: 10.1083/jcb.201807178 contributor: fullname: Nakamura – volume: 20 year: 2019 ident: B136 article-title: Endothelial Ca2+ Signaling, Angiogenesis and Vasculogenesis: Just what it Takes to Make a Blood Vessel publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20163962 contributor: fullname: Moccia – volume: 250 start-page: 312 year: 1998 ident: B27 article-title: At Least Two Receptors of Asymmetric Acetylcholinesterase Are Present at the Synaptic Basal Lamina ofTorpedoElectric Organ publication-title: Biochem. Biophysical Res. Commun. doi: 10.1006/bbrc.1998.9303 contributor: fullname: Casanueva – volume: 259 start-page: 917 year: 1999 ident: B74 article-title: Recombinant Domain IV of Perlecan Binds to Nidogens, Laminin-Nidogen Complex, Fibronectin, Fibulin-2 and Heparin publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00127.x contributor: fullname: Hopf – volume: 41 start-page: 73 year: 2021 ident: B70 article-title: 3D Distribution of Perlecan within Intervertebral Disc Chondrons Suggests Novel Regulatory Roles for This Multifunctional Modular Heparan Sulphate Proteoglycan publication-title: eCM doi: 10.22203/ecm.v041a06 contributor: fullname: Hayes – volume: 83 start-page: 305 year: 1998 ident: B98 article-title: Heparan Sulfate Proteoglycans Mediate a Potent Inhibitory Signal for Migration of Vascular Smooth Muscle Cells publication-title: Circ. Res. doi: 10.1161/01.res.83.3.305 contributor: fullname: Koyama – volume: 284 start-page: 12020 year: 2009 ident: B4 article-title: Mice Lacking the Extracellular Matrix Protein WARP Develop Normally but Have Compromised Peripheral Nerve Structure and Function publication-title: J. Biol. Chem. doi: 10.1074/jbc.m806968200 contributor: fullname: Allen – volume: 145 start-page: 911 year: 1999 ident: B155 article-title: Acetylcholinesterase Clustering at the Neuromuscular junction Involves Perlecan and Dystroglycan publication-title: J. Cel Biol doi: 10.1083/jcb.145.4.911 contributor: fullname: Peng – volume: 35 start-page: 837 year: 2017 ident: B173 article-title: Perlecan Is Required for the Chondrogenic Differentiation of Synovial Mesenchymal Cells through Regulation of Sox9 Gene Expression publication-title: J. Orthop. Res. doi: 10.1002/jor.23318 contributor: fullname: Sadatsuki – volume: 14 start-page: 504 year: 2014 ident: B81 article-title: Fgf10: a Paracrine-Signaling Molecule in Development, Disease, and Regenerative Medicine publication-title: Cmm doi: 10.2174/1566524014666140414204829 contributor: fullname: Itoh – volume: 65 start-page: 1706 year: 2008 ident: B146 article-title: Heparanase Involvement in Physiology and Disease publication-title: Cel. Mol. Life Sci. doi: 10.1007/s00018-008-7584-6 contributor: fullname: Nasser – volume: 3 start-page: 2000151 year: 2020 ident: B68 article-title: Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes publication-title: Adv. Therap. doi: 10.1002/adtp.202000151 contributor: fullname: Hayes – volume: 11 start-page: 92 year: 2021 ident: B49 article-title: Perlecan in the Natural and Cell Therapy Repair of Human Adult Articular Cartilage: Can Modifications in This Proteoglycan Be a Novel Therapeutic Approach? publication-title: Biomolecules doi: 10.3390/biom11010092 contributor: fullname: Garcia – volume: 15 start-page: 3309 year: 2009 ident: B160 article-title: Perlecan Domain IV Peptide Stimulates Salivary Gland Cell AssemblyIn Vitro publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2008.0669 contributor: fullname: Pradhan – volume: 207 start-page: 784 year: 2006 ident: B99 article-title: Heparanase Is Expressed in Osteoblastic Cells and Stimulates Bone Formation and Bone Mass publication-title: J. Cel. Physiol. doi: 10.1002/jcp.20625 contributor: fullname: Kram – volume: 266 start-page: 22939 year: 1991 ident: B150 article-title: The Complete Sequence of Perlecan, a Basement Membrane Heparan Sulfate Proteoglycan, Reveals Extensive Similarity with Laminin A Chain, Low Density Lipoprotein-Receptor, and the Neural Cell Adhesion Molecule publication-title: J. Biol. Chem. doi: 10.1016/s0021-9258(18)54445-8 contributor: fullname: Noonan – volume: 30 start-page: 6964 year: 2009 ident: B84 article-title: Perlecan Domain I-Conjugated, Hyaluronic Acid-Based Hydrogel Particles for Enhanced Chondrogenic Differentiation via BMP-2 Release publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.009 contributor: fullname: Jha – volume: 9 start-page: 1249 year: 2019 ident: B207 article-title: Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling publication-title: Compr. Physiol. doi: 10.1002/cphy.c180034 contributor: fullname: Thakore – volume: 100 start-page: 276 year: 2018 ident: B202 article-title: Towards an Understanding of Synapse Formation publication-title: Neuron doi: 10.1016/j.neuron.2018.09.040 contributor: fullname: Südhof – volume: 8 year: 2019 ident: B214 article-title: Heparan Sulfates Are Critical Regulators of the Inhibitory Megakaryocyte-Platelet Receptor G6b-B publication-title: Elife doi: 10.7554/eLife.46840 contributor: fullname: Vögtle – volume: 231 start-page: 549 year: 1973 ident: B88 article-title: The Binding of Acetylcholine to Receptors and its Removal from the Synaptic Cleft publication-title: J. Physiol. (Lond). doi: 10.1113/jphysiol.1973.sp010248 contributor: fullname: Katz – volume: 32 start-page: 178 year: 2013 ident: B87 article-title: Synovial Perlecan Is Required for Osteophyte Formation in Knee Osteoarthritis publication-title: Matrix Biol. doi: 10.1016/j.matbio.2013.01.004 contributor: fullname: Kaneko – volume: 29 start-page: 461 year: 2010 ident: B225 article-title: Perlecan Deficiency Causes Muscle Hypertrophy, a Decrease in Myostatin Expression, and Changes in Muscle Fiber Composition publication-title: Matrix Biol. doi: 10.1016/j.matbio.2010.06.001 contributor: fullname: Xu – volume: 30 start-page: 457 year: 2008 ident: B127 article-title: Perlecan, the "jack of All Trades" Proteoglycan of Cartilaginous Weight-Bearing Connective Tissues publication-title: Bioessays doi: 10.1002/bies.20748 contributor: fullname: Melrose – volume: 9 start-page: 289 year: 2008 ident: B205 article-title: Proteoglycan Mediated Lipoprotein Retention: a Mechanism of Diabetic Atherosclerosis publication-title: Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-008-9078-0 contributor: fullname: Tannock – volume: 85 start-page: 317 year: 1978 ident: B213 article-title: Active-site Catalytic Efficiency of Acetylcholinesterase Molecular Forms in Electrophorus, torpedo, Rat and Chicken publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1978.tb12241.x contributor: fullname: Vigny – start-page: 363 year: 2016 ident: B131 article-title: The Cartilage Extracellular Matrix as a Transient Developmental Scaffold for Growth Plate Maturation publication-title: Matrix Biol. doi: 10.1016/j.matbio.2016.01.008 contributor: fullname: Melrose – volume: 17 start-page: 48 year: 2002 ident: B46 article-title: Chondrogenic Activity of the Heparan Sulfate Proteoglycan Perlecan Maps to the N-Terminal Domain I publication-title: J. Bone Miner Res. doi: 10.1359/jbmr.2002.17.1.48 contributor: fullname: French – volume: 139 start-page: 1 year: 2013 ident: B69 article-title: Comparative Immunolocalisation of Fibrillin-1 and Perlecan in the Human Foetal, and HS-Deficient Hspg2 Exon 3 Null Mutant Mouse Intervertebral Disc publication-title: Histochem. Cel Biol doi: 10.1007/s00418-012-1041-1 contributor: fullname: Hayes – volume: 147 start-page: 1109 year: 1999 ident: B33 article-title: Perlecan Maintains the Integrity of Cartilage and Some Basement Membranes publication-title: J. Cel Biol doi: 10.1083/jcb.147.5.1109 contributor: fullname: Costell – volume: 135 start-page: 13 year: 2021 ident: B48 article-title: Impact of Perlecan, a Core Component of Basement Membrane, on Regeneration of Cartilaginous Tissues publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.08.032 contributor: fullname: Gao – volume: 47 start-page: 365 year: 2016 ident: B185 article-title: The Heparan Sulphate Deficient Hspg2 Exon 3 Null Mouse Displays Reduced Deposition of TGF-Β1 in Skin Compared to C57BL/6 Wild Type Mice publication-title: J. Mol. Hist. doi: 10.1007/s10735-016-9677-0 contributor: fullname: Shu – volume: 19 start-page: 1220 year: 2020 ident: B151 article-title: Perlecan Knockdown Significantly Alters Extracellular Matrix Composition and Organization during Cartilage Development publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.ra120.001998 contributor: fullname: Ocken – volume: 145 start-page: 153 year: 1999 ident: B34 article-title: Membrane Targeting and Stabilization of Sarcospan Is Mediated by the Sarcoglycan Subcomplex publication-title: J. Cel Biol doi: 10.1083/jcb.145.1.153 contributor: fullname: Crosbie – volume: 133 start-page: 599 year: 2014 ident: B13 article-title: COOH-terminal Collagen Q (COLQ) Mutants Causing Human Deficiency of Endplate Acetylcholinesterase Impair the Interaction of ColQ with Proteins of the Basal Lamina publication-title: Hum. Genet. doi: 10.1007/s00439-013-1391-3 contributor: fullname: Arredondo – volume: 303 start-page: 1619 year: 2020 ident: B44 article-title: WARP: A Unique Extracellular Matrix Component of Cartilage, Muscle, and Endothelial Cell Basement Membranes publication-title: Anat. Rec. doi: 10.1002/ar.24087 contributor: fullname: Fitzgerald – volume: 16 start-page: 222 year: 2019 ident: B176 article-title: Interleukin 1 Alpha Administration Is Neuroprotective and Neuro-Restorative Following Experimental Ischemic Stroke publication-title: J. Neuroinflammation doi: 10.1186/s12974-019-1599-9 contributor: fullname: Salmeron – volume: 90 start-page: 469 year: 2005 ident: B124 article-title: New Aspects of Vascular Remodelling: the Involvement of All Vascular Cell Types publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2005.030130 contributor: fullname: McGrath – volume: 27 start-page: R207 year: 2017 ident: B83 article-title: Basement Membranes publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.02.006 contributor: fullname: Jayadev – volume: 468 start-page: 244 year: 2007 ident: B193 article-title: The Core Protein of Growth Plate Perlecan Binds FGF-18 and Alters its Mitogenic Effect on Chondrocytes publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2007.10.006 contributor: fullname: Smith – volume: 4 start-page: 78 year: 2018 ident: B223 article-title: Basement Membrane and Blood-Brain Barrier publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2018-000198 contributor: fullname: Xu – volume: 31 start-page: 234 year: 2012 ident: B79 article-title: Perlecan Modulates VEGF Signaling and Is Essential for Vascularization in Endochondral Bone Formation publication-title: Matrix Biol. doi: 10.1016/j.matbio.2012.02.006 contributor: fullname: Ishijima – volume: 142 start-page: 191 year: 2010 ident: B159 article-title: Lumen Formation in Three-Dimensional Cultures of Salivary Acinar Cells publication-title: Otolaryngol. Head Neck Surg. doi: 10.1016/j.otohns.2009.10.039 contributor: fullname: Pradhan – volume: 94 start-page: 175 year: 2004 ident: B50 article-title: Perlecan-induced Suppression of Smooth Muscle Cell Proliferation Is Mediated through Increased Activity of the Tumor Suppressor PTEN publication-title: Circ. Res. doi: 10.1161/01.res.0000109791.69181.b6 contributor: fullname: Garl – volume: 205 start-page: 275 year: 2014 ident: B187 article-title: Anionic Biopolyelectrolytes of the Syndecan/perlecan Superfamily: Physicochemical Properties and Medical Significance publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2014.01.009 contributor: fullname: Siegel – volume: 250 start-page: 39 year: 1997 ident: B24 article-title: The C-Terminal Domain V of Perlecan Promotes Beta1 Integrin-Mediated Cell Adhesion, Binds Heparin, Nidogen and Fibulin-2 and Can Be Modified by Glycosaminoglycans publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.t01-1-00039.x contributor: fullname: Brown – volume: 180 start-page: 2040 year: 2012 ident: B17 article-title: A Mouse Model of Schwartz-Jampel Syndrome Reveals Myelinating Schwann Cell Dysfunction with Persistent Axonal Depolarization In Vitro and Distal Peripheral Nerve Hyperexcitability when Perlecan Is Lacking publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.01.035 contributor: fullname: Bangratz – volume: 2 start-page: FSO142 year: 2016 ident: B184 article-title: Use of FGF-2 and FGF-18 to Direct Bone Marrow Stromal Stem Cells to Chondrogenic and Osteogenic Lineages publication-title: Future Sci. OA doi: 10.4155/fsoa-2016-0034 contributor: fullname: Shu – volume: 579 start-page: 5019 year: 2005 ident: B96 article-title: Perlecan from Human Epithelial Cells Is a Hybrid Heparan/chondroitin/keratan Sulfate Proteoglycan publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.07.090 contributor: fullname: Knox – volume: 1630 start-page: 98 year: 2016 ident: B140 article-title: Possible Involvement of Basic FGF in the Upregulation of PDGFRβ in Pericytes after Ischemic Stroke publication-title: Brain Res. doi: 10.1016/j.brainres.2015.11.003 contributor: fullname: Nakamura – start-page: 176 year: 2020 ident: B35 article-title: Extracellular Matrix-Derived Peptides in Tissue Remodeling and Fibrosis publication-title: Matrix Biol. doi: 10.1016/j.matbio.2020.04.006 contributor: fullname: de Castro Brás – volume: 184 start-page: 38 year: 1997 ident: B192 article-title: Expression of Heparan Sulfate Proteoglycan (Perlecan) in the Mouse Blastocyst Is Regulated during normal and Delayed Implantation publication-title: Developmental Biol. doi: 10.1006/dbio.1997.8521 contributor: fullname: Smith – volume: 6 start-page: 5 year: 2014 ident: B156 article-title: Development and Characterization of a Yucatan Miniature Biomedical Pig Permanent Middle Cerebral Artery Occlusion Stroke Model publication-title: Exp. Trans. Stroke Med. doi: 10.1186/2040-7378-6-5 contributor: fullname: Platt – volume: 23 start-page: 998 year: 2013 ident: B18 article-title: Peripheral Nerve Hyperexcitability with Preterminal Nerve and Neuromuscular junction Remodeling Is a Hallmark of Schwartz-Jampel Syndrome publication-title: Neuromuscul. Disord. doi: 10.1016/j.nmd.2013.07.005 contributor: fullname: Bauché – volume: 106 start-page: 254 year: 2001 ident: B10 article-title: Dyssegmental Dysplasia, Silverman-Handmaker Type: Unexpected Role of Perlecan in Cartilage Development publication-title: Am. J. Med. Genet. doi: 10.1002/ajmg.10229 contributor: fullname: Arikawa-Hirasawa – volume: 296 start-page: 100520 year: 2021 ident: B147 article-title: Macrophages Bind LDL Using Heparan Sulfate and the Perlecan Protein Core publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100520 contributor: fullname: Ng – volume: 27 start-page: 431 year: 2001 ident: B9 article-title: Dyssegmental Dysplasia, Silverman-Handmaker Type, Is Caused by Functional Null Mutations of the Perlecan Gene publication-title: Nat. Genet. doi: 10.1038/86941 contributor: fullname: Arikawa-Hirasawa – volume: 189 start-page: 275 year: 2001 ident: B116 article-title: BMP-2 and BMP-9 Promotes Chondrogenic Differentiation of Human Multipotential Mesenchymal Cells and Overcomes the Inhibitory Effect of IL-1 publication-title: J. Cel. Physiol. doi: 10.1002/jcp.10025 contributor: fullname: Majumdar – volume: 18 start-page: 163 year: 1999 ident: B219 article-title: Human Perlecan Immunopurified from Different Endothelial Cell Sources Has Different Adhesive Properties for Vascular Cells publication-title: Matrix Biol. doi: 10.1016/s0945-053x(99)00014-1 contributor: fullname: Whitelock – volume: 1 start-page: 1 year: 2021 ident: B204 article-title: Analytical Challenges of Glycosaminoglycans at Biological Interfaces publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-021-03705-w contributor: fullname: Szekeres – volume: 107 start-page: 20 year: 2015 ident: B30 article-title: Perlecan Heparan Sulfate Deficiency Impairs Pulmonary Vascular Development and Attenuates Hypoxic Pulmonary Hypertension publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvv143 contributor: fullname: Chang – volume: 3 start-page: 25 year: 2016 ident: B31 article-title: Sustained Delivery of Recombinant Human Bone Morphogenetic Protein-2 from Perlecan Domain I - Functionalized Electrospun Poly (ε-Caprolactone) Scaffolds for Bone Regeneration publication-title: J. Exp. Ortop doi: 10.1186/s40634-016-0057-1 contributor: fullname: Chiu – volume: 373 start-page: 20170145 year: 2018 ident: B174 article-title: Joining Forces: Crosstalk between Biochemical Signalling and Physical Forces Orchestrates Cellular Polarity and Dynamics publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2017.0145 contributor: fullname: Saha – volume: 27 start-page: 295 year: 2008 ident: B2 article-title: The Extracellular Matrix Protein WARP Is a Novel Component of a Distinct Subset of Basement Membranes publication-title: Matrix Biol. doi: 10.1016/j.matbio.2008.01.005 contributor: fullname: Allen – volume: 12 start-page: 632336 year: 2021 ident: B106 article-title: A Novel Pathogenic HSPG2 Mutation in Schwartz-Jampel Syndrome publication-title: Front. Neurol. doi: 10.3389/fneur.2021.632336 contributor: fullname: Lin – volume: 29 start-page: 878 year: 2014 ident: B216 article-title: Perlecan-containing Pericellular Matrix Regulates Solute Transport and Mechanosensing within the Osteocyte Lacunar-Canalicular System publication-title: J. Bone Miner Res. doi: 10.1002/jbmr.2105 contributor: fullname: Wang – volume: 26 start-page: 480 year: 2000 ident: B148 article-title: Perlecan, the Major Proteoglycan of Basement Membranes, Is Altered in Patients with Schwartz-Jampel Syndrome (Chondrodystrophic Myotonia) publication-title: Nat. Genet. doi: 10.1038/82638 contributor: fullname: Nicole – volume: 40 start-page: 55 year: 2009 ident: B39 article-title: Electrophysiological Studies in a Mouse Model of Schwartz-Jampel Syndrome Demonstrate Muscle Fiber Hyperactivity of Peripheral Nerve Origin publication-title: Muscle Nerve doi: 10.1002/mus.21253 contributor: fullname: Echaniz-Laguna – volume: 126 start-page: 3047 year: 1999 ident: B72 article-title: Role of PDGF-B and PDGFR-Beta in Recruitment of Vascular Smooth Muscle Cells and Pericytes during Embryonic Blood Vessel Formation in the Mouse publication-title: Development doi: 10.1242/dev.126.14.3047 contributor: fullname: Hellstrom – volume: 32 start-page: 40 year: 2016 ident: B71 article-title: Pericellular Colocalisation and Interactive Properties of Type VI Collagen and Perlecan in the Intervertebral Disc publication-title: eCM doi: 10.22203/ecm.v032a03 contributor: fullname: Hayes – volume: 18 start-page: 2904 year: 2007 ident: B121 article-title: Acetylcholinesterase Mobility and Stability at the Neuromuscular junction of Living Mice publication-title: MBoC doi: 10.1091/mbc.e07-02-0093 contributor: fullname: Martinez-Pena y Valenzuela – volume: 17 start-page: 3166 year: 2008 ident: B201 article-title: Evidence of a Dosage Effect and a Physiological Endplate Acetylcholinesterase Deficiency in the First Mouse Models Mimicking Schwartz-Jampel Syndrome Neuromyotonia publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn213 contributor: fullname: Stum – volume: 73 start-page: 4661 year: 2016 ident: B134 article-title: Fractones: Extracellular Matrix Niche Controlling Stem Cell Fate and Growth Factor Activity in the Brain in Health and Disease publication-title: Cel. Mol. Life Sci. doi: 10.1007/s00018-016-2314-y contributor: fullname: Mercier – volume: 7 start-page: 29 year: 2007 ident: B53 article-title: Erlecan Controls Neurogenesis in the Developing Telencephalon publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-7-29 contributor: fullname: Girós – volume: 278 start-page: 17491 year: 2003 ident: B137 article-title: Perlecan Protein Core Interacts with Extracellular Matrix Protein 1 (ECM1), a Glycoprotein Involved in Bone Formation and Angiogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.m210529200 contributor: fullname: Mongiat – volume: 21 start-page: 176 year: 2022 ident: B161 article-title: Epidemiology, Diagnostics, and Biomarkers of Autoimmune Neuromuscular junction Disorders publication-title: Lancet Neurol. doi: 10.1016/s1474-4422(21)00297-0 contributor: fullname: Punga – volume: 136 start-page: 367 year: 1997 ident: B168 article-title: Transplantation of Quail Collagen-Tailed Acetylcholinesterase Molecules onto the Frog Neuromuscular Synapse publication-title: J. Cel Biol doi: 10.1083/jcb.136.2.367 contributor: fullname: Rotundo – volume: 11 start-page: 76 year: 2005 ident: B228 article-title: Perlecan Domain I Promotes Fibroblast Growth Factor 2 Delivery in Collagen I Fibril Scaffolds publication-title: Tissue Eng. doi: 10.1089/ten.2005.11.76 contributor: fullname: Yang – volume: 30 start-page: 1 year: 2015 ident: B119 article-title: The Potential Role of Perlecan Domain V as Novel Therapy in Vascular Dementia publication-title: Metab. Brain Dis. doi: 10.1007/s11011-014-9576-6 contributor: fullname: Marcelo – volume: 1 start-page: 833 year: 1990 ident: B78 article-title: Heparanase Activity Expressed by Platelets, Neutrophils, and Lymphoma Cells Releases Active Fibroblast Growth Factor from Extracellular Matrix publication-title: Cell Regul doi: 10.1091/mbc.1.11.833 contributor: fullname: Ishai-Michaeli – volume: 23 start-page: 354 year: 1999 ident: B8 article-title: Perlecan Is Essential for Cartilage and Cephalic Development publication-title: Nat. Genet. doi: 10.1038/15537 contributor: fullname: Arikawa-Hirasawa – volume: 9 start-page: 316 year: 2009 ident: B123 article-title: Cholinesterases and the Basal Lamina at Vertebrate Neuromuscular Junctions publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2009.04.004 contributor: fullname: Massoulié – volume: 26 start-page: 241 year: 2003 ident: B200 article-title: PerleCan Fix Your Muscle AChEs publication-title: Trends Neurosciences doi: 10.1016/s0166-2236(03)00077-8 contributor: fullname: Steen – volume: 307 start-page: H337 year: 2014 ident: B59 article-title: Heparan Sulfate Side Chains Have a Critical Role in the Inhibitory Effects of Perlecan on Vascular Smooth Muscle Cell Response to Arterial Injury publication-title: Am. J. Physiology-Heart Circulatory Physiol. doi: 10.1152/ajpheart.00654.2013 contributor: fullname: Gotha – volume: 1135 start-page: 331 year: 2014 ident: B118 article-title: Investigating the Role of Perlecan Domain V in post-ischemic Cerebral Angiogenesis publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-0320-7_27 contributor: fullname: Marcelo – volume: 128 start-page: 105849 year: 2020 ident: B125 article-title: Perlecan, a Modular Instructive Proteoglycan with Diverse Functional Properties publication-title: Int. J. Biochem. Cel Biol doi: 10.1016/j.biocel.2020.105849 contributor: fullname: Melrose – volume: 66 start-page: 207 year: 2018 ident: B25 article-title: Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity publication-title: Results Probl. Cel Differ doi: 10.1007/978-3-319-93485-3_9 contributor: fullname: Buzanska – volume: 272 start-page: 22840 year: 1997 ident: B101 article-title: The Mammalian Gene of Acetylcholinesterase-Associated Collagen publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.36.22840 contributor: fullname: Krejci – volume: 281 start-page: 7341 year: 2006 ident: B3 article-title: WARP Is a Novel Multimeric Component of the Chondrocyte Pericellular Matrix that Interacts with Perlecan publication-title: J. Biol. Chem. doi: 10.1074/jbc.m513746200 contributor: fullname: Allen – volume: 15 start-page: e0241040 year: 2020 ident: B172 article-title: Altered Shear Stress on Endothelial Cells Leads to Remodeling of Extracellular Matrix and Induction of Angiogenesis publication-title: PLoS One doi: 10.1371/journal.pone.0241040 contributor: fullname: Russo – volume: 36 start-page: E1365 year: 2011 ident: B64 article-title: Comparative Immunolocalization of the Elastin Fiber-Associated Proteins Fibrillin-1, LTBP-2, and MAGP-1 with Components of the Collagenous and Proteoglycan Matrix of the Fetal Human Intervertebral Disc publication-title: Spine (Phila Pa 1976) doi: 10.1097/BRS.0b013e31821fd23e contributor: fullname: Hayes – volume: 1275 start-page: 36 year: 2012 ident: B122 article-title: Synaptic Basal Lamina-Associated Congenital Myasthenic Syndromes publication-title: Ann. N. Y Acad. Sci. doi: 10.1111/j.1749-6632.2012.06807.x contributor: fullname: Maselli – volume: 10 start-page: 2100388 year: 2021 ident: B29 article-title: Effect of Recombinant Human Perlecan Domain V Tethering Method on Protein Orientation and Blood Contacting Activity on Polyvinyl Chloride publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202100388 contributor: fullname: Chandrasekar – volume: 33 start-page: 4241 year: 2012 ident: B75 article-title: Reconstitution of Laminin-111 Biological Activity Using Multiple Peptide Coupled to Chitosan Scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.055 contributor: fullname: Hozumi – volume: 69 start-page: 93 year: 2021 ident: B211 article-title: Glycosaminoglycan-Protein Interactions: The First Draft of the Glycosaminoglycan Interactome publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155420946403 contributor: fullname: Vallet – volume: 25 start-page: 702 year: 2015 ident: B230 article-title: Matriglycan: a Novel Polysaccharide that Links Dystroglycan to the Basement Membrane publication-title: Glycobiology doi: 10.1093/glycob/cwv021 contributor: fullname: Yoshida-Moriguchi – volume: 172 start-page: 1 year: 2013 ident: B218 article-title: Bioengineered Sequential Growth Factor Delivery Stimulates Brain Tissue Regeneration after Stroke publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2013.07.032 contributor: fullname: Wang – volume: 136 start-page: 437 year: 2011 ident: B67 article-title: Colocalization In Vivo and Association In Vitro of Perlecan and Elastin publication-title: Histochem. Cel Biol doi: 10.1007/s00418-011-0854-7 contributor: fullname: Hayes – volume: 267 start-page: 8544 year: 1992 ident: B139 article-title: Primary Structure of the Human Heparan Sulfate Proteoglycan from Basement Membrane (HSPG2/perlecan). A Chimeric Molecule with Multiple Domains Homologous to the Low Density Lipoprotein Receptor, Laminin, Neural Cell Adhesion Molecules, and Epidermal Growth Factor publication-title: J. Biol. Chem. doi: 10.1016/s0021-9258(18)42478-7 contributor: fullname: Murdoch – volume: 735 start-page: 135155 year: 2020 ident: B105 article-title: Collagens at the Vertebrate Neuromuscular junction, from Structure to Pathologies publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2020.135155 contributor: fullname: Legay – volume: 294 start-page: 259 year: 1999 ident: B47 article-title: Structural Basis of Glycosaminoglycan Modification and of Heterotypic Interactions of Perlecan Domain V 1 1Edited by I. B. Holland publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3259 contributor: fullname: Friedrich – volume: 86 start-page: 904 year: 2015 ident: B142 article-title: Diverse Functions of Perlecan in central Nervous System Cellsin Vitro publication-title: Anim. Sci. J. doi: 10.1111/asj.12376 contributor: fullname: Nakamura – volume: 19 start-page: 211 year: 2005 ident: B231 article-title: Heparanase Accelerates Wound Angiogenesis and Wound Healing in Mouse and Rat Models publication-title: FASEB j. doi: 10.1096/fj.04-1970com contributor: fullname: Zcharia – volume: 279 start-page: 10997 year: 2004 ident: B94 article-title: C-terminal and Heparin-Binding Domains of Collagenic Tail Subunit Are Both Essential for Anchoring Acetylcholinesterase at the Synapse publication-title: J. Biol. Chem. doi: 10.1074/jbc.m305462200 contributor: fullname: Kimbell – volume: 7 start-page: 5749 year: 2021 ident: B45 article-title: RGDSP-decorated Hyaluronate Hydrogels Facilitate Rapid 3D Expansion of Amylase-Expressing Salivary Gland Progenitor Cells publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c00745 contributor: fullname: Fowler – volume: 12 start-page: 12 year: 2017 ident: B162 article-title: Recombinant Domain V of Human Perlecan Is a Bioactive Vascular Proteoglycan publication-title: Biotechnol. J. doi: 10.1002/biot.201700196 contributor: fullname: Rnjak-Kovacina – volume: 12 start-page: 2009 year: 2006 ident: B229 article-title: Chondrogenic Differentiation on Perlecan Domain I, Collagen II, and Bone Morphogenetic Protein-2-Based Matrices publication-title: Tissue Eng. doi: 10.1089/ten.2006.12.2009 contributor: fullname: Yang – volume: 30 start-page: 13 year: 2010 ident: B188 article-title: ColQ Controls Postsynaptic Differentiation at the Neuromuscular junction publication-title: J. Neurosci. doi: 10.1523/jneurosci.4374-09.2010 contributor: fullname: Sigoillot – volume: 346 start-page: 577318 year: 2020 ident: B5 article-title: Neuroinflammation and Fibrosis in Stroke: The Good, the Bad and the Ugly publication-title: J. Neuroimmunology doi: 10.1016/j.jneuroim.2020.577318 contributor: fullname: Amruta – volume: 1 start-page: 171 year: 2021 ident: B109 article-title: Modeling Stroke in Mice: Transient Middle Cerebral Artery Occlusion via the External Carotid Artery publication-title: J. Vis. Exp. doi: 10.3791/62573 contributor: fullname: Llovera – volume: 32 start-page: 32 year: 2021 ident: B232 article-title: Controllable High-Performance Memristors Based on 2D Fe2GeTe3oxide for Biological Synapse Imitation publication-title: Nanotechnology doi: 10.1088/1361-6528/abfd58 contributor: fullname: Zeng – volume: 13 start-page: 710683 year: 2021 ident: B196 article-title: The Unifying Hypothesis of Alzheimer's Disease: Heparan Sulfate Proteoglycans/Glycosaminoglycans Are Key as First Hypothesized over 30 Years Ago publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2021.710683 contributor: fullname: Snow – volume: 39 start-page: 25 year: 2014 ident: B222 article-title: The Structure and Function of the Pericellular Matrix of Articular Cartilage publication-title: Matrix Biol. doi: 10.1016/j.matbio.2014.08.009 contributor: fullname: Wilusz – volume: 17 start-page: 897 year: 2007 ident: B43 article-title: Perlecan a Multifunctional Extracellular Proteoglycan Scaffold publication-title: Glycobiology doi: 10.1093/glycob/cwm043 contributor: fullname: Farach-Carson – volume: 30 start-page: 275 year: 2021 ident: B93 article-title: Contribution of Extracellular Matrix Component Landscapes in the Adult Subventricular Zone to the Positioning of Neural Stem/Progenitor Cells publication-title: Exp. Neurobiol. doi: 10.5607/en21012 contributor: fullname: Kim – volume: 34 start-page: 6539 year: 2013 ident: B226 article-title: Laminin-111-derived Peptide-Hyaluronate Hydrogels as a Synthetic Basement Membrane publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.044 contributor: fullname: Yamada – volume: 28 start-page: 63 year: 2016 ident: B80 article-title: FGF10: A Multifunctional Mesenchymal-Epithelial Signaling Growth Factor in Development, Health, and Disease publication-title: Cytokine Growth Factor. Rev. doi: 10.1016/j.cytogfr.2015.10.001 contributor: fullname: Itoh – volume: 49 start-page: 1479 year: 2018 ident: B73 article-title: Early Blood-Brain Barrier Disruption in Ischemic Stroke Initiates Multifocally Around Capillaries/Venules publication-title: Stroke doi: 10.1161/strokeaha.118.020927 contributor: fullname: Hoffmann – volume: 4 start-page: 370 year: 2013 ident: B23 article-title: Perlecan Domain V Therapy for Stroke: a beacon of hope? publication-title: ACS Chem. Neurosci. doi: 10.1021/cn300197y contributor: fullname: Bix – volume: 46 start-page: 185 year: 2014 ident: B65 article-title: Confocal Microscopy Demonstrates Association of LTBP-2 in Fibrillin-1 Microfibrils and Colocalisation with Perlecan in the Disc Cell Pericellular Matrix publication-title: Tissue and Cell doi: 10.1016/j.tice.2014.04.002 contributor: fullname: Hayes – volume: 127 start-page: e251 year: 2019 ident: B212 article-title: Development of a Novel Canine Model of Ischemic Stroke: Skull Base Approach with Transient Middle Cerebral Artery Occlusion publication-title: World Neurosurg. doi: 10.1016/j.wneu.2019.03.082 contributor: fullname: Vasquez – volume: 51 start-page: 1331 year: 2003 ident: B132 article-title: Perlecan, the Multidomain Heparan Sulfate Proteoglycan of Basement Membranes, Is Also a Prominent Component of the Cartilaginous Primordia in the Developing Human Fetal Spine publication-title: J. Histochem. Cytochem. doi: 10.1177/002215540305101010 contributor: fullname: Melrose – volume: 105 start-page: 1807 year: 2000 ident: B38 article-title: Delayed Catabolism of apoB-48 Lipoproteins Due to Decreased Heparan Sulfate Proteoglycan Production in Diabetic Mice publication-title: J. Clin. Invest. doi: 10.1172/jci8283 contributor: fullname: Ebara – volume: 7 start-page: 642 year: 2013 ident: B170 article-title: Differentiation of Human Pluripotent Stem Cells to Retinal Pigmented Epithelium in Defined Conditions Using Purified Extracellular Matrix Proteins publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.1458 contributor: fullname: Rowland – volume: 476 start-page: 225 year: 2019 ident: B183 article-title: Elevated Hypertrophy, Growth Plate Maturation, Glycosaminoglycan Deposition, and Exostosis Formation in the Hspg2 Exon 3 Null Mouse Intervertebral Disc publication-title: Biochem. J. doi: 10.1042/bcj20180695 contributor: fullname: Shu – volume: 316 start-page: C252 year: 2019 ident: B40 article-title: Roles of Blood-Brain Barrier Integrins and Extracellular Matrix in Stroke publication-title: Am. J. Physiology-Cell Physiol. doi: 10.1152/ajpcell.00151.2018 contributor: fullname: Edwards – volume: 15 start-page: 764458 year: 2021 ident: B90 article-title: Optimal Extracellular Matrix Niches for Neurogenesis: Identifying Glycosaminoglycan Chain Composition in the Subventricular Neurogenic Zone publication-title: Front. Neuroanat. doi: 10.3389/fnana.2021.764458 contributor: fullname: Kerever – volume: 25 start-page: 836 year: 2016 ident: B66 article-title: The CS Sulfation Motifs 4C3, 7D4, 3B3[−]; and Perlecan Identify Stem Cell Populations and Their Niches, Activated Progenitor Cells and Transitional Areas of Tissue Development in the Fetal Human Elbow publication-title: Stem Cell Development doi: 10.1089/scd.2016.0054 contributor: fullname: Hayes – volume: 24 start-page: 859 year: 2009 ident: B165 article-title: Tissue Distribution of Perlecan Domains III and V during Embryonic and Fetal Human Development publication-title: Histol. Histopathol doi: 10.14670/HH-24.859 contributor: fullname: Roediger – volume: 264 start-page: 127 year: 2015 ident: B117 article-title: Involvement of Platelet-Derived Growth Factor Receptor β in Fibrosis through Extracellular Matrix Protein Production after Ischemic Stroke publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2014.12.007 contributor: fullname: Makihara – volume: 722 start-page: 134833 year: 2020 ident: B19 article-title: The Role of the Dystrophin Glycoprotein Complex on the Neuromuscular System publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2020.134833 contributor: fullname: Belhasan – volume: 176 start-page: 79 year: 2004 ident: B56 article-title: Perlecan Functions in Chondrogenesis: Insights from In Vitro and In Vivo Models publication-title: Cells Tissues Organs doi: 10.1159/000075029 contributor: fullname: Gomes – volume: 71 start-page: 982 year: 2011 ident: B190 article-title: Role of Extracellular Matrix Proteins and Their Receptors in the Development of the Vertebrate Neuromuscular junction publication-title: Devel Neurobio doi: 10.1002/dneu.20953 contributor: fullname: Singhal – volume: 146 start-page: 289 year: 2019 ident: B12 article-title: Articular Fibrocartilage - Why Does Hyaline Cartilage Fail to Repair? publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.12.015 contributor: fullname: Armiento – volume: 97 start-page: 385 year: 2019 ident: B76 article-title: Perlecan Domain I Gradients Establish Stable Biomimetic Heparin Binding Growth Factor Gradients for Cell Migration in Hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.07.040 contributor: fullname: Hubka – volume: 265 start-page: 680 year: 1999 ident: B206 article-title: Localization of Glycosaminoglycan Substitution Sites on Domain V of Mouse Perlecan publication-title: Biochem. Biophysical Res. Commun. doi: 10.1006/bbrc.1999.1714 contributor: fullname: Tapanadechopone – volume: 25 start-page: 2146 year: 2007 ident: B92 article-title: Novel Extracellular Matrix Structures in the Neural Stem Cell Niche Capture the Neurogenic Factor Fibroblast Growth Factor 2 from the Extracellular Milieu publication-title: Stem Cells doi: 10.1634/stemcells.2007-0082 contributor: fullname: Kerever – volume: 108 start-page: 2663 year: 1995 ident: B203 article-title: Perlecan Is a Component of Cartilage Matrix and Promotes Chondrocyte Attachment publication-title: J. Cel Sci. doi: 10.1242/jcs.108.7.2663 contributor: fullname: SundarRaj – volume: 12 start-page: e0187069 year: 2017 ident: B145 article-title: Laminin-111-derived Peptide Conjugated Fibrin Hydrogel Restores Salivary Gland Function publication-title: PLoS One doi: 10.1371/journal.pone.0187069 contributor: fullname: Nam – volume: 7 start-page: e45257 year: 2012 ident: B32 article-title: Perlecan Domain V Induces VEGf Secretion in Brain Endothelial Cells through Integrin α5β1 and ERK-dependent Signaling Pathways publication-title: PLoS One doi: 10.1371/journal.pone.0045257 contributor: fullname: Clarke – volume: 9 start-page: 1666 year: 2021 ident: B179 article-title: Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering publication-title: Biomedicines doi: 10.3390/biomedicines9111666 contributor: fullname: Shestovskaya – volume: 63 start-page: 2435 year: 2006 ident: B97 article-title: Perlecan: How Does One Molecule Do So many Things? publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-006-6162-z contributor: fullname: Knox – volume: 34 start-page: 997 year: 2013 ident: B144 article-title: Mutations in the C-Terminal Domain of ColQ in Endplate Acetylcholinesterase Deficiency Compromise ColQ MuSK Interaction publication-title: Hum. Mutat. doi: 10.1002/humu.22325 contributor: fullname: Nakata – volume: 26 start-page: 618 year: 2011 ident: B208 article-title: Perlecan/Hspg2 Deficiency Alters the Pericellular Space of the Lacunocanalicular System Surrounding Osteocytic Processes in Cortical Bone publication-title: J. Bone Miner Res. doi: 10.1002/jbmr.236 contributor: fullname: Thompson – volume: 175 start-page: 26 year: 2008 ident: B167 article-title: Assembly and Regulation of Acetylcholinesterase at the Vertebrate Neuromuscular junction publication-title: Chem. Biol. Interact doi: 10.1016/j.cbi.2008.05.025 contributor: fullname: Rotundo – volume: 16 start-page: 515 year: 2007 ident: B164 article-title: Reduced Perlecan in Mice Results in Chondrodysplasia Resembling Schwartz-Jampel Syndrome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl484 contributor: fullname: Rodgers – volume: 278 start-page: 23233 year: 2003 ident: B36 article-title: Two Different Heparin-Binding Domains in the Triple-Helical Domain of ColQ, the Collagen Tail Subunit of Synaptic Acetylcholinesterase publication-title: J. Biol. Chem. doi: 10.1074/jbc.m301384200 contributor: fullname: Deprez – start-page: 1 year: 2017 ident: B158 article-title: The Nature and Biology of Basement Membranes publication-title: Matrix Biol. doi: 10.1016/j.matbio.2016.12.009 contributor: fullname: Pozzi – volume: 148 start-page: 130 year: 2016 ident: B163 article-title: Silk Biomaterials Functionalized with Recombinant Domain V of Human Perlecan Modulate Endothelial Cell and Platelet Interactions for Vascular Applications publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2016.08.039 contributor: fullname: Rnjak-Kovacina – volume: 27 start-page: 22 year: 2008 ident: B102 article-title: The Major Basement Membrane Components Localize to the Chondrocyte Pericellular Matrix - A Cartilage Basement Membrane Equivalent? publication-title: Matrix Biol. doi: 10.1016/j.matbio.2007.07.007 contributor: fullname: Kvist – volume: 281 start-page: 36905 year: 2006 ident: B130 article-title: The Structure, Location, and Function of Perlecan, a Prominent Pericellular Proteoglycan of Fetal, Postnatal, and Mature Hyaline Cartilages publication-title: J. Biol. Chem. doi: 10.1074/jbc.m608462200 contributor: fullname: Melrose – volume: 50 start-page: 27 year: 2016 ident: B221 article-title: Single Molecule Force Measurements of perlecan/HSPG2: A Key Component of the Osteocyte Pericellular Matrix publication-title: Matrix Biol. doi: 10.1016/j.matbio.2015.11.001 contributor: fullname: Wijeratne – volume: 13 start-page: 540 year: 2019 ident: B41 article-title: The Inflammatory Response after Ischemic Stroke: Targeting β2 and β1 Integrins publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00540 contributor: fullname: Edwards – volume: 7 start-page: 1 year: 2020 ident: B180 article-title: Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke publication-title: eNeuro doi: 10.1523/ENEURO.0474-19.2020 contributor: fullname: Shibahara – volume: 4 start-page: 515 year: 2013 ident: B22 article-title: Perlecan Domain V Is Neuroprotective and Affords Functional Improvement in a Photothrombotic Stroke Model in Young and Aged Mice publication-title: Transl. Stroke Res. doi: 10.1007/s12975-013-0266-1 contributor: fullname: Bix – volume: 3 start-page: 1 year: 2016 ident: B129 article-title: Perlecan Delineates Stem Cell Niches in Human Foetal Hip, Knee and Elbow Cartilage Rudiments and Has Potential Roles in the Regulation of Stem Cell Differentiation publication-title: Srdt doi: 10.24966/SRDT-2060/100009 contributor: fullname: Melrose – volume: 7 start-page: 024109 year: 2012 ident: B198 article-title: Injectable Perlecan Domain 1-hyaluronan Microgels Potentiate the Cartilage Repair Effect of BMP2 in a Murine Model of Early Osteoarthritis publication-title: Biomed. Mater. doi: 10.1088/1748-6041/7/2/024109 contributor: fullname: Srinivasan – volume: 1 start-page: cwab081 year: 2021 ident: B89 article-title: Regulation of Fractone Heparan Sulfate Composition in Young and Aged Subventricular Zone Neurogenic Niches publication-title: Glycobiology doi: 10.1093/glycob/cwab081 contributor: fullname: Kerever – volume: 203 start-page: 335 year: 2013 ident: B152 article-title: Specific Binding of Collagen Q to the Neuromuscular junction Is Exploited to Cure Congenital Myasthenia and to Explore Bases of Myasthenia Gravis publication-title: Chemico-Biological Interactions doi: 10.1016/j.cbi.2012.08.020 contributor: fullname: Ohno – volume: 120 start-page: 2138 year: 2018 ident: B120 article-title: Perlecan/HSPG2: Signaling Role of Domain IV in Chondrocyte Clustering with Implications for Schwartz‐Jampel Syndrome publication-title: J. Cel Biochem doi: 10.1002/jcb.27521 contributor: fullname: Martinez – volume: 1 start-page: 1 year: 2021 ident: B149 article-title: Role of Neurexin Heparan Sulfate in the Molecular Assembly of Synapses - Expanding the Neurexin Code? publication-title: FEBS J. doi: 10.1111/febs.16251 contributor: fullname: Noborn – volume: 27 start-page: 150 year: 2008 ident: B42 article-title: A Novel Peptide Sequence in Perlecan Domain IV Supports Cell Adhesion, Spreading and FAK Activation publication-title: Matrix Biol. doi: 10.1016/j.matbio.2007.09.007 contributor: fullname: Farach-Carson – volume: 30 start-page: 4898 year: 2009 ident: B114 article-title: The Modulation of Platelet and Endothelial Cell Adhesion to Vascular Graft Materials by Perlecan publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.05.063 contributor: fullname: Lord – volume: 50 start-page: 285 year: 2019 ident: B194 article-title: Type XI Collagen-Perlecan-HS Interactions Stabilise the Pericellular Matrix of Annulus Fibrosus Cells and Chondrocytes Providing Matrix Stabilisation and Homeostasis publication-title: J. Mol. Hist. doi: 10.1007/s10735-019-09823-1 contributor: fullname: Smith – volume: 280 start-page: 2490 year: 2013 ident: B113 article-title: Recombinant Production of Proteoglycans and Their Bioactive Domains publication-title: FEBS J. doi: 10.1111/febs.12197 contributor: fullname: Lord – volume: 14 start-page: 1941 year: 2003 ident: B215 article-title: Perlecan Up-Regulation of FRNK Suppresses Smooth Muscle Cell Proliferation via Inhibition of FAK Signaling publication-title: MBoC doi: 10.1091/mbc.e02-08-0508 contributor: fullname: Walker – volume: 2 start-page: 511 year: 2002 ident: B55 article-title: Perlecan: an Important Component of the Cartilage Pericellular Matrix publication-title: J. Musculoskelet. Neuronal Interact contributor: fullname: Gomes – volume: 283 start-page: 9308 year: 2008 ident: B154 article-title: Specific Heparan Sulfate Structures Modulate FGF10-Mediated Submandibular Gland Epithelial Morphogenesis and Differentiation publication-title: J. Biol. Chem. doi: 10.1074/jbc.m709995200 contributor: fullname: Patel – volume: 46 start-page: 137 year: 2013 ident: B37 article-title: Fractone‐heparan Sulphates Mediate FGF‐2 Stimulation of Cell Proliferation in the Adult Subventricular Zone publication-title: Cell Prolif. doi: 10.1111/cpr.12023 contributor: fullname: Douet – volume: 69 start-page: 105 year: 2021 ident: B57 article-title: A Systems View of the Heparan Sulfate Interactome publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155420988661 contributor: fullname: Gómez Toledo – volume: 11 start-page: 4234 year: 2020 ident: B108 article-title: Neural Signal Analysis with Memristor Arrays towards High-Efficiency Brain-Machine Interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-020-18105-4 contributor: fullname: Liu – volume: 16 start-page: 32 year: 2018 ident: B217 article-title: Solute Transport in the Bone Lacunar-Canalicular System (LCS) publication-title: Curr. Osteoporos. Rep. doi: 10.1007/s11914-018-0414-3 contributor: fullname: Wang – volume: 132 start-page: 162 year: 2021 ident: B103 article-title: Biomimetic Silk Biomaterials: Perlecan-Functionalized Silk Fibroin for Use in Blood-Contacting Devices publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.02.014 contributor: fullname: Lau – volume: 202 start-page: 694 year: 2019 ident: B14 article-title: Expression of a Functional IL-2 Receptor in Vascular Smooth Muscle Cells publication-title: J.I. doi: 10.4049/jimmunol.1701151 contributor: fullname: Arumugam – volume: 165 start-page: 505 year: 2004 ident: B26 article-title: MuSK Is Required for Anchoring Acetylcholinesterase at the Neuromuscular junction publication-title: J. Cel Biol doi: 10.1083/jcb.200307164 contributor: fullname: Cartaud – volume: 250 start-page: 48 year: 2017 ident: B111 article-title: Perlecan and Vascular Endothelial Growth Factor-Encoding DNA-Loaded Chitosan Scaffolds Promote Angiogenesis and Wound Healing publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2017.02.009 contributor: fullname: Lord – volume: 70 start-page: 1368 year: 2002 ident: B6 article-title: Structural and Functional Mutations of the Perlecan Gene Cause Schwartz-Jampel Syndrome, with Myotonic Myopathy and Chondrodysplasia publication-title: Am. J. Hum. Genet. doi: 10.1086/340390 contributor: fullname: Arikawa-Hirasawa – volume: 186 start-page: 243 year: 2007 ident: B197 article-title: Spatial and Temporal Expression of Perlecan in the Early Chick Embryo publication-title: Cells Tissues Organs doi: 10.1159/000107948 contributor: fullname: Soulintzi – volume: 10 start-page: 1285 year: 1991 ident: B100 article-title: Primary Structure of a Collagenic Tail Peptide of Torpedo Acetylcholinesterase: Co-expression with Catalytic Subunit Induces the Production of Collagen-Tailed Forms in Transfected Cells publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb08070.x contributor: fullname: Krejci – volume: 9 start-page: 1 year: 2012 ident: B11 article-title: PDGF Receptor β Signaling in Pericytes Following Ischemic Brain Injury publication-title: Cnr doi: 10.2174/156720212799297100 contributor: fullname: Arimura – volume: 38 start-page: 43 year: 2008 ident: B135 article-title: Increased Expression of Fibronectin and the α5β1 Integrin in Angiogenic Cerebral Blood Vessels of Mice Subject to Hypobaric Hypoxia publication-title: Mol. Cell Neurosci. doi: 10.1016/j.mcn.2008.01.013 contributor: fullname: Milner – volume: 47 start-page: 96 year: 2004 ident: B1 article-title: Structural and Functional Organization of Synaptic Acetylcholinesterase publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/j.brainresrev.2004.07.019 contributor: fullname: Aldunate – start-page: 15 year: 2005 ident: B169 article-title: Targeting Acetylcholinesterase to the Neuromuscular Synapse publication-title: Chemico-Biological Interactions doi: 10.1016/j.cbi.2005.10.007 contributor: fullname: Rotundo – volume: 275 start-page: 7095 year: 2000 ident: B138 article-title: The Protein Core of the Proteoglycan Perlecan Binds Specifically to Fibroblast Growth Factor-7 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.10.7095 contributor: fullname: Mongiat – volume: 136 start-page: 483 year: 2018 ident: B28 article-title: Collagen VI Is Required for the Structural and Functional Integrity of the Neuromuscular junction publication-title: Acta Neuropathol. doi: 10.1007/s00401-018-1860-9 contributor: fullname: Cescon – start-page: 150 year: 2018 ident: B112 article-title: The Multifaceted Roles of Perlecan in Fibrosis publication-title: Matrix Biol. doi: 10.1016/j.matbio.2018.02.013 contributor: fullname: Lord – volume: 64 start-page: 4699 year: 2004 ident: B233 article-title: Impaired Angiogenesis, Delayed Wound Healing and Retarded Tumor Growth in Perlecan Heparan Sulfate-Deficient Mice publication-title: Cancer Res. doi: 10.1158/0008-5472.can-04-0810 contributor: fullname: Zhou – volume: 134 start-page: 251 year: 2010 ident: B195 article-title: Comparative Immunolocalisation of Perlecan with Collagen II and Aggrecan in Human Foetal, Newborn and Adult Ovine Joint Tissues Demonstrates Perlecan as an Early Developmental Chondrogenic Marker publication-title: Histochem. Cel Biol doi: 10.1007/s00418-010-0730-x contributor: fullname: Smith |
SSID | ssj0001257583 |
Score | 2.4176915 |
SecondaryResourceType | review_article |
Snippet | This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 856261 |
SubjectTerms | cartilage repair Cell and Developmental Biology perlecan perlecan domain-I repair biology repair of blood brain barrier vascular repair |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SEHwRf3tqJYJPcmuz-bW7j7V4nEKllBb7FiabpD0oe9KeYvsv9Z_sTHJX7kTwxbdld8kO-SaZb5LZL4y9h4C8WNtU9dpDpUHTaYAhVhisjWllCiLSju7-Nzs91l9PzMnaUV9UE1bkgUvH7SBjRhwDtNAI7YXxVimjQaXUqx5EzLOvkGvJVFldQRrSqrKNiVlYt5NoIRzzQSk_thjzbb0RiLJe_99I5p-1kmvBZ_KIPVyyRr5brH3M7sXhCbtfzpG8espuDuLFecROGvNdnn-prSYYr8oy35jvoU3Vl5VU7K845vskzP-7QqZJtbHXGL74AQk2zE_Pr7AZ_n22OOOHpPXEZwM_yuDwtfoiPoVLfki_ppPT8MWc54KZ3PrqdaT2MLvgMAS8PM3q1mTQM3Y8-Xy0N62WpzAgfNYsKp1oZ7OGPgYpg42tFzLZgJNk9MHifKlN18bGpjoQ--skZZCd1730NdSqVs_Z1jAf4kvGe4A6IGykeq9773HIQ7I1qBgwDevNiH1YQeJ-FLENh0kK4ecyfo7wcwW_EftEoN29SDrZ-QZ6j1t6j_uX94zYuxXkDscVfQOGOP956aQ1UijVNGjVi-ICd5_CJvCJECPWbDjHhi2bT4bZWdbupmqYTutX_8P41-wB9UepI3rDttCL4jZSpIV_m0fDLVG3Eoo priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swEBelY6MvY99L94EGexpRZ0uybD-M0ZWFbJBRSsPyZiRLTgPBbpN0NP2X-k_uTrJLMrI3Ywv57N9JdyedfkfIR23BL5aqYqU0mkktsRqgdQyMdZJkvLKRwx3d0S81HMufk2SyR7ryVu0PXO4M7bCe1HgxP7q5Wn-FAf8FI06wt58rXOOGUI_zowzMOQZDDzgYRszwGrXeflhyAd_EE3NyniumhJyEfc7dvRyQRyKRQqR4-m3DaHlu_10O6b95lRuGavCEPG49THocVOIp2XP1M_Iw1JxcPyd3p24xd_BD-_SY-uO3bAC2LSwJ9ukJiMd-dLSyf1yfjpDE_4aBV4p5tLdg6ugpkjs00_kauqG_Z6sLeoa8UHRW03MPJN3IRaJDvaRneIwdFYyuGuqTa3zvXXMIA_RsQXVt4XLqmbBRoBdkPPh-fjJkbcUGgFolKyYr3AWNdeks51a5zES8UhYmVGesgrlVJnnmUlXFFj3FnGO0mRtZchPrWMTiJdmvm9q9JrTUOralKJEhX5bGwPSgKxVr4SyEbGXSI586SIrLQMxRQECDUBYeygKhLAKUPfINQbtviJza_kazmBbtEC0gNoMZw-pMp5E0UWKUAPy1qCoQQ0euRz50kBcwBvEdunbN9bLgKuERKEoKUr0KKnD_qk6FeiTdUo4tWbaf1LMLz_ONmTO5lIf_7fMNOcCPDIlEb8k-qIZ7Bz7Syrz3mv8XaHgPyg priority: 102 providerName: Scholars Portal |
Title | Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35433700 https://www.proquest.com/docview/2652033775 https://pubmed.ncbi.nlm.nih.gov/PMC9010944 https://doaj.org/article/174004da8a704b05b63354a3ffc3ca0e |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6SQKGX0nedtmELPRXLlvYl6ZiaGrfgYkJCcxP7dASOFBy3NP1L_ZOdWVnBLj31YoT1GvR9uzOzO_stIe-1g7hYqJBYYXQitMDdAJ1PwFlLWbDgUo8zuvOvanYhvlzKywMi-7UwsWjfmnrUrK5HTX0Vaytvru24rxMbL-YTLCkohRgfkkNwvzspejewAhFIwbsZTEjAynHAMXBIBRkbFeDuFe4Ow6XgPMd1bTvuKKr2_yvU_LticscFTR-TR9vYkZ52Nj4hB755Sh50u0nePSO_F3698vCphvSUxoW1yRS8VjfYN6QTMC_53AvG_vBDOkd5_p8JxJtYIfsLnBhdoGxDu1zdwWPot3pzRc9Q8YnWDT2PENGdKiM607f0DBeoI3XopqWxbCY-vb8cAnxdr6luHBwuo8Y1GvScXEw_nU9myXYvBgBRyU0iAs5vZtp6x5hTvjApC8pBV-mNU9BrClkWPlchcxgDlgzzyNIIy0ymM57xF-SoaRv_ilCrdeYst6h9L6wx0PB1UJnm3kEyZuWAfOghqW46yY0KUhWEsopQVghl1UE5IB8RtPsLUS07_tGul9WWMxVkXdAXOF3oPBUmlUZxwF_zEMAMnfoBeddDXkHrwnfoxrffbyumJEuBKDlY9bKjwP2regoNSL5Hjj1b9s8AoaOC95bAx_9952vyED9CV0L0hhwBdfxbiI425iSOKsDvXBQnsWX8AUTKFOY |
link.rule.ids | 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIgQXxLOE5yJxQnFi78v2sUREKTRVVKWiN2tfTi2ldpUGRPlL_Elm1nGVIE7cLD9H_r7dmdmd_ZaQD9pBXCxUGVlhdCS0wN0AnY_AWUuZsdLFHmd0pydqcia-nMvzPSK7tTChaN-aalAvLwd1dRFqK68u7bCrExvOpiMsKciFGN4hdyVP82QrSW-HViAGyXg7hwkpWD4scRQckkHGBhk4fIX7w3ApOE9xZduWQwq6_f8KNv-umdxyQuNH5OEmeqSHrZWPyZ6vn5B77X6SN0_J75lfLT38rD49pGFpbTQGv9UO9_XpCMyLjjrJ2B--T6co0P8zgogTa2R_gRujMxRuaBbLG3gN_VatL-gpaj7RqqbzABLdqjOiE31NT3GJOpKHrhsaCmfC27vbIcTX1Yrq2sHhIqhco0HPyNn483w0iTa7MQCMSq4jUeIMZ6Ktd4w55TMTs1I56Cy9cQr6TSHzzKeqTBxGgTnDTDI3wjKT6IQn_DnZr5vavyDUap04yy2q3wtrDDR9XapEc-8gHbOyRz52kBRXrehGAckKQlkEKAuEsmih7JFPCNrtjaiXHU40q0WxYU0BeRf0Bk5nOo2FiaVRHPDXvCzBDB37HnnfQV5A-8Jv6No3368LpiSLgSgpWHXQUuD2Ux2FeiTdIceOLbtXgNJBw3tD4Zf__eQ7cn8ynx4Xx0cnX1-RB_hD2oKi12QfaOTfQKy0Nm9Dy_gD6h4WbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BEYhLxZvwXCROKI4f-7B9LIEoBVJFVSt6s_bl1FJqR2mKKH-JP8nMOq4cxIlblDj2yN-3OzO7s98Q8l5ZiIu5LAPDtQq44tgN0LoAnLUQWVLayOGO7uxITk_5lzNx1mv15Yv2ja5G9fJiVFfnvrZydWHCrk4snM_GWFKQcx6ubBneJncEA5L1EvV2eQXikIy1-5iQhuVhiSvhkBAmySgDpy-xRwwTnLEUT7f1nJLX7v9XwPl33WTPEU0ekP1tBEkPWksfkluufkTutj0lrx-T33O3Xjp4YUN6QP3x2mACvqtd8hvSMZgXHHaysT_ckM5QpP9nAFEn1sn-AldG5yje0CyW13Ab-r3anNNj1H2iVU1PPFC0V2tEp-qSHuMxdSQQ3TTUF8_4u3eXQ5ivqjVVtYWPC690jQY9IaeTzyfjabDtyABQSrEJeIm7nLEyziaJlS7TUVJKCxOm01bC3MlFnrlUlrHFSDBPMJvMNTeJjlXMYvaU7NVN7Z4TapSKrWEGFfC50RqGvyplrJizkJIZMSAfOkiKVSu8UUDCglAWHsoCoSxaKAfkI4J2cyFqZvsvmvWi2DKngNwLZgSrMpVGXEdCSwb4K1aWYIaK3IC86yAvYIzhM1TtmqvLIpEiiYAoKVj1rKXAzaM6Cg1IukOOHVt2fwFaex3vLY1f_Pc_35J780-T4tvh0deX5D6-j7am6BXZAxa51xAubfQbPzD-ANLaF38 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perlecan%2C+A+Multi-Functional%2C+Cell-Instructive%2C+Matrix-Stabilizing+Proteoglycan+With+Roles+in+Tissue+Development+Has+Relevance+to+Connective+Tissue+Repair+and+Regeneration&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Hayes%2C+Anthony+J&rft.au=Farrugia%2C+Brooke+L&rft.au=Biose%2C+Ifechukwude+J&rft.au=Bix%2C+Gregory+J&rft.date=2022-04-01&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=10&rft.spage=856261&rft_id=info:doi/10.3389%2Ffcell.2022.856261&rft_id=info%3Apmid%2F35433700&rft.externalDocID=35433700 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |