Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade

Background: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for gr...

Full description

Saved in:
Bibliographic Details
Published inCurrent oncology (Toronto) Vol. 28; no. 6; pp. 4298 - 4316
Main Authors Lagree, Andrew, Shiner, Audrey, Alera, Marie Angeli, Fleshner, Lauren, Law, Ethan, Law, Brianna, Lu, Fang-I, Dodington, David, Gandhi, Sonal, Slodkowska, Elzbieta A., Shenfield, Alex, Jerzak, Katarzyna J., Sadeghi-Naini, Ali, Tran, William T.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 27.10.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence. Methods: There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis. Results: Multiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836. Conclusion: These results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.
AbstractList Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence. There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis. Multiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836. These results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.
Background: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence. Methods: There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis. Results: Multiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836. Conclusion: These results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.
Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence.BACKGROUNDEvaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence.There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis.METHODSThere were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis.Multiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836.RESULTSMultiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836.These results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.CONCLUSIONThese results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.
Author Lu, Fang-I
Slodkowska, Elzbieta A.
Jerzak, Katarzyna J.
Alera, Marie Angeli
Law, Ethan
Law, Brianna
Shenfield, Alex
Lagree, Andrew
Shiner, Audrey
Gandhi, Sonal
Tran, William T.
Sadeghi-Naini, Ali
Fleshner, Lauren
Dodington, David
AuthorAffiliation 1 Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; andrew.lagree@sri.utoronto.ca (A.L.); audrey.shiner@sri.utoronto.ca (A.S.); marieangeli.alera@sri.utoronto.ca (M.A.A.); lauren.fleshner@sri.utoronto.ca (L.F.); ethan.law1@sri.utoronto.ca (E.L.); brianna.law@sri.utoronto.ca (B.L.); asn@yorku.ca (A.S.-N.)
9 Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
2 Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
3 Temerty Centre for AI Research and Education, University of Toronto, Toronto, ON M5S 1A8, Canada
7 Department of Engineering and Mathematics, Sheffield Hallam University, Howard St, Sheffield S1 1WB, UK; a.shenfield@shu.ac.uk
6 Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada; katarzyna.jerzak@sunnybrook.ca
5 Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto,
AuthorAffiliation_xml – name: 2 Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
– name: 3 Temerty Centre for AI Research and Education, University of Toronto, Toronto, ON M5S 1A8, Canada
– name: 1 Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; andrew.lagree@sri.utoronto.ca (A.L.); audrey.shiner@sri.utoronto.ca (A.S.); marieangeli.alera@sri.utoronto.ca (M.A.A.); lauren.fleshner@sri.utoronto.ca (L.F.); ethan.law1@sri.utoronto.ca (E.L.); brianna.law@sri.utoronto.ca (B.L.); asn@yorku.ca (A.S.-N.)
– name: 5 Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; david.dodington@mail.utoronto.ca (D.D.); elzbieta.slodkowska@sunnybrook.ca (E.A.S.)
– name: 9 Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
– name: 4 Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; fangi.lu@sunnybrook.ca (F.-I.L.); Sonal.Gandhi@sunnybrook.ca (S.G.)
– name: 6 Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada; katarzyna.jerzak@sunnybrook.ca
– name: 7 Department of Engineering and Mathematics, Sheffield Hallam University, Howard St, Sheffield S1 1WB, UK; a.shenfield@shu.ac.uk
– name: 8 Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J 2S5, Canada
Author_xml – sequence: 1
  givenname: Andrew
  surname: Lagree
  fullname: Lagree, Andrew
– sequence: 2
  givenname: Audrey
  orcidid: 0000-0002-8802-4650
  surname: Shiner
  fullname: Shiner, Audrey
– sequence: 3
  givenname: Marie Angeli
  surname: Alera
  fullname: Alera, Marie Angeli
– sequence: 4
  givenname: Lauren
  orcidid: 0000-0001-8534-6999
  surname: Fleshner
  fullname: Fleshner, Lauren
– sequence: 5
  givenname: Ethan
  surname: Law
  fullname: Law, Ethan
– sequence: 6
  givenname: Brianna
  surname: Law
  fullname: Law, Brianna
– sequence: 7
  givenname: Fang-I
  surname: Lu
  fullname: Lu, Fang-I
– sequence: 8
  givenname: David
  surname: Dodington
  fullname: Dodington, David
– sequence: 9
  givenname: Sonal
  surname: Gandhi
  fullname: Gandhi, Sonal
– sequence: 10
  givenname: Elzbieta A.
  surname: Slodkowska
  fullname: Slodkowska, Elzbieta A.
– sequence: 11
  givenname: Alex
  orcidid: 0000-0002-2931-8077
  surname: Shenfield
  fullname: Shenfield, Alex
– sequence: 12
  givenname: Katarzyna J.
  surname: Jerzak
  fullname: Jerzak, Katarzyna J.
– sequence: 13
  givenname: Ali
  orcidid: 0000-0001-5055-339X
  surname: Sadeghi-Naini
  fullname: Sadeghi-Naini, Ali
– sequence: 14
  givenname: William T.
  surname: Tran
  fullname: Tran, William T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34898544$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vFDEMhiNURD_gB3BBOXLZkkwy-bggtQu0K1WCA5wjT8YzmzI7KUkW1H9PttuiFsTBiuX4fd4o9jE5mOOMhLzm7FQIy975bUpx9nFqDFNMKPWMHHHNzULrxh48yg_Jcc7XjAmhtX5BDoU01rRSHhE4yxlz3uBcaBzohzCGAhP9AmUdpzje0tUGxjCP9DzEDaTvmDKtkugDFOzpr1DW9Dwh5EKXMHtM9DLkspMGTy8S9PiSPB9gyvjq_jwh3z59_Lq8XFx9vlgtz64WXqq2LKRtsNOsY7o1oIRFDtrWACnBdFyotrVSc2uASS6saH3TA_Ra9RoHZjtxQlZ7bh_h2t2kUJ976yIEd1eIaXSQSvATOpSisW3bGOs7ib4H33mt0Q8MhGJGVNb7Petm222w9_V3EkxPoE9v5rB2Y_zpjGqMMqYC3t4DUvyxxVzcJmSP0wQzxm12jeKsGslm5_Xmsdcfk4cZ1Qa9b_Ap5pxwcL7OqIS4sw6T48zttsH9sw1Vyf9SPsD_r_kN6eq8NQ
CitedBy_id crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_1016_j_nbt_2023_09_008
crossref_primary_10_1186_s12885_024_12069_0
crossref_primary_10_3390_curroncol29080449
crossref_primary_10_1039_D4AN01264J
crossref_primary_10_1088_2057_1976_ada8ae
crossref_primary_10_1002_mp_16574
crossref_primary_10_1002_ctm2_1155
crossref_primary_10_3892_ijo_2023_5555
crossref_primary_10_1007_s00521_024_10298_9
crossref_primary_10_3390_diagnostics14131449
Cites_doi 10.1038/modpathol.3800273
10.1109/ACCESS.2021.3063803
10.1007/11538059_91
10.3389/fmed.2017.00227
10.1109/ISBI.2008.4541041
10.1038/srep45938
10.1002/mp.13964
10.1613/jair.953
10.1109/ICCPCCT.2018.8574291
10.1007/s11831-020-09470-w
10.1177/0846537120949974
10.1109/TSMC.1979.4310076
10.1109/TMI.2015.2458702
10.1158/1078-0432.CCR-06-3045
10.1016/S0140-6736(13)62422-8
10.1038/modpathol.3800388
10.1109/BIBM49941.2020.9313329
10.1016/j.ajpath.2020.04.008
10.1007/s00428-021-03141-2
10.1007/s10549-014-2983-x
10.5858/arpa.2019-0904-SA
10.1001/jamanetworkopen.2019.4337
10.1007/s11042-018-6970-9
10.1200/JCO.2013.50.9984
10.1007/978-3-319-10602-1_48
10.1109/CIDU.2012.6382200
10.1145/2939672.2939785
10.1109/ISBI.2016.7493470
10.1371/journal.pone.0185110
10.1016/j.ejca.2018.04.011
10.1371/journal.pone.0070221
10.1002/sim.4780030207
10.1038/s41379-020-00698-2
10.1109/CVPR.2016.90
10.1038/s41523-018-0079-1
10.1177/1010428317694550
10.1109/IPAS.2018.8708876
10.1007/978-3-642-40763-5_51
10.1038/s41598-021-87496-1
10.1038/modpathol.2012.197
10.1371/journal.pone.0177544
10.1002/cncr.32872
10.1109/NTICT.2017.7976109
10.1245/s10434-018-6486-6
10.1109/JBHI.2019.2944977
10.5858/arpa.2018-0902-SA
10.1158/0008-5472.CAN-17-0629
10.1148/rg.2018180056
10.7150/jca.10944
10.4132/jptm.2019.12.31
10.1200/JCO.2007.15.5986
10.1136/jclinpath-2019-206362
10.1109/ACCESS.2020.3008868
10.21105/joss.00638
10.1200/CCI.20.00078
10.1016/j.neucom.2016.05.084
10.1007/s10549-020-06093-4
10.1002/ijc.32330
10.1109/TMI.2016.2529665
10.1080/21681163.2016.1141063
10.1111/joim.13030
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/curroncol28060366
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1718-7729
EndPage 4316
ExternalDocumentID oai_doaj_org_article_e432955289cb4ecdacbc77ecf0a36083
PMC8628688
34898544
10_3390_curroncol28060366
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Association of Medical Radiation Technologists
  grantid: 2021-01
– fundername: Terry Fox Research Institute
  grantid: 1083
– fundername: CIHR
  grantid: NFRFE-2019-00193
GroupedDBID ---
04C
29F
2WC
53G
5GY
5VS
6PF
AAWTL
AAYXX
ABDBF
ACGFS
ACUHS
ADBBV
AENEX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BMSDO
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EIHBH
EJD
ESX
F5P
GROUPED_DOAJ
HYE
KQ8
MODMG
OK1
OVT
RNS
RPM
TR2
TUS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c465t-492eb70b0758a639e1a791a7a44a8b13655947198a0413935c2daad76d7ef09b3
IEDL.DBID DOA
ISSN 1718-7729
1198-0052
IngestDate Wed Aug 27 01:26:13 EDT 2025
Thu Aug 21 14:08:56 EDT 2025
Fri Jul 11 05:25:48 EDT 2025
Thu Apr 03 07:09:12 EDT 2025
Tue Jul 01 02:54:38 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords biopsy
imaging biomarkers
computational oncology
Nottingham grade
breast cancer
tumor
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-492eb70b0758a639e1a791a7a44a8b13655947198a0413935c2daad76d7ef09b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-5055-339X
0000-0002-2931-8077
0000-0002-8802-4650
0000-0001-8534-6999
OpenAccessLink https://doaj.org/article/e432955289cb4ecdacbc77ecf0a36083
PMID 34898544
PQID 2610083423
PQPubID 23479
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_e432955289cb4ecdacbc77ecf0a36083
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8628688
proquest_miscellaneous_2610083423
pubmed_primary_34898544
crossref_citationtrail_10_3390_curroncol28060366
crossref_primary_10_3390_curroncol28060366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211027
PublicationDateYYYYMMDD 2021-10-27
PublicationDate_xml – month: 10
  year: 2021
  text: 20211027
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Current oncology (Toronto)
PublicationTitleAlternate Curr Oncol
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_50
Wan (ref_60) 2017; 229
Meyer (ref_10) 2005; 18
Turashvili (ref_20) 2017; 4
Raschka (ref_56) 2018; 3
Cauchy (ref_45) 1847; 25
ref_58
ref_55
ref_54
ref_53
ref_52
Wolff (ref_38) 2018; 142
ref_51
Giuliano (ref_6) 2018; 25
ref_15
ref_61
Li (ref_62) 2020; 79
Lee (ref_67) 2014; 145
Pedregosa (ref_57) 2011; 12
Chawla (ref_48) 2002; 16
Rakha (ref_34) 2013; 26
Dodington (ref_33) 2021; 186
Dent (ref_65) 2007; 13
Cortazar (ref_4) 2014; 384
ref_23
ref_22
ref_21
ref_64
Allison (ref_37) 2020; 144
ref_63
Metter (ref_12) 2019; 2
Anglade (ref_11) 2020; 126
Chen (ref_25) 2017; 39
ref_29
Otsu (ref_40) 1979; 9
Vahadane (ref_41) 2016; 35
ref_27
Acs (ref_68) 2020; 288
ref_70
Tran (ref_14) 2021; 72
ref_32
Kalli (ref_5) 2018; 38
Ginter (ref_9) 2021; 34
Xu (ref_26) 2016; 35
Zhang (ref_24) 2021; 9
Nam (ref_69) 2020; 54
Dooijeweert (ref_8) 2020; 146
Gutman (ref_47) 2017; 77
Lagree (ref_31) 2021; 11
Chen (ref_16) 2020; 47
Sun (ref_19) 2020; 24
Baas (ref_7) 2020; 73
(ref_17) 2020; 8
ref_46
Mills (ref_66) 2018; 98
ref_44
Diao (ref_18) 2020; 190
Janowczyk (ref_28) 2018; 6
Bane (ref_35) 2005; 18
ref_43
ref_42
ref_1
Vandenberghe (ref_30) 2017; 7
Couture (ref_36) 2018; 4
ref_2
ref_49
Qiu (ref_59) 2016; 7
Rakha (ref_3) 2008; 26
Krithiga (ref_13) 2021; 28
Wolff (ref_39) 2013; 31
References_xml – volume: 18
  start-page: 621
  year: 2005
  ident: ref_35
  article-title: Invasive lobular carcinoma: To grade or not to grade
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3800273
– volume: 9
  start-page: 40308
  year: 2021
  ident: ref_24
  article-title: Automatic Detection of Invasive Ductal Carcinoma Based on the Fusion of Multi-Scale Residual Convolutional Neural Network and SVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063803
– ident: ref_49
  doi: 10.1007/11538059_91
– ident: ref_51
– volume: 4
  start-page: 227
  year: 2017
  ident: ref_20
  article-title: Tumor Heterogeneity in Breast Cancer
  publication-title: Front. Med.
  doi: 10.3389/fmed.2017.00227
– ident: ref_46
  doi: 10.1109/ISBI.2008.4541041
– volume: 7
  start-page: 45938
  year: 2017
  ident: ref_30
  article-title: Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
  publication-title: Sci. Rep.
  doi: 10.1038/srep45938
– volume: 47
  start-page: 1021
  year: 2020
  ident: ref_16
  article-title: A computer-aided diagnosis system for differentiation and delineation of malignant regions on whole-slide prostate histopathology image using spatial statistics and multidimensional DenseNet
  publication-title: Med. Phys.
  doi: 10.1002/mp.13964
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_48
  article-title: SMOTE: Synthetic Minority Over-sampling Technique Nitesh
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: ref_70
  doi: 10.1109/ICCPCCT.2018.8574291
– volume: 28
  start-page: 2607
  year: 2021
  ident: ref_13
  article-title: Breast Cancer Detection, Segmentation and Classification on Histopathology Images Analysis: A Systematic Review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09470-w
– volume: 72
  start-page: 98
  year: 2021
  ident: ref_14
  article-title: Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence
  publication-title: Can. Assoc. Radiol. J.
  doi: 10.1177/0846537120949974
– volume: 9
  start-page: 62
  year: 1979
  ident: ref_40
  article-title: A Threshold Selection Method from Gray-Level Histograms
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1979.4310076
– ident: ref_42
– ident: ref_1
– volume: 35
  start-page: 119
  year: 2016
  ident: ref_26
  article-title: Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 13
  start-page: 4429
  year: 2007
  ident: ref_65
  article-title: Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-3045
– volume: 384
  start-page: 164
  year: 2014
  ident: ref_4
  article-title: Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62422-8
– volume: 18
  start-page: 1067
  year: 2005
  ident: ref_10
  article-title: Breast carcinoma malignancy grading by Bloom-Richardson system vs proliferation index: Reproducibility of grade and advantages of proliferation index
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3800388
– ident: ref_63
  doi: 10.1109/BIBM49941.2020.9313329
– volume: 190
  start-page: 1691
  year: 2020
  ident: ref_18
  article-title: Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2020.04.008
– ident: ref_2
  doi: 10.1007/s00428-021-03141-2
– volume: 145
  start-page: 615
  year: 2014
  ident: ref_67
  article-title: Two histopathologically different diseases: Hormone receptor-positive and hormone receptor-negative tumors in HER2-positive breast cancer
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-014-2983-x
– ident: ref_52
– volume: 144
  start-page: 545
  year: 2020
  ident: ref_37
  article-title: Estrogen and progesterone receptor testing in breast cancer: American society of clinical oncology/college of American pathologists guideline update
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2019-0904-SA
– volume: 2
  start-page: e194337
  year: 2019
  ident: ref_12
  article-title: Trends in the US and Canadian Pathologist Workforces From 2007 to 2017
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.4337
– volume: 79
  start-page: 14509
  year: 2020
  ident: ref_62
  article-title: Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6970-9
– volume: 31
  start-page: 3997
  year: 2013
  ident: ref_39
  article-title: Recommendations for human epidermal growth factor receptor 2 testing in breast
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.50.9984
– ident: ref_44
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_55
  doi: 10.1109/CIDU.2012.6382200
– ident: ref_58
  doi: 10.1145/2939672.2939785
– ident: ref_53
– ident: ref_61
  doi: 10.1109/ISBI.2016.7493470
– ident: ref_64
  doi: 10.1371/journal.pone.0185110
– volume: 98
  start-page: 48
  year: 2018
  ident: ref_66
  article-title: Histologic heterogeneity of triple negative breast cancer: A National Cancer Centre Database analysis
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2018.04.011
– ident: ref_29
  doi: 10.1371/journal.pone.0070221
– ident: ref_50
  doi: 10.1002/sim.4780030207
– volume: 34
  start-page: 701
  year: 2021
  ident: ref_9
  article-title: Histologic grading of breast carcinoma: A multi-institution study of interobserver variation using virtual microscopy
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-020-00698-2
– ident: ref_43
  doi: 10.1109/CVPR.2016.90
– volume: 4
  start-page: 30
  year: 2018
  ident: ref_36
  article-title: Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype
  publication-title: NPJ Breast Cancer
  doi: 10.1038/s41523-018-0079-1
– volume: 39
  start-page: 101042831769455
  year: 2017
  ident: ref_25
  article-title: Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review
  publication-title: Tumor Biol.
  doi: 10.1177/1010428317694550
– ident: ref_22
  doi: 10.1109/IPAS.2018.8708876
– ident: ref_27
  doi: 10.1007/978-3-642-40763-5_51
– volume: 11
  start-page: 8025
  year: 2021
  ident: ref_31
  article-title: A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87496-1
– volume: 26
  start-page: 496
  year: 2013
  ident: ref_34
  article-title: Pleomorphic lobular carcinoma of the breast: Is it a prognostically significant pathological subtype independent of histological grade?
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2012.197
– ident: ref_23
  doi: 10.1371/journal.pone.0177544
– volume: 126
  start-page: 2431
  year: 2020
  ident: ref_11
  article-title: Can pathology diagnostic services for cancer be stratified and serve global health?
  publication-title: Cancer
  doi: 10.1002/cncr.32872
– ident: ref_15
  doi: 10.1109/NTICT.2017.7976109
– volume: 25
  start-page: 1783
  year: 2018
  ident: ref_6
  article-title: Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-018-6486-6
– volume: 24
  start-page: 1664
  year: 2020
  ident: ref_19
  article-title: Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2944977
– volume: 142
  start-page: 1364
  year: 2018
  ident: ref_38
  article-title: Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2018-0902-SA
– ident: ref_21
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_57
  article-title: Scikit-learn: Machine Learning in Python Fabian
  publication-title: J. Mach. Learn. Res.
– volume: 77
  start-page: e75
  year: 2017
  ident: ref_47
  article-title: The digital slide archive: A software platform for management, integration, and analysis of histology for cancer research
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0629
– volume: 38
  start-page: 1921
  year: 2018
  ident: ref_5
  article-title: American Joint Committee on Cancer’s Staging System for Breast Cancer, Eighth Edition: What the Radiologist Needs to Know
  publication-title: RadioGraphics
  doi: 10.1148/rg.2018180056
– volume: 7
  start-page: 167
  year: 2016
  ident: ref_59
  article-title: Comparison of clinicopathological features and prognosis in triple-negative and non-triple negative breast cancer
  publication-title: J. Cancer
  doi: 10.7150/jca.10944
– volume: 54
  start-page: 125
  year: 2020
  ident: ref_69
  article-title: Introduction to digital pathology and computer-aided pathology
  publication-title: J. Pathol. Transl. Med.
  doi: 10.4132/jptm.2019.12.31
– volume: 26
  start-page: 3153
  year: 2008
  ident: ref_3
  article-title: Prognostic significance of nottingham histologic grade in invasive breast carcinoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.15.5986
– volume: 25
  start-page: 536
  year: 1847
  ident: ref_45
  article-title: Méthode générale pour la résolution des systèmes d’équations simultanées
  publication-title: Comp. Rend. Hebd. Seances Acad. Sci.
– ident: ref_54
– volume: 73
  start-page: 793
  year: 2020
  ident: ref_7
  article-title: Variation in breast cancer grading: The effect of creating awareness through laboratory-specific and pathologist-specific feedback reports in 16,734 patients with breast cancer
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2019-206362
– volume: 8
  start-page: 128613
  year: 2020
  ident: ref_17
  article-title: PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008868
– volume: 3
  start-page: 638
  year: 2018
  ident: ref_56
  article-title: MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00638
– ident: ref_32
  doi: 10.1200/CCI.20.00078
– volume: 229
  start-page: 34
  year: 2017
  ident: ref_60
  article-title: Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.084
– volume: 186
  start-page: 379
  year: 2021
  ident: ref_33
  article-title: Analysis of tumor nuclear features using artificial intelligence to predict response to neoadjuvant chemotherapy in high-risk breast cancer patients
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-020-06093-4
– volume: 146
  start-page: 769
  year: 2020
  ident: ref_8
  article-title: Significant inter- and intra-laboratory variation in grading of invasive breast cancer: A nationwide study of 33,043 patients in The Netherlands
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32330
– volume: 35
  start-page: 1962
  year: 2016
  ident: ref_41
  article-title: Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2529665
– volume: 6
  start-page: 270
  year: 2018
  ident: ref_28
  article-title: A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
  doi: 10.1080/21681163.2016.1141063
– volume: 288
  start-page: 62
  year: 2020
  ident: ref_68
  article-title: Artificial intelligence as the next step towards precision pathology
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.13030
SSID ssj0033777
Score 2.31336
Snippet Background: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time...
Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4298
SubjectTerms Artificial Intelligence
Biomarkers
biopsy
breast cancer
Breast Neoplasms - diagnostic imaging
computational oncology
Female
Humans
imaging biomarkers
Neural Networks, Computer
Nottingham grade
Retrospective Studies
tumor
Title Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade
URI https://www.ncbi.nlm.nih.gov/pubmed/34898544
https://www.proquest.com/docview/2610083423
https://pubmed.ncbi.nlm.nih.gov/PMC8628688
https://doaj.org/article/e432955289cb4ecdacbc77ecf0a36083
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqHqpeEJRXeMlInJCiBj_i-Njtg1KpiAOVeovGzgRWoglKswf-PTNOdtUFBBcOuSSO4sxMZr6Jx98I8Sa2viQgH3Mw2OYGrMpBIeYumICECFCFVOX7sTy_MhfX9vpOqy-uCZvogSfBHaLRyltLeUEMBmMDMUTnMLYF6JLwA3tfinnrZGrywVo7N7VV4Q1khVXTeqamBP8wroah70jKvKZI_rvcikiJuP9PaPPXosk7Uejsvrg3w0d5NE37gdjB7kDsXc4L5A8FHG2YNmXfypPlF24KIj_BmLzcD_nhJrUlkotlf8OVOcOtXGsIG8l_ZeWC69RHecz2MMjEI5IcpHw_QIOPxNXZ6efj83zuopBHU9oxN15hcEUgbFAB4RF8B87TAcZAFbjKzXqKUL6CggKa1zaqBqBxZeOwLXzQj8Vu13f4VMi2Td16SAWWWXk4VUMPgXyCbnQoMRPFWpJ1nCnGudPFt5pSDRZ-_ZvwM_F2c8v3iV_jb4MXrJ7NQKbGTifIYOrZYOp_GUwmXq-VW9OnxOsj0GG_uq0pmWRESgAzE08mZW8epeltK2tMJtyWGWzNZftKt_ya6Lor3v1bVc_-x-Sfi33FRTUUPJV7IXbHYYUvCRWN4VX6AH4CNawNOw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Digital+Pathology+Imaging+Biomarkers+Associated+with+Breast+Cancer+Histologic+Grade&rft.jtitle=Current+oncology+%28Toronto%29&rft.au=Lagree%2C+Andrew&rft.au=Shiner%2C+Audrey&rft.au=Alera%2C+Marie+Angeli&rft.au=Fleshner%2C+Lauren&rft.date=2021-10-27&rft.issn=1718-7729&rft.eissn=1718-7729&rft.volume=28&rft.issue=6&rft.spage=4298&rft_id=info:doi/10.3390%2Fcurroncol28060366&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1718-7729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1718-7729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1718-7729&client=summon