Low-Rank Matrix Fitting Based on Subspace Perturbation Analysis with Applications to Structure from Motion

The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries and contains an unknown additive noise term in the remain...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 31; no. 5; pp. 841 - 854
Main Authors Hongjun Jia, Martinez, A.M.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.05.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries and contains an unknown additive noise term in the remaining elements. The former problem can be solved by concatenating a set of r-column matrices that share a common single r-dimensional solution space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we would like to find that solution that is least affected by noise. This requires that we determine which of the r-column matrices (i.e., which of the original feature points) are less influenced by the unknown noise term. This paper presents a criterion to successfully carry out such a selection. Our key result is to formally prove that the more distinct the r vectors of the r-column matrices are, the less they are swayed by noise. This key result is then combined with the use of a noise model to derive an upper bound for the effect that noise and occlusions have on each of the r-column matrices. It is shown how this criterion can be effectively used to recover the noise-free matrix of rank r. Finally, we derive the affine and projective structure-from-motion (SFM) algorithms using the proposed criterion. Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art.
AbstractList The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries [abstract truncated by publisher].
Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art.
The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries and contains an unknown additive noise term in the remaining elements. The former problem can be solved by concatenating a set of r-column matrices that share a common single r-dimensional solution space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we would like to find that solution that is least affected by noise. This requires that we determine which of the r-column matrices (i.e., which of the original feature points) are less influenced by the unknown noise term. This paper presents a criterion to successfully carry out such a selection. Our key result is to formally prove that the more distinct the r vectors of the r-column matrices are, the less they are swayed by noise. This key result is then combined with the use of a noise model to derive an upper bound for the effect that noise and occlusions have on each of the r-column matrices. It is shown how this criterion can be effectively used to recover the noise-free matrix of rank r. Finally, we derive the affine and projective structure-from-motion (SFM) algorithms using the proposed criterion. Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art.
The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries and contains an unknown additive noise term in the remaining elements. The former problem can be solved by concatenating a set of r-column matrices that share a common single r-dimensional solution space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we would like to find that solution that is least affected by noise. This requires that we determine which of the r-column matrices (i.e., which of the original feature points) are less influenced by the unknown noise term. This paper presents a criterion to successfully carry out such a selection. Our key result is to formally prove that the more distinct the r vectors of the r-column matrices are, the less they are swayed by noise. This key result is then combined with the use of a noise model to derive an upper bound for the effect that noise and occlusions have on each of the r-column matrices. It is shown how this criterion can be effectively used to recover the noise-free matrix of rank r. Finally, we derive the affine and projective structure-from-motion (SFM) algorithms using the proposed criterion. Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art.The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries and contains an unknown additive noise term in the remaining elements. The former problem can be solved by concatenating a set of r-column matrices that share a common single r-dimensional solution space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we would like to find that solution that is least affected by noise. This requires that we determine which of the r-column matrices (i.e., which of the original feature points) are less influenced by the unknown noise term. This paper presents a criterion to successfully carry out such a selection. Our key result is to formally prove that the more distinct the r vectors of the r-column matrices are, the less they are swayed by noise. This key result is then combined with the use of a noise model to derive an upper bound for the effect that noise and occlusions have on each of the r-column matrices. It is shown how this criterion can be effectively used to recover the noise-free matrix of rank r. Finally, we derive the affine and projective structure-from-motion (SFM) algorithms using the proposed criterion. Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art.
Author Hongjun Jia
Martinez, A.M.
Author_xml – sequence: 1
  surname: Hongjun Jia
  fullname: Hongjun Jia
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH
– sequence: 2
  givenname: A.M.
  surname: Martinez
  fullname: Martinez, A.M.
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21354115$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19299859$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFDEUxoNU7Lb66osgQVCfZs398rgWq4VdLLY-D5lMRrPOTsYkQ-1_b_ZihYL2KZDz-77Dd845AUdDGBwAzzGaY4z0u-vLxepiThBSc0zIIzDDmuqKcqqPwAxhQSqliDoGJymtEcKMI_oEHGNNtFZcz8B6GW6qL2b4AVcmR_8Lnvuc_fANvjfJtTAM8Gpq0misg5cu5ik2JvvyuxhMf5t8gjc-f4eLcey93VUSzAFe5TjZAjvYxbCBq7CtPAWPO9Mn9-zwnoKv5x-uzz5Vy88fL84Wy8oywXNFO2l5K5lsteROS9sKZwSWQrSUWcet0wopXNIq2ZQgmAhGGGadaYQuWekpeLv3HWP4ObmU641P1vW9GVyYUq0RFWVgTDxIqmIoOWakkG_-SwqJOCVYPQhSxijFYtv71T1wHaZYplracskEk2QLvTxAU7NxbT1GvzHxtv6zvwK8PgAmWdN30QzWpzuOYMoZxrxw8z1nY0gpuu6vFaq3h1TvDqneHlJdRlsE7J7A-rxbcI7G9_-WvdjLvHPurgfjhHBB6G8aGtHa
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TPAMI_2011_50
crossref_primary_10_1016_j_imavis_2012_06_012
crossref_primary_10_1109_TII_2016_2518481
crossref_primary_10_1049_iet_cvi_2011_0085
crossref_primary_10_1049_iet_cvi_2011_0084
crossref_primary_10_1016_j_neunet_2013_06_013
crossref_primary_10_1016_j_patcog_2012_07_003
crossref_primary_10_1007_s10916_017_0708_5
crossref_primary_10_2478_s11772_010_0003_1
crossref_primary_10_1016_j_imavis_2009_02_005
crossref_primary_10_1109_TCYB_2014_2351831
crossref_primary_10_1109_TPAMI_2018_2849973
crossref_primary_10_1109_TSMCB_2012_2185490
crossref_primary_10_1016_j_image_2015_07_008
crossref_primary_10_1109_TNNLS_2015_2496964
crossref_primary_10_1109_TPAMI_2013_20
Cites_doi 10.1006/gmip.1996.0036
10.1007/BF01932678
10.1017/cbo9780511811685
10.1214/aos/1009210544
10.1111/1467-9868.00196
10.1007/s11263-005-3675-0
10.1109/3DPVT.2006.106
10.2307/2288497
10.1007/BF00129684
10.1109/CVPR.1997.609321
10.1109/TPAMI.2007.1132
10.1109/TPAMI.2004.52
10.1109/CVPR.2004.1315101
10.1364/JOSAA.4.000519
10.1109/CVPR.2000.854872
10.1007/BF01421486
10.1109/CVPR.2004.1315180
10.1145/358669.358692
10.1145/212094.212141
10.1109/CVPR.2005.118
10.1115/1.2801238
10.1109/ICCV.2001.937541
10.1016/j.imavis.2005.08.004
10.1006/cviu.2001.0906
10.1109/ICASSP.2006.1660537
10.1109/34.406651
10.1007/3-540-61123-1_183
10.1201/9781420035933
10.1038/293133a0
10.1093/bioinformatics/17.6.520
10.1023/A:1016372015744
10.1007/3-540-47967-8_24
10.1109/34.584098
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2008.122
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Technology Research Database
MEDLINE
Technology Research Database
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 854
ExternalDocumentID 2295175791
19299859
21354115
10_1109_TPAMI_2008_122
4522562
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: DC 005241
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c465t-3f7c5d747d975e97cd6ea61766d34ce5ce9808112287b19212642414fab698283
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Fri Jul 11 02:54:42 EDT 2025
Fri Jul 11 05:47:20 EDT 2025
Fri Jul 11 15:49:37 EDT 2025
Thu Jul 10 19:00:35 EDT 2025
Mon Jun 30 05:14:09 EDT 2025
Mon Jul 21 06:01:12 EDT 2025
Mon Jul 21 09:14:19 EDT 2025
Tue Aug 05 12:01:15 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords noise
matrix perturbation
subspace analysis
structure from motion
Additive noise
Occlusion
Validation
Computer vision
Random matrix
Low-rank matrix
Pattern recognition
Modeling
Missing data
Upper bound
Perturbation method
Vector space
Incomplete information
Pattern analysis
Artificial intelligence
Occultation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-3f7c5d747d975e97cd6ea61766d34ce5ce9808112287b19212642414fab698283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 19299859
PQID 857464726
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_869875142
proquest_miscellaneous_903620046
proquest_miscellaneous_67053218
pubmed_primary_19299859
ieee_primary_4522562
crossref_primary_10_1109_TPAMI_2008_122
proquest_journals_857464726
pascalfrancis_primary_21354115
crossref_citationtrail_10_1109_TPAMI_2008_122
proquest_miscellaneous_34433166
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2009
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Dodge (ref6) 1985
ref12
ref34
ref15
ref37
ref36
Roweis (ref27)
ref30
ref11
ref33
ref32
ref1
ref17
ref16
ref38
ref19
Stewart (ref31) 1990
ref18
Golub (ref10) 1996
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
Brandt (ref2)
ref28
Wilkinson (ref40) 1965
ref29
Irani (ref14) 1999; 48
ref7
ref9
ref4
ref3
Fitzgibbon (ref8) 1998; 1506
ref5
Wiberg (ref39)
References_xml – volume: 1506
  start-page: 155
  volume-title: Lecture Notes in Computer Science
  year: 1998
  ident: ref8
  article-title: Automatic 3D Model Construction for Turn-Table Sequences, 3D Structure from Multiple Images of Large-Scale Environments
– ident: ref28
  doi: 10.1006/gmip.1996.0036
– ident: ref38
  doi: 10.1007/BF01932678
– ident: ref12
  doi: 10.1017/cbo9780511811685
– ident: ref18
  doi: 10.1214/aos/1009210544
– ident: ref33
  doi: 10.1111/1467-9868.00196
– ident: ref13
  doi: 10.1007/s11263-005-3675-0
– ident: ref17
  doi: 10.1109/3DPVT.2006.106
– ident: ref19
  doi: 10.2307/2288497
– volume-title: Matrix Perturbation Theory
  year: 1990
  ident: ref31
– ident: ref34
  doi: 10.1007/BF00129684
– ident: ref15
  doi: 10.1109/CVPR.1997.609321
– ident: ref25
  doi: 10.1109/TPAMI.2007.1132
– start-page: 229
  volume-title: Proc. Second Symp. Computational Statistics
  ident: ref39
  article-title: Computation of Principal Components When Data Is Missing
– ident: ref4
  doi: 10.1109/TPAMI.2004.52
– ident: ref11
  doi: 10.1109/CVPR.2004.1315101
– ident: ref30
  doi: 10.1364/JOSAA.4.000519
– ident: ref21
  doi: 10.1109/CVPR.2000.854872
– ident: ref24
  doi: 10.1007/BF01421486
– start-page: 626
  volume-title: Proc. Conf. Neural Information Processing Systems
  ident: ref27
  article-title: EM Algorithm for PCA and SPCA
– ident: ref36
  doi: 10.1109/CVPR.2004.1315180
– ident: ref7
  doi: 10.1145/358669.358692
– volume-title: Matrix Computations
  year: 1996
  ident: ref10
– ident: ref1
  doi: 10.1145/212094.212141
– volume-title: Analysis of Experiments with Missing Data
  year: 1985
  ident: ref6
– start-page: 109
  volume-title: Proc. ECCV Statistical Methods in Video Processing Workshop
  ident: ref2
  article-title: Closed-Form Solutions for Affine Reconstruction under Missing Data
– ident: ref3
  doi: 10.1109/CVPR.2005.118
– ident: ref37
  doi: 10.1115/1.2801238
– volume-title: The Algebraic Eigenvalue Problem
  year: 1965
  ident: ref40
– ident: ref5
  doi: 10.1109/ICCV.2001.937541
– ident: ref41
  doi: 10.1016/j.imavis.2005.08.004
– ident: ref16
  doi: 10.1006/cviu.2001.0906
– ident: ref9
  doi: 10.1109/ICASSP.2006.1660537
– ident: ref29
  doi: 10.1109/34.406651
– ident: ref32
  doi: 10.1007/3-540-61123-1_183
– ident: ref23
  doi: 10.1201/9781420035933
– ident: ref20
  doi: 10.1038/293133a0
– ident: ref35
  doi: 10.1093/bioinformatics/17.6.520
– volume: 48
  start-page: 173
  issue: 3
  year: 1999
  ident: ref14
  article-title: Multi-Frame Correspondences Estimation Using Subspace Constraints
  publication-title: Int’l J. Computer Vision
  doi: 10.1023/A:1016372015744
– ident: ref22
  doi: 10.1007/3-540-47967-8_24
– ident: ref26
  doi: 10.1109/34.584098
SSID ssj0014503
Score 2.0755193
Snippet The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem...
Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art.
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 841
SubjectTerms Additive noise
Algorithms
Applied sciences
Artificial Intelligence
Bioinformatics
Computer graphics
Computer science; control theory; systems
Computer vision
Criteria
Data engineering
Exact sciences and technology
Fittings
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Intelligence
Low-rank matrix
Mathematical analysis
Matrices
Matrix methods
matrix perturbation
missing data
Motion
Motion analysis
Movement
Noise
Optical noise
Pattern analysis
Pattern recognition
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Photography - methods
random matrix
Reproducibility of Results
Sensitivity and Specificity
structure from motion
Studies
subspace analysis
Upper bound
Title Low-Rank Matrix Fitting Based on Subspace Perturbation Analysis with Applications to Structure from Motion
URI https://ieeexplore.ieee.org/document/4522562
https://www.ncbi.nlm.nih.gov/pubmed/19299859
https://www.proquest.com/docview/857464726
https://www.proquest.com/docview/34433166
https://www.proquest.com/docview/67053218
https://www.proquest.com/docview/869875142
https://www.proquest.com/docview/903620046
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VnuBAoQUaCsUHJC54u0lsJz4uiFVBBFXQSr1FcexI0CpB3V214uuZsZOwoG7FLVqPtIlnbL-xx-8BvCYKkMQqx0USWy7iJuPaOMtzh2gWW5yuKFEsvqjjM_HpXJ5vwdvxLoxzzhefuQk9-rN829Ur2io7IvZvSRPuPUzcwl2t8cRASK-CjAgGRzimET1BYzzVR6cns-JjKJuMEy9fg5hA50RPurYWeXEVKo2sFtg7TZC12Iw7_foz34FiePNQdnIxWS3NpP71D6nj_37aI3jYA1E2C5HzGLZcuws7g8gD68f8LjxYYyzcgx-fu2v-tWovWEHc_jds_t0XTrN3uBpa1rWMZiLMwx07cVe4nBnveTZwnzDa92WztVNztuzYN09iu7pyjG67sMIrCz2Bs_mH0_fHvJdr4LVQcsnTJqulxfTE6kw6ndUYApUiAkqbitrJ2mmS-UAX5JkhGjbEYogfRFMZpdFj6VPYbrvW7QMz2gqDvyOYxNS9qg3BIkXUPtNGqFREwAfHlXXPZU6SGpelz2mmuvQ-Dxqb-IcRvBntfwYWj42We-Sc0ar3SwSHf8XF2J7EqRSIqiM4GAKl7GeBRZnLTBA9v4rg1diKw5fOZKrWdatFmQq6sqbusFAZiXfEeQRsg0WO3Zch8E02m2gCKrQXEsGzEMV_-qEfDM9v__IDuB8O0KjG8wVsY0C4l4jDlubQD8DfgpYsxQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5N4wF42GADFgabH5B4wV2T2E78WBBVB800QSftLYpjR4KhBK2tQPz13Dk_KIgi3qL6pCa-s_2dff4-gBdEARJZ5biIQstFWCVcG2d56hDNYovTBSWK2YWaXYl31_J6B14Nd2Gcc774zI3o0Z_l26Zc01bZGbF_S5pw7-C6L8P2ttZwZiCk10FGDINjHBOJjqIxHOuzxeUkO28LJ8PIC9ggKtApEZRurEZeXoWKI4sl9k_VCltsR55-BZruQ9a_e1t4cjNar8yo_PEHreP_ftwD2OugKJu0sfMQdlx9APu9zAPrRv0B3N_gLDyEz_PmG_9Q1DcsI3b_72z6yZdOs9e4HlrW1IzmIszEHbt0t7igGe971rOfMNr5ZZONc3O2athHT2O7vnWM7ruwzGsLPYKr6dvFmxnvBBt4KZRc8bhKSmkxQbE6kU4nJQZBoYiC0saidLJ0moQ-0AVpYoiIDdEYIghRFUZp9Fj8GHbrpnZHwIy2wuDvCCcxeS9KQ8BIEbnPuBIqFgHw3nF52bGZk6jGl9xnNWOde5-3Kpv4hwG8HOy_tjweWy0PyTmDVeeXAE5-i4uhPQpjKRBXB3DcB0rezQPLPJWJIIJ-FcDp0IoDmE5lito162UeC7q0pv5hoRKS7wjTANgWixS7L0HoG2030QRVaDckgCdtFP_qh24wPP37l5_C3dkim-fz84v3x3CvPU6jis9nsIvB4Z4jKluZEz8YfwJJvzAO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Matrix+Fitting+Based+on+Subspace+Perturbation+Analysis+with+Applications+to+Structure+from+Motion&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hongjun+Jia%2C+Hongjun+Jia&rft.au=Martinez%2C+A.M&rft.date=2009-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=31&rft.issue=5&rft.spage=841&rft_id=info:doi/10.1109%2FTPAMI.2008.122&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2295175791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon