Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations
•In BCC materials, small cracks propagate accordingly to the pencil-glide model.•A non-local, direction dependent data mining procedure captures crack mechanics.•The proposed non-local driving force adequately reproduces 3D experimental results.•Small cracks overcome grain boundaries by minimizing t...
Saved in:
Published in | Journal of the mechanics and physics of solids Vol. 115; no. C; pp. 208 - 229 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.06.2018
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •In BCC materials, small cracks propagate accordingly to the pencil-glide model.•A non-local, direction dependent data mining procedure captures crack mechanics.•The proposed non-local driving force adequately reproduces 3D experimental results.•Small cracks overcome grain boundaries by minimizing the residual Burgers vector.
Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.
[Display omitted] |
---|---|
AbstractList | •In BCC materials, small cracks propagate accordingly to the pencil-glide model.•A non-local, direction dependent data mining procedure captures crack mechanics.•The proposed non-local driving force adequately reproduces 3D experimental results.•Small cracks overcome grain boundaries by minimizing the residual Burgers vector.
Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.
[Display omitted] Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB. |
Author | Guilhem, Yoann Ludwig, Wolfgang Proudhon, Henry Sangid, Michael D. Lebensohn, Ricardo A. Rovinelli, Andrea |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-6971-7769 surname: Rovinelli fullname: Rovinelli, Andrea organization: School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave, West Lafayette, IN 47907, USA – sequence: 2 givenname: Michael D. surname: Sangid fullname: Sangid, Michael D. email: msangid@purdue.edu organization: School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave, West Lafayette, IN 47907, USA – sequence: 3 givenname: Henry orcidid: 0000-0002-4075-5577 surname: Proudhon fullname: Proudhon, Henry organization: MINES ParisTech, PSL Research University, MAT – Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France – sequence: 4 givenname: Yoann orcidid: 0000-0002-4678-9778 surname: Guilhem fullname: Guilhem, Yoann organization: Laboratoire de Mécanique et Technologie (LMT), ENS Paris-Saclay/CNRS/Université Paris-Saclay, 61 avenue du Président Wilson, F-94235 Cachan Cedex, France – sequence: 5 givenname: Ricardo A. surname: Lebensohn fullname: Lebensohn, Ricardo A. organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 6 givenname: Wolfgang surname: Ludwig fullname: Ludwig, Wolfgang organization: University of Lyon, INSA Lyon, MATEIS, UMR 5510 CNRS, F-69621 Lyon, France |
BackLink | https://www.osti.gov/servlets/purl/1440486$$D View this record in Osti.gov |
BookMark | eNp9kc1u1TAUhC1UJG4LL8DKgnXSY-fPQWygpVCpEixgbTnOyb1OE_tiOy33aXhVHMKKRVdenPlG45lzcmadRUJeM8gZsPpyzMf5GHIOTORQ5ADNM7JjoimyshH8jOwAOM8qaOsX5DyEEQAqaNiO_P7msTc6Grun8YC0uKaDima_INVe6Xu69-4xHqhXEakbaJjVNG2nQJewYvMyRTO7Xk20V1HRB6PoR3XCYJSlFuOj8_fhHb21WTBxofjriN7MaGOgyvbJ6xRiYo-TCtFoE080mOSZUjgbXpLng5oCvvr3XpAfN5--X33J7r5-vr36cJfpsq5iVgylqCvU2A59WXW6bkTVdowLgZp3TVsq0fKOlV3XgtYNg67XwAdRge6buuqKC_Jm83UphAwpBuqDdtaijpKVJST_JHq7iY7e_VwwRDm6xduUS3Jo6tQ3a1eV2FTauxA8DjK5_f1N9MpMkoFcN5OjXDeT62YSCpk2Syj_Dz2mqpQ_PQ293yBM_TwY9Gt8tDrt6tf0vTNP4X8AA7S16g |
CitedBy_id | crossref_primary_10_3390_ma14195764 crossref_primary_10_1016_j_engfracmech_2019_106643 crossref_primary_10_1016_j_ijfatigue_2020_106109 crossref_primary_10_1016_j_ijfatigue_2025_108928 crossref_primary_10_3367_UFNe_2022_05_039199 crossref_primary_10_1115_1_4041352 crossref_primary_10_1016_j_ijfatigue_2022_106861 crossref_primary_10_1016_j_ijfatigue_2024_108407 crossref_primary_10_1111_ffe_13858 crossref_primary_10_1016_j_actamat_2020_116564 crossref_primary_10_1016_j_ijfatigue_2024_108724 crossref_primary_10_1080_27660400_2022_2129508 crossref_primary_10_1016_j_engfracmech_2024_110282 crossref_primary_10_1016_j_jmps_2019_103808 crossref_primary_10_1007_s11661_021_06454_8 crossref_primary_10_1016_j_ijfatigue_2023_107670 crossref_primary_10_1016_j_pes_2025_100065 crossref_primary_10_1007_s40192_020_00192_2 crossref_primary_10_1007_s11081_021_09663_7 crossref_primary_10_1016_j_mechmat_2021_104208 crossref_primary_10_3390_ma15186198 crossref_primary_10_1016_j_commatsci_2022_111290 crossref_primary_10_1016_j_matdes_2024_113306 crossref_primary_10_1007_s00466_021_02075_5 crossref_primary_10_1016_j_jmps_2018_07_005 crossref_primary_10_3367_UFNr_2022_05_039199 crossref_primary_10_1016_j_jmps_2020_103972 crossref_primary_10_1002_adem_201901266 crossref_primary_10_1007_s11837_018_2894_0 crossref_primary_10_32548_2021_me_04179 crossref_primary_10_1016_j_commatsci_2019_109336 crossref_primary_10_1016_j_ijfatigue_2023_107920 crossref_primary_10_1016_j_ijfatigue_2022_106770 crossref_primary_10_1016_j_ijfatigue_2021_106232 crossref_primary_10_1016_j_ijfatigue_2021_106356 crossref_primary_10_1038_s42004_019_0147_y crossref_primary_10_1007_s11831_022_09735_6 crossref_primary_10_1016_j_jmps_2022_105043 crossref_primary_10_1016_j_ijfatigue_2018_07_005 crossref_primary_10_1016_j_msea_2024_146642 crossref_primary_10_1109_ACCESS_2022_3182697 crossref_primary_10_1002_adem_202001043 crossref_primary_10_1016_j_tafmec_2023_103937 crossref_primary_10_1038_s41578_021_00340_w crossref_primary_10_1061__ASCE_EM_1943_7889_0002122 crossref_primary_10_1016_j_cossms_2019_100797 crossref_primary_10_1088_1361_651X_ac34e1 crossref_primary_10_1098_rsta_2022_0406 crossref_primary_10_1007_s12613_022_2547_8 crossref_primary_10_1016_j_cma_2024_117689 crossref_primary_10_1016_j_mtla_2019_100499 crossref_primary_10_1016_j_jmps_2019_02_012 crossref_primary_10_1007_s40192_021_00198_4 crossref_primary_10_1016_j_ijfatigue_2020_105633 crossref_primary_10_1016_j_mtcomm_2022_104437 crossref_primary_10_1016_j_engfracmech_2025_111036 crossref_primary_10_1007_s11431_021_2068_8 crossref_primary_10_1016_j_jmps_2022_105028 crossref_primary_10_1016_j_joes_2022_06_041 crossref_primary_10_1016_j_ijfatigue_2020_105638 crossref_primary_10_1016_j_ijsolstr_2021_03_005 crossref_primary_10_1016_j_ijplas_2019_04_008 crossref_primary_10_1038_s41524_018_0094_7 crossref_primary_10_1007_s11831_024_10196_2 crossref_primary_10_1016_j_ijfatigue_2018_04_029 crossref_primary_10_1016_j_ijfatigue_2023_107731 crossref_primary_10_1016_j_ijmecsci_2022_107185 crossref_primary_10_1016_j_cma_2023_116508 crossref_primary_10_1016_j_commatsci_2023_112261 crossref_primary_10_1016_j_msea_2024_146650 crossref_primary_10_1098_rspa_2019_0766 crossref_primary_10_1039_D4NR01568A crossref_primary_10_1016_j_ijsolstr_2018_12_027 crossref_primary_10_1016_j_ijplas_2021_102947 crossref_primary_10_1016_j_scriptamat_2020_05_045 crossref_primary_10_1016_j_paerosci_2020_100641 crossref_primary_10_1016_j_engfracmech_2019_106552 crossref_primary_10_1016_j_engfracmech_2023_109362 crossref_primary_10_1016_j_ijfatigue_2021_106614 crossref_primary_10_1016_j_jmps_2021_104663 crossref_primary_10_1016_j_ijfatigue_2023_107941 crossref_primary_10_1007_s11340_022_00846_6 crossref_primary_10_1016_j_actamat_2020_07_050 crossref_primary_10_1016_j_ijsolstr_2019_02_024 crossref_primary_10_1016_j_engfracmech_2020_107402 crossref_primary_10_1016_j_jmps_2018_11_023 crossref_primary_10_1038_s41524_022_00727_5 crossref_primary_10_1016_j_actamat_2023_119166 crossref_primary_10_32604_csse_2022_019757 |
Cites_doi | 10.1016/j.msea.2015.05.048 10.1016/j.actamat.2016.04.006 10.1016/j.actamat.2010.11.051 10.1111/j.1460-2695.1988.tb01169.x 10.1016/0956-716X(92)90056-K 10.1016/j.ijplas.2011.12.005 10.1088/0965-0393/19/3/035008 10.1023/A:1007465528199 10.1179/174328406X114135 10.1016/j.ijfatigue.2005.06.021 10.1177/1081286507086903 10.1088/0965-0393/23/3/035006 10.1016/j.ress.2017.03.006 10.1016/j.commatsci.2014.03.061 10.1016/0001-6160(69)90099-6 10.1016/j.actamat.2010.09.032 10.1016/j.ijfatigue.2016.05.019 10.1098/rspl.1895.0041 10.1080/14786435.2016.1235289 10.1007/BF02670762 10.1016/j.actamat.2010.09.063 10.1615/Int.J.UncertaintyQuantification.2012003959 10.1016/j.engfracmech.2015.03.001 10.1177/1056789513513916 10.1063/1.1699114 10.1016/0001-6160(74)90071-6 10.1179/1743280412Y.0000000015 10.1016/0001-6160(88)90001-6 10.1016/S0142-1123(01)00159-1 10.1080/14786430600951537 10.1016/j.actamat.2016.01.038 10.1007/BF02642860 10.1088/0965-0393/23/3/035005 10.1016/0001-6160(79)90126-3 10.1080/01621459.1949.10483310 10.1016/j.ijfatigue.2012.11.006 10.1007/BF02900224 10.1016/S1359-6454(00)00214-7 10.1088/1361-651X/aa6c45 10.1016/0921-5093(93)90649-Y 10.1016/0001-6160(74)90072-8 10.1016/j.actamat.2014.05.021 10.1002/adem.201600721 10.1007/s10704-012-9726-y 10.4028/www.scientific.net/MSF.681.97 10.1016/1359-6454(95)00411-4 10.1016/0036-9748(86)90467-9 10.1016/j.jmps.2009.11.005 10.1016/0036-9748(89)90534-6 10.1016/0001-6160(57)90044-5 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jun 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2018 |
CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 JG9 KR7 L7M OIOZB OTOTI |
DOI | 10.1016/j.jmps.2018.03.007 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4782 |
EndPage | 229 |
ExternalDocumentID | 1440486 10_1016_j_jmps_2018_03_007 S0022509617310839 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SST SSZ T5K VH1 WUQ XFK XPP YQT ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 KR7 L7M AALMO ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c465t-3f4865ece9fd45bc67859b1288ec2b794a892b14bb90cc710bdc02f850cd765b3 |
IEDL.DBID | .~1 |
ISSN | 0022-5096 |
IngestDate | Mon Jul 03 03:57:30 EDT 2023 Fri Jul 25 05:43:51 EDT 2025 Tue Jul 01 00:53:09 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Fri Feb 23 02:45:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | B polycrystalline material A small crack propagation C nondestructive evaluation B crystal plasticity Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-3f4865ece9fd45bc67859b1288ec2b794a892b14bb90cc710bdc02f850cd765b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Laboratory Directed Research and Development (LDRD) Program LA-UR-17-31135 AC52-06NA25396 |
ORCID | 0000-0002-4678-9778 0000-0002-4075-5577 0000-0002-6971-7769 0000000246789778 0000000269717769 0000000240755577 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1440486 |
PQID | 2076187196 |
PQPubID | 2045442 |
PageCount | 22 |
ParticipantIDs | osti_scitechconnect_1440486 proquest_journals_2076187196 crossref_citationtrail_10_1016_j_jmps_2018_03_007 crossref_primary_10_1016_j_jmps_2018_03_007 elsevier_sciencedirect_doi_10_1016_j_jmps_2018_03_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Journal of the mechanics and physics of solids |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Fatemi, Socie (bib0013) 1988; 11 Herbig, King, Reischig, Proudhon, Lauridsen, Marrow, Buffière, Ludwig (bib0020) 2011; 59 Neumann (bib0037) 1969; 17 Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Information. Rovinelli, A., Proudhon, H., Lebensohn, R.A., Sangid, M.D., 2018. Assessing the Reliability of Fast Fourier Transform-Based Crystal Plasticity Simulations of a Polycrystalline Material near a Crack Tip (in review). Hull, Bacon (bib0022) 2011 Correa, Lindstrom (bib0010) 2013; 3 Paris, Gomez, Anderson (bib0038) 1961; 13 Schäf, Marx, Vehoff, Heckl, Randelzhofer (bib0048) 2011; 59 Pearson (bib0040) 1895; 58 Proudhon, Li, Wang, Roos, Chiaruttini, Forest (bib0042) 2015; 82 Acharya, Beaudoin, Miller (bib0002) 2008; 13 Castelluccio, McDowell (bib0007) 2012; 176 Li, Proudhon, Roos, Chiaruttini, Forest (bib0027) 2014; 94 Pearl (bib0039) 1985 Schäf, Marx, Knorr (bib0047) 2013; 57 Buffiere, Ferrie, Proudhon, Ludwig (bib0004) 2006; 22 Castelluccio, Musinski, McDowell (bib0008) 2016 Yeratapally, Glavicic, Argyrakis, Sangid (bib0057) 2017; 164 Hutchinson (bib0023) 1977; 8 Fréour, Lacoste, François, Guillén (bib0014) 2011; 681 Friedman, Geiger, Goldszmidt (bib0015) 1997; 29 Schäfer, Weiter, Marx, Motz (bib0049) 2016; 96 Mach, Beaudoin, Acharya (bib0031) 2010; 58 Acharya (bib0001) 2007; 87 Harren, Lowe, Asaro, Needleman (bib0019) 1989; 328 Neumann (bib0035) 1974; 22 Castelluccio, McDowell (bib0006) 2014; 23 Luster, Morris (bib0030) 1995; 26 Lebensohn, Kanjarla, Eisenlohr (bib0025) 2012; 32–33 Kocks (bib0024) 1970; 1 Zhai, Jiang, Li, Garratt, Bray (bib0059) 2005; 27 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib0032) 1953; 21 Weinberger, Boyce, Battaile (bib0056) 2013; 58 Sangid, Ezaz, Sehitoglu, Robertson (bib0046) 2011; 59 Gibson, Forwood (bib0017) 2002; 82 Devincre, Roberts (bib0012) 1996; 44 Zhang, Edwards (bib0061) 1992; 26 Livingston, Chalmers (bib0029) 1957; 5 Zhai, Wilkinson, Martin (bib0060) 2000; 48 Gilormini, Bacroix, Jonas (bib0018) 1988; 36 Proudhon, Li, Ludwig, Roos, Forest (bib0041) 2017; 19 Taylor, Elam (bib0054) 1926; 112 George, Michot (bib0016) 1993; 164 Lieberman, Rollett, Lebensohn, Kober (bib0028) 2015; 23 Schijve (bib0050) 2009 Bray, Glazov, Rioja, Li, Gangloff (bib0003) 2001; 23 Cerrone, Stein, Pokharel, Hefferan, Lind, Tucker, Suter, Rollett, Ingraffea (bib0009) 2015; 23 Metropolis, Ulam (bib0033) 1949; 44 Musinski, McDowell (bib0034) 2016; 112 Davidson, Chan, McClung, Hudak (bib0011) 2003 Neumann (bib0036) 1974; 22 Yeratapally, Glavicic, Hardy, Sangid (bib0058) 2016; 107 Shen, Wagoner, Clark (bib0052) 1986; 20 Spear, Li, Lind, Suter, Ingraffea (bib0053) 2014; 76 Hochhalter, Littlewood, Veilleux, Bozek, Maniatty, Rollett, Ingraffea (bib0021) 2011; 19 Rovinelli, Lebensohn, Sangid (bib0044) 2015; 138 Castelluccio, McDowell (bib0005) 2015; 639 Lee, Robertson, Birnbaum (bib0026) 1989; 23 Rovinelli, Guilhem, Proudhon, Lebensohn, Ludwig, Sangid (bib0043) 2017; 25 Vehoff, Neumann (bib0055) 1979; 27 10.1016/j.jmps.2018.03.007_bib0045 Metropolis (10.1016/j.jmps.2018.03.007_sbref0032) 1953; 21 Yeratapally (10.1016/j.jmps.2018.03.007_bib0058) 2016; 107 Lieberman (10.1016/j.jmps.2018.03.007_bib0028) 2015; 23 Kocks (10.1016/j.jmps.2018.03.007_bib0024) 1970; 1 Musinski (10.1016/j.jmps.2018.03.007_bib0034) 2016; 112 Shen (10.1016/j.jmps.2018.03.007_bib0052) 1986; 20 Zhai (10.1016/j.jmps.2018.03.007_bib0060) 2000; 48 Zhang (10.1016/j.jmps.2018.03.007_bib0061) 1992; 26 Castelluccio (10.1016/j.jmps.2018.03.007_bib0006) 2014; 23 Davidson (10.1016/j.jmps.2018.03.007_bib0011) 2003 Fatemi (10.1016/j.jmps.2018.03.007_bib0013) 1988; 11 Fréour (10.1016/j.jmps.2018.03.007_bib0014) 2011; 681 Castelluccio (10.1016/j.jmps.2018.03.007_bib0008) 2016 Correa (10.1016/j.jmps.2018.03.007_bib0010) 2013; 3 Neumann (10.1016/j.jmps.2018.03.007_bib0035) 1974; 22 Neumann (10.1016/j.jmps.2018.03.007_bib0037) 1969; 17 Livingston (10.1016/j.jmps.2018.03.007_bib0029) 1957; 5 Pearl (10.1016/j.jmps.2018.03.007_bib0039) 1985 Herbig (10.1016/j.jmps.2018.03.007_bib0020) 2011; 59 Pearson (10.1016/j.jmps.2018.03.007_bib0040) 1895; 58 Proudhon (10.1016/j.jmps.2018.03.007_bib0042) 2015; 82 Yeratapally (10.1016/j.jmps.2018.03.007_bib0057) 2017; 164 Zhai (10.1016/j.jmps.2018.03.007_bib0059) 2005; 27 Hochhalter (10.1016/j.jmps.2018.03.007_bib0021) 2011; 19 Schijve (10.1016/j.jmps.2018.03.007_bib0050) 2009 Acharya (10.1016/j.jmps.2018.03.007_bib0001) 2007; 87 Friedman (10.1016/j.jmps.2018.03.007_bib0015) 1997; 29 Schäf (10.1016/j.jmps.2018.03.007_bib0048) 2011; 59 Gilormini (10.1016/j.jmps.2018.03.007_bib0018) 1988; 36 Metropolis (10.1016/j.jmps.2018.03.007_bib0033) 1949; 44 Schäf (10.1016/j.jmps.2018.03.007_bib0047) 2013; 57 Vehoff (10.1016/j.jmps.2018.03.007_bib0055) 1979; 27 Devincre (10.1016/j.jmps.2018.03.007_bib0012) 1996; 44 Neumann (10.1016/j.jmps.2018.03.007_bib0036) 1974; 22 Lee (10.1016/j.jmps.2018.03.007_bib0026) 1989; 23 George (10.1016/j.jmps.2018.03.007_bib0016) 1993; 164 Castelluccio (10.1016/j.jmps.2018.03.007_bib0007) 2012; 176 Bray (10.1016/j.jmps.2018.03.007_bib0003) 2001; 23 Lebensohn (10.1016/j.jmps.2018.03.007_bib0025) 2012; 32–33 Sangid (10.1016/j.jmps.2018.03.007_bib0046) 2011; 59 Li (10.1016/j.jmps.2018.03.007_bib0027) 2014; 94 Spear (10.1016/j.jmps.2018.03.007_bib0053) 2014; 76 Proudhon (10.1016/j.jmps.2018.03.007_bib0041) 2017; 19 Harren (10.1016/j.jmps.2018.03.007_bib0019) 1989; 328 Buffiere (10.1016/j.jmps.2018.03.007_bib0004) 2006; 22 Rovinelli (10.1016/j.jmps.2018.03.007_bib0043) 2017; 25 Hutchinson (10.1016/j.jmps.2018.03.007_bib0023) 1977; 8 Castelluccio (10.1016/j.jmps.2018.03.007_bib0005) 2015; 639 10.1016/j.jmps.2018.03.007_bib0051 Schäfer (10.1016/j.jmps.2018.03.007_bib0049) 2016; 96 Weinberger (10.1016/j.jmps.2018.03.007_bib0056) 2013; 58 Acharya (10.1016/j.jmps.2018.03.007_bib0002) 2008; 13 Mach (10.1016/j.jmps.2018.03.007_bib0031) 2010; 58 Gibson (10.1016/j.jmps.2018.03.007_bib0017) 2002; 82 Rovinelli (10.1016/j.jmps.2018.03.007_bib0044) 2015; 138 Hull (10.1016/j.jmps.2018.03.007_bib0022) 2011 Cerrone (10.1016/j.jmps.2018.03.007_bib0009) 2015; 23 Luster (10.1016/j.jmps.2018.03.007_bib0030) 1995; 26 Paris (10.1016/j.jmps.2018.03.007_bib0038) 1961; 13 Taylor (10.1016/j.jmps.2018.03.007_bib0054) 1926; 112 |
References_xml | – volume: 27 start-page: 915 year: 1979 end-page: 920 ident: bib0055 article-title: In situ sem experiments concerning the mechanism of ductile crack growth publication-title: Acta Metall. – volume: 29 start-page: 131 year: 1997 end-page: 163 ident: bib0015 article-title: Bayesian network classifier publication-title: Mach. Learn. – volume: 639 start-page: 626 year: 2015 end-page: 639 ident: bib0005 article-title: Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals publication-title: Mater. Sci. Eng. A – volume: 59 start-page: 283 year: 2011 end-page: 296 ident: bib0046 article-title: Energy of slip transmission and nucleation at grain boundaries publication-title: Acta Mater. – volume: 164 start-page: 110 year: 2017 end-page: 123 ident: bib0057 article-title: Bayesian uncertainty quantification and propagation for validation of a microstructure sensitive model for prediction of fatigue crack initiation publication-title: Reliab. Eng. Syst. Saf. – start-page: 129 year: 2003 end-page: 164 ident: bib0011 article-title: Small fatigue cracks publication-title: Comprehensive Structural Integrity – volume: 17 start-page: 1219 year: 1969 end-page: 1225 ident: bib0037 article-title: Coarse slip model of fatigue publication-title: Acta Metall. – volume: 112 start-page: 337 year: 1926 end-page: 361 ident: bib0054 article-title: The distortion of iron crystals publication-title: Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character – volume: 107 start-page: 152 year: 2016 end-page: 167 ident: bib0058 article-title: Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation publication-title: Acta Mater. – volume: 23 start-page: 265 year: 2001 end-page: 276 ident: bib0003 article-title: Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys publication-title: Int. J. Fatigue – volume: 59 start-page: 590 year: 2011 end-page: 601 ident: bib0020 article-title: 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography publication-title: Acta Mater. – volume: 3 start-page: 187 year: 2013 end-page: 201 ident: bib0010 article-title: The mutual information diagram for uncertainty visualization publication-title: Int. J. Uncertain. Quantif. – volume: 87 start-page: 1349 year: 2007 end-page: 1359 ident: bib0001 article-title: Jump condition for GND evolution as a constraint on slip transmission at grain boundaries publication-title: Philos. Mag. – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: bib0032 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. – volume: 26 start-page: 1745 year: 1995 end-page: 1756 ident: bib0030 article-title: Compatibility of deformation in two-phase Ti–Al alloys: dependence on microstructure and orientation relationships publication-title: Metall. Mater. Trans. A – volume: 32–33 start-page: 59 year: 2012 end-page: 69 ident: bib0025 article-title: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials publication-title: Int. J. Plast. – volume: 8 start-page: 1465 year: 1977 end-page: 1469 ident: bib0023 article-title: Creep and plasticity of hexagonal polycrystals as related to single crystal slip publication-title: Metall. Mater. Trans. A – volume: 164 start-page: 118 year: 1993 end-page: 134 ident: bib0016 article-title: Dislocation loops at crack tips: nucleation and growth—an experimental study in silicon publication-title: Mater. Sci. Eng. A – volume: 82 start-page: 1381 year: 2002 end-page: 1404 ident: bib0017 article-title: Slip transfer of deformation twins in duplex y-based Ti–Al alloys part III. Transfer across general large-angle γ-γ grain boundaries publication-title: Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. – volume: 13 start-page: 292 year: 2008 end-page: 315 ident: bib0002 article-title: New perspectives in plasticity theory: dislocation nucleation, waves, and partial continuity of plastic strain rate publication-title: Math. Mech. Solids – volume: 44 start-page: 2891 year: 1996 end-page: 2900 ident: bib0012 article-title: Three-dimensional simulation of dislocation-crack interactions in b.c.c. metals at the mesoscopic scale publication-title: Acta Mater. – volume: 681 start-page: 97 year: 2011 end-page: 102 ident: bib0014 article-title: Determining Ti-17 β-phase single-crystal elasticity constants through x-ray diffraction and inverse scale transition model publication-title: Mater. Sci. Forum – volume: 22 start-page: 1155 year: 1974 end-page: 1165 ident: bib0035 article-title: New experiments concerning the slip processes at propagating fatigue cracks—I publication-title: Acta Metall. – volume: 20 start-page: 921 year: 1986 end-page: 926 ident: bib0052 article-title: Dislocation pile-up and grain boundary interactions in 304 stainless steel publication-title: Scr. Metall. – volume: 76 start-page: 413 year: 2014 end-page: 424 ident: bib0053 article-title: Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy publication-title: Acta Mater. – volume: 19 start-page: 35008 year: 2011 ident: bib0021 article-title: A geometric approach to modeling microstructurally small fatigue crack formation: III. Development of a semi-empirical model for nucleation publication-title: Model. Simul. Mater. Sci. Eng. – volume: 5 start-page: 322 year: 1957 end-page: 327 ident: bib0029 article-title: Multiple slip in bicrystal deformation publication-title: Acta Metall. – volume: 48 start-page: 4917 year: 2000 end-page: 4927 ident: bib0060 article-title: A crystallographic mechanism for fatigue crack propagation through grain boundaries publication-title: Acta Mater. – volume: 23 start-page: 791 year: 2014 end-page: 818 ident: bib0006 article-title: A mesoscale approach for growth of 3D microstructurally small fatigue cracks in polycrystals publication-title: Int. J. Damage Mech. – volume: 1 start-page: 1121 year: 1970 end-page: 1143 ident: bib0024 article-title: The relation between polycrystal deformation and single-crystal deformation publication-title: Metall. Mater. Trans. – volume: 19 year: 2017 ident: bib0041 article-title: Simulation of short fatigue crack propagation in a 3d experimental microstructure publication-title: Adv. Eng. Mater. – reference: Rovinelli, A., Proudhon, H., Lebensohn, R.A., Sangid, M.D., 2018. Assessing the Reliability of Fast Fourier Transform-Based Crystal Plasticity Simulations of a Polycrystalline Material near a Crack Tip (in review). – volume: 58 start-page: 105 year: 2010 end-page: 128 ident: bib0031 article-title: Continuity in the plastic strain rate and its influence on texture evolution publication-title: J. Mech. Phys. Solids – volume: 13 start-page: 9 year: 1961 end-page: 14 ident: bib0038 article-title: A rational analytic theory of fatigue publication-title: Trend Eng. – volume: 36 start-page: 231 year: 1988 end-page: 256 ident: bib0018 article-title: Theoretical analyses of 〈111〉 pencil glide in b.c.c. crystals publication-title: Acta Metall. – volume: 23 start-page: 799 year: 1989 end-page: 803 ident: bib0026 article-title: Prediction of slip transfer mechanisms across grain boundaries publication-title: Scr. Metall. – volume: 22 start-page: 1019 year: 2006 end-page: 1024 ident: bib0004 article-title: Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography publication-title: Mater. Sci. Technol. – volume: 82 start-page: 1 year: 2015 end-page: 9 ident: bib0042 article-title: 3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing publication-title: Int. J. Fatigue – volume: 96 start-page: 3524 year: 2016 end-page: 3551 ident: bib0049 article-title: Quantifying the grain boundary resistance against slip transfer by experimental combination of geometric and stress approach using stage-I-fatigue cracks publication-title: Philos. Mag. – volume: 57 start-page: 86 year: 2013 end-page: 92 ident: bib0047 article-title: Influence of microstructural barriers on small fatigue crack growth in mild steel publication-title: Int. J. Fatigue – volume: 23 start-page: 35006 year: 2015 ident: bib0009 article-title: Implementation and verification of a microstructure-based capability for modeling microcrack nucleation in LSHR at room temperature publication-title: Model. Simul. Mater. Sci. Eng. – volume: 44 start-page: 335 year: 1949 ident: bib0033 article-title: The Monte Carlo method publication-title: J. Am. Stat. Assoc. – volume: 26 start-page: 1901 year: 1992 end-page: 1906 ident: bib0061 article-title: The effect of grain boundaries on the development of plastic deformation ahead of small fatigue cracks publication-title: Scr. Metall. Mater. – volume: 23 start-page: 35005 year: 2015 ident: bib0028 article-title: Calculation of grain boundary normals directly from 3D microstructure images publication-title: Model. Simul. Mater. Sci. Eng. – volume: 328 start-page: 443 year: 1989 end-page: 500 ident: bib0019 article-title: Analysis of large-strain shear in rate-dependent face-centred cubic polycrystals: correlation of micro- and macromechanics publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 11 start-page: 149 year: 1988 end-page: 165 ident: bib0013 article-title: A critical plane approach to multiaxial fatigue damage including out-of-phase loading publication-title: Fatigue Fract. Eng. Mater. Struct. – year: 2016 ident: bib0008 article-title: Computational micromechanics of fatigue of microstructures in the HCF-VHCF regimes publication-title: Int. J. Fatigue – volume: 22 start-page: 1167 year: 1974 end-page: 1178 ident: bib0036 article-title: The geometry of slip processes at a propagating fatigue crack—II publication-title: Acta Metall. – year: 1985 ident: bib0039 article-title: Bayesian networks a model of self-activated memory for evidential reasoning publication-title: Proceedings of the 7th Conference of the Cognitive Science Society – volume: 138 start-page: 265 year: 2015 end-page: 288 ident: bib0044 article-title: Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics publication-title: Eng. Fract. Mech. – volume: 58 start-page: 296 year: 2013 end-page: 314 ident: bib0056 article-title: Slip planes in bcc transition metals publication-title: Int. Mater. Rev. – volume: 59 start-page: 1849 year: 2011 end-page: 1861 ident: bib0048 article-title: A 3-D view on the mechanisms of short fatigue cracks interacting with grain boundaries publication-title: Acta Mater. – year: 2009 ident: bib0050 article-title: Fatigue of structures and materials publication-title: Journal of Chemical Information and Modeling – volume: 27 start-page: 1202 year: 2005 end-page: 1209 ident: bib0059 article-title: The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys publication-title: Int. J. Fatigue – volume: 25 start-page: 45010 year: 2017 ident: bib0043 article-title: Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework publication-title: Model. Simul. Mater. Sci. Eng. – year: 2011 ident: bib0022 article-title: Introduction to Dislocations – volume: 112 start-page: 20 year: 2016 end-page: 39 ident: bib0034 article-title: Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains publication-title: Acta Mater. – volume: 58 start-page: 240 year: 1895 end-page: 242 ident: bib0040 article-title: Note on regression and inheritance in the case of two parents publication-title: Proc. R. Soc. Lond. – reference: Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Information. – volume: 94 start-page: 191 year: 2014 end-page: 197 ident: bib0027 article-title: Crystal plasticity finite element simulation of crack growth in single crystals publication-title: Comput. Mater. Sci. – volume: 176 start-page: 49 year: 2012 end-page: 64 ident: bib0007 article-title: Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands publication-title: Int. J. Fract. – volume: 639 start-page: 626 year: 2015 ident: 10.1016/j.jmps.2018.03.007_bib0005 article-title: Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.05.048 – volume: 112 start-page: 20 year: 2016 ident: 10.1016/j.jmps.2018.03.007_bib0034 article-title: Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.04.006 – volume: 59 start-page: 1849 year: 2011 ident: 10.1016/j.jmps.2018.03.007_bib0048 article-title: A 3-D view on the mechanisms of short fatigue cracks interacting with grain boundaries publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.11.051 – volume: 11 start-page: 149 year: 1988 ident: 10.1016/j.jmps.2018.03.007_bib0013 article-title: A critical plane approach to multiaxial fatigue damage including out-of-phase loading publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.1988.tb01169.x – volume: 26 start-page: 1901 year: 1992 ident: 10.1016/j.jmps.2018.03.007_bib0061 article-title: The effect of grain boundaries on the development of plastic deformation ahead of small fatigue cracks publication-title: Scr. Metall. Mater. doi: 10.1016/0956-716X(92)90056-K – volume: 32–33 start-page: 59 year: 2012 ident: 10.1016/j.jmps.2018.03.007_bib0025 article-title: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.12.005 – ident: 10.1016/j.jmps.2018.03.007_bib0051 – volume: 112 start-page: 337 year: 1926 ident: 10.1016/j.jmps.2018.03.007_bib0054 article-title: The distortion of iron crystals publication-title: Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character – volume: 19 start-page: 35008 year: 2011 ident: 10.1016/j.jmps.2018.03.007_bib0021 article-title: A geometric approach to modeling microstructurally small fatigue crack formation: III. Development of a semi-empirical model for nucleation publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/19/3/035008 – year: 2011 ident: 10.1016/j.jmps.2018.03.007_bib0022 – volume: 29 start-page: 131 year: 1997 ident: 10.1016/j.jmps.2018.03.007_bib0015 article-title: Bayesian network classifier publication-title: Mach. Learn. doi: 10.1023/A:1007465528199 – volume: 22 start-page: 1019 year: 2006 ident: 10.1016/j.jmps.2018.03.007_bib0004 article-title: Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography publication-title: Mater. Sci. Technol. doi: 10.1179/174328406X114135 – volume: 27 start-page: 1202 year: 2005 ident: 10.1016/j.jmps.2018.03.007_bib0059 article-title: The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2005.06.021 – volume: 13 start-page: 292 year: 2008 ident: 10.1016/j.jmps.2018.03.007_bib0002 article-title: New perspectives in plasticity theory: dislocation nucleation, waves, and partial continuity of plastic strain rate publication-title: Math. Mech. Solids doi: 10.1177/1081286507086903 – volume: 23 start-page: 35006 year: 2015 ident: 10.1016/j.jmps.2018.03.007_bib0009 article-title: Implementation and verification of a microstructure-based capability for modeling microcrack nucleation in LSHR at room temperature publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/23/3/035006 – volume: 164 start-page: 110 year: 2017 ident: 10.1016/j.jmps.2018.03.007_bib0057 article-title: Bayesian uncertainty quantification and propagation for validation of a microstructure sensitive model for prediction of fatigue crack initiation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.03.006 – volume: 94 start-page: 191 year: 2014 ident: 10.1016/j.jmps.2018.03.007_bib0027 article-title: Crystal plasticity finite element simulation of crack growth in single crystals publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.03.061 – volume: 17 start-page: 1219 year: 1969 ident: 10.1016/j.jmps.2018.03.007_bib0037 article-title: Coarse slip model of fatigue publication-title: Acta Metall. doi: 10.1016/0001-6160(69)90099-6 – volume: 59 start-page: 283 year: 2011 ident: 10.1016/j.jmps.2018.03.007_bib0046 article-title: Energy of slip transmission and nucleation at grain boundaries publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.09.032 – year: 2016 ident: 10.1016/j.jmps.2018.03.007_bib0008 article-title: Computational micromechanics of fatigue of microstructures in the HCF-VHCF regimes publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.05.019 – volume: 58 start-page: 240 year: 1895 ident: 10.1016/j.jmps.2018.03.007_bib0040 article-title: Note on regression and inheritance in the case of two parents publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspl.1895.0041 – volume: 82 start-page: 1381 year: 2002 ident: 10.1016/j.jmps.2018.03.007_bib0017 article-title: Slip transfer of deformation twins in duplex y-based Ti–Al alloys part III. Transfer across general large-angle γ-γ grain boundaries publication-title: Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. – volume: 96 start-page: 3524 year: 2016 ident: 10.1016/j.jmps.2018.03.007_bib0049 article-title: Quantifying the grain boundary resistance against slip transfer by experimental combination of geometric and stress approach using stage-I-fatigue cracks publication-title: Philos. Mag. doi: 10.1080/14786435.2016.1235289 – volume: 26 start-page: 1745 year: 1995 ident: 10.1016/j.jmps.2018.03.007_bib0030 article-title: Compatibility of deformation in two-phase Ti–Al alloys: dependence on microstructure and orientation relationships publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02670762 – volume: 59 start-page: 590 year: 2011 ident: 10.1016/j.jmps.2018.03.007_bib0020 article-title: 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.09.063 – volume: 3 start-page: 187 year: 2013 ident: 10.1016/j.jmps.2018.03.007_bib0010 article-title: The mutual information diagram for uncertainty visualization publication-title: Int. J. Uncertain. Quantif. doi: 10.1615/Int.J.UncertaintyQuantification.2012003959 – year: 1985 ident: 10.1016/j.jmps.2018.03.007_bib0039 article-title: Bayesian networks a model of self-activated memory for evidential reasoning – volume: 138 start-page: 265 year: 2015 ident: 10.1016/j.jmps.2018.03.007_bib0044 article-title: Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.03.001 – volume: 23 start-page: 791 year: 2014 ident: 10.1016/j.jmps.2018.03.007_bib0006 article-title: A mesoscale approach for growth of 3D microstructurally small fatigue cracks in polycrystals publication-title: Int. J. Damage Mech. doi: 10.1177/1056789513513916 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.jmps.2018.03.007_sbref0032 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 22 start-page: 1155 year: 1974 ident: 10.1016/j.jmps.2018.03.007_bib0035 article-title: New experiments concerning the slip processes at propagating fatigue cracks—I publication-title: Acta Metall. doi: 10.1016/0001-6160(74)90071-6 – volume: 58 start-page: 296 year: 2013 ident: 10.1016/j.jmps.2018.03.007_bib0056 article-title: Slip planes in bcc transition metals publication-title: Int. Mater. Rev. doi: 10.1179/1743280412Y.0000000015 – volume: 36 start-page: 231 year: 1988 ident: 10.1016/j.jmps.2018.03.007_bib0018 article-title: Theoretical analyses of 〈111〉 pencil glide in b.c.c. crystals publication-title: Acta Metall. doi: 10.1016/0001-6160(88)90001-6 – volume: 23 start-page: 265 year: 2001 ident: 10.1016/j.jmps.2018.03.007_bib0003 article-title: Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys publication-title: Int. J. Fatigue doi: 10.1016/S0142-1123(01)00159-1 – volume: 328 start-page: 443 year: 1989 ident: 10.1016/j.jmps.2018.03.007_bib0019 article-title: Analysis of large-strain shear in rate-dependent face-centred cubic polycrystals: correlation of micro- and macromechanics publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 87 start-page: 1349 year: 2007 ident: 10.1016/j.jmps.2018.03.007_bib0001 article-title: Jump condition for GND evolution as a constraint on slip transmission at grain boundaries publication-title: Philos. Mag. doi: 10.1080/14786430600951537 – volume: 107 start-page: 152 year: 2016 ident: 10.1016/j.jmps.2018.03.007_bib0058 article-title: Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.01.038 – volume: 8 start-page: 1465 year: 1977 ident: 10.1016/j.jmps.2018.03.007_bib0023 article-title: Creep and plasticity of hexagonal polycrystals as related to single crystal slip publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02642860 – volume: 23 start-page: 35005 year: 2015 ident: 10.1016/j.jmps.2018.03.007_bib0028 article-title: Calculation of grain boundary normals directly from 3D microstructure images publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/23/3/035005 – volume: 27 start-page: 915 year: 1979 ident: 10.1016/j.jmps.2018.03.007_bib0055 article-title: In situ sem experiments concerning the mechanism of ductile crack growth publication-title: Acta Metall. doi: 10.1016/0001-6160(79)90126-3 – volume: 44 start-page: 335 year: 1949 ident: 10.1016/j.jmps.2018.03.007_bib0033 article-title: The Monte Carlo method publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1949.10483310 – volume: 57 start-page: 86 year: 2013 ident: 10.1016/j.jmps.2018.03.007_bib0047 article-title: Influence of microstructural barriers on small fatigue crack growth in mild steel publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.11.006 – volume: 1 start-page: 1121 year: 1970 ident: 10.1016/j.jmps.2018.03.007_bib0024 article-title: The relation between polycrystal deformation and single-crystal deformation publication-title: Metall. Mater. Trans. doi: 10.1007/BF02900224 – volume: 48 start-page: 4917 year: 2000 ident: 10.1016/j.jmps.2018.03.007_bib0060 article-title: A crystallographic mechanism for fatigue crack propagation through grain boundaries publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00214-7 – volume: 25 start-page: 45010 year: 2017 ident: 10.1016/j.jmps.2018.03.007_bib0043 article-title: Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/aa6c45 – volume: 164 start-page: 118 year: 1993 ident: 10.1016/j.jmps.2018.03.007_bib0016 article-title: Dislocation loops at crack tips: nucleation and growth—an experimental study in silicon publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(93)90649-Y – volume: 22 start-page: 1167 year: 1974 ident: 10.1016/j.jmps.2018.03.007_bib0036 article-title: The geometry of slip processes at a propagating fatigue crack—II publication-title: Acta Metall. doi: 10.1016/0001-6160(74)90072-8 – volume: 76 start-page: 413 year: 2014 ident: 10.1016/j.jmps.2018.03.007_bib0053 article-title: Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.05.021 – volume: 82 start-page: 1 year: 2015 ident: 10.1016/j.jmps.2018.03.007_bib0042 article-title: 3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing publication-title: Int. J. Fatigue – volume: 19 year: 2017 ident: 10.1016/j.jmps.2018.03.007_bib0041 article-title: Simulation of short fatigue crack propagation in a 3d experimental microstructure publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201600721 – volume: 176 start-page: 49 year: 2012 ident: 10.1016/j.jmps.2018.03.007_bib0007 article-title: Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands publication-title: Int. J. Fract. doi: 10.1007/s10704-012-9726-y – volume: 681 start-page: 97 year: 2011 ident: 10.1016/j.jmps.2018.03.007_bib0014 article-title: Determining Ti-17 β-phase single-crystal elasticity constants through x-ray diffraction and inverse scale transition model publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.681.97 – volume: 44 start-page: 2891 year: 1996 ident: 10.1016/j.jmps.2018.03.007_bib0012 article-title: Three-dimensional simulation of dislocation-crack interactions in b.c.c. metals at the mesoscopic scale publication-title: Acta Mater. doi: 10.1016/1359-6454(95)00411-4 – volume: 13 start-page: 9 year: 1961 ident: 10.1016/j.jmps.2018.03.007_bib0038 article-title: A rational analytic theory of fatigue publication-title: Trend Eng. – ident: 10.1016/j.jmps.2018.03.007_bib0045 – year: 2009 ident: 10.1016/j.jmps.2018.03.007_bib0050 article-title: Fatigue of structures and materials – volume: 20 start-page: 921 year: 1986 ident: 10.1016/j.jmps.2018.03.007_bib0052 article-title: Dislocation pile-up and grain boundary interactions in 304 stainless steel publication-title: Scr. Metall. doi: 10.1016/0036-9748(86)90467-9 – start-page: 129 year: 2003 ident: 10.1016/j.jmps.2018.03.007_bib0011 article-title: Small fatigue cracks – volume: 58 start-page: 105 year: 2010 ident: 10.1016/j.jmps.2018.03.007_bib0031 article-title: Continuity in the plastic strain rate and its influence on texture evolution publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.11.005 – volume: 23 start-page: 799 year: 1989 ident: 10.1016/j.jmps.2018.03.007_bib0026 article-title: Prediction of slip transfer mechanisms across grain boundaries publication-title: Scr. Metall. doi: 10.1016/0036-9748(89)90534-6 – volume: 5 start-page: 322 year: 1957 ident: 10.1016/j.jmps.2018.03.007_bib0029 article-title: Multiple slip in bicrystal deformation publication-title: Acta Metall. doi: 10.1016/0001-6160(57)90044-5 |
SSID | ssj0005071 |
Score | 2.5369997 |
Snippet | •In BCC materials, small cracks propagate accordingly to the pencil-glide model.•A non-local, direction dependent data mining procedure captures crack... Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 208 |
SubjectTerms | A small crack propagation B crystal plasticity B polycrystalline material Bayesian analysis BCC metals Burgers vector C nondestructive evaluation Computer simulation Crack propagation Data mining Deformation Fatigue cracks Fatigue failure Fatigue life Fracture mechanics Grain boundaries High cycle fatigue Machine learning Materials fatigue MATERIALS SCIENCE Mathematical models Nondestructive testing Plastic properties Polycrystals Predictions Slip Titanium alloys Titanium base alloys |
Title | Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations |
URI | https://dx.doi.org/10.1016/j.jmps.2018.03.007 https://www.proquest.com/docview/2076187196 https://www.osti.gov/servlets/purl/1440486 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V4QIHxFOElmoO3JCpHdu7Xm6lUKUgKg5U6m21z-A2caLYQcqFv8JfZSZeQxGiB462d2xrdnZmVvvNN4y9DKm0lKcm3HGdFL7iicQwirYsDG7kjHWeCpw_nfPpRfHhsrzcYydDLQzBKqPv7336zlvHO0dRm0eruqYaX7RF6lgiMEXBOE8V7IUgK3_9_QbMIxXZwBhOo2PhTI_xulqsiLI7q3qiU_Gv4DRa4nr7y1vvQtDpA3Y_5o5w3P_eQ7bnm0fs3g1Gwcfsx-c1nbwQlhkwtYP8HQTU_Wzjwa61vYYZbru7r0AEEbAM0C70fN4_aoEw8DPYQQwXS4dfIvgofKs1vNVbT9WW0PSo8fYNnDVJW3cb-N0ioAXdOHzXFhPOOawwLSfEdreFtl7EJmHtE3Zx-v7LyTSJPRgSW_CyS_JQVLz01svgitJYjG2lNBjUKm8nBhezruTEZIUxMrUW0xXjbDoJVZlaJ3hp8qds1Cwb_4wBlybnwQcXNJESSm1cZgXnk0J7J7wfs2xQvrKRoJz6ZMzVgES7UjRhiiZMpbnCCRuzV79kVj09x62jy2FO1R9GpjB-3Cq3TwZAMsSsawmChEJ0Lo7aGbODwS5UdAAkLXiGm1HJn__nR_fZXbrqYWkHbNStN_4FJkCdOdxZ-CG7c3z2cXr-E__ICSE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69LDtMOyJZX2Mh90Go3ZsyXZvXbsiWdtghxboTdDLqbvECWKnQH7N_urIWF5XDOthV8u0DIoiKejjR8Y-FWFuKE8NhBUqSFwmghzDKNpyqvEgp411VOB8MRbDq-TbNb_eYsddLQzBKr3vb336xlv7JwdemweLsqQaX7RF6liSYoqCcf4J2yZ2Kt5j20ejs-H4HukRplFHGk4CvnamhXndzhbE2h1lLddp-q_41JvjlvvLYW-i0OlL9sKnj3DU_uErtuWq1-z5H6SCb9jP70u6fCE4M2B2B_EJFKj-ycqBWSrzAyZ48m5ugDgiYF5APVPTaTtUA8HgJ7BBGc7mFmciBCnclQq-qLWjgkuoWuB4fQijKqjLZgX3XQJqUJXFb60x55zCAjNzAm03a6jLme8TVr9lV6dfL4-HgW_DEJhE8CaIiyQT3BmXFzbh2mB447nGuJY5M9C4n1WWD3SUaJ2HxmDGoq0JB0XGQ2NTwXX8jvWqeeXeMxC5jkXhClso4iXMlbaRSYUYJMrZ1Lk-izrlS-M5yqlVxlR2YLRbSQsmacFkGEtcsD77_Ftm0TJ0PPo279ZUPrAziSHkUbkdMgCSIXJdQygkFKKrcdROn-12diG9DyDpVER4Hs3Fh_-c9CN7Ory8OJfno_HZDntGIy1KbZf1muXK7WE-1Oh9b--_AANjC9I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+3D+fatigue+crack+growth+rate+of+small+cracks+using+multimodal+data+via+Bayesian+networks%3A+In-situ+experiments+and+crystal+plasticity+simulations&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Rovinelli%2C+Andrea&rft.au=Sangid%2C+Michael+D.&rft.au=Proudhon%2C+Henry&rft.au=Guilhem%2C+Yoann&rft.date=2018-06-01&rft.issn=0022-5096&rft.volume=115&rft.spage=208&rft.epage=229&rft_id=info:doi/10.1016%2Fj.jmps.2018.03.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmps_2018_03_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon |