Coating of magnetic nanoparticles affects their interactions with model cell membranes
The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without dama...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 11; p. 129671 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129671 |
Cover
Loading…
Abstract | The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.
Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.
DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.
Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.
Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.
[Display omitted]
•Interactions of coated nanoparticles with DPPC bilayers were studied with Differential Scanning Calorimetry and MD simulations.•DSC and MD simulations reveal different interactions of MAG-PVA and MAG-ARA nanoparticles with polar groups of phospholipids.•MAG-PVA interacts more strongly with DPPC headgroups and is on average closer to the lipid bilayer.•Nanoparticles caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer.•MAG-ARA and MAG-PVA do not destabilize the model membrane and can be promising platforms for biomedical applications. |
---|---|
AbstractList | The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.
Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.
DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.
Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.
Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.
[Display omitted]
•Interactions of coated nanoparticles with DPPC bilayers were studied with Differential Scanning Calorimetry and MD simulations.•DSC and MD simulations reveal different interactions of MAG-PVA and MAG-ARA nanoparticles with polar groups of phospholipids.•MAG-PVA interacts more strongly with DPPC headgroups and is on average closer to the lipid bilayer.•Nanoparticles caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer.•MAG-ARA and MAG-PVA do not destabilize the model membrane and can be promising platforms for biomedical applications. The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments. Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes. DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer. Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications. Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers. The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers. The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.BACKGROUNDThe use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.METHODSDifferential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.RESULTSDSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.CONCLUSIONSResults of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.GENERAL SIGNIFICANCEUnderstanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers. |
ArticleNumber | 129671 |
Author | Mainas, Eleftherios Demetzos, Costas Karathanou, Konstantina Lazaratos, Michalis Chatzigoulas, Alexios Pippa, Natassa Cournia, Zoe |
Author_xml | – sequence: 1 givenname: Michalis surname: Lazaratos fullname: Lazaratos, Michalis organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece – sequence: 2 givenname: Konstantina surname: Karathanou fullname: Karathanou, Konstantina organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece – sequence: 3 givenname: Eleftherios surname: Mainas fullname: Mainas, Eleftherios organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece – sequence: 4 givenname: Alexios surname: Chatzigoulas fullname: Chatzigoulas, Alexios organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece – sequence: 5 givenname: Natassa surname: Pippa fullname: Pippa, Natassa organization: Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece – sequence: 6 givenname: Costas surname: Demetzos fullname: Demetzos, Costas organization: Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece – sequence: 7 givenname: Zoe surname: Cournia fullname: Cournia, Zoe email: zcournia@bioacademy.gr organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32565292$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUGLFDEQhYOsuLOr_0AkRy89VtKddNqDIIO6Cwte1GtIpyuzGbqTMcko_nsz9O7Fg1qXFOF7j-K9K3IRYkBCXjLYMmDyzWE7jmaPYcuB1y8-yJ49IRumet4oAHlBNtBC13RMiktylfMB6ohBPCOXLRdS8IFvyLddNMWHPY2OLmYfsHhLgwnxaFJdZ8zUOIe2ZFru0SfqQ8FkbPExZPrTl3u6xAlnanGe6YLLmEzA_Jw8dWbO-OLhvSZfP374srtp7j5_ut29v2tsJ0VpWsfdJGTrsENplVMcoHejUEbJbgDXcjlJnPhkpBr63kGvJAiFYDsrEGV7TV6vvscUv58wF734fD6lHhFPWfOu7yWrcfD_QJlQrYABKvrqAT2NC076mPxi0i_9GFsF3q6ATTHnhE5bX8w5k5KMnzUDfe5IH_TakT53pNeOqrj7Q_zo_w_Zu1WGNc8fHpPO1mOwOPlU-9FT9H83-A0zBqxB |
CitedBy_id | crossref_primary_10_1016_j_cocis_2023_101727 crossref_primary_10_3389_fmed_2022_799145 crossref_primary_10_3390_ijms25021162 crossref_primary_10_1039_D4RA05686H crossref_primary_10_1016_j_bbagen_2021_129888 crossref_primary_10_1080_07391102_2024_2329307 crossref_primary_10_3390_ijms24054770 crossref_primary_10_1016_j_bbamem_2024_184352 crossref_primary_10_1039_D4TB00489B |
Cites_doi | 10.1016/0378-5173(83)90064-9 10.1021/acs.jpclett.5b01469 10.1166/rnn.2012.1014 10.1103/PhysRevB.74.165419 10.1166/jnn.2011.3536 10.1038/sj.bjc.6603854 10.1371/journal.pcbi.1003917 10.1371/journal.pone.0000880 10.1016/0263-7855(96)00018-5 10.1016/j.bbamem.2016.04.001 10.1208/s12249-016-0530-2 10.1186/1477-3155-6-13 10.1016/j.jmmm.2008.01.041 10.1002/bit.21958 10.1146/annurev-chembioeng-073009-100847 10.1016/j.colsurfb.2005.06.002 10.2217/nnm.13.117 10.1039/C7NR00890B 10.1103/PhysRevA.40.3408 10.1021/ar200011r 10.1002/jps.2600501018 10.1088/0957-4484/18/3/035708 10.1016/S0928-0987(01)00095-1 10.1063/1.2408420 10.1007/s10973-014-4116-5 10.1016/j.mattod.2015.08.022 10.1016/j.jcp.2003.11.034 10.1098/rsif.2012.0939 10.1021/nn3028858 10.1524/zkri.1901.34.1.449 10.1186/s11671-018-2457-x 10.1021/nn2038862 10.1158/1078-0432.CCR-08-1046 10.1039/C5NR01448D 10.1039/C6CP01957A 10.1002/bit.21910 10.1063/1.448118 10.1063/1.470117 10.1021/jp105758h 10.1016/j.peptides.2009.10.002 10.1016/j.cis.2011.04.003 10.1002/jcc.20291 10.2217/nnm-2018-0266 10.1021/la2011138 10.1016/j.cplett.2007.10.063 10.1021/nn1010792 10.1039/c3sm51225h 10.1042/bj2780689 10.1021/nl2030213 10.1016/0010-4655(95)00042-E 10.1103/PhysRevLett.45.1196 10.1080/08982100802310261 10.1007/s00466-011-0633-2 10.1063/1.464397 10.1021/jz400679z 10.1016/j.scriptamat.2005.04.038 10.1038/095561a0 10.1021/acs.jpcc.8b07616 10.1021/jp809453v 10.1016/j.jcrysgro.2014.11.028 10.1039/C4RA17006G 10.1021/ct900242e 10.1021/ct100125x 10.1039/C7BM00886D 10.1021/jp003020w 10.1021/ar400329z 10.2174/157341311797483754 10.1021/jp2032302 10.2217/nnm.16.5 10.1002/jcc.21287 10.1021/ct200328p 10.1016/S0021-9290(01)00225-1 10.1002/smll.201900323 10.1016/j.bbamem.2009.01.007 10.1021/acs.jpcc.6b12148 10.1021/acs.jcim.8b00269 10.1080/00268978400101201 10.1371/journal.pcbi.1001073 10.1021/ct700301q 10.1039/C0SM00963F 10.1038/s41598-017-06668-0 10.1039/c2sm06811g 10.1016/j.nano.2011.05.006 10.3390/ijms130911610 10.1016/j.ejps.2017.12.018 10.1021/la200236d 10.1039/C4CP00529E 10.1021/acs.jpcb.7b01702 10.1016/j.colsurfb.2006.01.006 10.1016/j.bbamem.2019.06.001 10.1016/S0039-6028(99)01058-4 10.1021/jz402234c 10.1039/C8NR02393J 10.1038/nnano.2010.58 10.1038/s41598-017-00836-y 10.1016/j.ejps.2015.12.024 10.1103/PhysRevB.63.184416 10.1007/s11538-010-9504-9 10.1002/smll.201000889 10.1021/jp105355y 10.1103/PhysRevLett.112.068102 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier B.V. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129671 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Medicine |
EISSN | 1872-8006 |
ExternalDocumentID | 32565292 10_1016_j_bbagen_2020_129671 S0304416520301835 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c465t-3f2fd563fe4e6c8f82007fb58a86490f326d6ed2da68977f0786058e0c4c5ee63 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 11:57:40 EDT 2025 Fri Jul 11 02:34:57 EDT 2025 Wed Feb 19 02:30:27 EST 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 23 02:48:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Differential scanning calorimetry CG MAG-PVA Drug delivery Molecular dynamics simulations Nanoparticles ARA Magnetite DSC RDF MD Tm PVA MAG-ARA Cancer DPPC Ts MSD |
Language | English |
License | Copyright © 2020. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-3f2fd563fe4e6c8f82007fb58a86490f326d6ed2da68977f0786058e0c4c5ee63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32565292 |
PQID | 2415835090 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477618002 proquest_miscellaneous_2415835090 pubmed_primary_32565292 crossref_citationtrail_10_1016_j_bbagen_2020_129671 crossref_primary_10_1016_j_bbagen_2020_129671 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Loganathan, Linhardt (bb0400) 1991; 278 Sanna, Pala, Sechi (bb0005) 2014; 9 Patitsa, Karathanou, Kanaki, Tzioga, Pippa, Demetzos, Verganelakis, Cournia, Klinakis (bb0100) 2017; 7 Van Der Spoel, Lindahl, Hess, Groenhof, Mark, Berendsen (bb0455) 2005; 26 Rossi, Monticelli (bb0255) 2016; 1858 Parrinello, Rahman (bb0495) 1980; 45 Gkeka, Angelikopoulos (bb0075) 2011; 7 Michel, Gradzielski (bb0110) 2012; 13 Huynh, Neale, Pomes, Allen (bb0150) 2012; 8 Pippa, Pispas, Demetzos (bb0510) 2015; 120 Bothun (bb0135) 2008; 6 Park, Oh, Mun, Han (bb0140) 2006; 48 Rossi, Monticelli (bb0355) 2016; 1 Shipley, Chapman (bb0200) 2010; 72 Aguilar, De Almeida, Rocha (bb0470) 2007; 449 Udayana Ranatunga, Kalescky, Chiu, Nielsen (bb0065) 2010; 114 Guvench, Mallajosyula, Raman, Hatcher, Vanommeslaeghe, Foster, Jamison, Mackerell (bb0410) 2011; 7 Kaddi, Phan, Wang (bb0195) 2013; 8 Revia, Zhang (bb0230) 2016; 19 Riske, Barroso, Vequi-Suplicy, Germano, Henriques, Lamy (bb0515) 2009; 1788 Sukhanova, Bozrova, Sokolov, Berestovoy, Karaulov, Nabiev (bb0520) 2018; 13 Xu, Luo, Li, Li, Zhang, Zuo, Huang, Yue (bb0330) 2017; 9 Lunnoo, Assawakhajornsak, Puangmali (bb0305) 2019; 123 Jusufi, DeVane, Shinoda, Klein (bb0080) 2011; 7 Higuchi (bb0245) 1961; 50 Ece Gamsiz, Shah, Devalapally, Amiji, Carrier (bb0160) 2008; 101 Simonelli, Bochicchio, Ferrando, Rossi (bb0295) 2015; 6 Prates Ramalho, Gkeka, Sarkisov (bb0070) 2011; 27 Lin, Landersdorfer, London, Meng, Lim, Lin, Lin, Tang, Brown, Van Scoy, Kulawy, Queimado, Drusano, Louie, Davis, Mousa, Davis (bb0190) 2011; 7 Ho, Kamm, Kah (bb0050) 2018; 10 Modok, Scott, Alderden, Hall, Mellor, Bohic, Roose, Hambley, Callaghan (bb0205) 2007; 97 Park, Oh, Mun, Han (bb0115) 2005; 44 Shah, Liu, Hu, Gao (bb0175) 2011; 11 Treuel, Jiang, Nienhaus (bb0030) 2013; 10 Hossain, Gandhi, Hughes, Gu, Saha (bb0310) 2019; 1861 Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (bb0465) 1995; 103 Goodman, Chen, Matveev, Pun (bb0165) 2008; 101 Kim, Han, Toley, Kim, Rotello, Forbes (bb0170) 2010; 5 Hossain, Hossainy, Bazilevs, Calo, Hughes (bb0145) 2011; 49 Liu, So, Zhang (bb0220) 2002; 35 Mark, Nilsson (bb0485) 2001; 105 Yu, Becker, Carri (bb0280) 2010; 6 Afonin, Kasprzak, Bindewald, Kireeva, Viard, Kashlev, Shapiro (bb0010) 2014; 47 Zeng, Jiang, Yu, Lu (bb0285) 2007; 18 Brooks, Brooks, Mackerell, Nilsson, Petrella, Roux, Won, Archontis, Bartels, Boresch, Caflisch, Caves, Cui, Dinner, Feig, Fischer, Gao, Hodoscek, Im, Kuczera, Lazaridis, Ma, Ovchinnikov, Paci, Pastor, Post, Pu, Schaefer, Tidor, Venable, Woodcock, Wu, Yang, York, Karplus (bb0405) 2009; 30 Tan, Choong, Dass (bb0015) 2010; 31 Santos-Carballal, Roldan, Grau-Crespo, de Leeuw (bb0395) 2014; 16 Pogodin, Werner, Sommer, Baulin (bb0085) 2012; 6 Knopp, Lobmann, Elder, Rades, Holm (bb0120) 2016; 87 Lin, Zhang, Chen, Zheng (bb0060) 2010; 4 Hoshyar, Gray, Han, Bao (bb0035) 2016; 11 Laurent, Dutz, Hafeli, Mahmoudi (bb0250) 2011; 166 Darden, York, Pedersen (bb0460) 1993; 98 Buesser, Gröhn, Pratsinis (bb0290) 2011; 115 Bochicchio, Panizon, Monticelli, Rossi (bb0345) 2017; 7 Guvench, Hatcher, Venable, Pastor, Mackerell (bb0420) 2009; 5 Costa, Sousa Lobo (bb0235) 2001; 13 Manz, Sholl (bb0475) 2010; 6 Nosé (bb0490) 1984; 52 Nisoh, Karttunen, Monticelli, Wong-ekkabut (bb0320) 2015; 5 Jo, Kim, Im (bb0425) 2007; 2 Raman, Guvench, MacKerell (bb0415) 2010; 114 Vacha, Martinez-Veracoechea, Frenkel (bb0260) 2011; 11 Mahmoudi, Shokrgozar, Simchi, Imani, Milani, Stroeve, Vali, Häfeli, Bonakdar (bb0210) 2009; 113 Gkeka, Angelikopoulos, Sarkisov, Cournia (bb0360) 2014; 10 Chowdhury, Cerqueira, Sousa, Oliveira, Reis, Zorec (bb0040) 2018; 6 Iglesias, Labarta (bb0270) 2001; 63 Bragg (bb0385) 1915; 95 Mao, Xu, Ji, Zhou, Zhang, Chen, Han, Tang, Wang, Xia (bb0525) 2015; 7 Humphrey, Dalke, Schulten (bb0435) 1996; 14 Barnoud, Rossi, Monticelli (bb0315) 2014; 112 Rossi, Barnoud, Monticelli (bb0340) 2014; 5 Wulff (bb0380) 1901; 34 Berendsen, van der Spoel, van Drunen (bb0440) 1995; 91 Ding, Tian, Ma (bb0090) 2012; 6 Bussi, Donadio, Parrinello (bb0480) 2007; 126 Korsmeyer, Gurny, Doelker, Buri, Peppas (bb0240) 1983; 15 Zhang, Kleinstreuer (bb0225) 2004; 198 Baletto, Mottet, Ferrando (bb0375) 2000; 446 Thake, Webb, Nash, Rappoport, Notman (bb0335) 2013; 9 Preiss, Hart, Kitchens, Bothun (bb0130) 2017; 121 Berendsen, Postma, van Gunsteren, DiNola, Haak (bb0500) 1984; 81 Gkeka, Sarkisov, Angelikopoulos (bb0095) 2013; 4 Vyas, Goswami (bb0055) 2019; 14 Marson, Guida, Şologan, Boccardo, Pengo, Perissinotto, Iacuzzi, Pellizzoni, Polizzi, Casalis, Pasquato, Pacor, Tossi, Posocco (bb0300) 2019; 15 Scullion, Thompson, Botton (bb0275) 2015; 412 Liu, Shah, Tan (bb0155) 2012; 1 Hess, Kutzner, van der Spoel, Lindahl (bb0445) 2008; 4 Faroongsarng (bb0125) 2016; 17 Hadjisavvas, Remediakis, Kelires (bb0365) 2006; 74 Salassi, Simonelli, Bochicchio, Ferrando, Rossi (bb0350) 2017; 121 Landau, Binder (bb0430) 2005 Liechty, Kryscio, Slaughter, Peppas (bb0020) 2010; 1 Chen, Bothun (bb0105) 2011; 27 Yue, Xu, Li, Zhang, Huang (bb0325) 2016; 18 Saito, Ueta (bb0370) 1989; 40 Li, Yao, Liu (bb0215) 2008; 320 Chatzigoulas, Karathanou, Dellis, Cournia (bb0390) 2018; 58 Abdelkader, Osman, El-Gizawy, Hawthorne, Faheem, McCarron (bb0045) 2018; 114 Lindahl, Abraham, Murtola, Schulz, Pál, Smith, Hess (bb0450) 2015; 1-2 Xu, Li, Ma, Wang, Wang, Zou (bb0180) 2012; 8 Yang, Asta, Mryasov, Klemmer, Chantrell (bb0265) 2005; 53 Namiki, Fuchigami, Tada, Kawamura, Matsunuma, Kitamoto, Nakagawa (bb0025) 2011; 44 Fetterly, Grasela, Sherman, Dul, Grahn, Lecomte, Fiedler-Kelly, Damjanov, Fishman, Kane, Rubin, Tan (bb0185) 2008; 14 Demetzos (bb0505) 2008; 18 Yue (10.1016/j.bbagen.2020.129671_bb0325) 2016; 18 Berendsen (10.1016/j.bbagen.2020.129671_bb0500) 1984; 81 Kim (10.1016/j.bbagen.2020.129671_bb0170) 2010; 5 Tan (10.1016/j.bbagen.2020.129671_bb0015) 2010; 31 Jusufi (10.1016/j.bbagen.2020.129671_bb0080) 2011; 7 Aguilar (10.1016/j.bbagen.2020.129671_bb0470) 2007; 449 Iglesias (10.1016/j.bbagen.2020.129671_bb0270) 2001; 63 Zeng (10.1016/j.bbagen.2020.129671_bb0285) 2007; 18 Revia (10.1016/j.bbagen.2020.129671_bb0230) 2016; 19 Li (10.1016/j.bbagen.2020.129671_bb0215) 2008; 320 Park (10.1016/j.bbagen.2020.129671_bb0115) 2005; 44 Shipley (10.1016/j.bbagen.2020.129671_bb0200) 2010; 72 Saito (10.1016/j.bbagen.2020.129671_bb0370) 1989; 40 Buesser (10.1016/j.bbagen.2020.129671_bb0290) 2011; 115 Zhang (10.1016/j.bbagen.2020.129671_bb0225) 2004; 198 Yang (10.1016/j.bbagen.2020.129671_bb0265) 2005; 53 Preiss (10.1016/j.bbagen.2020.129671_bb0130) 2017; 121 Brooks (10.1016/j.bbagen.2020.129671_bb0405) 2009; 30 Parrinello (10.1016/j.bbagen.2020.129671_bb0495) 1980; 45 Costa (10.1016/j.bbagen.2020.129671_bb0235) 2001; 13 Demetzos (10.1016/j.bbagen.2020.129671_bb0505) 2008; 18 Hossain (10.1016/j.bbagen.2020.129671_bb0310) 2019; 1861 Afonin (10.1016/j.bbagen.2020.129671_bb0010) 2014; 47 Chen (10.1016/j.bbagen.2020.129671_bb0105) 2011; 27 Rossi (10.1016/j.bbagen.2020.129671_bb0340) 2014; 5 Sukhanova (10.1016/j.bbagen.2020.129671_bb0520) 2018; 13 Rossi (10.1016/j.bbagen.2020.129671_bb0255) 2016; 1858 Manz (10.1016/j.bbagen.2020.129671_bb0475) 2010; 6 Hoshyar (10.1016/j.bbagen.2020.129671_bb0035) 2016; 11 Lin (10.1016/j.bbagen.2020.129671_bb0060) 2010; 4 Wang (10.1016/j.bbagen.2020.129671_bb0400) 1991; 278 Korsmeyer (10.1016/j.bbagen.2020.129671_bb0240) 1983; 15 Gkeka (10.1016/j.bbagen.2020.129671_bb0360) 2014; 10 Jo (10.1016/j.bbagen.2020.129671_bb0425) 2007; 2 Ho (10.1016/j.bbagen.2020.129671_bb0050) 2018; 10 Thake (10.1016/j.bbagen.2020.129671_bb0335) 2013; 9 Treuel (10.1016/j.bbagen.2020.129671_bb0030) 2013; 10 Park (10.1016/j.bbagen.2020.129671_bb0140) 2006; 48 Darden (10.1016/j.bbagen.2020.129671_bb0460) 1993; 98 Essmann (10.1016/j.bbagen.2020.129671_bb0465) 1995; 103 Nosé (10.1016/j.bbagen.2020.129671_bb0490) 1984; 52 Berendsen (10.1016/j.bbagen.2020.129671_bb0440) 1995; 91 Bothun (10.1016/j.bbagen.2020.129671_bb0135) 2008; 6 Liu (10.1016/j.bbagen.2020.129671_bb0220) 2002; 35 Ding (10.1016/j.bbagen.2020.129671_bb0090) 2012; 6 Lindahl (10.1016/j.bbagen.2020.129671_bb0450) 2015; 1-2 Hossain (10.1016/j.bbagen.2020.129671_bb0145) 2011; 49 Abdelkader (10.1016/j.bbagen.2020.129671_bb0045) 2018; 114 Chatzigoulas (10.1016/j.bbagen.2020.129671_bb0390) 2018; 58 Knopp (10.1016/j.bbagen.2020.129671_bb0120) 2016; 87 Baletto (10.1016/j.bbagen.2020.129671_bb0375) 2000; 446 Bochicchio (10.1016/j.bbagen.2020.129671_bb0345) 2017; 7 Xu (10.1016/j.bbagen.2020.129671_bb0180) 2012; 8 Rossi (10.1016/j.bbagen.2020.129671_bb0355) 2016; 1 Fetterly (10.1016/j.bbagen.2020.129671_bb0185) 2008; 14 Lunnoo (10.1016/j.bbagen.2020.129671_bb0305) 2019; 123 Pippa (10.1016/j.bbagen.2020.129671_bb0510) 2015; 120 Santos-Carballal (10.1016/j.bbagen.2020.129671_bb0395) 2014; 16 Mark (10.1016/j.bbagen.2020.129671_bb0485) 2001; 105 Riske (10.1016/j.bbagen.2020.129671_bb0515) 2009; 1788 Yu (10.1016/j.bbagen.2020.129671_bb0280) 2010; 6 Kaddi (10.1016/j.bbagen.2020.129671_bb0195) 2013; 8 Liechty (10.1016/j.bbagen.2020.129671_bb0020) 2010; 1 Patitsa (10.1016/j.bbagen.2020.129671_bb0100) 2017; 7 Ece Gamsiz (10.1016/j.bbagen.2020.129671_bb0160) 2008; 101 Bussi (10.1016/j.bbagen.2020.129671_bb0480) 2007; 126 Xu (10.1016/j.bbagen.2020.129671_bb0330) 2017; 9 Shah (10.1016/j.bbagen.2020.129671_bb0175) 2011; 11 Guvench (10.1016/j.bbagen.2020.129671_bb0420) 2009; 5 Chowdhury (10.1016/j.bbagen.2020.129671_bb0040) 2018; 6 Raman (10.1016/j.bbagen.2020.129671_bb0415) 2010; 114 Salassi (10.1016/j.bbagen.2020.129671_bb0350) 2017; 121 Van Der Spoel (10.1016/j.bbagen.2020.129671_bb0455) 2005; 26 Mao (10.1016/j.bbagen.2020.129671_bb0525) 2015; 7 Bragg (10.1016/j.bbagen.2020.129671_bb0385) 1915; 95 Guvench (10.1016/j.bbagen.2020.129671_bb0410) 2011; 7 Hess (10.1016/j.bbagen.2020.129671_bb0445) 2008; 4 Modok (10.1016/j.bbagen.2020.129671_bb0205) 2007; 97 Nisoh (10.1016/j.bbagen.2020.129671_bb0320) 2015; 5 Higuchi (10.1016/j.bbagen.2020.129671_bb0245) 1961; 50 Prates Ramalho (10.1016/j.bbagen.2020.129671_bb0070) 2011; 27 Sanna (10.1016/j.bbagen.2020.129671_bb0005) 2014; 9 Udayana Ranatunga (10.1016/j.bbagen.2020.129671_bb0065) 2010; 114 Huynh (10.1016/j.bbagen.2020.129671_bb0150) 2012; 8 Faroongsarng (10.1016/j.bbagen.2020.129671_bb0125) 2016; 17 Wulff (10.1016/j.bbagen.2020.129671_bb0380) 1901; 34 Laurent (10.1016/j.bbagen.2020.129671_bb0250) 2011; 166 Mahmoudi (10.1016/j.bbagen.2020.129671_bb0210) 2009; 113 Liu (10.1016/j.bbagen.2020.129671_bb0155) 2012; 1 Namiki (10.1016/j.bbagen.2020.129671_bb0025) 2011; 44 Scullion (10.1016/j.bbagen.2020.129671_bb0275) 2015; 412 Hadjisavvas (10.1016/j.bbagen.2020.129671_bb0365) 2006; 74 Marson (10.1016/j.bbagen.2020.129671_bb0300) 2019; 15 Barnoud (10.1016/j.bbagen.2020.129671_bb0315) 2014; 112 Pogodin (10.1016/j.bbagen.2020.129671_bb0085) 2012; 6 Goodman (10.1016/j.bbagen.2020.129671_bb0165) 2008; 101 Humphrey (10.1016/j.bbagen.2020.129671_bb0435) 1996; 14 Landau (10.1016/j.bbagen.2020.129671_bb0430) 2005 Michel (10.1016/j.bbagen.2020.129671_bb0110) 2012; 13 Vyas (10.1016/j.bbagen.2020.129671_bb0055) 2019; 14 Vacha (10.1016/j.bbagen.2020.129671_bb0260) 2011; 11 Simonelli (10.1016/j.bbagen.2020.129671_bb0295) 2015; 6 Gkeka (10.1016/j.bbagen.2020.129671_bb0075) 2011; 7 Gkeka (10.1016/j.bbagen.2020.129671_bb0095) 2013; 4 Lin (10.1016/j.bbagen.2020.129671_bb0190) 2011; 7 |
References_xml | – volume: 446 start-page: 31 year: 2000 end-page: 45 ident: bb0375 article-title: Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters publication-title: Surf. Sci. – volume: 98 start-page: 10089 year: 1993 end-page: 10092 ident: bb0460 article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. – volume: 13 start-page: 11610 year: 2012 end-page: 11642 ident: bb0110 article-title: Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications publication-title: Int. J. Mol. Sci. – volume: 16 start-page: 21082 year: 2014 end-page: 21097 ident: bb0395 article-title: A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe publication-title: Phys. Chem. Chem. Phys. – volume: 1858 start-page: 2380 year: 2016 end-page: 2389 ident: bb0255 article-title: Gold nanoparticles in model biological membranes: a computational perspective publication-title: Biochim. Biophys. Acta, Biomembr. – volume: 166 start-page: 8 year: 2011 end-page: 23 ident: bb0250 article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles publication-title: Adv. Colloid Interf. Sci. – volume: 6 start-page: 13 year: 2008 ident: bb0135 article-title: Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties publication-title: J. Nanobiotechnol. – volume: 11 start-page: 5391 year: 2011 end-page: 5395 ident: bb0260 article-title: Receptor-mediated endocytosis of nanoparticles of various shapes publication-title: Nano Lett. – volume: 6 start-page: 1230 year: 2012 end-page: 1238 ident: bb0090 article-title: Designing nanoparticle translocation through membranes by computer simulations publication-title: ACS Nano – volume: 45 start-page: 1196 year: 1980 end-page: 1199 ident: bb0495 article-title: Crystal structure and pair potentials: a molecular-dynamics study publication-title: Phys. Rev. Lett. – volume: 4 start-page: 1907 year: 2013 end-page: 1912 ident: bb0095 article-title: Homogeneous hydrophobic-hydrophilic surface patterns enhance permeation of nanoparticles through lipid membranes publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 1323 year: 2013 end-page: 1333 ident: bb0195 article-title: Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy publication-title: Nanomedicine-UK – volume: 53 start-page: 417 year: 2005 end-page: 422 ident: bb0265 article-title: Equilibrium Monte Carlo simulations of A1–L10 ordering in FePt nanoparticles publication-title: Scripta Mater. – volume: 40 start-page: 3408 year: 1989 end-page: 3419 ident: bb0370 article-title: Monte Carlo studies of equilibrium and growth shapes of a crystal publication-title: Phys. Rev. A Gen. Phys. – volume: 72 start-page: 1464 year: 2010 end-page: 1491 ident: bb0200 article-title: Multiscale modelling of fluid and drug transport in vascular tumours publication-title: Bull. Math. Biol. – volume: 10 year: 2014 ident: bb0360 article-title: Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion publication-title: PLoS Comput. Biol. – volume: 9 start-page: 10193 year: 2017 end-page: 10204 ident: bb0330 article-title: Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes: a molecular dynamics study publication-title: Nanoscale – volume: 10 start-page: 20120939 year: 2013 ident: bb0030 article-title: New views on cellular uptake and trafficking of manufactured nanoparticles publication-title: J. R. Soc. Interface – volume: 8 start-page: 2915 year: 2012 end-page: 2923 ident: bb0180 article-title: Multidrug resistance protein P-glycoprotein does not recognize nanoparticle C60: experiment and modeling publication-title: Soft Matter – volume: 27 start-page: 8645 year: 2011 end-page: 8652 ident: bb0105 article-title: Cationic gel-phase liposomes with “decorated” anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties publication-title: Langmuir – volume: 7 start-page: 3162 year: 2011 end-page: 3180 ident: bb0410 article-title: CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling publication-title: J. Chem. Theory Comput. – year: 2005 ident: bb0430 article-title: A guide to Monte Carlo simulations in statistical physics – volume: 123 start-page: 3801 year: 2019 end-page: 3810 ident: bb0305 article-title: study of gold nanoparticle uptake into a mammalian cell: interplay of size, shape, surface charge, and aggregation publication-title: J. Phys. Chem. C – volume: 18 year: 2007 ident: bb0285 article-title: Growth mechanisms of silver nanoparticles: a molecular dynamics study publication-title: Nanotechnology – volume: 26 start-page: 1701 year: 2005 end-page: 1718 ident: bb0455 article-title: GROMACS: fast, flexible, and free publication-title: J. Comput. Chem. – volume: 1788 start-page: 954 year: 2009 end-page: 963 ident: bb0515 article-title: Lipid bilayer pre-transition as the beginning of the melting process publication-title: Biochim. Biophys. Acta, Biomembr. – volume: 17 start-page: 572 year: 2016 end-page: 577 ident: bb0125 article-title: Theoretical aspects of differential scanning calorimetry as a tool for the studies of equilibrium thermodynamics in pharmaceutical solid phase transitions publication-title: AAPS PharmSciTech – volume: 19 start-page: 157 year: 2016 end-page: 168 ident: bb0230 article-title: Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances publication-title: Mater. Today – volume: 126 year: 2007 ident: bb0480 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. – volume: 97 start-page: 194 year: 2007 end-page: 200 ident: bb0205 article-title: Transport kinetics of four- and six-coordinate platinum compounds in the multicell layer tumour model publication-title: Br. J. Cancer – volume: 18 start-page: 159 year: 2008 end-page: 173 ident: bb0505 article-title: Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability publication-title: J. Liposome Res. – volume: 412 start-page: 87 year: 2015 end-page: 94 ident: bb0275 article-title: Growth and kinetic Monte Carlo simulation of InAs quantum wires on vicinal substrates publication-title: J. Cryst. Growth – volume: 44 start-page: 117 year: 2005 end-page: 122 ident: bb0115 article-title: Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome publication-title: Colloid. Surface. B – volume: 14 start-page: 229 year: 2019 end-page: 253 ident: bb0055 article-title: Size-dependent cellular uptake and TLR4 attenuation by gold nanoparticles in lung adenocarcinoma cells publication-title: Nanomedicine – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: bb0435 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph. – volume: 35 start-page: 465 year: 2002 end-page: 473 ident: bb0220 article-title: Modeling the bifurcating flow in a human lung airway publication-title: J. Biomech. – volume: 113 start-page: 2322 year: 2009 end-page: 2331 ident: bb0210 article-title: Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly (vinyl alcohol) publication-title: J. Phys. Chem. C – volume: 52 start-page: 255 year: 1984 end-page: 268 ident: bb0490 article-title: A molecular dynamics method for simulations in the canonical ensemble publication-title: Mol. Phys. – volume: 115 start-page: 11030 year: 2011 end-page: 11035 ident: bb0290 article-title: Sintering rate and mechanism of TiO publication-title: J. Phys. Chem. C – volume: 13 year: 2018 ident: bb0520 article-title: Dependence of nanoparticle toxicity on their physical and chemical properties publication-title: Nanoscale Res. Lett. – volume: 8 start-page: 20 year: 2012 end-page: 36 ident: bb0150 article-title: Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery publication-title: Nanomed.-Nanotechnol. – volume: 74 year: 2006 ident: bb0365 article-title: Shape and faceting of Si nanocrystals embedded in α−SiO publication-title: Phys. Rev. B – volume: 11 start-page: 919 year: 2011 end-page: 928 ident: bb0175 article-title: Modeling particle shape-dependent dynamics in nanomedicine publication-title: J. Nanosci. Nanotechnol. – volume: 27 start-page: 3723 year: 2011 end-page: 3730 ident: bb0070 article-title: Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations publication-title: Langmuir – volume: 1 start-page: 66 year: 2012 end-page: 83 ident: bb0155 article-title: Computational modeling of nanoparticle targeted drug delivery publication-title: Rev. Nanosci. Nanotechnol. – volume: 101 start-page: 1072 year: 2008 end-page: 1082 ident: bb0160 article-title: A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/mac) cells publication-title: Biotechnol. Bioeng. – volume: 15 start-page: 25 year: 1983 end-page: 35 ident: bb0240 article-title: Mechanisms of solute release from porous hydrophilic polymers publication-title: Int. J. Pharm. – volume: 7 start-page: 690 year: 2011 end-page: 698 ident: bb0075 article-title: The role of patterned hydrophilic domains in nanoparticle-membrane interactions publication-title: Curr. Nanosci. – volume: 18 start-page: 18923 year: 2016 end-page: 18933 ident: bb0325 article-title: Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 5856 year: 2008 end-page: 5863 ident: bb0185 article-title: Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel publication-title: Clin. Cancer Res. – volume: 5 start-page: 11676 year: 2015 end-page: 11685 ident: bb0320 article-title: Lipid monolayer disruption caused by aggregated carbon nanoparticles publication-title: RSC Adv. – volume: 9 start-page: 10265 year: 2013 end-page: 10274 ident: bb0335 article-title: Permeation of polystyrene nanoparticles across model lipid bilayer membranes publication-title: Soft Matter – volume: 34 start-page: 449 year: 1901 end-page: 530 ident: bb0380 article-title: Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen publication-title: Z. Kristallogr. – Cryst. Mater. – volume: 6 start-page: 2242 year: 2010 end-page: 2245 ident: bb0280 article-title: A molecular dynamics simulation of the stability-limited growth mechanism of peptide-mediated gold-nanoparticle synthesis publication-title: Small – volume: 48 start-page: 112 year: 2006 end-page: 118 ident: bb0140 article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities, colloids and surfaces publication-title: B, Biointerfaces – volume: 7 start-page: 1139 year: 2011 end-page: 1146 ident: bb0080 article-title: Nanoscale carbon particles and the stability of lipid bilayers publication-title: Soft Matter – volume: 7 year: 2017 ident: bb0345 article-title: Interaction of hydrophobic polymers with model lipid bilayers publication-title: Sci. Rep. – volume: 1861 start-page: 1458 year: 2019 end-page: 1467 ident: bb0310 article-title: Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants publication-title: Biochim. Biophys. Acta, Biomembr. – volume: 1 start-page: 276 year: 2016 end-page: 296 ident: bb0355 article-title: Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles publication-title: Adv. Phys. X – volume: 114 start-page: 12981 year: 2010 end-page: 12994 ident: bb0415 article-title: CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses publication-title: J. Phys. Chem. B – volume: 5 start-page: 2353 year: 2009 end-page: 2370 ident: bb0420 article-title: CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses publication-title: J. Chem. Theory Comput. – volume: 121 start-page: 5040 year: 2017 end-page: 5047 ident: bb0130 article-title: Hydrophobic nanoparticles modify the thermal release behavior of liposomes publication-title: J. Phys. Chem. B – volume: 30 start-page: 1545 year: 2009 end-page: 1614 ident: bb0405 article-title: CHARMM: the biomolecular simulation program publication-title: J. Comput. Chem. – volume: 7 start-page: 775 year: 2017 ident: bb0100 article-title: Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications publication-title: Sci. Rep. – volume: 95 year: 1915 ident: bb0385 article-title: The structure of magnetite and the spinels publication-title: Nature – volume: 58 start-page: 2380 year: 2018 end-page: 2386 ident: bb0390 article-title: NanoCrystal: a web-based crystallographic tool for the construction of nanoparticles based on their crystal habit publication-title: J. Chem. Inf. Model. – volume: 449 start-page: 144 year: 2007 end-page: 148 ident: bb0470 article-title: The electronic spectrum of Fe publication-title: Chem. Phys. Lett. – volume: 278 start-page: 689 year: 1991 end-page: 695 ident: bb0400 article-title: Determination of the p publication-title: Biochem. J. – volume: 198 start-page: 178 year: 2004 end-page: 210 ident: bb0225 article-title: Airflow structures and nano-particle deposition in a human upper airway model publication-title: J. Comput. Phys. – volume: 114 start-page: 372 year: 2018 end-page: 384 ident: bb0045 article-title: Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers - a potential topical wound management approach publication-title: Eur. J. Pharm. Sci. – volume: 120 start-page: 937 year: 2015 end-page: 945 ident: bb0510 article-title: The metastable phases as modulators of biophysical behavior of liposomal membranes publication-title: J. Therm. Anal. Calorim. – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: bb0500 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. – volume: 114 start-page: 12151 year: 2010 end-page: 12157 ident: bb0065 article-title: Molecular dynamics simulations of surfactant functionalized nanoparticles in the vicinity of an oil/water interface publication-title: J. Phys. Chem. C – volume: 63 year: 2001 ident: bb0270 article-title: Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations publication-title: Phys. Rev. B – volume: 5 start-page: 241 year: 2014 end-page: 246 ident: bb0340 article-title: Polystyrene nanoparticles perturb lipid membranes publication-title: J. Phys. Chem. Lett. – volume: 91 start-page: 43 year: 1995 end-page: 56 ident: bb0440 article-title: GROMACS: a message-passing parallel molecular dynamics implementation publication-title: Comput. Phys. Commun. – volume: 31 start-page: 184 year: 2010 end-page: 193 ident: bb0015 article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery publication-title: Peptides – volume: 112 year: 2014 ident: bb0315 article-title: Lipid membranes as solvents for carbon nanoparticles publication-title: Phys. Rev. Lett. – volume: 6 start-page: 10555 year: 2012 end-page: 10561 ident: bb0085 article-title: Nanoparticle-induced permeability of lipid membranes publication-title: ACS Nano – volume: 1-2 start-page: 19 year: 2015 end-page: 25 ident: bb0450 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: Software X – volume: 320 start-page: 1753 year: 2008 end-page: 1758 ident: bb0215 article-title: CFD study on the magnetic fluid delivering in the vessel in high-gradient magnetic field publication-title: J. Magn. Magn. Mater. – volume: 6 start-page: 2455 year: 2010 end-page: 2468 ident: bb0475 article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials publication-title: J. Chem. Theory Comput. – volume: 47 start-page: 1731 year: 2014 end-page: 1741 ident: bb0010 article-title: In silico design and enzymatic synthesis of functional RNA nanoparticles publication-title: Acc. Chem. Res. – volume: 49 start-page: 213 year: 2011 end-page: 242 ident: bb0145 article-title: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls publication-title: Comput. Mech. – volume: 50 start-page: 874 year: 1961 end-page: 875 ident: bb0245 article-title: Rate of release of medicaments from ointment bases containing drugs in suspension publication-title: J. Pharm. Sci. – volume: 9 start-page: 467 year: 2014 end-page: 483 ident: bb0005 article-title: Targeted therapy using nanotechnology: focus on cancer publication-title: Int. J. Nanomedicine – volume: 44 start-page: 1080 year: 2011 end-page: 1093 ident: bb0025 article-title: Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring publication-title: Acc. Chem. Res. – volume: 11 start-page: 673 year: 2016 end-page: 692 ident: bb0035 article-title: The effect of nanoparticle size on publication-title: Nanomedicine-UK – volume: 15 year: 2019 ident: bb0300 article-title: Mixed fluorinated/hydrogenated self-assembled monolayer-protected gold nanoparticles: publication-title: Small – volume: 105 start-page: 9954 year: 2001 end-page: 9960 ident: bb0485 article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K publication-title: J. Phys. Chem. A – volume: 101 start-page: 388 year: 2008 end-page: 399 ident: bb0165 article-title: Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids publication-title: Biotechnol. Bioeng. – volume: 2 year: 2007 ident: bb0425 article-title: Automated builder and database of protein/membrane complexes for molecular dynamics simulations publication-title: PLoS One – volume: 10 start-page: 12386 year: 2018 end-page: 12397 ident: bb0050 article-title: Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis publication-title: Nanoscale – volume: 121 start-page: 10927 year: 2017 end-page: 10935 ident: bb0350 article-title: Au nanoparticles in lipid bilayers: a comparison between atomistic and coarse-grained models publication-title: J. Phys. Chem. C – volume: 6 start-page: 388 year: 2018 end-page: 397 ident: bb0040 article-title: The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes - electrophysiological quantification publication-title: Biomater. Sci. – volume: 7 year: 2011 ident: bb0190 article-title: Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system publication-title: PLoS Comput. Biol. – volume: 103 start-page: 8577 year: 1995 end-page: 8593 ident: bb0465 article-title: A smooth particle mesh Ewald method publication-title: J. Chem. Phys. – volume: 4 start-page: 5421 year: 2010 end-page: 5429 ident: bb0060 article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship publication-title: ACS Nano – volume: 1 start-page: 149 year: 2010 end-page: 173 ident: bb0020 article-title: Polymers for drug delivery systems publication-title: Ann. Rev. Chem. Biomol. Eng. – volume: 87 start-page: 164 year: 2016 end-page: 173 ident: bb0120 article-title: Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development publication-title: Eur. J. Pharm. Sci. – volume: 4 start-page: 435 year: 2008 end-page: 447 ident: bb0445 article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. – volume: 5 start-page: 465 year: 2010 end-page: 472 ident: bb0170 article-title: Tuning payload delivery in tumour cylindroids using gold nanoparticles publication-title: Nat. Nanotechnol. – volume: 7 start-page: 8466 year: 2015 end-page: 8475 ident: bb0525 article-title: Titanium dioxide nanoparticles alter cellular morphology publication-title: Nanoscale – volume: 13 start-page: 123 year: 2001 end-page: 133 ident: bb0235 article-title: Modeling and comparison of dissolution profiles publication-title: Eur. J. Pharm. Sci. – volume: 6 start-page: 3175 year: 2015 end-page: 3179 ident: bb0295 article-title: Monolayer-protected anionic Au nanoparticles walk into lipid membranes step by step publication-title: J. Phys. Chem. Lett. – volume: 15 start-page: 25 issue: 1 year: 1983 ident: 10.1016/j.bbagen.2020.129671_bb0240 article-title: Mechanisms of solute release from porous hydrophilic polymers publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(83)90064-9 – volume: 6 start-page: 3175 issue: 16 year: 2015 ident: 10.1016/j.bbagen.2020.129671_bb0295 article-title: Monolayer-protected anionic Au nanoparticles walk into lipid membranes step by step publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01469 – volume: 1 start-page: 66 year: 2012 ident: 10.1016/j.bbagen.2020.129671_bb0155 article-title: Computational modeling of nanoparticle targeted drug delivery publication-title: Rev. Nanosci. Nanotechnol. doi: 10.1166/rnn.2012.1014 – volume: 74 issue: 16 year: 2006 ident: 10.1016/j.bbagen.2020.129671_bb0365 article-title: Shape and faceting of Si nanocrystals embedded in α−SiO2: a Monte Carlo study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.165419 – volume: 11 start-page: 919 issue: 2 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0175 article-title: Modeling particle shape-dependent dynamics in nanomedicine publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.3536 – volume: 97 start-page: 194 issue: 2 year: 2007 ident: 10.1016/j.bbagen.2020.129671_bb0205 article-title: Transport kinetics of four- and six-coordinate platinum compounds in the multicell layer tumour model publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6603854 – volume: 10 issue: 12 year: 2014 ident: 10.1016/j.bbagen.2020.129671_bb0360 article-title: Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003917 – volume: 2 issue: 9 year: 2007 ident: 10.1016/j.bbagen.2020.129671_bb0425 article-title: Automated builder and database of protein/membrane complexes for molecular dynamics simulations publication-title: PLoS One doi: 10.1371/journal.pone.0000880 – volume: 14 start-page: 33 issue: 1 year: 1996 ident: 10.1016/j.bbagen.2020.129671_bb0435 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 1858 start-page: 2380 issue: 10 year: 2016 ident: 10.1016/j.bbagen.2020.129671_bb0255 article-title: Gold nanoparticles in model biological membranes: a computational perspective publication-title: Biochim. Biophys. Acta, Biomembr. doi: 10.1016/j.bbamem.2016.04.001 – volume: 17 start-page: 572 issue: 3 year: 2016 ident: 10.1016/j.bbagen.2020.129671_bb0125 article-title: Theoretical aspects of differential scanning calorimetry as a tool for the studies of equilibrium thermodynamics in pharmaceutical solid phase transitions publication-title: AAPS PharmSciTech doi: 10.1208/s12249-016-0530-2 – volume: 6 start-page: 13 year: 2008 ident: 10.1016/j.bbagen.2020.129671_bb0135 article-title: Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-6-13 – volume: 1 start-page: 276 issue: 2 year: 2016 ident: 10.1016/j.bbagen.2020.129671_bb0355 article-title: Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles publication-title: Adv. Phys. X – volume: 320 start-page: 1753 issue: 11 year: 2008 ident: 10.1016/j.bbagen.2020.129671_bb0215 article-title: CFD study on the magnetic fluid delivering in the vessel in high-gradient magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2008.01.041 – volume: 101 start-page: 1072 issue: 5 year: 2008 ident: 10.1016/j.bbagen.2020.129671_bb0160 article-title: A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/mac) cells publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21958 – volume: 1 start-page: 149 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0020 article-title: Polymers for drug delivery systems publication-title: Ann. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-073009-100847 – year: 2005 ident: 10.1016/j.bbagen.2020.129671_bb0430 – volume: 44 start-page: 117 issue: 2–3 year: 2005 ident: 10.1016/j.bbagen.2020.129671_bb0115 article-title: Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome publication-title: Colloid. Surface. B doi: 10.1016/j.colsurfb.2005.06.002 – volume: 8 start-page: 1323 issue: 8 year: 2013 ident: 10.1016/j.bbagen.2020.129671_bb0195 article-title: Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy publication-title: Nanomedicine-UK doi: 10.2217/nnm.13.117 – volume: 9 start-page: 10193 issue: 29 year: 2017 ident: 10.1016/j.bbagen.2020.129671_bb0330 article-title: Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes: a molecular dynamics study publication-title: Nanoscale doi: 10.1039/C7NR00890B – volume: 40 start-page: 3408 issue: 6 year: 1989 ident: 10.1016/j.bbagen.2020.129671_bb0370 article-title: Monte Carlo studies of equilibrium and growth shapes of a crystal publication-title: Phys. Rev. A Gen. Phys. doi: 10.1103/PhysRevA.40.3408 – volume: 44 start-page: 1080 issue: 10 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0025 article-title: Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring publication-title: Acc. Chem. Res. doi: 10.1021/ar200011r – volume: 50 start-page: 874 issue: 10 year: 1961 ident: 10.1016/j.bbagen.2020.129671_bb0245 article-title: Rate of release of medicaments from ointment bases containing drugs in suspension publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600501018 – volume: 18 issue: 3 year: 2007 ident: 10.1016/j.bbagen.2020.129671_bb0285 article-title: Growth mechanisms of silver nanoparticles: a molecular dynamics study publication-title: Nanotechnology doi: 10.1088/0957-4484/18/3/035708 – volume: 13 start-page: 123 issue: 2 year: 2001 ident: 10.1016/j.bbagen.2020.129671_bb0235 article-title: Modeling and comparison of dissolution profiles publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(01)00095-1 – volume: 126 issue: 1 year: 2007 ident: 10.1016/j.bbagen.2020.129671_bb0480 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 120 start-page: 937 year: 2015 ident: 10.1016/j.bbagen.2020.129671_bb0510 article-title: The metastable phases as modulators of biophysical behavior of liposomal membranes publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-014-4116-5 – volume: 19 start-page: 157 issue: 3 year: 2016 ident: 10.1016/j.bbagen.2020.129671_bb0230 article-title: Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances publication-title: Mater. Today doi: 10.1016/j.mattod.2015.08.022 – volume: 198 start-page: 178 issue: 1 year: 2004 ident: 10.1016/j.bbagen.2020.129671_bb0225 article-title: Airflow structures and nano-particle deposition in a human upper airway model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.11.034 – volume: 10 start-page: 20120939 issue: 82 year: 2013 ident: 10.1016/j.bbagen.2020.129671_bb0030 article-title: New views on cellular uptake and trafficking of manufactured nanoparticles publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0939 – volume: 6 start-page: 10555 issue: 12 year: 2012 ident: 10.1016/j.bbagen.2020.129671_bb0085 article-title: Nanoparticle-induced permeability of lipid membranes publication-title: ACS Nano doi: 10.1021/nn3028858 – volume: 34 start-page: 449 issue: 1 year: 1901 ident: 10.1016/j.bbagen.2020.129671_bb0380 article-title: Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen publication-title: Z. Kristallogr. – Cryst. Mater. doi: 10.1524/zkri.1901.34.1.449 – volume: 13 year: 2018 ident: 10.1016/j.bbagen.2020.129671_bb0520 article-title: Dependence of nanoparticle toxicity on their physical and chemical properties publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2457-x – volume: 6 start-page: 1230 issue: 2 year: 2012 ident: 10.1016/j.bbagen.2020.129671_bb0090 article-title: Designing nanoparticle translocation through membranes by computer simulations publication-title: ACS Nano doi: 10.1021/nn2038862 – volume: 14 start-page: 5856 issue: 18 year: 2008 ident: 10.1016/j.bbagen.2020.129671_bb0185 article-title: Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-1046 – volume: 7 start-page: 8466 issue: 18 year: 2015 ident: 10.1016/j.bbagen.2020.129671_bb0525 article-title: Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics publication-title: Nanoscale doi: 10.1039/C5NR01448D – volume: 18 start-page: 18923 issue: 28 year: 2016 ident: 10.1016/j.bbagen.2020.129671_bb0325 article-title: Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01957A – volume: 101 start-page: 388 issue: 2 year: 2008 ident: 10.1016/j.bbagen.2020.129671_bb0165 article-title: Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21910 – volume: 81 start-page: 3684 issue: 8 year: 1984 ident: 10.1016/j.bbagen.2020.129671_bb0500 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 103 start-page: 8577 issue: 19 year: 1995 ident: 10.1016/j.bbagen.2020.129671_bb0465 article-title: A smooth particle mesh Ewald method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 114 start-page: 12981 issue: 40 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0415 article-title: CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses publication-title: J. Phys. Chem. B doi: 10.1021/jp105758h – volume: 31 start-page: 184 issue: 1 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0015 article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery publication-title: Peptides doi: 10.1016/j.peptides.2009.10.002 – volume: 166 start-page: 8 issue: 1–2 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0250 article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2011.04.003 – volume: 26 start-page: 1701 issue: 16 year: 2005 ident: 10.1016/j.bbagen.2020.129671_bb0455 article-title: GROMACS: fast, flexible, and free publication-title: J. Comput. Chem. doi: 10.1002/jcc.20291 – volume: 14 start-page: 229 issue: 3 year: 2019 ident: 10.1016/j.bbagen.2020.129671_bb0055 article-title: Size-dependent cellular uptake and TLR4 attenuation by gold nanoparticles in lung adenocarcinoma cells publication-title: Nanomedicine doi: 10.2217/nnm-2018-0266 – volume: 27 start-page: 8645 issue: 14 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0105 article-title: Cationic gel-phase liposomes with “decorated” anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties publication-title: Langmuir doi: 10.1021/la2011138 – volume: 449 start-page: 144 issue: 1–3 year: 2007 ident: 10.1016/j.bbagen.2020.129671_bb0470 article-title: The electronic spectrum of Fe2+ ion in aqueous solution: a sequential Monte Carlo/quantum mechanical study publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.10.063 – volume: 4 start-page: 5421 issue: 9 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0060 article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship publication-title: ACS Nano doi: 10.1021/nn1010792 – volume: 9 start-page: 10265 issue: 43 year: 2013 ident: 10.1016/j.bbagen.2020.129671_bb0335 article-title: Permeation of polystyrene nanoparticles across model lipid bilayer membranes publication-title: Soft Matter doi: 10.1039/c3sm51225h – volume: 278 start-page: 689 issue: 3 year: 1991 ident: 10.1016/j.bbagen.2020.129671_bb0400 article-title: Determination of the pKa of glucuronic acid and the carboxy groups of heparin by 13C-nuclear-magnetic-resonance spectroscopy publication-title: Biochem. J. doi: 10.1042/bj2780689 – volume: 11 start-page: 5391 issue: 12 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0260 article-title: Receptor-mediated endocytosis of nanoparticles of various shapes publication-title: Nano Lett. doi: 10.1021/nl2030213 – volume: 91 start-page: 43 issue: 1–3 year: 1995 ident: 10.1016/j.bbagen.2020.129671_bb0440 article-title: GROMACS: a message-passing parallel molecular dynamics implementation publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00042-E – volume: 45 start-page: 1196 issue: 13 year: 1980 ident: 10.1016/j.bbagen.2020.129671_bb0495 article-title: Crystal structure and pair potentials: a molecular-dynamics study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.1196 – volume: 18 start-page: 159 issue: 3 year: 2008 ident: 10.1016/j.bbagen.2020.129671_bb0505 article-title: Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability publication-title: J. Liposome Res. doi: 10.1080/08982100802310261 – volume: 49 start-page: 213 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0145 article-title: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls publication-title: Comput. Mech. doi: 10.1007/s00466-011-0633-2 – volume: 98 start-page: 10089 issue: 12 year: 1993 ident: 10.1016/j.bbagen.2020.129671_bb0460 article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 4 start-page: 1907 issue: 11 year: 2013 ident: 10.1016/j.bbagen.2020.129671_bb0095 article-title: Homogeneous hydrophobic-hydrophilic surface patterns enhance permeation of nanoparticles through lipid membranes publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400679z – volume: 53 start-page: 417 issue: 4 year: 2005 ident: 10.1016/j.bbagen.2020.129671_bb0265 article-title: Equilibrium Monte Carlo simulations of A1–L10 ordering in FePt nanoparticles publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2005.04.038 – volume: 95 issue: 2386 year: 1915 ident: 10.1016/j.bbagen.2020.129671_bb0385 article-title: The structure of magnetite and the spinels publication-title: Nature doi: 10.1038/095561a0 – volume: 123 start-page: 3801 issue: 6 year: 2019 ident: 10.1016/j.bbagen.2020.129671_bb0305 article-title: In silico study of gold nanoparticle uptake into a mammalian cell: interplay of size, shape, surface charge, and aggregation publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b07616 – volume: 113 start-page: 2322 issue: 39 year: 2009 ident: 10.1016/j.bbagen.2020.129671_bb0210 article-title: Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly (vinyl alcohol) publication-title: J. Phys. Chem. C doi: 10.1021/jp809453v – volume: 412 start-page: 87 year: 2015 ident: 10.1016/j.bbagen.2020.129671_bb0275 article-title: Growth and kinetic Monte Carlo simulation of InAs quantum wires on vicinal substrates publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.11.028 – volume: 5 start-page: 11676 issue: 15 year: 2015 ident: 10.1016/j.bbagen.2020.129671_bb0320 article-title: Lipid monolayer disruption caused by aggregated carbon nanoparticles publication-title: RSC Adv. doi: 10.1039/C4RA17006G – volume: 5 start-page: 2353 issue: 9 year: 2009 ident: 10.1016/j.bbagen.2020.129671_bb0420 article-title: CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900242e – volume: 6 start-page: 2455 issue: 8 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0475 article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100125x – volume: 6 start-page: 388 year: 2018 ident: 10.1016/j.bbagen.2020.129671_bb0040 article-title: The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes - electrophysiological quantification publication-title: Biomater. Sci. doi: 10.1039/C7BM00886D – volume: 105 start-page: 9954 issue: 43 year: 2001 ident: 10.1016/j.bbagen.2020.129671_bb0485 article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K publication-title: J. Phys. Chem. A doi: 10.1021/jp003020w – volume: 47 start-page: 1731 issue: 6 year: 2014 ident: 10.1016/j.bbagen.2020.129671_bb0010 article-title: In silico design and enzymatic synthesis of functional RNA nanoparticles publication-title: Acc. Chem. Res. doi: 10.1021/ar400329z – volume: 7 start-page: 690 issue: 5 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0075 article-title: The role of patterned hydrophilic domains in nanoparticle-membrane interactions publication-title: Curr. Nanosci. doi: 10.2174/157341311797483754 – volume: 115 start-page: 11030 issue: 22 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0290 article-title: Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics publication-title: J. Phys. Chem. C doi: 10.1021/jp2032302 – volume: 11 start-page: 673 issue: 6 year: 2016 ident: 10.1016/j.bbagen.2020.129671_bb0035 article-title: The effect of nanoparticle size on in vivopharmacokinetics and cellular interaction publication-title: Nanomedicine-UK doi: 10.2217/nnm.16.5 – volume: 30 start-page: 1545 issue: 10 year: 2009 ident: 10.1016/j.bbagen.2020.129671_bb0405 article-title: CHARMM: the biomolecular simulation program publication-title: J. Comput. Chem. doi: 10.1002/jcc.21287 – volume: 7 start-page: 3162 issue: 10 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0410 article-title: CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200328p – volume: 35 start-page: 465 issue: 4 year: 2002 ident: 10.1016/j.bbagen.2020.129671_bb0220 article-title: Modeling the bifurcating flow in a human lung airway publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00225-1 – volume: 15 issue: 17 year: 2019 ident: 10.1016/j.bbagen.2020.129671_bb0300 article-title: Mixed fluorinated/hydrogenated self-assembled monolayer-protected gold nanoparticles: in silico and in vitro behavior publication-title: Small doi: 10.1002/smll.201900323 – volume: 1788 start-page: 954 issue: 5 year: 2009 ident: 10.1016/j.bbagen.2020.129671_bb0515 article-title: Lipid bilayer pre-transition as the beginning of the melting process publication-title: Biochim. Biophys. Acta, Biomembr. doi: 10.1016/j.bbamem.2009.01.007 – volume: 121 start-page: 10927 issue: 20 year: 2017 ident: 10.1016/j.bbagen.2020.129671_bb0350 article-title: Au nanoparticles in lipid bilayers: a comparison between atomistic and coarse-grained models publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b12148 – volume: 58 start-page: 2380 issue: 12 year: 2018 ident: 10.1016/j.bbagen.2020.129671_bb0390 article-title: NanoCrystal: a web-based crystallographic tool for the construction of nanoparticles based on their crystal habit publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00269 – volume: 52 start-page: 255 issue: 2 year: 1984 ident: 10.1016/j.bbagen.2020.129671_bb0490 article-title: A molecular dynamics method for simulations in the canonical ensemble publication-title: Mol. Phys. doi: 10.1080/00268978400101201 – volume: 7 issue: 2 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0190 article-title: Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001073 – volume: 4 start-page: 435 issue: 3 year: 2008 ident: 10.1016/j.bbagen.2020.129671_bb0445 article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 7 start-page: 1139 issue: 3 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0080 article-title: Nanoscale carbon particles and the stability of lipid bilayers publication-title: Soft Matter doi: 10.1039/C0SM00963F – volume: 7 year: 2017 ident: 10.1016/j.bbagen.2020.129671_bb0345 article-title: Interaction of hydrophobic polymers with model lipid bilayers publication-title: Sci. Rep. doi: 10.1038/s41598-017-06668-0 – volume: 1-2 start-page: 19 year: 2015 ident: 10.1016/j.bbagen.2020.129671_bb0450 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: Software X – volume: 8 start-page: 2915 issue: 10 year: 2012 ident: 10.1016/j.bbagen.2020.129671_bb0180 article-title: Multidrug resistance protein P-glycoprotein does not recognize nanoparticle C60: experiment and modeling publication-title: Soft Matter doi: 10.1039/c2sm06811g – volume: 8 start-page: 20 issue: 1 year: 2012 ident: 10.1016/j.bbagen.2020.129671_bb0150 article-title: Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery publication-title: Nanomed.-Nanotechnol. doi: 10.1016/j.nano.2011.05.006 – volume: 13 start-page: 11610 issue: 9 year: 2012 ident: 10.1016/j.bbagen.2020.129671_bb0110 article-title: Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms130911610 – volume: 114 start-page: 372 year: 2018 ident: 10.1016/j.bbagen.2020.129671_bb0045 article-title: Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers - a potential topical wound management approach publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.12.018 – volume: 27 start-page: 3723 issue: 7 year: 2011 ident: 10.1016/j.bbagen.2020.129671_bb0070 article-title: Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations publication-title: Langmuir doi: 10.1021/la200236d – volume: 16 start-page: 21082 issue: 39 year: 2014 ident: 10.1016/j.bbagen.2020.129671_bb0395 article-title: A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe3O4 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00529E – volume: 121 start-page: 5040 issue: 19 year: 2017 ident: 10.1016/j.bbagen.2020.129671_bb0130 article-title: Hydrophobic nanoparticles modify the thermal release behavior of liposomes publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b01702 – volume: 48 start-page: 112 year: 2006 ident: 10.1016/j.bbagen.2020.129671_bb0140 article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities, colloids and surfaces publication-title: B, Biointerfaces doi: 10.1016/j.colsurfb.2006.01.006 – volume: 1861 start-page: 1458 issue: 8 year: 2019 ident: 10.1016/j.bbagen.2020.129671_bb0310 article-title: Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants publication-title: Biochim. Biophys. Acta, Biomembr. doi: 10.1016/j.bbamem.2019.06.001 – volume: 9 start-page: 467 year: 2014 ident: 10.1016/j.bbagen.2020.129671_bb0005 article-title: Targeted therapy using nanotechnology: focus on cancer publication-title: Int. J. Nanomedicine – volume: 446 start-page: 31 issue: 1–2 year: 2000 ident: 10.1016/j.bbagen.2020.129671_bb0375 article-title: Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters publication-title: Surf. Sci. doi: 10.1016/S0039-6028(99)01058-4 – volume: 5 start-page: 241 issue: 1 year: 2014 ident: 10.1016/j.bbagen.2020.129671_bb0340 article-title: Polystyrene nanoparticles perturb lipid membranes publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402234c – volume: 10 start-page: 12386 issue: 26 year: 2018 ident: 10.1016/j.bbagen.2020.129671_bb0050 article-title: Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis publication-title: Nanoscale doi: 10.1039/C8NR02393J – volume: 5 start-page: 465 issue: 6 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0170 article-title: Tuning payload delivery in tumour cylindroids using gold nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.58 – volume: 7 start-page: 775 issue: 1 year: 2017 ident: 10.1016/j.bbagen.2020.129671_bb0100 article-title: Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications publication-title: Sci. Rep. doi: 10.1038/s41598-017-00836-y – volume: 87 start-page: 164 year: 2016 ident: 10.1016/j.bbagen.2020.129671_bb0120 article-title: Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2015.12.024 – volume: 63 issue: 18 year: 2001 ident: 10.1016/j.bbagen.2020.129671_bb0270 article-title: Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.184416 – volume: 72 start-page: 1464 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0200 article-title: Multiscale modelling of fluid and drug transport in vascular tumours publication-title: Bull. Math. Biol. doi: 10.1007/s11538-010-9504-9 – volume: 6 start-page: 2242 issue: 20 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0280 article-title: A molecular dynamics simulation of the stability-limited growth mechanism of peptide-mediated gold-nanoparticle synthesis publication-title: Small doi: 10.1002/smll.201000889 – volume: 114 start-page: 12151 issue: 28 year: 2010 ident: 10.1016/j.bbagen.2020.129671_bb0065 article-title: Molecular dynamics simulations of surfactant functionalized nanoparticles in the vicinity of an oil/water interface publication-title: J. Phys. Chem. C doi: 10.1021/jp105355y – volume: 112 issue: 6 year: 2014 ident: 10.1016/j.bbagen.2020.129671_bb0315 article-title: Lipid membranes as solvents for carbon nanoparticles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.068102 |
SSID | ssj0000595 |
Score | 2.398954 |
Snippet | The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129671 |
SubjectTerms | Cancer Cell Membrane - chemistry coatings cytotoxicity Differential scanning calorimetry Diffusion Drug delivery Gum Arabic - chemistry humans lipid bilayers Lipid Bilayers - chemistry lipids magnetism Magnetite Magnetite Nanoparticles - chemistry medicine Membranes, Artificial molecular dynamics Molecular Dynamics Simulation Molecular dynamics simulations molecular models Nanoparticles physicochemical properties polyvinyl alcohol Polyvinyl Alcohol - chemistry |
Title | Coating of magnetic nanoparticles affects their interactions with model cell membranes |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129671 https://www.ncbi.nlm.nih.gov/pubmed/32565292 https://www.proquest.com/docview/2415835090 https://www.proquest.com/docview/2477618002 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB1EEb2I365fRPAat5smaXuURVkVvOiKt9A2iShuV3Q9ePG3O9O0iod1wWNLCmEynbxk3rwBOE4lBjkZxTzJo4hLKwqO21DKy9KSnLoltWpiW1zrwVBe3qv7Oei3tTBEq2xif4jpdbRu3nQba3ZfHh-7N5TUQzihBKF6BBJUwS4TovWdfP7QPBA-qJBJkJxGt-VzNcerKPCnJRVUQTILmU5607anafCz3obOV2GlwY_sNExxDeZctQ6LoaPkxzos9dsGbhtw1x_nRGpmY89G-UNF5Yqsyis8JjdsOJYHNger0wWMpCNeQ6HDG6MLWlb3yWF0uc9GboQHawyMmzA8P7vtD3jTRoGXUqsJj73wVunYO-l0mfqUrid9odI81TKLPAI4q50VNtcpokGPoIFypS4qZamc0_EWzFfjyu0AiyMb4xnIksygTIRPE5eJXFEyUSDO1B2IW-uZstEYp1YXz6Ylkz2ZYHNDNjfB5h3g31-9BI2NGeOTdmHML18xuA3M-PKoXUeDi0HmQ8ON398MARn0oSiL_hqTJLpHCLsD28EJvucbI3RUIhO7_57bHizTU6hz3If5yeu7O0DAMykOa48-hIXTi6vB9ReDQvwW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQivl2fEbyGrWmStkdZlPW1Fx94C22TiOJ2RdeD_96ZplU8qOC1TSBMJjNfMjPfABykEo2cjGKe5FHEpRUFRzeU8rK0RKduia2asi2GenAjz-7U3RT021oYSqtsbH-w6bW1br70Gmn2nh8eelcU1EM4oQShegQS0zBD7FSyAzNHp-eD4ZdBVnXzFRrPaUJbQVeneRUFnlsiQhXEtJDp5PAnD_UTAq090ckiLDQQkh2FVS7BlKuWYTY0lXxfhrl-28NtBW7745zymtnYs1F-X1HFIqvyCm_KTUIcy0NCB6sjBozYI15CrcMrozdaVrfKYfS-z0ZuhHdrtI2rcHNyfN0f8KaTAi-lVhMee-Gt0rF30uky9Sm9UPpCpXmqZRZ5xHBWOytsrlMEhB5xA4VLXVTKUjmn4zXoVOPKbQCLIxvjNcgS06BMhE8Tl4lcUTxRINTUXYhb6ZmyoRmnbhdPps0nezRB5oZkboLMu8A_Zz0Hmo0_xiftxphv6mLQE_wxc7_dR4ObQeJDwY3fXg1hGVSjKIt-G5Mk-pBAdhfWgxJ8rjdG9KhEJjb_vbY9mBtcX16Yi9Ph-RbM059Q9rgNncnLm9tB_DMpdhv9_gApOv7H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coating+of+magnetic+nanoparticles+affects+their+interactions+with+model+cell+membranes&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Lazaratos%2C+Michalis&rft.au=Karathanou%2C+Konstantina&rft.au=Mainas%2C+Eleftherios&rft.au=Chatzigoulas%2C+Alexios&rft.date=2020-11-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=11&rft.spage=129671&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2020_129671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |