Coating of magnetic nanoparticles affects their interactions with model cell membranes

The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without dama...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 11; p. 129671
Main Authors Lazaratos, Michalis, Karathanou, Konstantina, Mainas, Eleftherios, Chatzigoulas, Alexios, Pippa, Natassa, Demetzos, Costas, Cournia, Zoe
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2020
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2020.129671

Cover

Loading…
Abstract The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments. Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes. DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer. Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications. Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers. [Display omitted] •Interactions of coated nanoparticles with DPPC bilayers were studied with Differential Scanning Calorimetry and MD simulations.•DSC and MD simulations reveal different interactions of MAG-PVA and MAG-ARA nanoparticles with polar groups of phospholipids.•MAG-PVA interacts more strongly with DPPC headgroups and is on average closer to the lipid bilayer.•Nanoparticles caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer.•MAG-ARA and MAG-PVA do not destabilize the model membrane and can be promising platforms for biomedical applications.
AbstractList The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments. Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes. DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer. Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications. Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers. [Display omitted] •Interactions of coated nanoparticles with DPPC bilayers were studied with Differential Scanning Calorimetry and MD simulations.•DSC and MD simulations reveal different interactions of MAG-PVA and MAG-ARA nanoparticles with polar groups of phospholipids.•MAG-PVA interacts more strongly with DPPC headgroups and is on average closer to the lipid bilayer.•Nanoparticles caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer.•MAG-ARA and MAG-PVA do not destabilize the model membrane and can be promising platforms for biomedical applications.
The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments. Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes. DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer. Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications. Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.
The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.
The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.BACKGROUNDThe use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.METHODSDifferential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.RESULTSDSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.CONCLUSIONSResults of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.GENERAL SIGNIFICANCEUnderstanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.
ArticleNumber 129671
Author Mainas, Eleftherios
Demetzos, Costas
Karathanou, Konstantina
Lazaratos, Michalis
Chatzigoulas, Alexios
Pippa, Natassa
Cournia, Zoe
Author_xml – sequence: 1
  givenname: Michalis
  surname: Lazaratos
  fullname: Lazaratos, Michalis
  organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
– sequence: 2
  givenname: Konstantina
  surname: Karathanou
  fullname: Karathanou, Konstantina
  organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
– sequence: 3
  givenname: Eleftherios
  surname: Mainas
  fullname: Mainas, Eleftherios
  organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
– sequence: 4
  givenname: Alexios
  surname: Chatzigoulas
  fullname: Chatzigoulas, Alexios
  organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
– sequence: 5
  givenname: Natassa
  surname: Pippa
  fullname: Pippa, Natassa
  organization: Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
– sequence: 6
  givenname: Costas
  surname: Demetzos
  fullname: Demetzos, Costas
  organization: Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
– sequence: 7
  givenname: Zoe
  surname: Cournia
  fullname: Cournia, Zoe
  email: zcournia@bioacademy.gr
  organization: Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32565292$$D View this record in MEDLINE/PubMed
BookMark eNqNkUGLFDEQhYOsuLOr_0AkRy89VtKddNqDIIO6Cwte1GtIpyuzGbqTMcko_nsz9O7Fg1qXFOF7j-K9K3IRYkBCXjLYMmDyzWE7jmaPYcuB1y8-yJ49IRumet4oAHlBNtBC13RMiktylfMB6ohBPCOXLRdS8IFvyLddNMWHPY2OLmYfsHhLgwnxaFJdZ8zUOIe2ZFru0SfqQ8FkbPExZPrTl3u6xAlnanGe6YLLmEzA_Jw8dWbO-OLhvSZfP374srtp7j5_ut29v2tsJ0VpWsfdJGTrsENplVMcoHejUEbJbgDXcjlJnPhkpBr63kGvJAiFYDsrEGV7TV6vvscUv58wF734fD6lHhFPWfOu7yWrcfD_QJlQrYABKvrqAT2NC076mPxi0i_9GFsF3q6ATTHnhE5bX8w5k5KMnzUDfe5IH_TakT53pNeOqrj7Q_zo_w_Zu1WGNc8fHpPO1mOwOPlU-9FT9H83-A0zBqxB
CitedBy_id crossref_primary_10_1016_j_cocis_2023_101727
crossref_primary_10_3389_fmed_2022_799145
crossref_primary_10_3390_ijms25021162
crossref_primary_10_1039_D4RA05686H
crossref_primary_10_1016_j_bbagen_2021_129888
crossref_primary_10_1080_07391102_2024_2329307
crossref_primary_10_3390_ijms24054770
crossref_primary_10_1016_j_bbamem_2024_184352
crossref_primary_10_1039_D4TB00489B
Cites_doi 10.1016/0378-5173(83)90064-9
10.1021/acs.jpclett.5b01469
10.1166/rnn.2012.1014
10.1103/PhysRevB.74.165419
10.1166/jnn.2011.3536
10.1038/sj.bjc.6603854
10.1371/journal.pcbi.1003917
10.1371/journal.pone.0000880
10.1016/0263-7855(96)00018-5
10.1016/j.bbamem.2016.04.001
10.1208/s12249-016-0530-2
10.1186/1477-3155-6-13
10.1016/j.jmmm.2008.01.041
10.1002/bit.21958
10.1146/annurev-chembioeng-073009-100847
10.1016/j.colsurfb.2005.06.002
10.2217/nnm.13.117
10.1039/C7NR00890B
10.1103/PhysRevA.40.3408
10.1021/ar200011r
10.1002/jps.2600501018
10.1088/0957-4484/18/3/035708
10.1016/S0928-0987(01)00095-1
10.1063/1.2408420
10.1007/s10973-014-4116-5
10.1016/j.mattod.2015.08.022
10.1016/j.jcp.2003.11.034
10.1098/rsif.2012.0939
10.1021/nn3028858
10.1524/zkri.1901.34.1.449
10.1186/s11671-018-2457-x
10.1021/nn2038862
10.1158/1078-0432.CCR-08-1046
10.1039/C5NR01448D
10.1039/C6CP01957A
10.1002/bit.21910
10.1063/1.448118
10.1063/1.470117
10.1021/jp105758h
10.1016/j.peptides.2009.10.002
10.1016/j.cis.2011.04.003
10.1002/jcc.20291
10.2217/nnm-2018-0266
10.1021/la2011138
10.1016/j.cplett.2007.10.063
10.1021/nn1010792
10.1039/c3sm51225h
10.1042/bj2780689
10.1021/nl2030213
10.1016/0010-4655(95)00042-E
10.1103/PhysRevLett.45.1196
10.1080/08982100802310261
10.1007/s00466-011-0633-2
10.1063/1.464397
10.1021/jz400679z
10.1016/j.scriptamat.2005.04.038
10.1038/095561a0
10.1021/acs.jpcc.8b07616
10.1021/jp809453v
10.1016/j.jcrysgro.2014.11.028
10.1039/C4RA17006G
10.1021/ct900242e
10.1021/ct100125x
10.1039/C7BM00886D
10.1021/jp003020w
10.1021/ar400329z
10.2174/157341311797483754
10.1021/jp2032302
10.2217/nnm.16.5
10.1002/jcc.21287
10.1021/ct200328p
10.1016/S0021-9290(01)00225-1
10.1002/smll.201900323
10.1016/j.bbamem.2009.01.007
10.1021/acs.jpcc.6b12148
10.1021/acs.jcim.8b00269
10.1080/00268978400101201
10.1371/journal.pcbi.1001073
10.1021/ct700301q
10.1039/C0SM00963F
10.1038/s41598-017-06668-0
10.1039/c2sm06811g
10.1016/j.nano.2011.05.006
10.3390/ijms130911610
10.1016/j.ejps.2017.12.018
10.1021/la200236d
10.1039/C4CP00529E
10.1021/acs.jpcb.7b01702
10.1016/j.colsurfb.2006.01.006
10.1016/j.bbamem.2019.06.001
10.1016/S0039-6028(99)01058-4
10.1021/jz402234c
10.1039/C8NR02393J
10.1038/nnano.2010.58
10.1038/s41598-017-00836-y
10.1016/j.ejps.2015.12.024
10.1103/PhysRevB.63.184416
10.1007/s11538-010-9504-9
10.1002/smll.201000889
10.1021/jp105355y
10.1103/PhysRevLett.112.068102
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier B.V.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129671
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Medicine
EISSN 1872-8006
ExternalDocumentID 32565292
10_1016_j_bbagen_2020_129671
S0304416520301835
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c465t-3f2fd563fe4e6c8f82007fb58a86490f326d6ed2da68977f0786058e0c4c5ee63
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 11:57:40 EDT 2025
Fri Jul 11 02:34:57 EDT 2025
Wed Feb 19 02:30:27 EST 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 23 02:48:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Differential scanning calorimetry
CG
MAG-PVA
Drug delivery
Molecular dynamics simulations
Nanoparticles
ARA
Magnetite
DSC
RDF
MD
Tm
PVA
MAG-ARA
Cancer
DPPC
Ts
MSD
Language English
License Copyright © 2020. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-3f2fd563fe4e6c8f82007fb58a86490f326d6ed2da68977f0786058e0c4c5ee63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32565292
PQID 2415835090
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477618002
proquest_miscellaneous_2415835090
pubmed_primary_32565292
crossref_citationtrail_10_1016_j_bbagen_2020_129671
crossref_primary_10_1016_j_bbagen_2020_129671
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Loganathan, Linhardt (bb0400) 1991; 278
Sanna, Pala, Sechi (bb0005) 2014; 9
Patitsa, Karathanou, Kanaki, Tzioga, Pippa, Demetzos, Verganelakis, Cournia, Klinakis (bb0100) 2017; 7
Van Der Spoel, Lindahl, Hess, Groenhof, Mark, Berendsen (bb0455) 2005; 26
Rossi, Monticelli (bb0255) 2016; 1858
Parrinello, Rahman (bb0495) 1980; 45
Gkeka, Angelikopoulos (bb0075) 2011; 7
Michel, Gradzielski (bb0110) 2012; 13
Huynh, Neale, Pomes, Allen (bb0150) 2012; 8
Pippa, Pispas, Demetzos (bb0510) 2015; 120
Bothun (bb0135) 2008; 6
Park, Oh, Mun, Han (bb0140) 2006; 48
Rossi, Monticelli (bb0355) 2016; 1
Shipley, Chapman (bb0200) 2010; 72
Aguilar, De Almeida, Rocha (bb0470) 2007; 449
Udayana Ranatunga, Kalescky, Chiu, Nielsen (bb0065) 2010; 114
Guvench, Mallajosyula, Raman, Hatcher, Vanommeslaeghe, Foster, Jamison, Mackerell (bb0410) 2011; 7
Kaddi, Phan, Wang (bb0195) 2013; 8
Revia, Zhang (bb0230) 2016; 19
Riske, Barroso, Vequi-Suplicy, Germano, Henriques, Lamy (bb0515) 2009; 1788
Sukhanova, Bozrova, Sokolov, Berestovoy, Karaulov, Nabiev (bb0520) 2018; 13
Xu, Luo, Li, Li, Zhang, Zuo, Huang, Yue (bb0330) 2017; 9
Lunnoo, Assawakhajornsak, Puangmali (bb0305) 2019; 123
Jusufi, DeVane, Shinoda, Klein (bb0080) 2011; 7
Higuchi (bb0245) 1961; 50
Ece Gamsiz, Shah, Devalapally, Amiji, Carrier (bb0160) 2008; 101
Simonelli, Bochicchio, Ferrando, Rossi (bb0295) 2015; 6
Prates Ramalho, Gkeka, Sarkisov (bb0070) 2011; 27
Lin, Landersdorfer, London, Meng, Lim, Lin, Lin, Tang, Brown, Van Scoy, Kulawy, Queimado, Drusano, Louie, Davis, Mousa, Davis (bb0190) 2011; 7
Ho, Kamm, Kah (bb0050) 2018; 10
Modok, Scott, Alderden, Hall, Mellor, Bohic, Roose, Hambley, Callaghan (bb0205) 2007; 97
Park, Oh, Mun, Han (bb0115) 2005; 44
Shah, Liu, Hu, Gao (bb0175) 2011; 11
Treuel, Jiang, Nienhaus (bb0030) 2013; 10
Hossain, Gandhi, Hughes, Gu, Saha (bb0310) 2019; 1861
Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (bb0465) 1995; 103
Goodman, Chen, Matveev, Pun (bb0165) 2008; 101
Kim, Han, Toley, Kim, Rotello, Forbes (bb0170) 2010; 5
Hossain, Hossainy, Bazilevs, Calo, Hughes (bb0145) 2011; 49
Liu, So, Zhang (bb0220) 2002; 35
Mark, Nilsson (bb0485) 2001; 105
Yu, Becker, Carri (bb0280) 2010; 6
Afonin, Kasprzak, Bindewald, Kireeva, Viard, Kashlev, Shapiro (bb0010) 2014; 47
Zeng, Jiang, Yu, Lu (bb0285) 2007; 18
Brooks, Brooks, Mackerell, Nilsson, Petrella, Roux, Won, Archontis, Bartels, Boresch, Caflisch, Caves, Cui, Dinner, Feig, Fischer, Gao, Hodoscek, Im, Kuczera, Lazaridis, Ma, Ovchinnikov, Paci, Pastor, Post, Pu, Schaefer, Tidor, Venable, Woodcock, Wu, Yang, York, Karplus (bb0405) 2009; 30
Tan, Choong, Dass (bb0015) 2010; 31
Santos-Carballal, Roldan, Grau-Crespo, de Leeuw (bb0395) 2014; 16
Pogodin, Werner, Sommer, Baulin (bb0085) 2012; 6
Knopp, Lobmann, Elder, Rades, Holm (bb0120) 2016; 87
Lin, Zhang, Chen, Zheng (bb0060) 2010; 4
Hoshyar, Gray, Han, Bao (bb0035) 2016; 11
Laurent, Dutz, Hafeli, Mahmoudi (bb0250) 2011; 166
Darden, York, Pedersen (bb0460) 1993; 98
Buesser, Gröhn, Pratsinis (bb0290) 2011; 115
Bochicchio, Panizon, Monticelli, Rossi (bb0345) 2017; 7
Guvench, Hatcher, Venable, Pastor, Mackerell (bb0420) 2009; 5
Costa, Sousa Lobo (bb0235) 2001; 13
Manz, Sholl (bb0475) 2010; 6
Nosé (bb0490) 1984; 52
Nisoh, Karttunen, Monticelli, Wong-ekkabut (bb0320) 2015; 5
Jo, Kim, Im (bb0425) 2007; 2
Raman, Guvench, MacKerell (bb0415) 2010; 114
Vacha, Martinez-Veracoechea, Frenkel (bb0260) 2011; 11
Mahmoudi, Shokrgozar, Simchi, Imani, Milani, Stroeve, Vali, Häfeli, Bonakdar (bb0210) 2009; 113
Gkeka, Angelikopoulos, Sarkisov, Cournia (bb0360) 2014; 10
Chowdhury, Cerqueira, Sousa, Oliveira, Reis, Zorec (bb0040) 2018; 6
Iglesias, Labarta (bb0270) 2001; 63
Bragg (bb0385) 1915; 95
Mao, Xu, Ji, Zhou, Zhang, Chen, Han, Tang, Wang, Xia (bb0525) 2015; 7
Humphrey, Dalke, Schulten (bb0435) 1996; 14
Barnoud, Rossi, Monticelli (bb0315) 2014; 112
Rossi, Barnoud, Monticelli (bb0340) 2014; 5
Wulff (bb0380) 1901; 34
Berendsen, van der Spoel, van Drunen (bb0440) 1995; 91
Ding, Tian, Ma (bb0090) 2012; 6
Bussi, Donadio, Parrinello (bb0480) 2007; 126
Korsmeyer, Gurny, Doelker, Buri, Peppas (bb0240) 1983; 15
Zhang, Kleinstreuer (bb0225) 2004; 198
Baletto, Mottet, Ferrando (bb0375) 2000; 446
Thake, Webb, Nash, Rappoport, Notman (bb0335) 2013; 9
Preiss, Hart, Kitchens, Bothun (bb0130) 2017; 121
Berendsen, Postma, van Gunsteren, DiNola, Haak (bb0500) 1984; 81
Gkeka, Sarkisov, Angelikopoulos (bb0095) 2013; 4
Vyas, Goswami (bb0055) 2019; 14
Marson, Guida, Şologan, Boccardo, Pengo, Perissinotto, Iacuzzi, Pellizzoni, Polizzi, Casalis, Pasquato, Pacor, Tossi, Posocco (bb0300) 2019; 15
Scullion, Thompson, Botton (bb0275) 2015; 412
Liu, Shah, Tan (bb0155) 2012; 1
Hess, Kutzner, van der Spoel, Lindahl (bb0445) 2008; 4
Faroongsarng (bb0125) 2016; 17
Hadjisavvas, Remediakis, Kelires (bb0365) 2006; 74
Salassi, Simonelli, Bochicchio, Ferrando, Rossi (bb0350) 2017; 121
Landau, Binder (bb0430) 2005
Liechty, Kryscio, Slaughter, Peppas (bb0020) 2010; 1
Chen, Bothun (bb0105) 2011; 27
Yue, Xu, Li, Zhang, Huang (bb0325) 2016; 18
Saito, Ueta (bb0370) 1989; 40
Li, Yao, Liu (bb0215) 2008; 320
Chatzigoulas, Karathanou, Dellis, Cournia (bb0390) 2018; 58
Abdelkader, Osman, El-Gizawy, Hawthorne, Faheem, McCarron (bb0045) 2018; 114
Lindahl, Abraham, Murtola, Schulz, Pál, Smith, Hess (bb0450) 2015; 1-2
Xu, Li, Ma, Wang, Wang, Zou (bb0180) 2012; 8
Yang, Asta, Mryasov, Klemmer, Chantrell (bb0265) 2005; 53
Namiki, Fuchigami, Tada, Kawamura, Matsunuma, Kitamoto, Nakagawa (bb0025) 2011; 44
Fetterly, Grasela, Sherman, Dul, Grahn, Lecomte, Fiedler-Kelly, Damjanov, Fishman, Kane, Rubin, Tan (bb0185) 2008; 14
Demetzos (bb0505) 2008; 18
Yue (10.1016/j.bbagen.2020.129671_bb0325) 2016; 18
Berendsen (10.1016/j.bbagen.2020.129671_bb0500) 1984; 81
Kim (10.1016/j.bbagen.2020.129671_bb0170) 2010; 5
Tan (10.1016/j.bbagen.2020.129671_bb0015) 2010; 31
Jusufi (10.1016/j.bbagen.2020.129671_bb0080) 2011; 7
Aguilar (10.1016/j.bbagen.2020.129671_bb0470) 2007; 449
Iglesias (10.1016/j.bbagen.2020.129671_bb0270) 2001; 63
Zeng (10.1016/j.bbagen.2020.129671_bb0285) 2007; 18
Revia (10.1016/j.bbagen.2020.129671_bb0230) 2016; 19
Li (10.1016/j.bbagen.2020.129671_bb0215) 2008; 320
Park (10.1016/j.bbagen.2020.129671_bb0115) 2005; 44
Shipley (10.1016/j.bbagen.2020.129671_bb0200) 2010; 72
Saito (10.1016/j.bbagen.2020.129671_bb0370) 1989; 40
Buesser (10.1016/j.bbagen.2020.129671_bb0290) 2011; 115
Zhang (10.1016/j.bbagen.2020.129671_bb0225) 2004; 198
Yang (10.1016/j.bbagen.2020.129671_bb0265) 2005; 53
Preiss (10.1016/j.bbagen.2020.129671_bb0130) 2017; 121
Brooks (10.1016/j.bbagen.2020.129671_bb0405) 2009; 30
Parrinello (10.1016/j.bbagen.2020.129671_bb0495) 1980; 45
Costa (10.1016/j.bbagen.2020.129671_bb0235) 2001; 13
Demetzos (10.1016/j.bbagen.2020.129671_bb0505) 2008; 18
Hossain (10.1016/j.bbagen.2020.129671_bb0310) 2019; 1861
Afonin (10.1016/j.bbagen.2020.129671_bb0010) 2014; 47
Chen (10.1016/j.bbagen.2020.129671_bb0105) 2011; 27
Rossi (10.1016/j.bbagen.2020.129671_bb0340) 2014; 5
Sukhanova (10.1016/j.bbagen.2020.129671_bb0520) 2018; 13
Rossi (10.1016/j.bbagen.2020.129671_bb0255) 2016; 1858
Manz (10.1016/j.bbagen.2020.129671_bb0475) 2010; 6
Hoshyar (10.1016/j.bbagen.2020.129671_bb0035) 2016; 11
Lin (10.1016/j.bbagen.2020.129671_bb0060) 2010; 4
Wang (10.1016/j.bbagen.2020.129671_bb0400) 1991; 278
Korsmeyer (10.1016/j.bbagen.2020.129671_bb0240) 1983; 15
Gkeka (10.1016/j.bbagen.2020.129671_bb0360) 2014; 10
Jo (10.1016/j.bbagen.2020.129671_bb0425) 2007; 2
Ho (10.1016/j.bbagen.2020.129671_bb0050) 2018; 10
Thake (10.1016/j.bbagen.2020.129671_bb0335) 2013; 9
Treuel (10.1016/j.bbagen.2020.129671_bb0030) 2013; 10
Park (10.1016/j.bbagen.2020.129671_bb0140) 2006; 48
Darden (10.1016/j.bbagen.2020.129671_bb0460) 1993; 98
Essmann (10.1016/j.bbagen.2020.129671_bb0465) 1995; 103
Nosé (10.1016/j.bbagen.2020.129671_bb0490) 1984; 52
Berendsen (10.1016/j.bbagen.2020.129671_bb0440) 1995; 91
Bothun (10.1016/j.bbagen.2020.129671_bb0135) 2008; 6
Liu (10.1016/j.bbagen.2020.129671_bb0220) 2002; 35
Ding (10.1016/j.bbagen.2020.129671_bb0090) 2012; 6
Lindahl (10.1016/j.bbagen.2020.129671_bb0450) 2015; 1-2
Hossain (10.1016/j.bbagen.2020.129671_bb0145) 2011; 49
Abdelkader (10.1016/j.bbagen.2020.129671_bb0045) 2018; 114
Chatzigoulas (10.1016/j.bbagen.2020.129671_bb0390) 2018; 58
Knopp (10.1016/j.bbagen.2020.129671_bb0120) 2016; 87
Baletto (10.1016/j.bbagen.2020.129671_bb0375) 2000; 446
Bochicchio (10.1016/j.bbagen.2020.129671_bb0345) 2017; 7
Xu (10.1016/j.bbagen.2020.129671_bb0180) 2012; 8
Rossi (10.1016/j.bbagen.2020.129671_bb0355) 2016; 1
Fetterly (10.1016/j.bbagen.2020.129671_bb0185) 2008; 14
Lunnoo (10.1016/j.bbagen.2020.129671_bb0305) 2019; 123
Pippa (10.1016/j.bbagen.2020.129671_bb0510) 2015; 120
Santos-Carballal (10.1016/j.bbagen.2020.129671_bb0395) 2014; 16
Mark (10.1016/j.bbagen.2020.129671_bb0485) 2001; 105
Riske (10.1016/j.bbagen.2020.129671_bb0515) 2009; 1788
Yu (10.1016/j.bbagen.2020.129671_bb0280) 2010; 6
Kaddi (10.1016/j.bbagen.2020.129671_bb0195) 2013; 8
Liechty (10.1016/j.bbagen.2020.129671_bb0020) 2010; 1
Patitsa (10.1016/j.bbagen.2020.129671_bb0100) 2017; 7
Ece Gamsiz (10.1016/j.bbagen.2020.129671_bb0160) 2008; 101
Bussi (10.1016/j.bbagen.2020.129671_bb0480) 2007; 126
Xu (10.1016/j.bbagen.2020.129671_bb0330) 2017; 9
Shah (10.1016/j.bbagen.2020.129671_bb0175) 2011; 11
Guvench (10.1016/j.bbagen.2020.129671_bb0420) 2009; 5
Chowdhury (10.1016/j.bbagen.2020.129671_bb0040) 2018; 6
Raman (10.1016/j.bbagen.2020.129671_bb0415) 2010; 114
Salassi (10.1016/j.bbagen.2020.129671_bb0350) 2017; 121
Van Der Spoel (10.1016/j.bbagen.2020.129671_bb0455) 2005; 26
Mao (10.1016/j.bbagen.2020.129671_bb0525) 2015; 7
Bragg (10.1016/j.bbagen.2020.129671_bb0385) 1915; 95
Guvench (10.1016/j.bbagen.2020.129671_bb0410) 2011; 7
Hess (10.1016/j.bbagen.2020.129671_bb0445) 2008; 4
Modok (10.1016/j.bbagen.2020.129671_bb0205) 2007; 97
Nisoh (10.1016/j.bbagen.2020.129671_bb0320) 2015; 5
Higuchi (10.1016/j.bbagen.2020.129671_bb0245) 1961; 50
Prates Ramalho (10.1016/j.bbagen.2020.129671_bb0070) 2011; 27
Sanna (10.1016/j.bbagen.2020.129671_bb0005) 2014; 9
Udayana Ranatunga (10.1016/j.bbagen.2020.129671_bb0065) 2010; 114
Huynh (10.1016/j.bbagen.2020.129671_bb0150) 2012; 8
Faroongsarng (10.1016/j.bbagen.2020.129671_bb0125) 2016; 17
Wulff (10.1016/j.bbagen.2020.129671_bb0380) 1901; 34
Laurent (10.1016/j.bbagen.2020.129671_bb0250) 2011; 166
Mahmoudi (10.1016/j.bbagen.2020.129671_bb0210) 2009; 113
Liu (10.1016/j.bbagen.2020.129671_bb0155) 2012; 1
Namiki (10.1016/j.bbagen.2020.129671_bb0025) 2011; 44
Scullion (10.1016/j.bbagen.2020.129671_bb0275) 2015; 412
Hadjisavvas (10.1016/j.bbagen.2020.129671_bb0365) 2006; 74
Marson (10.1016/j.bbagen.2020.129671_bb0300) 2019; 15
Barnoud (10.1016/j.bbagen.2020.129671_bb0315) 2014; 112
Pogodin (10.1016/j.bbagen.2020.129671_bb0085) 2012; 6
Goodman (10.1016/j.bbagen.2020.129671_bb0165) 2008; 101
Humphrey (10.1016/j.bbagen.2020.129671_bb0435) 1996; 14
Landau (10.1016/j.bbagen.2020.129671_bb0430) 2005
Michel (10.1016/j.bbagen.2020.129671_bb0110) 2012; 13
Vyas (10.1016/j.bbagen.2020.129671_bb0055) 2019; 14
Vacha (10.1016/j.bbagen.2020.129671_bb0260) 2011; 11
Simonelli (10.1016/j.bbagen.2020.129671_bb0295) 2015; 6
Gkeka (10.1016/j.bbagen.2020.129671_bb0075) 2011; 7
Gkeka (10.1016/j.bbagen.2020.129671_bb0095) 2013; 4
Lin (10.1016/j.bbagen.2020.129671_bb0190) 2011; 7
References_xml – volume: 446
  start-page: 31
  year: 2000
  end-page: 45
  ident: bb0375
  article-title: Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters
  publication-title: Surf. Sci.
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  ident: bb0460
  article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 11610
  year: 2012
  end-page: 11642
  ident: bb0110
  article-title: Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications
  publication-title: Int. J. Mol. Sci.
– volume: 16
  start-page: 21082
  year: 2014
  end-page: 21097
  ident: bb0395
  article-title: A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1858
  start-page: 2380
  year: 2016
  end-page: 2389
  ident: bb0255
  article-title: Gold nanoparticles in model biological membranes: a computational perspective
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 166
  start-page: 8
  year: 2011
  end-page: 23
  ident: bb0250
  article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
  publication-title: Adv. Colloid Interf. Sci.
– volume: 6
  start-page: 13
  year: 2008
  ident: bb0135
  article-title: Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties
  publication-title: J. Nanobiotechnol.
– volume: 11
  start-page: 5391
  year: 2011
  end-page: 5395
  ident: bb0260
  article-title: Receptor-mediated endocytosis of nanoparticles of various shapes
  publication-title: Nano Lett.
– volume: 6
  start-page: 1230
  year: 2012
  end-page: 1238
  ident: bb0090
  article-title: Designing nanoparticle translocation through membranes by computer simulations
  publication-title: ACS Nano
– volume: 45
  start-page: 1196
  year: 1980
  end-page: 1199
  ident: bb0495
  article-title: Crystal structure and pair potentials: a molecular-dynamics study
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 1907
  year: 2013
  end-page: 1912
  ident: bb0095
  article-title: Homogeneous hydrophobic-hydrophilic surface patterns enhance permeation of nanoparticles through lipid membranes
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 1323
  year: 2013
  end-page: 1333
  ident: bb0195
  article-title: Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy
  publication-title: Nanomedicine-UK
– volume: 53
  start-page: 417
  year: 2005
  end-page: 422
  ident: bb0265
  article-title: Equilibrium Monte Carlo simulations of A1–L10 ordering in FePt nanoparticles
  publication-title: Scripta Mater.
– volume: 40
  start-page: 3408
  year: 1989
  end-page: 3419
  ident: bb0370
  article-title: Monte Carlo studies of equilibrium and growth shapes of a crystal
  publication-title: Phys. Rev. A Gen. Phys.
– volume: 72
  start-page: 1464
  year: 2010
  end-page: 1491
  ident: bb0200
  article-title: Multiscale modelling of fluid and drug transport in vascular tumours
  publication-title: Bull. Math. Biol.
– volume: 10
  year: 2014
  ident: bb0360
  article-title: Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion
  publication-title: PLoS Comput. Biol.
– volume: 9
  start-page: 10193
  year: 2017
  end-page: 10204
  ident: bb0330
  article-title: Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes: a molecular dynamics study
  publication-title: Nanoscale
– volume: 10
  start-page: 20120939
  year: 2013
  ident: bb0030
  article-title: New views on cellular uptake and trafficking of manufactured nanoparticles
  publication-title: J. R. Soc. Interface
– volume: 8
  start-page: 2915
  year: 2012
  end-page: 2923
  ident: bb0180
  article-title: Multidrug resistance protein P-glycoprotein does not recognize nanoparticle C60: experiment and modeling
  publication-title: Soft Matter
– volume: 27
  start-page: 8645
  year: 2011
  end-page: 8652
  ident: bb0105
  article-title: Cationic gel-phase liposomes with “decorated” anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties
  publication-title: Langmuir
– volume: 7
  start-page: 3162
  year: 2011
  end-page: 3180
  ident: bb0410
  article-title: CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling
  publication-title: J. Chem. Theory Comput.
– year: 2005
  ident: bb0430
  article-title: A guide to Monte Carlo simulations in statistical physics
– volume: 123
  start-page: 3801
  year: 2019
  end-page: 3810
  ident: bb0305
  article-title: study of gold nanoparticle uptake into a mammalian cell: interplay of size, shape, surface charge, and aggregation
  publication-title: J. Phys. Chem. C
– volume: 18
  year: 2007
  ident: bb0285
  article-title: Growth mechanisms of silver nanoparticles: a molecular dynamics study
  publication-title: Nanotechnology
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1718
  ident: bb0455
  article-title: GROMACS: fast, flexible, and free
  publication-title: J. Comput. Chem.
– volume: 1788
  start-page: 954
  year: 2009
  end-page: 963
  ident: bb0515
  article-title: Lipid bilayer pre-transition as the beginning of the melting process
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 17
  start-page: 572
  year: 2016
  end-page: 577
  ident: bb0125
  article-title: Theoretical aspects of differential scanning calorimetry as a tool for the studies of equilibrium thermodynamics in pharmaceutical solid phase transitions
  publication-title: AAPS PharmSciTech
– volume: 19
  start-page: 157
  year: 2016
  end-page: 168
  ident: bb0230
  article-title: Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances
  publication-title: Mater. Today
– volume: 126
  year: 2007
  ident: bb0480
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
– volume: 97
  start-page: 194
  year: 2007
  end-page: 200
  ident: bb0205
  article-title: Transport kinetics of four- and six-coordinate platinum compounds in the multicell layer tumour model
  publication-title: Br. J. Cancer
– volume: 18
  start-page: 159
  year: 2008
  end-page: 173
  ident: bb0505
  article-title: Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability
  publication-title: J. Liposome Res.
– volume: 412
  start-page: 87
  year: 2015
  end-page: 94
  ident: bb0275
  article-title: Growth and kinetic Monte Carlo simulation of InAs quantum wires on vicinal substrates
  publication-title: J. Cryst. Growth
– volume: 44
  start-page: 117
  year: 2005
  end-page: 122
  ident: bb0115
  article-title: Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome
  publication-title: Colloid. Surface. B
– volume: 14
  start-page: 229
  year: 2019
  end-page: 253
  ident: bb0055
  article-title: Size-dependent cellular uptake and TLR4 attenuation by gold nanoparticles in lung adenocarcinoma cells
  publication-title: Nanomedicine
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: bb0435
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 35
  start-page: 465
  year: 2002
  end-page: 473
  ident: bb0220
  article-title: Modeling the bifurcating flow in a human lung airway
  publication-title: J. Biomech.
– volume: 113
  start-page: 2322
  year: 2009
  end-page: 2331
  ident: bb0210
  article-title: Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly (vinyl alcohol)
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 255
  year: 1984
  end-page: 268
  ident: bb0490
  article-title: A molecular dynamics method for simulations in the canonical ensemble
  publication-title: Mol. Phys.
– volume: 115
  start-page: 11030
  year: 2011
  end-page: 11035
  ident: bb0290
  article-title: Sintering rate and mechanism of TiO
  publication-title: J. Phys. Chem. C
– volume: 13
  year: 2018
  ident: bb0520
  article-title: Dependence of nanoparticle toxicity on their physical and chemical properties
  publication-title: Nanoscale Res. Lett.
– volume: 8
  start-page: 20
  year: 2012
  end-page: 36
  ident: bb0150
  article-title: Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery
  publication-title: Nanomed.-Nanotechnol.
– volume: 74
  year: 2006
  ident: bb0365
  article-title: Shape and faceting of Si nanocrystals embedded in α−SiO
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 919
  year: 2011
  end-page: 928
  ident: bb0175
  article-title: Modeling particle shape-dependent dynamics in nanomedicine
  publication-title: J. Nanosci. Nanotechnol.
– volume: 27
  start-page: 3723
  year: 2011
  end-page: 3730
  ident: bb0070
  article-title: Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations
  publication-title: Langmuir
– volume: 1
  start-page: 66
  year: 2012
  end-page: 83
  ident: bb0155
  article-title: Computational modeling of nanoparticle targeted drug delivery
  publication-title: Rev. Nanosci. Nanotechnol.
– volume: 101
  start-page: 1072
  year: 2008
  end-page: 1082
  ident: bb0160
  article-title: A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/mac) cells
  publication-title: Biotechnol. Bioeng.
– volume: 15
  start-page: 25
  year: 1983
  end-page: 35
  ident: bb0240
  article-title: Mechanisms of solute release from porous hydrophilic polymers
  publication-title: Int. J. Pharm.
– volume: 7
  start-page: 690
  year: 2011
  end-page: 698
  ident: bb0075
  article-title: The role of patterned hydrophilic domains in nanoparticle-membrane interactions
  publication-title: Curr. Nanosci.
– volume: 18
  start-page: 18923
  year: 2016
  end-page: 18933
  ident: bb0325
  article-title: Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 5856
  year: 2008
  end-page: 5863
  ident: bb0185
  article-title: Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel
  publication-title: Clin. Cancer Res.
– volume: 5
  start-page: 11676
  year: 2015
  end-page: 11685
  ident: bb0320
  article-title: Lipid monolayer disruption caused by aggregated carbon nanoparticles
  publication-title: RSC Adv.
– volume: 9
  start-page: 10265
  year: 2013
  end-page: 10274
  ident: bb0335
  article-title: Permeation of polystyrene nanoparticles across model lipid bilayer membranes
  publication-title: Soft Matter
– volume: 34
  start-page: 449
  year: 1901
  end-page: 530
  ident: bb0380
  article-title: Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen
  publication-title: Z. Kristallogr. – Cryst. Mater.
– volume: 6
  start-page: 2242
  year: 2010
  end-page: 2245
  ident: bb0280
  article-title: A molecular dynamics simulation of the stability-limited growth mechanism of peptide-mediated gold-nanoparticle synthesis
  publication-title: Small
– volume: 48
  start-page: 112
  year: 2006
  end-page: 118
  ident: bb0140
  article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities, colloids and surfaces
  publication-title: B, Biointerfaces
– volume: 7
  start-page: 1139
  year: 2011
  end-page: 1146
  ident: bb0080
  article-title: Nanoscale carbon particles and the stability of lipid bilayers
  publication-title: Soft Matter
– volume: 7
  year: 2017
  ident: bb0345
  article-title: Interaction of hydrophobic polymers with model lipid bilayers
  publication-title: Sci. Rep.
– volume: 1861
  start-page: 1458
  year: 2019
  end-page: 1467
  ident: bb0310
  article-title: Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 1
  start-page: 276
  year: 2016
  end-page: 296
  ident: bb0355
  article-title: Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles
  publication-title: Adv. Phys. X
– volume: 114
  start-page: 12981
  year: 2010
  end-page: 12994
  ident: bb0415
  article-title: CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 2353
  year: 2009
  end-page: 2370
  ident: bb0420
  article-title: CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses
  publication-title: J. Chem. Theory Comput.
– volume: 121
  start-page: 5040
  year: 2017
  end-page: 5047
  ident: bb0130
  article-title: Hydrophobic nanoparticles modify the thermal release behavior of liposomes
  publication-title: J. Phys. Chem. B
– volume: 30
  start-page: 1545
  year: 2009
  end-page: 1614
  ident: bb0405
  article-title: CHARMM: the biomolecular simulation program
  publication-title: J. Comput. Chem.
– volume: 7
  start-page: 775
  year: 2017
  ident: bb0100
  article-title: Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications
  publication-title: Sci. Rep.
– volume: 95
  year: 1915
  ident: bb0385
  article-title: The structure of magnetite and the spinels
  publication-title: Nature
– volume: 58
  start-page: 2380
  year: 2018
  end-page: 2386
  ident: bb0390
  article-title: NanoCrystal: a web-based crystallographic tool for the construction of nanoparticles based on their crystal habit
  publication-title: J. Chem. Inf. Model.
– volume: 449
  start-page: 144
  year: 2007
  end-page: 148
  ident: bb0470
  article-title: The electronic spectrum of Fe
  publication-title: Chem. Phys. Lett.
– volume: 278
  start-page: 689
  year: 1991
  end-page: 695
  ident: bb0400
  article-title: Determination of the p
  publication-title: Biochem. J.
– volume: 198
  start-page: 178
  year: 2004
  end-page: 210
  ident: bb0225
  article-title: Airflow structures and nano-particle deposition in a human upper airway model
  publication-title: J. Comput. Phys.
– volume: 114
  start-page: 372
  year: 2018
  end-page: 384
  ident: bb0045
  article-title: Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers - a potential topical wound management approach
  publication-title: Eur. J. Pharm. Sci.
– volume: 120
  start-page: 937
  year: 2015
  end-page: 945
  ident: bb0510
  article-title: The metastable phases as modulators of biophysical behavior of liposomal membranes
  publication-title: J. Therm. Anal. Calorim.
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  ident: bb0500
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 12151
  year: 2010
  end-page: 12157
  ident: bb0065
  article-title: Molecular dynamics simulations of surfactant functionalized nanoparticles in the vicinity of an oil/water interface
  publication-title: J. Phys. Chem. C
– volume: 63
  year: 2001
  ident: bb0270
  article-title: Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 241
  year: 2014
  end-page: 246
  ident: bb0340
  article-title: Polystyrene nanoparticles perturb lipid membranes
  publication-title: J. Phys. Chem. Lett.
– volume: 91
  start-page: 43
  year: 1995
  end-page: 56
  ident: bb0440
  article-title: GROMACS: a message-passing parallel molecular dynamics implementation
  publication-title: Comput. Phys. Commun.
– volume: 31
  start-page: 184
  year: 2010
  end-page: 193
  ident: bb0015
  article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery
  publication-title: Peptides
– volume: 112
  year: 2014
  ident: bb0315
  article-title: Lipid membranes as solvents for carbon nanoparticles
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 10555
  year: 2012
  end-page: 10561
  ident: bb0085
  article-title: Nanoparticle-induced permeability of lipid membranes
  publication-title: ACS Nano
– volume: 1-2
  start-page: 19
  year: 2015
  end-page: 25
  ident: bb0450
  article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: Software X
– volume: 320
  start-page: 1753
  year: 2008
  end-page: 1758
  ident: bb0215
  article-title: CFD study on the magnetic fluid delivering in the vessel in high-gradient magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 6
  start-page: 2455
  year: 2010
  end-page: 2468
  ident: bb0475
  article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials
  publication-title: J. Chem. Theory Comput.
– volume: 47
  start-page: 1731
  year: 2014
  end-page: 1741
  ident: bb0010
  article-title: In silico design and enzymatic synthesis of functional RNA nanoparticles
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: 213
  year: 2011
  end-page: 242
  ident: bb0145
  article-title: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls
  publication-title: Comput. Mech.
– volume: 50
  start-page: 874
  year: 1961
  end-page: 875
  ident: bb0245
  article-title: Rate of release of medicaments from ointment bases containing drugs in suspension
  publication-title: J. Pharm. Sci.
– volume: 9
  start-page: 467
  year: 2014
  end-page: 483
  ident: bb0005
  article-title: Targeted therapy using nanotechnology: focus on cancer
  publication-title: Int. J. Nanomedicine
– volume: 44
  start-page: 1080
  year: 2011
  end-page: 1093
  ident: bb0025
  article-title: Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 673
  year: 2016
  end-page: 692
  ident: bb0035
  article-title: The effect of nanoparticle size on
  publication-title: Nanomedicine-UK
– volume: 15
  year: 2019
  ident: bb0300
  article-title: Mixed fluorinated/hydrogenated self-assembled monolayer-protected gold nanoparticles:
  publication-title: Small
– volume: 105
  start-page: 9954
  year: 2001
  end-page: 9960
  ident: bb0485
  article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
  publication-title: J. Phys. Chem. A
– volume: 101
  start-page: 388
  year: 2008
  end-page: 399
  ident: bb0165
  article-title: Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids
  publication-title: Biotechnol. Bioeng.
– volume: 2
  year: 2007
  ident: bb0425
  article-title: Automated builder and database of protein/membrane complexes for molecular dynamics simulations
  publication-title: PLoS One
– volume: 10
  start-page: 12386
  year: 2018
  end-page: 12397
  ident: bb0050
  article-title: Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis
  publication-title: Nanoscale
– volume: 121
  start-page: 10927
  year: 2017
  end-page: 10935
  ident: bb0350
  article-title: Au nanoparticles in lipid bilayers: a comparison between atomistic and coarse-grained models
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 388
  year: 2018
  end-page: 397
  ident: bb0040
  article-title: The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes - electrophysiological quantification
  publication-title: Biomater. Sci.
– volume: 7
  year: 2011
  ident: bb0190
  article-title: Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system
  publication-title: PLoS Comput. Biol.
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  ident: bb0465
  article-title: A smooth particle mesh Ewald method
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 5421
  year: 2010
  end-page: 5429
  ident: bb0060
  article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship
  publication-title: ACS Nano
– volume: 1
  start-page: 149
  year: 2010
  end-page: 173
  ident: bb0020
  article-title: Polymers for drug delivery systems
  publication-title: Ann. Rev. Chem. Biomol. Eng.
– volume: 87
  start-page: 164
  year: 2016
  end-page: 173
  ident: bb0120
  article-title: Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development
  publication-title: Eur. J. Pharm. Sci.
– volume: 4
  start-page: 435
  year: 2008
  end-page: 447
  ident: bb0445
  article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theory Comput.
– volume: 5
  start-page: 465
  year: 2010
  end-page: 472
  ident: bb0170
  article-title: Tuning payload delivery in tumour cylindroids using gold nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 8466
  year: 2015
  end-page: 8475
  ident: bb0525
  article-title: Titanium dioxide nanoparticles alter cellular morphology
  publication-title: Nanoscale
– volume: 13
  start-page: 123
  year: 2001
  end-page: 133
  ident: bb0235
  article-title: Modeling and comparison of dissolution profiles
  publication-title: Eur. J. Pharm. Sci.
– volume: 6
  start-page: 3175
  year: 2015
  end-page: 3179
  ident: bb0295
  article-title: Monolayer-protected anionic Au nanoparticles walk into lipid membranes step by step
  publication-title: J. Phys. Chem. Lett.
– volume: 15
  start-page: 25
  issue: 1
  year: 1983
  ident: 10.1016/j.bbagen.2020.129671_bb0240
  article-title: Mechanisms of solute release from porous hydrophilic polymers
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(83)90064-9
– volume: 6
  start-page: 3175
  issue: 16
  year: 2015
  ident: 10.1016/j.bbagen.2020.129671_bb0295
  article-title: Monolayer-protected anionic Au nanoparticles walk into lipid membranes step by step
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01469
– volume: 1
  start-page: 66
  year: 2012
  ident: 10.1016/j.bbagen.2020.129671_bb0155
  article-title: Computational modeling of nanoparticle targeted drug delivery
  publication-title: Rev. Nanosci. Nanotechnol.
  doi: 10.1166/rnn.2012.1014
– volume: 74
  issue: 16
  year: 2006
  ident: 10.1016/j.bbagen.2020.129671_bb0365
  article-title: Shape and faceting of Si nanocrystals embedded in α−SiO2: a Monte Carlo study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.165419
– volume: 11
  start-page: 919
  issue: 2
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0175
  article-title: Modeling particle shape-dependent dynamics in nanomedicine
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.3536
– volume: 97
  start-page: 194
  issue: 2
  year: 2007
  ident: 10.1016/j.bbagen.2020.129671_bb0205
  article-title: Transport kinetics of four- and six-coordinate platinum compounds in the multicell layer tumour model
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6603854
– volume: 10
  issue: 12
  year: 2014
  ident: 10.1016/j.bbagen.2020.129671_bb0360
  article-title: Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003917
– volume: 2
  issue: 9
  year: 2007
  ident: 10.1016/j.bbagen.2020.129671_bb0425
  article-title: Automated builder and database of protein/membrane complexes for molecular dynamics simulations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000880
– volume: 14
  start-page: 33
  issue: 1
  year: 1996
  ident: 10.1016/j.bbagen.2020.129671_bb0435
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 1858
  start-page: 2380
  issue: 10
  year: 2016
  ident: 10.1016/j.bbagen.2020.129671_bb0255
  article-title: Gold nanoparticles in model biological membranes: a computational perspective
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2016.04.001
– volume: 17
  start-page: 572
  issue: 3
  year: 2016
  ident: 10.1016/j.bbagen.2020.129671_bb0125
  article-title: Theoretical aspects of differential scanning calorimetry as a tool for the studies of equilibrium thermodynamics in pharmaceutical solid phase transitions
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-016-0530-2
– volume: 6
  start-page: 13
  year: 2008
  ident: 10.1016/j.bbagen.2020.129671_bb0135
  article-title: Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-6-13
– volume: 1
  start-page: 276
  issue: 2
  year: 2016
  ident: 10.1016/j.bbagen.2020.129671_bb0355
  article-title: Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles
  publication-title: Adv. Phys. X
– volume: 320
  start-page: 1753
  issue: 11
  year: 2008
  ident: 10.1016/j.bbagen.2020.129671_bb0215
  article-title: CFD study on the magnetic fluid delivering in the vessel in high-gradient magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2008.01.041
– volume: 101
  start-page: 1072
  issue: 5
  year: 2008
  ident: 10.1016/j.bbagen.2020.129671_bb0160
  article-title: A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/mac) cells
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21958
– volume: 1
  start-page: 149
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0020
  article-title: Polymers for drug delivery systems
  publication-title: Ann. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-073009-100847
– year: 2005
  ident: 10.1016/j.bbagen.2020.129671_bb0430
– volume: 44
  start-page: 117
  issue: 2–3
  year: 2005
  ident: 10.1016/j.bbagen.2020.129671_bb0115
  article-title: Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome
  publication-title: Colloid. Surface. B
  doi: 10.1016/j.colsurfb.2005.06.002
– volume: 8
  start-page: 1323
  issue: 8
  year: 2013
  ident: 10.1016/j.bbagen.2020.129671_bb0195
  article-title: Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy
  publication-title: Nanomedicine-UK
  doi: 10.2217/nnm.13.117
– volume: 9
  start-page: 10193
  issue: 29
  year: 2017
  ident: 10.1016/j.bbagen.2020.129671_bb0330
  article-title: Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes: a molecular dynamics study
  publication-title: Nanoscale
  doi: 10.1039/C7NR00890B
– volume: 40
  start-page: 3408
  issue: 6
  year: 1989
  ident: 10.1016/j.bbagen.2020.129671_bb0370
  article-title: Monte Carlo studies of equilibrium and growth shapes of a crystal
  publication-title: Phys. Rev. A Gen. Phys.
  doi: 10.1103/PhysRevA.40.3408
– volume: 44
  start-page: 1080
  issue: 10
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0025
  article-title: Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200011r
– volume: 50
  start-page: 874
  issue: 10
  year: 1961
  ident: 10.1016/j.bbagen.2020.129671_bb0245
  article-title: Rate of release of medicaments from ointment bases containing drugs in suspension
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600501018
– volume: 18
  issue: 3
  year: 2007
  ident: 10.1016/j.bbagen.2020.129671_bb0285
  article-title: Growth mechanisms of silver nanoparticles: a molecular dynamics study
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/3/035708
– volume: 13
  start-page: 123
  issue: 2
  year: 2001
  ident: 10.1016/j.bbagen.2020.129671_bb0235
  article-title: Modeling and comparison of dissolution profiles
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/S0928-0987(01)00095-1
– volume: 126
  issue: 1
  year: 2007
  ident: 10.1016/j.bbagen.2020.129671_bb0480
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 120
  start-page: 937
  year: 2015
  ident: 10.1016/j.bbagen.2020.129671_bb0510
  article-title: The metastable phases as modulators of biophysical behavior of liposomal membranes
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-014-4116-5
– volume: 19
  start-page: 157
  issue: 3
  year: 2016
  ident: 10.1016/j.bbagen.2020.129671_bb0230
  article-title: Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.08.022
– volume: 198
  start-page: 178
  issue: 1
  year: 2004
  ident: 10.1016/j.bbagen.2020.129671_bb0225
  article-title: Airflow structures and nano-particle deposition in a human upper airway model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.11.034
– volume: 10
  start-page: 20120939
  issue: 82
  year: 2013
  ident: 10.1016/j.bbagen.2020.129671_bb0030
  article-title: New views on cellular uptake and trafficking of manufactured nanoparticles
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0939
– volume: 6
  start-page: 10555
  issue: 12
  year: 2012
  ident: 10.1016/j.bbagen.2020.129671_bb0085
  article-title: Nanoparticle-induced permeability of lipid membranes
  publication-title: ACS Nano
  doi: 10.1021/nn3028858
– volume: 34
  start-page: 449
  issue: 1
  year: 1901
  ident: 10.1016/j.bbagen.2020.129671_bb0380
  article-title: Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen
  publication-title: Z. Kristallogr. – Cryst. Mater.
  doi: 10.1524/zkri.1901.34.1.449
– volume: 13
  year: 2018
  ident: 10.1016/j.bbagen.2020.129671_bb0520
  article-title: Dependence of nanoparticle toxicity on their physical and chemical properties
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2457-x
– volume: 6
  start-page: 1230
  issue: 2
  year: 2012
  ident: 10.1016/j.bbagen.2020.129671_bb0090
  article-title: Designing nanoparticle translocation through membranes by computer simulations
  publication-title: ACS Nano
  doi: 10.1021/nn2038862
– volume: 14
  start-page: 5856
  issue: 18
  year: 2008
  ident: 10.1016/j.bbagen.2020.129671_bb0185
  article-title: Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-1046
– volume: 7
  start-page: 8466
  issue: 18
  year: 2015
  ident: 10.1016/j.bbagen.2020.129671_bb0525
  article-title: Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics
  publication-title: Nanoscale
  doi: 10.1039/C5NR01448D
– volume: 18
  start-page: 18923
  issue: 28
  year: 2016
  ident: 10.1016/j.bbagen.2020.129671_bb0325
  article-title: Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01957A
– volume: 101
  start-page: 388
  issue: 2
  year: 2008
  ident: 10.1016/j.bbagen.2020.129671_bb0165
  article-title: Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21910
– volume: 81
  start-page: 3684
  issue: 8
  year: 1984
  ident: 10.1016/j.bbagen.2020.129671_bb0500
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 103
  start-page: 8577
  issue: 19
  year: 1995
  ident: 10.1016/j.bbagen.2020.129671_bb0465
  article-title: A smooth particle mesh Ewald method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 114
  start-page: 12981
  issue: 40
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0415
  article-title: CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp105758h
– volume: 31
  start-page: 184
  issue: 1
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0015
  article-title: Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery
  publication-title: Peptides
  doi: 10.1016/j.peptides.2009.10.002
– volume: 166
  start-page: 8
  issue: 1–2
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0250
  article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2011.04.003
– volume: 26
  start-page: 1701
  issue: 16
  year: 2005
  ident: 10.1016/j.bbagen.2020.129671_bb0455
  article-title: GROMACS: fast, flexible, and free
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
– volume: 14
  start-page: 229
  issue: 3
  year: 2019
  ident: 10.1016/j.bbagen.2020.129671_bb0055
  article-title: Size-dependent cellular uptake and TLR4 attenuation by gold nanoparticles in lung adenocarcinoma cells
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0266
– volume: 27
  start-page: 8645
  issue: 14
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0105
  article-title: Cationic gel-phase liposomes with “decorated” anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties
  publication-title: Langmuir
  doi: 10.1021/la2011138
– volume: 449
  start-page: 144
  issue: 1–3
  year: 2007
  ident: 10.1016/j.bbagen.2020.129671_bb0470
  article-title: The electronic spectrum of Fe2+ ion in aqueous solution: a sequential Monte Carlo/quantum mechanical study
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.10.063
– volume: 4
  start-page: 5421
  issue: 9
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0060
  article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship
  publication-title: ACS Nano
  doi: 10.1021/nn1010792
– volume: 9
  start-page: 10265
  issue: 43
  year: 2013
  ident: 10.1016/j.bbagen.2020.129671_bb0335
  article-title: Permeation of polystyrene nanoparticles across model lipid bilayer membranes
  publication-title: Soft Matter
  doi: 10.1039/c3sm51225h
– volume: 278
  start-page: 689
  issue: 3
  year: 1991
  ident: 10.1016/j.bbagen.2020.129671_bb0400
  article-title: Determination of the pKa of glucuronic acid and the carboxy groups of heparin by 13C-nuclear-magnetic-resonance spectroscopy
  publication-title: Biochem. J.
  doi: 10.1042/bj2780689
– volume: 11
  start-page: 5391
  issue: 12
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0260
  article-title: Receptor-mediated endocytosis of nanoparticles of various shapes
  publication-title: Nano Lett.
  doi: 10.1021/nl2030213
– volume: 91
  start-page: 43
  issue: 1–3
  year: 1995
  ident: 10.1016/j.bbagen.2020.129671_bb0440
  article-title: GROMACS: a message-passing parallel molecular dynamics implementation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00042-E
– volume: 45
  start-page: 1196
  issue: 13
  year: 1980
  ident: 10.1016/j.bbagen.2020.129671_bb0495
  article-title: Crystal structure and pair potentials: a molecular-dynamics study
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.1196
– volume: 18
  start-page: 159
  issue: 3
  year: 2008
  ident: 10.1016/j.bbagen.2020.129671_bb0505
  article-title: Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability
  publication-title: J. Liposome Res.
  doi: 10.1080/08982100802310261
– volume: 49
  start-page: 213
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0145
  article-title: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-011-0633-2
– volume: 98
  start-page: 10089
  issue: 12
  year: 1993
  ident: 10.1016/j.bbagen.2020.129671_bb0460
  article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 4
  start-page: 1907
  issue: 11
  year: 2013
  ident: 10.1016/j.bbagen.2020.129671_bb0095
  article-title: Homogeneous hydrophobic-hydrophilic surface patterns enhance permeation of nanoparticles through lipid membranes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400679z
– volume: 53
  start-page: 417
  issue: 4
  year: 2005
  ident: 10.1016/j.bbagen.2020.129671_bb0265
  article-title: Equilibrium Monte Carlo simulations of A1–L10 ordering in FePt nanoparticles
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2005.04.038
– volume: 95
  issue: 2386
  year: 1915
  ident: 10.1016/j.bbagen.2020.129671_bb0385
  article-title: The structure of magnetite and the spinels
  publication-title: Nature
  doi: 10.1038/095561a0
– volume: 123
  start-page: 3801
  issue: 6
  year: 2019
  ident: 10.1016/j.bbagen.2020.129671_bb0305
  article-title: In silico study of gold nanoparticle uptake into a mammalian cell: interplay of size, shape, surface charge, and aggregation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b07616
– volume: 113
  start-page: 2322
  issue: 39
  year: 2009
  ident: 10.1016/j.bbagen.2020.129671_bb0210
  article-title: Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly (vinyl alcohol)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp809453v
– volume: 412
  start-page: 87
  year: 2015
  ident: 10.1016/j.bbagen.2020.129671_bb0275
  article-title: Growth and kinetic Monte Carlo simulation of InAs quantum wires on vicinal substrates
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.11.028
– volume: 5
  start-page: 11676
  issue: 15
  year: 2015
  ident: 10.1016/j.bbagen.2020.129671_bb0320
  article-title: Lipid monolayer disruption caused by aggregated carbon nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C4RA17006G
– volume: 5
  start-page: 2353
  issue: 9
  year: 2009
  ident: 10.1016/j.bbagen.2020.129671_bb0420
  article-title: CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900242e
– volume: 6
  start-page: 2455
  issue: 8
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0475
  article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100125x
– volume: 6
  start-page: 388
  year: 2018
  ident: 10.1016/j.bbagen.2020.129671_bb0040
  article-title: The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes - electrophysiological quantification
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00886D
– volume: 105
  start-page: 9954
  issue: 43
  year: 2001
  ident: 10.1016/j.bbagen.2020.129671_bb0485
  article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp003020w
– volume: 47
  start-page: 1731
  issue: 6
  year: 2014
  ident: 10.1016/j.bbagen.2020.129671_bb0010
  article-title: In silico design and enzymatic synthesis of functional RNA nanoparticles
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400329z
– volume: 7
  start-page: 690
  issue: 5
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0075
  article-title: The role of patterned hydrophilic domains in nanoparticle-membrane interactions
  publication-title: Curr. Nanosci.
  doi: 10.2174/157341311797483754
– volume: 115
  start-page: 11030
  issue: 22
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0290
  article-title: Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2032302
– volume: 11
  start-page: 673
  issue: 6
  year: 2016
  ident: 10.1016/j.bbagen.2020.129671_bb0035
  article-title: The effect of nanoparticle size on in vivopharmacokinetics and cellular interaction
  publication-title: Nanomedicine-UK
  doi: 10.2217/nnm.16.5
– volume: 30
  start-page: 1545
  issue: 10
  year: 2009
  ident: 10.1016/j.bbagen.2020.129671_bb0405
  article-title: CHARMM: the biomolecular simulation program
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21287
– volume: 7
  start-page: 3162
  issue: 10
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0410
  article-title: CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200328p
– volume: 35
  start-page: 465
  issue: 4
  year: 2002
  ident: 10.1016/j.bbagen.2020.129671_bb0220
  article-title: Modeling the bifurcating flow in a human lung airway
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00225-1
– volume: 15
  issue: 17
  year: 2019
  ident: 10.1016/j.bbagen.2020.129671_bb0300
  article-title: Mixed fluorinated/hydrogenated self-assembled monolayer-protected gold nanoparticles: in silico and in vitro behavior
  publication-title: Small
  doi: 10.1002/smll.201900323
– volume: 1788
  start-page: 954
  issue: 5
  year: 2009
  ident: 10.1016/j.bbagen.2020.129671_bb0515
  article-title: Lipid bilayer pre-transition as the beginning of the melting process
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2009.01.007
– volume: 121
  start-page: 10927
  issue: 20
  year: 2017
  ident: 10.1016/j.bbagen.2020.129671_bb0350
  article-title: Au nanoparticles in lipid bilayers: a comparison between atomistic and coarse-grained models
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b12148
– volume: 58
  start-page: 2380
  issue: 12
  year: 2018
  ident: 10.1016/j.bbagen.2020.129671_bb0390
  article-title: NanoCrystal: a web-based crystallographic tool for the construction of nanoparticles based on their crystal habit
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00269
– volume: 52
  start-page: 255
  issue: 2
  year: 1984
  ident: 10.1016/j.bbagen.2020.129671_bb0490
  article-title: A molecular dynamics method for simulations in the canonical ensemble
  publication-title: Mol. Phys.
  doi: 10.1080/00268978400101201
– volume: 7
  issue: 2
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0190
  article-title: Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001073
– volume: 4
  start-page: 435
  issue: 3
  year: 2008
  ident: 10.1016/j.bbagen.2020.129671_bb0445
  article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 7
  start-page: 1139
  issue: 3
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0080
  article-title: Nanoscale carbon particles and the stability of lipid bilayers
  publication-title: Soft Matter
  doi: 10.1039/C0SM00963F
– volume: 7
  year: 2017
  ident: 10.1016/j.bbagen.2020.129671_bb0345
  article-title: Interaction of hydrophobic polymers with model lipid bilayers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06668-0
– volume: 1-2
  start-page: 19
  year: 2015
  ident: 10.1016/j.bbagen.2020.129671_bb0450
  article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: Software X
– volume: 8
  start-page: 2915
  issue: 10
  year: 2012
  ident: 10.1016/j.bbagen.2020.129671_bb0180
  article-title: Multidrug resistance protein P-glycoprotein does not recognize nanoparticle C60: experiment and modeling
  publication-title: Soft Matter
  doi: 10.1039/c2sm06811g
– volume: 8
  start-page: 20
  issue: 1
  year: 2012
  ident: 10.1016/j.bbagen.2020.129671_bb0150
  article-title: Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery
  publication-title: Nanomed.-Nanotechnol.
  doi: 10.1016/j.nano.2011.05.006
– volume: 13
  start-page: 11610
  issue: 9
  year: 2012
  ident: 10.1016/j.bbagen.2020.129671_bb0110
  article-title: Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms130911610
– volume: 114
  start-page: 372
  year: 2018
  ident: 10.1016/j.bbagen.2020.129671_bb0045
  article-title: Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers - a potential topical wound management approach
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.12.018
– volume: 27
  start-page: 3723
  issue: 7
  year: 2011
  ident: 10.1016/j.bbagen.2020.129671_bb0070
  article-title: Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations
  publication-title: Langmuir
  doi: 10.1021/la200236d
– volume: 16
  start-page: 21082
  issue: 39
  year: 2014
  ident: 10.1016/j.bbagen.2020.129671_bb0395
  article-title: A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe3O4
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00529E
– volume: 121
  start-page: 5040
  issue: 19
  year: 2017
  ident: 10.1016/j.bbagen.2020.129671_bb0130
  article-title: Hydrophobic nanoparticles modify the thermal release behavior of liposomes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b01702
– volume: 48
  start-page: 112
  year: 2006
  ident: 10.1016/j.bbagen.2020.129671_bb0140
  article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities, colloids and surfaces
  publication-title: B, Biointerfaces
  doi: 10.1016/j.colsurfb.2006.01.006
– volume: 1861
  start-page: 1458
  issue: 8
  year: 2019
  ident: 10.1016/j.bbagen.2020.129671_bb0310
  article-title: Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2019.06.001
– volume: 9
  start-page: 467
  year: 2014
  ident: 10.1016/j.bbagen.2020.129671_bb0005
  article-title: Targeted therapy using nanotechnology: focus on cancer
  publication-title: Int. J. Nanomedicine
– volume: 446
  start-page: 31
  issue: 1–2
  year: 2000
  ident: 10.1016/j.bbagen.2020.129671_bb0375
  article-title: Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(99)01058-4
– volume: 5
  start-page: 241
  issue: 1
  year: 2014
  ident: 10.1016/j.bbagen.2020.129671_bb0340
  article-title: Polystyrene nanoparticles perturb lipid membranes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402234c
– volume: 10
  start-page: 12386
  issue: 26
  year: 2018
  ident: 10.1016/j.bbagen.2020.129671_bb0050
  article-title: Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis
  publication-title: Nanoscale
  doi: 10.1039/C8NR02393J
– volume: 5
  start-page: 465
  issue: 6
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0170
  article-title: Tuning payload delivery in tumour cylindroids using gold nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.58
– volume: 7
  start-page: 775
  issue: 1
  year: 2017
  ident: 10.1016/j.bbagen.2020.129671_bb0100
  article-title: Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00836-y
– volume: 87
  start-page: 164
  year: 2016
  ident: 10.1016/j.bbagen.2020.129671_bb0120
  article-title: Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2015.12.024
– volume: 63
  issue: 18
  year: 2001
  ident: 10.1016/j.bbagen.2020.129671_bb0270
  article-title: Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.184416
– volume: 72
  start-page: 1464
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0200
  article-title: Multiscale modelling of fluid and drug transport in vascular tumours
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-010-9504-9
– volume: 6
  start-page: 2242
  issue: 20
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0280
  article-title: A molecular dynamics simulation of the stability-limited growth mechanism of peptide-mediated gold-nanoparticle synthesis
  publication-title: Small
  doi: 10.1002/smll.201000889
– volume: 114
  start-page: 12151
  issue: 28
  year: 2010
  ident: 10.1016/j.bbagen.2020.129671_bb0065
  article-title: Molecular dynamics simulations of surfactant functionalized nanoparticles in the vicinity of an oil/water interface
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp105355y
– volume: 112
  issue: 6
  year: 2014
  ident: 10.1016/j.bbagen.2020.129671_bb0315
  article-title: Lipid membranes as solvents for carbon nanoparticles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.068102
SSID ssj0000595
Score 2.398954
Snippet The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129671
SubjectTerms Cancer
Cell Membrane - chemistry
coatings
cytotoxicity
Differential scanning calorimetry
Diffusion
Drug delivery
Gum Arabic - chemistry
humans
lipid bilayers
Lipid Bilayers - chemistry
lipids
magnetism
Magnetite
Magnetite Nanoparticles - chemistry
medicine
Membranes, Artificial
molecular dynamics
Molecular Dynamics Simulation
Molecular dynamics simulations
molecular models
Nanoparticles
physicochemical properties
polyvinyl alcohol
Polyvinyl Alcohol - chemistry
Title Coating of magnetic nanoparticles affects their interactions with model cell membranes
URI https://dx.doi.org/10.1016/j.bbagen.2020.129671
https://www.ncbi.nlm.nih.gov/pubmed/32565292
https://www.proquest.com/docview/2415835090
https://www.proquest.com/docview/2477618002
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB1EEb2I365fRPAat5smaXuURVkVvOiKt9A2iShuV3Q9ePG3O9O0iod1wWNLCmEynbxk3rwBOE4lBjkZxTzJo4hLKwqO21DKy9KSnLoltWpiW1zrwVBe3qv7Oei3tTBEq2xif4jpdbRu3nQba3ZfHh-7N5TUQzihBKF6BBJUwS4TovWdfP7QPBA-qJBJkJxGt-VzNcerKPCnJRVUQTILmU5607anafCz3obOV2GlwY_sNExxDeZctQ6LoaPkxzos9dsGbhtw1x_nRGpmY89G-UNF5Yqsyis8JjdsOJYHNger0wWMpCNeQ6HDG6MLWlb3yWF0uc9GboQHawyMmzA8P7vtD3jTRoGXUqsJj73wVunYO-l0mfqUrid9odI81TKLPAI4q50VNtcpokGPoIFypS4qZamc0_EWzFfjyu0AiyMb4xnIksygTIRPE5eJXFEyUSDO1B2IW-uZstEYp1YXz6Ylkz2ZYHNDNjfB5h3g31-9BI2NGeOTdmHML18xuA3M-PKoXUeDi0HmQ8ON398MARn0oSiL_hqTJLpHCLsD28EJvucbI3RUIhO7_57bHizTU6hz3If5yeu7O0DAMykOa48-hIXTi6vB9ReDQvwW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQivl2fEbyGrWmStkdZlPW1Fx94C22TiOJ2RdeD_96ZplU8qOC1TSBMJjNfMjPfABykEo2cjGKe5FHEpRUFRzeU8rK0RKduia2asi2GenAjz-7U3RT021oYSqtsbH-w6bW1br70Gmn2nh8eelcU1EM4oQShegQS0zBD7FSyAzNHp-eD4ZdBVnXzFRrPaUJbQVeneRUFnlsiQhXEtJDp5PAnD_UTAq090ckiLDQQkh2FVS7BlKuWYTY0lXxfhrl-28NtBW7745zymtnYs1F-X1HFIqvyCm_KTUIcy0NCB6sjBozYI15CrcMrozdaVrfKYfS-z0ZuhHdrtI2rcHNyfN0f8KaTAi-lVhMee-Gt0rF30uky9Sm9UPpCpXmqZRZ5xHBWOytsrlMEhB5xA4VLXVTKUjmn4zXoVOPKbQCLIxvjNcgS06BMhE8Tl4lcUTxRINTUXYhb6ZmyoRmnbhdPps0nezRB5oZkboLMu8A_Zz0Hmo0_xiftxphv6mLQE_wxc7_dR4ObQeJDwY3fXg1hGVSjKIt-G5Mk-pBAdhfWgxJ8rjdG9KhEJjb_vbY9mBtcX16Yi9Ph-RbM059Q9rgNncnLm9tB_DMpdhv9_gApOv7H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coating+of+magnetic+nanoparticles+affects+their+interactions+with+model+cell+membranes&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Lazaratos%2C+Michalis&rft.au=Karathanou%2C+Konstantina&rft.au=Mainas%2C+Eleftherios&rft.au=Chatzigoulas%2C+Alexios&rft.date=2020-11-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=11&rft.spage=129671&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2020_129671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon